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We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with
attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing
regimes which are characterized by the product ofsthave scattering length and the Fermi wave veciky,

We report results for the ground-state energy, the pairing &igand the quasiparticle spectrum. In the
weak-coupling regime, k- <-1, we obtain Bardeen-Cooper-SchrieffBICS) superfluid and the energy gap

A is much smaller than the Fermi gas enekgys. Whena> 0, the interaction is strong enough to form bound
molecules with energ¥,,o. For 1/ak:=0.5, we find that weakly interacting composite bosons are formed in
the superfluid gas witlh and gas energy per particle approachjig|/2. In this region, we seem to have
Bose-Einstein condensati@BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC
transition region, —0.5:1/ak-<0.5, is discussed.
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I. INTRODUCTION ping and ingenious cooling metho@8,7]. These are dilute

How pairing evolves from the bare interaction has been & €/Mi Systeéms, in contrast to dense atomic ligtite or a
major question in condensed-matter physics, and the study g'ution of*He in superfluid'He. Within the past few years,
pairing in relation to the phenomenon of superfluidity andt€Mmperatures 1< Te have been achieved, wherde
superconductivity can be traced back to Cooperl. [1].  —7 Ke/2m is the Fermi kinetic energy ank}- is the Fermi

Paiting lies at the core of several quantum many-body prob¥ave vector. At such_a_low temperature, the f_ermionic nature
lems, and it is also believed to influence the evolution ofOf the quantum statistics becomes evident in the measure-

neutron starg2]. Here we report results of quantum Monte ment of the density profile of the trapped gas. At even lower

Carlo calculations of a superfluid Fermi gas with short-rangetemperatures’ the transition to the superfluid Cooper-paired

: ; X S State is expected. However, the temperatiyef this transi-
.tWO'bOdy Interactions. The strength. C.)f the interaction s V@Tion can be much lower thaf: and conclusive evidence of
ied to study different regimes of pairing.

h luti f pairi th th h of the i superfluidity is still to be seen. In order to have the transition
The evolution of pairing with the strength of the interac- 5¢ o achievable temperature, the experimentalists rely on the

tion has been discussed in the literat{8¢4]. In the regime  Faghpach resonance technique to produce strong interaction
where the interaction is weak and attractive, a gas of fermipetween the fermionic atoms.

ons has a superconducting instability at low temperatures, when the range of the interatomic interaction is smaller
and a gas of Cooper pairs is formed. The typical coherencghan all the length scales in the system, the details of the
length is larger than the interparticle spacing(4mr3p=3  interaction are believed to be unnecessary and the scattering
with p the number densilyand the bound pairs overlap. In lengtha is sufficient to characterize it. Near the resonance,
contrast, in the strong-coupling limit the coherence length igshe magnitude of the scattering lengéh becomes much
small, and the bound pairs can be treated as well-separatéarger thanry and the system enters the strong-coupling re-
Bose molecules. One then expects the molecules to undergime. The valueak-~—7.4 has been achieved by O'Hazt
Bose-Einstein condensatiofBEC) into a single quantum al. [7] and the limit(aks— —%) is now approached in the
state with zero momentum. laboratory [8,9]. Recently, creation of bosonic molecules
The Bardeen-Cooper-SchrieffdBCS) theory [3] and  from **K atoms was reported by Regei al. [10], and pair-
Gorkov equationg5] have been used to estimate gaps ining in the 1/ak-~ 0 regime was observedRef. 11).
superfluid gases. However, their predictions differ by more A few words are in order regarding the language of
than a factor of 2 and they may be qualitatively valid only in s-wave scattering. For a noninteracting system at zero tem-
the weakly interacting regime. Here we use first-principlesperature, the only length scale iskk/ We can use the di-
quantum Monte Carlo methods to study the entire regiormensionless quantitsik: to describe a dilute gas having in-
ranging from free fermions to the tightly bound Bose mol- terparticle spacing, much greater than the interaction range.
ecules. We often use ldk- becauseak: changes discontinuously
Dilute Fermi gases of%, 6Li, ?H, for example, can now from —< to +» when a bound state is formed atak{=0.
be studied in the laboratory using magnetic and optical trapFor attractive interactions ak- can change from large nega-
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tive values(weakly interacting limif to large positive values 2h% P
(strongly interacting limit. As discussed in Sec. Il, the radius v(r)=-v
of the bound molecule provides another length scale in the
strongly interacting regime. Some physical examples of thean be used. The strength of potentia}) is adjusted to
limits of 1/ake are (i) electrons in superconductors have gptain the desired value ak-. We can also take appropriate
1/aks large and negativeii) neutron matter has &k small yajues ofu such that the effective range of the potenta}
and negative; andii) cold deuterium atoms have large posi- js mych smaller than the interparticle distamrgeWhenv,
tive 1/ake. In the last case, molecular bound states smallec 1 this potential has=+o andRsz=2/x. In most calcula-
than the average interparticle distamgere possible. Onthe tions we have usegury=12. For thea— - case we also
other hand, superfluitHe is not describable in terms ak:,  tested thewr o — o limit using uro=24[16].
because the interaction range is greater thgnand the Results of simple lowest-order constraint variational
paired state does not hasevave symmetry. (LOCV) calculations are reported in Sec. Il. The LOCV
In the limit of zero energy for the colliding pair, the two- method was first used to study neutron maiéf|. Recently,
body scattering cross sectianis given by 4ra”. Whenlal  Cowell et al. [18] have used it to study cold Bose gases in
<y, the interatomic collisions in the gas are similar to thosethe unstablea>r, regime. It provides a surprisingly good
in vacuum, and the mean free path is approximately given bgstimate of the ground-state energy. Here we use it to study
€=1/op. However, this approximation is meaningful only the effect of the difference between the cgaty=12) and
v_vhen|a_|<ro and€>ro. When|a_| is =r, the two-body col-  sfynction potentials on the energy of dilute gases. The dif-
lisions in the gas are strongly influenced by the presence Gtrence becomes significant whenak{ — o, and the radius
other particle_s, and their cross section in the gas is MUCBs the molecule approaches A/LOCYV is also used to esti-
smaller than in vacuum. , , mate the energy of the unstable state of the Fermi gas for
~ ForaFermi gas at low density, an expansion of the energy ~. o The stability of dilute gases is discussed in the LOCV
in terms ofak: is possible. For spin-1/2 Fermi gases, it is gg¢. .
known to be[12,13 One of the limitations of LOCV is that it cannot be used
to calculate the pairing energy gapor the other superfluid
£ 10 4 properties of Fermi gases. The quantum Monte Carlo meth-
E_ i o 2 ods used in Ref. 16 and this work to study superfluid gases
EFG{l ¥ 97r(akF) * 21(11 2 In 2(ake) are described in Sec. Ill, and the results for the energy, pair-

2

O m cost(ur)’

ing gap and the quasiparticle spectrum are presented in Sec.
+O(ake)® + } (1) IV over the rangeak-=-1 to = to +0.5. Conclusions are
given in Sec. V.

whereEgg=3/ 5(h2k,2:/ 2m)=(3/5)Tg is the ground-state en- . LOWEST'ORDEZ_CC%TiEQOA’\'gT VARIATIONAL
ergy per particle of the noninteracting Fermi gas. In the
ake: — —o limit, theoretical estimates of 0.326 and 0.56&; In the lowest-order constraint variationalLOCV)

were reported14,15. More recently, the authoril6] pre-  method, the ground state of the Hamiltonian

dicted Ey=(0.44+0.0)Er; using quantum Monte Carlo

methods. In this paper, we continue that study of the proper- #2 A

ties of cold dilute spin-1/2 fermion gas and extend it to all H==—> V,23+2 v(rij), 3
the regimes of 1dk- as a first step for understanding the 2Mp=y ij

superfluidity and the bosonization of dilute Fermi gases.

The model considered in this study consisté\dérmions ~ Where the unprimed indeixdenotes spin-up particle, primed
contained in a box with periodic conditions on its bound-index ' denotes spin-down particle, apdcan be any par-
aries. It is not polarized so that half of the spins point up andicle, is approximated by the Jastrow-Slater wave function
the other half down. Typically is varied from 10 to 20 to
estimate properties of uniform gas in the— o thermody- =11 f(rij)|®g), (4)
namic limit. In some cases, larger valuesfoére used. Fer- i’
mions of the same spin do not feel the effects of interaction
because it is of short range and Pauli exclusion predomiwhere|®g) is the ground state of noninteracting fermions. In
nates. The fermions of different spins interact via a centrathe present casgbg) is a product of two Slater determinants,
potentialy(r) with the following properties(i) It is attractive  the first corresponding to the spin-up fermions and the sec-
with very short range as we assume the dilute liii), the ~ ond corresponding to the spin-down fermions. The interac-
details of the potential do not matter, in principle we cantion effects are represented by the Jastrow function
think of it as an attractives-function potential, andiii) the Il j/f(rij:), wheref(r;;;) denotes the pair correlation function.
potential can be adjusted such that we can sweep throughe often usef;;, to denotef(r;;). fj;=1 means no correla-

different regimes ofk. tion between the paiij" and f;;; # 1 for correlated pairs. In
From the considerations mentioned above, a cosh potenvariational calculations, the functiof(r) is determined by
tial of the form minimizing the expectation value of the Hamiltonian
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(H)= P a,p' Yo' i’ ap’ Yo' . (5)
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The assumption behind LOCYV is that the energy is mosit should be realized that a part of the accuracy of LOCV is
sensitive to the correlations of shghtss tharrg) range. We  due to a cancellation of errors, and not due to the quality of
impose a constraint on the range fgf) to assure that the the Jastrow-Slater variational wave functiBg. (4)]. In
correlations are mostly among the closest pairs, and keefact, the variational energy upper bound obtained with that
only the pair terms in the cluster expansion of the energwave function for 1ak-=0 is =0.62+0.0)Es signifi-
expectation value. The healing distantis the range of(r)  cantly above the GFMC result 0f0.44+0.0)Er;. The
defined such thdt(r >d)=1 anddf(r)/dr|,-4=0. In LOCV,d =~ LOCV energy of 0.4&¢ is below the Jastrow-Slater varia-
is chosen such that on average there is only one other partict®nal upper bound because it is calculated approximately
within the distanced of any particle. Effects of deviations keeping only two-body cluster contributions. However, when

from this average are assumed to cancel. the contributions of= three-body clusters become important,
Euler-Lagrange minimization of the energy expectationwe can expect that the approximations in the Jastrow-Slater
value[19] gives a Schrddinger-like equation foir <d), wave function would also become important, and the true
5 energy will be below the Jastrow-Slater upper bound.
_ ﬁ—sz(r) +u(r)F(r) = NF(r). (6) The ground-state energies obtained with the conventional
m BCS (variationa) method are also shown in Fig. 1. In the

weakly interacting limit, 1ak-— —o0, the BCS energy is too
large since it does not have the correct low-density limit
p d given by Eqg.(1). On the other hand, in the strongly interact-
f fo(r)d’r =1, (7)  ing limit, 1/ak=— +o, the BCS energy is very close to the
exact result(GFMC) presumably because in this limit we
and the is chosen such thatf(r)/dr|,-4=0. In Eqs.(6) and  have cpmplete pairing of the fermions into Bose moIecuIe_s.
(7) we do not have exchange contributions because the rang€CV is less accurate than the conventional BCS method in
of the interaction is short and fermions of the same spin ddhe Strong-coupling region. _ o
not interact. When Eqs(6) and (7) are simultaneously The LOCYV pair correlation functions are shown in Fig. 2.

solved, the energy per particle is given by The healing distancdzlro in the weakly interacting region_
(1/ak-<0), and as we increase the strength of the potential,

f(r) becomes more and more peaked at the origin, @nd
becomes smaller than. In fact for 1/ak-> 0, the boundary

The constraint used to determine the healing distance is

0

A
Elocv=Erct > (8

The results obtained for the ground-state energy of spin-l/gOndltlon atd has less impact off ocy and A of Eq. (6)
Fermi gas with the cosh angifunction potentials are shown 2 T T
in Fig. 1.

When 1/ak:<0, therg is the only length scale in the gas,
and the results obtained with the cosh potential wyithy
=12 are indistinguishable from those given by th&inction
potential. In contrast, when ak->0, we have a molecular
bound state whose radius provides another length scale. At
large positive values of Bk- there are differences between
results of the present cosh a@dunction potentials due to
the rms radiusR,,,s of the molecule becoming comparable to
the range of the present cosh potential. For example, at S 5 i
1/ak-=2 we getuR,s=2.3 with the present choice @f. In

n . . L 1/(akp)
principle, we can continue to approximate t#éunction in- F
teraction with the cosh potential by further increasingand FIG. 1. Ground-state energy per particle of dilute Fermi gases as
working in the uRys— o limit. However, all of the present 3 function ofake. The full and dashed curves give the LOCV results
computations are witfur,=12. for cosHur,=12) and &function potentials, and the circles show

Figure 1 also shows the presumably exact results obtainegle essentially exact results for the cosh potential obtained with the
with the cosh potential with the Green’s-function Monte GFMC method described in Sec. IIl. The dotted and dash-dotted
Carlo (GFMC) method described in the next section. Thecurves correspond to the conventional BCS results with cosh and
LOCV energies appear to be surprisingly accurate. Howevew-function potentials, respectively.
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T T ' ' T ' the observed BEC of Bose atoms are in such unstable states
in which thef(r) has nodes at smail
The E(ak:) shown by the solid line in Fig. 3 corresponds

to the stable ground state of the model Hamiltonian with the
S-function interaction. In principle, this state can be exactly
calculated by the quantum Monte Carlo method described in
the next section. However, when the range of the interaction
is finite, as for the cosh model, the system can collapse to a
tightly bound state at large density. This instability can be
] easily seen in the Hartree mean-field approximation in which

f(r)

p
Eve(p) = Erclp) + =1y,
FIG. 2. Correlation functiorf(r) for different values ofak: in 4

the LOCV approximation using the cosh potential wjithy=12.

becomes close to the molecular binding enekgy, such |v:fv(f)d3r, (9)

that E, ocv=Erg+(Ema/ 2) + SE. Epoi/ 2 is the term that pre-

dominates in this limitSE is small(| 6E| < Erg) and negative

so thatE, ooy > Enolf/ 2. wherel, (<0) is the volume integral of the interaction. At
Whena> 0, we can obtain another solution of the LOCV large enouglp, the interaction energy becomes larger than

equation with a node ait< d. This solution was discussed by Erg leading to a tightly bound state.

Cowell et al.[18] for cold Bose gases, and at small values of Consider, for example, a simple square-well potential of

ake it gives results in agreement with the low-density expan+ange R such thatv(r <R)=-V, and v(r>R)=0. Let this

sion[Eq. (1)]. The first tern{ (10/9m)ak:] is correctly repro-  potential correspond t@a=c«. This meansVy=#272/4mR

duced by LOCV, but the higher-order terms are approximateand|l,=—(4/3)VoR3=—(#?7%/3m)R. Then

In the limit a—, we have the conditionkd tan(kd)

=-1 discussed in Ref. 18. The solution with one 3h2k'2:|: 5 }

node is kd=2.7983 and it gives E/N=Egg+(\/2) Emr(ke) = ——— 1—ach

5 2m (10

=Epg+(h?/2m)[(kd)?/d?]~3.92%Es. Results obtained with

the &-function potential, including this unstable region, are

shown in Fig. 3. Those corresponding to the nodeless solulhe collapse occurs at va!qesqu> (54/5m)(1/R), _and can

tion of the LOCV equation are represented by a full line,P& pushed to higher densities by reduciigr equivalently

while the dashed line corresponds to the solution with dncreasingu in the case of the cosh potential. In the present

node. studies, we ignore this collapsed state; assuming that it oc-
The state of the gas having a node in the pair correlatiofurs at too large a density to influence the dilute gas proper-

function f(r) is unstable because it has energfq, while ~ Ues.

that with nodeles$(r) has lower energy<Er¢ (see Fig. 3.

However, it can have a relatively long lifetime b_ecause en- IIl. GREEN'S-EUNCTION MONTE CARLO

ergy conservation prevents two atoms from making the tran- CALCULATIONS

sition to the lower-energy state. At least three atoms are

needed, which hinders the transition at low densities. Most of The Green’s-function Monte CarkiGFMC) [20] method

is a powerful one for calculating the ground-state properties

4 of many-body quantum systems. It can be used to calculate
E/A [Egg] 3 R the ground-state properties of Bose systems with controllable

’ e statistical errors without approximation. For the fermion sys-
2 // tems, however, we have to deal with the sign problem posed

__//1,/’ by the antisymmetry of the wave function as discussed be-
~ low. We begin with a brief overview of the GFMC method.

4 3 20 a1 1,2 3 4 Let ¥; be the eigenstates 6 with eigenvalues;. The

aky -1 trial variational wave function¥,, which provides an ap-

) proximation to the ground sta¥¥,, can be expanded as
-3
4 \I,VZZ ai\Ifi. (11)

[
FIG. 3. The LOCVE/A in units of Erg vs akg for attractive

S-function potential. The dashed line corresponditdhaving one 1IN GFMC we project outV, from Wy, by evolution in imagi-
node, and the solid line shows the results with nodeféss nary time,
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-1 T T T T G(R, R/) —~ e—[V(R)—ET]AT/ZGO(R,R/)e—[V(R')—ET]AT/Z,
x-x Growth estimate (17)
_ 15t — Mixed estimate . whereV(R)=2; ;.v(r;;) and Gy(R,R’) is the Green’s func-
EE tion for A free particles,
é (3/2)Ae[ (R - R")2I2h2A 7]
2 GyR,R)=| —— S 7. (18
oRR)=| >—7 (18)
This approximation has errors of ordar?. The total error
g 1 1 1 L i i = 2 -
25— s To000 aftern time steps is of the ordernA7=73/n?. The correc

tions to this expression can be sampled to make an exact
algorithm. Here we use the more common method and make

FIG. 4. Mixed and growth estimates of the GFMC energy. Thethis error as small as we want, by increasing the number of

r—o0 asymptotic value is reached after5000 time steps. Each Stepsn. In practice, this error is made smaller than the sta-
time stepAr is 1.2 10%/Exg. tistical sampling errors of the Monte Carlo integration.

A naive quantum Monte Carlo algorithm could start with
N, configuration vector®k; sampled from¥,|. These pro-
vide the approximate representation

Time step

V(7 — ) = lime " Ey,

T—®

=lim Y, a,e EE, s qpeEo By Ns
ot e ° Wy(R) = X wsR-Ry), (19)
(12) =
wherew;=1 or -1 depending on the sign df,. The accu-
where we have shifted the origin of energy Eg~=~E; to racy of this representation increases with the number of
control the norm of¥ (7— ). In practice, the time evolution samplesN;. Inserting Eq.(19) into Eq. (16) and using the

is carried out inn small steps, short-time approximation give¥(R,A7) as a sum of nor-
malized Gaussians times weight factors containing the prod-
e M ENT=[] e EDAT  A7=qn, (13)  uct of the originalw; and the exponentials in the short-time

Green’s functionEqg. (17)]. Sampling a position from each

andE; is tuned to keegW(n)|W(n) constant. The tuneH; of the Ng Gaussians gives a representationdqR ,A7) as a

provides the growth estimate of the trig. An alternative  SUM of § functions times weight factors with signs. This

method for calculating the ground-state energy, often withPfOC€SS iS repeatautimes to obtain¥(R, 7=nA7). During
smaller statistical error, is given by the mixed estim@iee _the evoll_mon, Ia_rge magnltude weight factors are converted
Fig. 4) into mu!tlple copies while smgll fact_ors are sampl_ed and kept
with unit magnitude new weight with a probability propor-
tional to the magnitude of the old weight. The random walk
=E, =E,. of the weighteds-function samples representing the propa-
(V| W (7 — o)) (V| (7 — ) gation of ¥ (R, 7) therefore consists of diffusing and branch-
(14 ing and the number of samples at each time step can vary.
. . . This algorithm suffers from the fermion sign problem. For
In general, the time evolution operator or propagator SN samplesR;, 1<i <N, and weightsv;, the denominator of
not known for an arbitrary large value e_:fexcept fof afew 5 matrix element such as the mixed energy will be the sum
simple systems. However, we can obtain a S”f‘a“ time propaEN:Sl wiW\(R;). Eachw; carries the sign of the initial sample
gator with controllable errors for any Hamiltonian with static '
potentials that depend only on the positions of the particle
denoted by a R-dimensional configuration vectoR
={rq,rs,...;r1,r5,...5. This is the motivation to write the
time evolution as a product of many short time operator:
[Eq. (13)]. We define the Green'’s function

(G = TAHY =) (WP —o0)

from W, and if the path of the sampiéhas crossed nodes of
§If\, an odd number of times, the contribution to the sum will
be negative. For large times the contribution of these nega-
tive paths almost completely cancel the contribution of posi-
Sive paths that have not crossed nodes or crossed an even
number of times. The signal dies out exponentially compared
to the statistical noise. The numerator suffers from the same

G(R,R") =(Rle"" EPAR"). (15 problem.
) ) The fixed-nodg21] approximation deals with the fermion
The propagation equation becomes sign problem by restricting the path so that crossings of the

nodal surface are not allowed. When this constraint is im-
posed with the nodal surface of the exact fermion ground
state, (R, 7) converges to that state. Imposing the nodal
surface from an antisymmetric trial function gives an upper
The primitive approximation to this Green’s function is bound

«P(R,T+AT):fdR'G(R,R')\P(R',T). (16)
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lim (H)mix,» = Eo. (20)  function to be the absolute value df,. The propagation
T equation now becomes

We impose the fixed-node constraint with the nodes of our Wy (R)|

trial function ¥(R). [P (R)|¥(R, 7+ AT)]:J dR'V—,
Importance sampling is used to control the fluctuations of (R

the weights. The propagation equation is modified by multi- [Py RH¥R',D]. (21

plying by a positive importance function. Since we are using

the fixed-node approximation, the paths have zero probabilfhe short-time approximation for the importance sampled

ity of crossing the nodes, and we can take the importanc&reen’s function is

G(R,R")

YR h2A v(R)|G(R,R’
—||\PV((R,))||G(R,R’):GO<R,R’ + ZmTVIn|\IfV(R)|2) PRI h(ZA )
Y |\PV<R'>|GO(R,R' + TVIn|wv<R>|2)
2m
2
2G0<R,R’ + ﬁzi]TV |n|\I’V(R)|2){e_{llz[EL(R)+EL(R,)]_ET}AT}! (22)
|
where the local energy is function is such a wave function. Commonly, we write
HY(R) BCS), =11 (u +€%, &} &, )0
E(R)=———. 23 p p Kp! T kpl T
(RI= R (23) A o1k
SinceGy is still a normalized Gaussian, the only changes to Ui +v§ =1, (25)
p p

the naive algorithm are the sampling of the drifted Gaussian,
and the new weight given by the terms in the curly bracketswhere|0) denotes the vacuum ang andv, are real posi-
Notice that if W\, is close to the ground state &f, E, (R) tive numbers. However, this wave function does not corre-
will have fewer fluctuations tha¥(R), and the branching of spond to a definite number of particles. In fact, expanding
the walk is much reduced. Any paths that cross a node due titne wave function we can write
the short-time approximation are eliminated. . A A

For Ny samplesR;, all with weightw,=1, at timer, the IBCS),=0) + €PT|0) + €2/(P")?|0) + €%(PT)30) + - -+,

mixed energy becomes the average of the local energy (26)

N ~

3 whereP'=3 (v, /u, )a] ,a', | is the pair creation operator.
> E(R) LTk Tk T Skl )
-1 The component that corresponds Aoparticles orM=A/2
(H)mix = N (24)  pairs can be obtained by transforming
S
2w

Since the fixed-node calculations give an upper bound to the IBCYA= if e1M|BCS) b,
ground-state energy, our strate@ge Ref[16]) is to choose 2w ),

a trial wave function with variable nodal surfaces and mini-
mize the fixed-node GFMGH), ;. :(IE,T)M|O> 27
The trial wave functior\(R) is now used in three dif- '
ferent contexts(i) as the initial guess of the ground staig) ~ This component can be written as an antisymmetrized prod-
as the importance function in E(@1), and(iii) as the node uct of the pair wave functiong(r;;.),
restriction function. The nodes of the Jastrow-Slater wave
function [Eq. (4)] equal those of noninteracting Fermi gas Wecs(R) = ALA(r11)h(raz) -+ $lrum) ]
and cannot be varied. So that wave function is not useful for
the present studies. 0 YKo ik ikt
From physical considerations, a better trial wave function $0=2 u—k‘?e =2 e,
must reflect the fact that the fermions with attractive interac- P P
tion can form bound Cooper pairs in the ground state. Andvhere the number of up-spin particles!) is equal to the
from mathematical considerations, the trial wave functionnumber of down-spin particled’). The variational param-
must have a variable nodal surface, which can be varied teters «;, are real positive numbers. The free fermion gas,
minimize the fixed-node GFMC energy. The BCS waveSlater wave function is just a particular case of this wave

(28)
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function whena, # 0 for k| <kg and =0 for|k,| > k.

We also consider systems having unpaired particles. In
particular, we can havéM pairs and one unpaired up- or
down-spin particle. This generalization is necessary as the

20

PHYSICAL REVIEW A 70, 043602(2004)

Pairing gap (A) = 0.99(3) B,

-~
-

gap energyA is calculated from the odd-even staggering of © \/:;Z: :
the ground state enerd$6]. With one unpaired? or | spin) S odd A\/,/;/" ™S wven A
particle in the state, (), with momentuntk, the trial wave 101 o
function is given by[22] ZSZ;):JQ, E=044(1) AEg
Vecs(R) = A{[(ria) -+ d(rum) 1o (N} (29)
O 1 1 1 1

The ground state is expected to hdikg = |kg| in the weakly

10

20

A

30

40

interacting regime an#{,— 0 in the strongly interacting re-
gime. This wave function can be calculated as a determinant
[22,14, which makes the numerical calculations relatively
simple. ; - TS
. - , and its value is fixed at 10. In additioty,is chosen such
Quantum Monte Carlo calculations use a finite number ot A2 _ . . W_ )
particles in a cubic periodic box of voluné to simulate the ~ thatdB/dr=0 atr=0; its value is 6 in the limiL. — .

infinite uniform system. The momentum vectors in this box _1he variational parameters af&o, a1, ..., } andb. We
are discrete, wish to find a set of these parameters that minimize the

fixed-node GFMC estimate of energy. However, considering
that we have to allow simultaneous variation of all the pa-
rameters, methods based on unguided variation become dif-

dth h hell ith cl _ficult, if not infeasible. Again, we rely on the GFMC proce-
and the system has a shell structure with closures occurrin itself to optimize these parameters. Initial

. : ure
when the total number of particles :2,_14,38,54forsp|n2- configurations are obtained with a random distribution of the
1/2 fermions. The shell numbéris defined such that=n;

5 s 5 parameters centered around a reasonable guess. Each of them
+ny+n;, andE = (% /Zm)(47’2“- e , is propagated according to the nodal constraints provided by
In the present calculations, the pair wave functipff)  (hejr parameters with a singlg;. The paths with the smallest

has the assumed form (H)mix acquire large amplitudes or weights as-«. The
(1) :Z%(r)+ D average among th.ese. paths .gives an o_ptimization over the
= initial random distribution. This process is repeated several
times until convergence is achieved.

When we have an odd number of particles, the ground-
state momentunk, [Eg. (29)] is an additional variational
parameter. We minimize the fixed-node GFMC energy of
systems with oddA by varyingk,. As discussed in the next
section, the magnitude d, changes fromk: to 0 as the
interaction strength increases and we go from the weakly
interacting BCS to the strongly interacting BEC regime. The

) gap energy is obtained from the odd-even staggering of the
Herel.=4 is a cutoff shell number. We assume that the cony4) energy

tributions of shells withl > 1 to the pair wave function can
be approximated by a spherically symmetric functigin) of
rangeL/2. We further reduce the statistical fluctuations by
using the Jastrow factor along withigcg in the variational

wave function,
In doing so, the effects of interaction among quasiparticles
Wy(R) =[] f(rjj) WecsR). (32)  are neglected.

i’ Results forake=c are shown in Fig. 5. The energy per
The Jastrow factor does not change the nodal structure. Thuggrtmle E/'.A‘ anq the gaph do not have a S|gn|f|carA de-
the average value of the estimated energy is independent Bpndence in this case. These results were repor'ted in Ref. 16,
f(r), but the statistical error is reduced by using tt1® from and _results for other values ak- are presented in the next
LOCV calculations. section.

It is convenient to require thai,@/arzo atr=0. This is
because the local energy has terms likér)(98/dr), which

can have large fluctuations at the origin Whﬁm/&r #0 at The values of the parameteray_, and b, of the BCS
r=0. The factof1-e "] cuts off 1/cbr dependence g8 at  wave function are to be determined by minimizing the fixed-
br<1/c. The energies are not too sensitive to the parametanode GFMC mixed energy for each valuead: andA. The

FIG. 5. E(A) whenakz=-o from Ref. 16.

(30)

27 A -
Kp= T(npxx + Ny +Np2),

a|e|kp-r ,

B(r)= B(r)+ BL-1) - 28(LI2) for r=L/2,

=0 for r>VL/2,

e—br

cbr’

B(r) =[1+ybr][1-e°"] (31

A2M+1)=E2M +1) - %[E(ZM) +E(2M + 2)].

(33

IV. RESULTS
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TABLE |. Optimum values of the variational parameters.

ake A ag ay ay as ay b
-1 10 1.00 0.05 0 0 0 NA
14  1.00 1.00 0.010 0 0 NA

20 1.00 1.00 0.104 0.024 0 NA
-3 10 040 0.165 0.019 0.009 0.002 1.13
14 028 0280 0.020 0.006 0.003 1.05
-10 10 0.295 0.096 0018 0.007 0.002 0.48
14 0220 0.130 0.019 0.007 0.003 0.44
% 10 0315 0.103 0.020 0.010 0.003 0.50
14 0.181 0.102 0.024 0.006 0.004 0.44 FIG. 6. E(A) for 1/aks<1/3.

minimum energy obtained is our estimate for the ground-thfht;'(i ground-state wave function changes continuously

state energy of the system. The values of the parameters thAt The magnitude of the momentuky of the unpaired par-

minimize this energy are not very sensitiveApthe number ticle in the around state is also determined by minimizing the

of particles in the box. We find it sufficient to determine the(IBFMIC f e%i-nl:)de ener ! The minim Im alyesl a:relflst(gad in

optimum parameters &=10, 14, and 20, and interpolate Tabl IIIXI th K gy. ling i : ,l tl; écg é ¢ tl

their values in thed=10, 14 andA=14, 20 ranges. The val- foar o?:ldA rTas|E \|Aie|i {Cﬁlufhg]%elrrirgdic beox the%rzglldg d’é ate
i i ul = [KF|- )

ues of the parameters at these valued afre listed in Table is 1 for 2< A=14, and 2 for 14 A=<38 in units of(2m/L)%.

l. .
At ak-=-1, the lowest energies are obtained without an))_n t.he ak==0 to -3 range, the minimum values kﬁ are as
h ~ d th . it ion h . “indicated by the weak-coupling BCS theory. However, in the
short rangeg(r) and the optimum pair function has contri- -10 to 3 range, thdiﬁ is 1 for the entire rangéll to 19 of

butions only from the states with<3. This is consistant 44 values ofA considered. Atak-=2, the states with
with the weak-coupling BCS theory in whiak goes to zero  _ and 1 are almost degenerate, a,nd foaki/>0.5, the
whenk-kg becomes large. - ground states of odd systems havk,=0, as expected when
When 1/ak->~1, lower energies are obtained wiglir)  the system consists of bound molecules condensed in the
#0. In most cases, the values of the parameters do nefero momentum state, and the unpaired particle also in the
change significantly betweei=14 and 20 The values listed k =0 state.
in Table | for A=14 are used for 14 A<20. The calculated values of the ground-state energy are
In the 0<1/ak-=<2 range, the optimum values of the shown in Figs. 6 and 7. The systems withak/<1/3 seem
parameters o g5 do not seem to change significantly with to haveE> 0, while those with 1&k->1/3 can haveE<0.
the ak-. We have not obtained any significant improvementswhen 14> 0, the two-body interaction is strong enough to
to the energy from varying the parameters in the regiorbind two particles and form molecules with enegy,,. The
1/ak=>0. In this region, we retain the values found for energy per particleZ/A, of the superfluid Fermi gas is com-
1/ak-=0 andA=14. Recall that only the nodal surfaces of pared withE,,,/2 in Fig. 8. Within the computational errors
the ground-state wave function are constrained by those &/A>E,,,/2 (see Table Il), however at 1ék-=0.5 we find
Wgcs The completely, has an additional product of Jastrow thatE/A is very close tdE,,/ 2. This behavior also indicates
pair correlation functiond(r;;;) which depends omke, and  that at these values afk: the system approaches that com-
posed of Bose molecules forming a BEC. It has been argued

2 B 2 . . .
TABLE II. Values ofkj in units of (27/L). that the interaction between these molecules is weakly repul-
ake A=11,13 A=15,17,19 oF— g":&:g":A:A‘Z;‘;&':;ZK:LAZ.K:&.;‘12;‘:“.2““-
0 1 2 S
-1 1 2 e
3 1 > . 50k E-—E.\n-_a\‘ o akF =1 |
= *-Q = -H
10 : 1 d e
% 1 1 oo, “a ak = 0.75
10 1 1 -100F \‘e——«\ T
-«

3 1 1 T ak, =05
2 Oor1l Oor1l . , L (x1/2)
1 0 0 10 ER 20
0.75 0 0
05 0 0 FIG. 7. E(A) for 1/ak->1/3. The results fomak-=0.5 have

been multiplied by 0.5 for graphing.
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1.5} -

gg EE 1ok
3 ° B0 cosn )

10k xxEB 1 Cos »\\ ] 0.5k |

— EmOI/Z : 6 '\.\ { {
< - e ak. =-1
BT 07 o8 12z 16 2 0.0—g B 30
1/(ak,) A

FIG. 8. E/A and En,,/2 for positive values of lak: for the FIG. 9. A(A) for 1/ake<1/3.

cosh(uro=12) potential andg,,y/2 for the s-function potential.
MRmsiS not very large for the present choiceafy=12, and

sive, with a molecule-molecule scattering length given bymMuch larger values of should be used to approximate the
amm=0.6a [23]. In this case, th&/A will always be greater ~&-function interaction. o
than E,,/2, and the gas will have positive pressutgA The pressur¢P=p?[d(E/A)/dp]) and the adiabatic index
increasing with the gas density k. ['=(p/P)(dP/3p)] of the superfluid gas in the range
The pairing gaps calculated from the odd-even energy dif=20<ak: <0 are shown in Fig. 12. For noninteracting Fermi
ference[Eq. (33)] are shown in Figs. 9 and 10. These gapsgas (ak-=0), E/A=Er; and we haveP=(2/3)pErs and I’
are not very sensitive t4, and they are compared with the =5/3. In thelimit ak-— 0, we can use the low-density ex-
predictions of BCY3] and Gorkov[5] estimates given by  pansion[Eq. (1)] to obtain

P(ake — 0) = ngFG(l + iakF) ,

8
2T el(2ake) 37

Apcs=

I'(ak: — 0) = 2 + 9%,ak':' (35)

2

2 713 23k 1 1/3
Acoov=| =] Teem@==(Z) A 4 -
Gorkov (e) Fe 2( e) ses (34) In the ak-— — limit, we haveE/A=¢Eqg, therefore

where the chemical potential is approximatedTizyas when
1/ak:-<0. At 1/ak=-<0, the calculated gaps are in between
these estimates, while at positive values oK/ they ap-
proach E,,,/2 as expected for a gas of Bose molecytee
Fig. 10 and Table I\

Figures 8 and 11 also show tlg,, for a s-function in- i i
teraction in addition to those for the present cosh potentiaf'nere&=0.44+0.01 according to the present calculations.
with ur,=12. The two potentials give essentially the same | N€ calculated value oP(ake)/(pErg) is 2/3 atak:-=0
results for 1ak-< 0.5, but at larger values the cosh potential@nd decreases monotonically (/3)¢ as ak:— —o. How-
is more attractive. The values of the rms radRjs of the ~ €Ver, the adiabatic indek(ak) is 5/3 for bothak-=0 and
molecule are listed in Table IIl. At large values ofdkt, the — ake=—c, and has a minimum value of1.6 atak:~-1.3.

2
P(aks — =) = §§PEFG,

ek — =)=, (36)

TABLE Ill. Summary of the results in the strongly interacting ' ' '
regime. L 4
sor o } ........ % ......... % } ak, = 0.5
l/ake A/Erg  Egrmc/AErc  Emo/2Erc Rms/To  #Rims
210.0F E
0 0.994)  0.441) 0 % % g
0.1 1035 0341 ~0.041) 369 443 I I
03 137(5) OOZ]_) _02(_11) 121 145 sol { ; ...................... a P =
0.5 18@5  -0331)  -0.491) 074 89 :::;::::::::@:::::::::::::::::::t -,
1.0 3.21) -2.231) -2.31(1) 0.38 4.6 0.0 L 1 L
13 573  -4582)  -4.631) 028 3.4 10 B 20
2.0 14.95) -12.843) -12.861) 019 23
FIG. 10. A(A) for 1/ak=>1/3.
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T T T T 2 T T T
13} N R S
;2 1.5p r -
g10F ABCS__::: / . X
% I/-Emol/2 :cosh
5 A S .
GFMC S ) 0.5 P/(oE '
~ e/ B [2:8 T.._.ﬁ.._.ﬁm:.ﬁ/.g.?—..—fg).—.m.—.—.::.:.—..:.—..:.—.:.‘..T.’.: .......
& ‘mol
~::'_'"-“-:e-‘”“e?e‘<e"" ’.| ! 1 1 1
0—= 0 T p % 3 10 s 0
1/(aky) ak,
FIG. 11. Calculated values dfgqyc(ake) (cosh,ury=12 poten- F_IG. 12. Pres_sureeP, dashed_ curveand adiabatic_ inde>_(1"_,
tial) are compared with various estimates/fak:) and /2. continuous curvein the BCS regimgaks: <0). In the dilute limit

The BCS and Gorkov estimates do not depend on the shape of tH@ks— 0) we haveP/(pErg) — 2/3 andl’—5/3. In the dense limit
potential, while €,,,/2 is shown for both cosltsolid line) and  (8ke— =) we haveP/(pErg) —0.442/3) andI'—5/3.T has a
s-function (dash double dgtpotentials.Agcg and Agoryoy @assume  Minimum atakg: ~-1.3.
the chemical potentia&Tg throughout the whole range ak- [see
Eq. (34)]. ak- positive and of the order 1. The odd-even staggering
A(2M+1) given by Eq.(33) presumably equals the mini-
V. CONCLUSIONS mum quasiparticle energy in the limid — oo.
According to Leggett’s description, in the weak BCS su-
The present work shows that accurate calculations of theerfluids the ground state of systems with an odd number of
pairing gaps and energies of superfluid Fermi gases are poparticles is expected to have momentlwm while in the
sible with the fixed-node GFMC method. The unknownmolecular liquid with BEC it is expected to have zero mo-
nodal surfaces can be determined variationally by minimiz-mentum. With this criterion the calculated value&ﬁa(Table
ing the fixed-node GFMC energy. This method gives the exil) suggest that the BCS-to-BEC transition occurs in the
act result in the 1akz— — (Fermi ga$ and llak:— +x range —0.5<1/ak=<0.5. It appears to be a smooth transition
(BEC of moleculeglimits for short-range attractive interac- or crossover.
tion, and seems to overcome the fermion sign problem. An A recent experiment by Bartenstegt al. also seems to
alternative method based on path-integral Monte Carlo simueorroborate some of our findings. In fact, in their paf#5]
lations is also being developgd4]. the BCS-BEC crossover regime f6ti is reported to be
Our results are in qualitative agreement with the known-0.5=1/ak-=<0.5. In addition, in the unitary limit(ake
BCS-BEC crossover mod¢see Leggetf3]) where the gap =) they measuredE/AZO.BZigEFG, which includes
and chemical potentidlug) are calculated self-consistently. within its range our resulE/A=(0.44+0.0)rc.
The gap is determined as the minimum of the Bogoliubov We can notice that in the BCS regineis much smaller
quasiparticle energy E,=/(&—uo)?>+|Ay?>, where ¢ than E/A, while in the BEC regimeA ~ |E|/A~ |Emol/2.
=#2k?/2m is the single-particle excitation energy aAg is ~ However, in the transition regiod is significantly larger
the gap parameter. Two limiting cases were considered ithan|E|/A.
this referenced article. For &k — -, uy=Tg>0, the
minimum of E, occurs atk=kg and the minimum quasipar-
ticle energyA=A;_=(8/€*)Tee™ ). However, for 1Ak The work of J.C. is supported by the U.S. Department of
— +00, po=~Eqq/2<0, the minimum ofg, is atk=0, and  Energy under Contract No. W-7405-ENG-36, while that of
its value A=|uo|~|Enol/2 because;~0. The BCS-BEC S.Y.C. and V.R.P is partly supported by U.S. National Sci-
crossover takes place whay=0 and this corresponds to ence Foundation via Grant No. PHY-00-98353.
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