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We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with
attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing
regimes which are characterized by the product of thes-wave scattering length and the Fermi wave vector,akF.
We report results for the ground-state energy, the pairing gapD, and the quasiparticle spectrum. In the
weak-coupling regime, 1/akF,−1, we obtain Bardeen-Cooper-Schrieffer(BCS) superfluid and the energy gap
D is much smaller than the Fermi gas energyEFG. Whena.0, the interaction is strong enough to form bound
molecules with energyEmol. For 1/akF*0.5, we find that weakly interacting composite bosons are formed in
the superfluid gas withD and gas energy per particle approachinguEmolu /2. In this region, we seem to have
Bose-Einstein condensation(BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC
transition region, −0.5,1/akF,0.5, is discussed.
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I. INTRODUCTION

How pairing evolves from the bare interaction has been a
major question in condensed-matter physics, and the study of
pairing in relation to the phenomenon of superfluidity and
superconductivity can be traced back to Cooperet al. [1].
Pairing lies at the core of several quantum many-body prob-
lems, and it is also believed to influence the evolution of
neutron stars[2]. Here we report results of quantum Monte
Carlo calculations of a superfluid Fermi gas with short-range
two-body interactions. The strength of the interaction is var-
ied to study different regimes of pairing.

The evolution of pairing with the strength of the interac-
tion has been discussed in the literature[3,4]. In the regime
where the interaction is weak and attractive, a gas of fermi-
ons has a superconducting instability at low temperatures,
and a gas of Cooper pairs is formed. The typical coherence
length is larger than the interparticle spacingr0 (4pr0

3r=3
with r the number density) and the bound pairs overlap. In
contrast, in the strong-coupling limit the coherence length is
small, and the bound pairs can be treated as well-separated
Bose molecules. One then expects the molecules to undergo
Bose-Einstein condensation(BEC) into a single quantum
state with zero momentum.

The Bardeen-Cooper-Schrieffer(BCS) theory [3] and
Gorkov equations[5] have been used to estimate gaps in
superfluid gases. However, their predictions differ by more
than a factor of 2 and they may be qualitatively valid only in
the weakly interacting regime. Here we use first-principles
quantum Monte Carlo methods to study the entire region
ranging from free fermions to the tightly bound Bose mol-
ecules.

Dilute Fermi gases of40K, 6Li, 2H, for example, can now
be studied in the laboratory using magnetic and optical trap-

ping and ingenious cooling methods[6,7]. These are dilute
Fermi systems, in contrast to dense atomic liquid3He or a
solution of3He in superfluid4He. Within the past few years,
temperatures T!TF have been achieved, whereTF
="2kF

2 /2m is the Fermi kinetic energy andkF is the Fermi
wave vector. At such a low temperature, the fermionic nature
of the quantum statistics becomes evident in the measure-
ment of the density profile of the trapped gas. At even lower
temperatures, the transition to the superfluid Cooper-paired
state is expected. However, the temperatureTc of this transi-
tion can be much lower thanTF and conclusive evidence of
superfluidity is still to be seen. In order to have the transition
at an achievable temperature, the experimentalists rely on the
Feshbach resonance technique to produce strong interaction
between the fermionic atoms.

When the range of the interatomic interaction is smaller
than all the length scales in the system, the details of the
interaction are believed to be unnecessary and the scattering
length a is sufficient to characterize it. Near the resonance,
the magnitude of the scattering lengtha becomes much
larger thanr0 and the system enters the strong-coupling re-
gime. The valueakF,−7.4 has been achieved by O’Haraet
al. [7] and the limit sakF→−`d is now approached in the
laboratory [8,9]. Recently, creation of bosonic molecules
from 40K atoms was reported by Regalet al. [10], and pair-
ing in the 1/akF,0 regime was observed(Ref. 11).

A few words are in order regarding the language of
s-wave scattering. For a noninteracting system at zero tem-
perature, the only length scale is 1/kF. We can use the di-
mensionless quantityakF to describe a dilute gas having in-
terparticle spacingr0 much greater than the interaction range.
We often use 1/akF becauseakF changes discontinuously
from −` to +` when a bound state is formed at 1/akF=0.
For attractive interactions 1/akF can change from large nega-
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tive values(weakly interacting limit) to large positive values
(strongly interacting limit). As discussed in Sec. II, the radius
of the bound molecule provides another length scale in the
strongly interacting regime. Some physical examples of the
limits of 1/akF are (i) electrons in superconductors have
1/akF large and negative;(ii ) neutron matter has 1/akF small
and negative; and(iii ) cold deuterium atoms have large posi-
tive 1/akF. In the last case, molecular bound states smaller
than the average interparticle distancer0 are possible. On the
other hand, superfluid3He is not describable in terms ofakF,
because the interaction range is greater thanr0, and the
paired state does not haves-wave symmetry.

In the limit of zero energy for the colliding pair, the two-
body scattering cross sections is given by 4pa2. When uau
! r0, the interatomic collisions in the gas are similar to those
in vacuum, and the mean free path is approximately given by
,=1/sr. However, this approximation is meaningful only
when uau! r0 and,. r0. Whenuau is *r0, the two-body col-
lisions in the gas are strongly influenced by the presence of
other particles, and their cross section in the gas is much
smaller than in vacuum.

For a Fermi gas at low density, an expansion of the energy
in terms ofakF is possible. For spin-1/2 Fermi gases, it is
known to be[12,13]

E

N
= EFGF1 +

10

9p
sakFd +

4

21
s11 − 2 ln 2dsakFd2

+ OsakFd3 + ¯G , s1d

whereEFG=3/5s"2kF
2 /2md=s3/5dTF is the ground-state en-

ergy per particle of the noninteracting Fermi gas. In the
akF→−` limit, theoretical estimates of 0.326 and 0.568EFG
were reported[14,15]. More recently, the authors[16] pre-
dicted E0=s0.44±0.01dEFG using quantum Monte Carlo
methods. In this paper, we continue that study of the proper-
ties of cold dilute spin-1/2 fermion gas and extend it to all
the regimes of 1/akF as a first step for understanding the
superfluidity and the bosonization of dilute Fermi gases.

The model considered in this study consists ofA fermions
contained in a box with periodic conditions on its bound-
aries. It is not polarized so that half of the spins point up and
the other half down. TypicallyA is varied from 10 to 20 to
estimate properties of uniform gas in theA→` thermody-
namic limit. In some cases, larger values ofA are used. Fer-
mions of the same spin do not feel the effects of interaction
because it is of short range and Pauli exclusion predomi-
nates. The fermions of different spins interact via a central
potentialvsrd with the following properties:(i) It is attractive
with very short range as we assume the dilute limit,(ii ) the
details of the potential do not matter, in principle we can
think of it as an attractived-function potential, and(iii ) the
potential can be adjusted such that we can sweep through
different regimes ofakF.

From the considerations mentioned above, a cosh poten-
tial of the form

vsrd = − v0
2"2

m

m2

cosh2smrd
, s2d

can be used. The strength of potentialsv0d is adjusted to
obtain the desired value ofakF. We can also take appropriate
values ofm such that the effective range of the potentialReff
is much smaller than the interparticle distancer0. Whenv0
=1 this potential hasa= ±` andReff=2/m. In most calcula-
tions we have usedmr0=12. For thea→−` case we also
tested themr0→` limit using mr0=24 [16].

Results of simple lowest-order constraint variational
(LOCV) calculations are reported in Sec. II. The LOCV
method was first used to study neutron matter[17]. Recently,
Cowell et al. [18] have used it to study cold Bose gases in
the unstablea. r0 regime. It provides a surprisingly good
estimate of the ground-state energy. Here we use it to study
the effect of the difference between the coshsmr0=12d and
d-function potentials on the energy of dilute gases. The dif-
ference becomes significant when 1/akF→`, and the radius
of the molecule approaches 1/m. LOCV is also used to esti-
mate the energy of the unstable state of the Fermi gas for
a.0. The stability of dilute gases is discussed in the LOCV
Sec. II.

One of the limitations of LOCV is that it cannot be used
to calculate the pairing energy gapD or the other superfluid
properties of Fermi gases. The quantum Monte Carlo meth-
ods used in Ref. 16 and this work to study superfluid gases
are described in Sec. III, and the results for the energy, pair-
ing gap and the quasiparticle spectrum are presented in Sec.
IV over the rangeakF=−1 to 7` to +0.5. Conclusions are
given in Sec. V.

II. LOWEST-ORDER CONSTRAINT VARIATIONAL
CALCULATIONS

In the lowest-order constraint variational(LOCV)
method, the ground state of the Hamiltonian

H = −
"2

2m
o
p=1

A

¹p
2 + o

i,j8

vsr ij 8d, s3d

where the unprimed indexi denotes spin-up particle, primed
index j8 denotes spin-down particle, andp can be any par-
ticle, is approximated by the Jastrow-Slater wave function

uCVl = p
i,j8

fsr ij 8duFSl, s4d

whereuFSl is the ground state of noninteracting fermions. In
the present case,uFSl is a product of two Slater determinants,
the first corresponding to the spin-up fermions and the sec-
ond corresponding to the spin-down fermions. The interac-
tion effects are represented by the Jastrow function
pi,j8fsr ij 8d, wherefsr ij 8d denotes the pair correlation function.
We often usef ij 8 to denotefsr ij 8d. f ij 8=1 means no correla-
tion between the pairi j 8 and f ij 8Þ1 for correlated pairs. In
variational calculations, the functionfsrd is determined by
minimizing the expectation value of the Hamiltonian
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kHl =

−
"2

2mo
p

kFSup
a,b8

fab8 ¹p
2p

g,m8

fgm8uFSl + o
i,j8

kFSup
a,b8

fab8vi j 8p
g,m8

fgm8uFSl

kFSup
a,b8

fab8p
g,m8

fgm8uFSl
. s5d

The assumption behind LOCV is that the energy is most
sensitive to the correlations of short(less thanr0) range. We
impose a constraint on the range offsrd to assure that the
correlations are mostly among the closest pairs, and keep
only the pair terms in the cluster expansion of the energy
expectation value. The healing distanced is the range offsrd
defined such thatfsr .dd=1 anddfsrd /drur=d=0. In LOCV,d
is chosen such that on average there is only one other particle
within the distanced of any particle. Effects of deviations
from this average are assumed to cancel.

Euler-Lagrange minimization of the energy expectation
value [19] gives a Schrödinger-like equation forfsr ,dd,

−
"2

m
¹2fsrd + vsrdfsrd = lfsrd. s6d

The constraint used to determine the healing distance is

r

2
E

0

d

f2srdd3r = 1, s7d

and thel is chosen such thatdfsrd /drur=d=0. In Eqs.(6) and
(7) we do not have exchange contributions because the range
of the interaction is short and fermions of the same spin do
not interact. When Eqs.(6) and (7) are simultaneously
solved, the energy per particle is given by

ELOCV = EFG +
l

2
. s8d

The results obtained for the ground-state energy of spin-1/2
Fermi gas with the cosh andd-function potentials are shown
in Fig. 1.

When 1/akF,0, ther0 is the only length scale in the gas,
and the results obtained with the cosh potential withmr0
=12 are indistinguishable from those given by thed-function
potential. In contrast, when 1/akF.0, we have a molecular
bound state whose radius provides another length scale. At
large positive values of 1/akF there are differences between
results of the present cosh andd-function potentials due to
the rms radius,Rrms of the molecule becoming comparable to
the range of the present cosh potential. For example, at
1/akF=2 we getmRrms=2.3 with the present choice ofm. In
principle, we can continue to approximate thed-function in-
teraction with the cosh potential by further increasingm, and
working in themRrms→` limit. However, all of the present
computations are withmr0=12.

Figure 1 also shows the presumably exact results obtained
with the cosh potential with the Green’s-function Monte
Carlo (GFMC) method described in the next section. The
LOCV energies appear to be surprisingly accurate. However,

it should be realized that a part of the accuracy of LOCV is
due to a cancellation of errors, and not due to the quality of
the Jastrow-Slater variational wave function[Eq. (4)]. In
fact, the variational energy upper bound obtained with that
wave function for 1/akF=0 is =s0.62±0.01dEFG, signifi-
cantly above the GFMC result ofs0.44±0.01dEFG. The
LOCV energy of 0.46EFG is below the Jastrow-Slater varia-
tional upper bound because it is calculated approximately
keeping only two-body cluster contributions. However, when
the contributions ofù three-body clusters become important,
we can expect that the approximations in the Jastrow-Slater
wave function would also become important, and the true
energy will be below the Jastrow-Slater upper bound.

The ground-state energies obtained with the conventional
BCS (variational) method are also shown in Fig. 1. In the
weakly interacting limit, 1 /akF→−`, the BCS energy is too
large since it does not have the correct low-density limit
given by Eq.(1). On the other hand, in the strongly interact-
ing limit, 1 /akF→ +`, the BCS energy is very close to the
exact result(GFMC) presumably because in this limit we
have complete pairing of the fermions into Bose molecules.
LOCV is less accurate than the conventional BCS method in
the strong-coupling region.

The LOCV pair correlation functions are shown in Fig. 2.
The healing distanced< r0 in the weakly interacting region
s1/akF!0d, and as we increase the strength of the potential,
fsrd becomes more and more peaked at the origin, andd
becomes smaller thanr0. In fact for 1/akF@0, the boundary
condition atd has less impact onELOCV and l of Eq. (6)

FIG. 1. Ground-state energy per particle of dilute Fermi gases as
a function ofakF. The full and dashed curves give the LOCV results
for coshsmr0=12d and d-function potentials, and the circles show
the essentially exact results for the cosh potential obtained with the
GFMC method described in Sec. III. The dotted and dash-dotted
curves correspond to the conventional BCS results with cosh and
d-function potentials, respectively.
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becomes close to the molecular binding energyEmol such
that ELOCV=EFG+sEmol/2d+dE. Emol/2 is the term that pre-
dominates in this limit.dE is small(udEu,EFG) and negative
so thatELOCV.Emol/2.

Whena.0, we can obtain another solution of the LOCV
equation with a node atr ,d. This solution was discussed by
Cowell et al. [18] for cold Bose gases, and at small values of
akF it gives results in agreement with the low-density expan-
sion[Eq. (1)]. The first termfs10/9pdakFg is correctly repro-
duced by LOCV, but the higher-order terms are approximate.
In the limit a→`, we have the conditionkd tanskdd
=−1 discussed in Ref. 18. The solution with one
node is kd=2.7983 and it gives E/N=EFG+sl /2d
=EFG+s"2/2mdfskdd2/d2g<3.92EFG. Results obtained with
the d-function potential, including this unstable region, are
shown in Fig. 3. Those corresponding to the nodeless solu-
tion of the LOCV equation are represented by a full line,
while the dashed line corresponds to the solution with a
node.

The state of the gas having a node in the pair correlation
function fsrd is unstable because it has energy.EFG, while
that with nodelessfsrd has lower energy,EFG (see Fig. 3).
However, it can have a relatively long lifetime because en-
ergy conservation prevents two atoms from making the tran-
sition to the lower-energy state. At least three atoms are
needed, which hinders the transition at low densities. Most of

the observed BEC of Bose atoms are in such unstable states
in which the fsrd has nodes at smallr.

The EsakFd shown by the solid line in Fig. 3 corresponds
to the stable ground state of the model Hamiltonian with the
d-function interaction. In principle, this state can be exactly
calculated by the quantum Monte Carlo method described in
the next section. However, when the range of the interaction
is finite, as for the cosh model, the system can collapse to a
tightly bound state at large density. This instability can be
easily seen in the Hartree mean-field approximation in which

EMFsrd = EFGsrd +
r

4
Iv,

Iv =E vsrdd3r , s9d

where Iv s,0d is the volume integral of the interaction. At
large enoughr, the interaction energy becomes larger than
EFG leading to a tightly bound state.

Consider, for example, a simple square-well potential of
rangeR such thatvsr ,Rd=−V0 and vsr .Rd=0. Let this
potential correspond toa=`. This meansV0="2p2/4mR2

and Iv=−s4p /3dV0R
3=−s"2p3/3mdR. Then

EMFskFd =
3

5

"2kF
2

2m
F1 −

5p

54
RkFG . s10d

The collapse occurs at values ofkF. s54/5pds1/Rd, and can
be pushed to higher densities by reducingR, or equivalently
increasingm in the case of the cosh potential. In the present
studies, we ignore this collapsed state; assuming that it oc-
curs at too large a density to influence the dilute gas proper-
ties.

III. GREEN’S-FUNCTION MONTE CARLO
CALCULATIONS

The Green’s-function Monte Carlo(GFMC) [20] method
is a powerful one for calculating the ground-state properties
of many-body quantum systems. It can be used to calculate
the ground-state properties of Bose systems with controllable
statistical errors without approximation. For the fermion sys-
tems, however, we have to deal with the sign problem posed
by the antisymmetry of the wave function as discussed be-
low. We begin with a brief overview of the GFMC method.

Let Ci be the eigenstates ofH with eigenvaluesEi. The
trial variational wave functionCV, which provides an ap-
proximation to the ground stateC0, can be expanded as

CV = o
i

aiCi . s11d

In GFMC we project outC0 from CV by evolution in imagi-
nary time,

FIG. 2. Correlation functionfsrd for different values ofakF in
the LOCV approximation using the cosh potential withmr0=12.

FIG. 3. The LOCVE/A in units of EFG vs akF for attractive
d-function potential. The dashed line corresponds tofsrd having one
node, and the solid line shows the results with nodelessfsrd.
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Cst → `d = lim
t→`

e−sH−ETdtCV

= lim
t→`

o
i

aie
−sEi−ETdtCi → a0e

−sE0−ETdtC0,

s12d

where we have shifted the origin of energy toET<E0 to
control the norm ofCst→`d. In practice, the time evolution
is carried out inn small steps,

e−sH−ETdt = p e−sH−ETdDt, Dt = t/n, s13d

andET is tuned to keepkCstduCstdl constant. The tunedET

provides the growth estimate of the trueE0. An alternative
method for calculating the ground-state energy, often with
smaller statistical error, is given by the mixed estimate(see
Fig. 4)

kHlmix =
kCVuHuCst → `dl

kCVuCst → `dl
=E0

kCVuCst → `dl
kCVuCst → `dl

= E0.

s14d

In general, the time evolution operator or propagator is
not known for an arbitrary large value oft except for a few
simple systems. However, we can obtain a small time propa-
gator with controllable errors for any Hamiltonian with static
potentials that depend only on the positions of the particles
denoted by a 3N-dimensional configuration vectorR
=hr 1,r 2, . . . ;r 18 ,r 28 , . . .j. This is the motivation to write the
time evolution as a product of many short time operators
[Eq. (13)]. We define the Green’s function

GsR,R8d = kRue−sH−ETdDtuR8l. s15d

The propagation equation becomes

CsR,t + Dtd =E dR8GsR,R8dCsR8,td. s16d

The primitive approximation to this Green’s function is

GsR,R8d < e−fVsRd−ETgDt/2G0sR,R8de−fVsR8d−ETgDt/2,

s17d

whereVsRd=oi,j8vsr ij 8d and G0sR ,R8d is the Green’s func-
tion for A free particles,

G0sR,R8d = F m

2p"2Dt
Gs3/2dA

ef−msR − R8d2/2"2Dtg. s18d

This approximation has errors of orderDt3. The total error
after n time steps is of the order,nDt3=t3/n2. The correc-
tions to this expression can be sampled to make an exact
algorithm. Here we use the more common method and make
this error as small as we want, by increasing the number of
stepsn. In practice, this error is made smaller than the sta-
tistical sampling errors of the Monte Carlo integration.

A naive quantum Monte Carlo algorithm could start with
Ns configuration vectorsRi sampled fromuCVu. These pro-
vide the approximate representation

CVsRd . o
i=1

Ns

widsR − Rid, s19d

wherewi =1 or −1 depending on the sign ofCV. The accu-
racy of this representation increases with the number of
samplesNs. Inserting Eq.(19) into Eq. (16) and using the
short-time approximation givesCsR ,Dtd as a sum of nor-
malized Gaussians times weight factors containing the prod-
uct of the originalwi and the exponentials in the short-time
Green’s function[Eq. (17)]. Sampling a position from each
of the Ns Gaussians gives a representation ofCsR ,Dtd as a
sum of d functions times weight factors with signs. This
process is repeatedn times to obtainCsR ,t=nDtd. During
the evolution, large magnitude weight factors are converted
into multiple copies while small factors are sampled and kept
with unit magnitude new weight with a probability propor-
tional to the magnitude of the old weight. The random walk
of the weightedd-function samples representing the propa-
gation ofCsR ,td therefore consists of diffusing and branch-
ing and the number of samples at each time step can vary.

This algorithm suffers from the fermion sign problem. For
Ns samplesRi, 1ø i øNs, and weightswi, the denominator of
a matrix element such as the mixed energy will be the sum
oi=1

Ns wiCVsRid. Eachwi carries the sign of the initial sample
from CV, and if the path of the samplei has crossed nodes of
CV an odd number of times, the contribution to the sum will
be negative. For large times the contribution of these nega-
tive paths almost completely cancel the contribution of posi-
tive paths that have not crossed nodes or crossed an even
number of times. The signal dies out exponentially compared
to the statistical noise. The numerator suffers from the same
problem.

The fixed-node[21] approximation deals with the fermion
sign problem by restricting the path so that crossings of the
nodal surface are not allowed. When this constraint is im-
posed with the nodal surface of the exact fermion ground
state,CsR ,td converges to that state. Imposing the nodal
surface from an antisymmetric trial function gives an upper
bound

FIG. 4. Mixed and growth estimates of the GFMC energy. The
t→` asymptotic value is reached after,5000 time steps. Each
time stepDt is 1.2 10−3" /EFG.
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lim
t→`

kHlmix,t ù E0. s20d

We impose the fixed-node constraint with the nodes of our
trial function CVsRd.

Importance sampling is used to control the fluctuations of
the weights. The propagation equation is modified by multi-
plying by a positive importance function. Since we are using
the fixed-node approximation, the paths have zero probabil-
ity of crossing the nodes, and we can take the importance

function to be the absolute value ofCV. The propagation
equation now becomes

fuCVsRduCsR,t + Dtdg =E dR8
uCVsRdu
uCVsR8du

GsR,R8d

3fuCVsR8duCsR8,tdg. s21d

The short-time approximation for the importance sampled
Green’s function is

uCVsRdu
uCVsR8du

GsR,R8d=G0SR,R8 +
"2Dt

2m
¹ lnuCVsRdu2D5 uCVsRduGsR,R8d

uCVsR8duG0SR,R8 +
"2Dt

2m
¹ lnuCVsRdu2D6

<G0SR,R8 +
"2Dt

2m
¹ lnuCVsRdu2Dhe−h1/2fELsRd+ELsR8dg−ETjDtj , s22d

where the local energy is

ELsRd =
HCVsRd
CVsRd

. s23d

SinceG0 is still a normalized Gaussian, the only changes to
the naive algorithm are the sampling of the drifted Gaussian,
and the new weight given by the terms in the curly brackets.
Notice that if CV is close to the ground state ofH, ELsRd
will have fewer fluctuations thanVsRd, and the branching of
the walk is much reduced. Any paths that cross a node due to
the short-time approximation are eliminated.

For Ns samplesRi, all with weight wi =1, at timet, the
mixed energy becomes the average of the local energy

kHlmix =

o
i=1

Ns

ELsRid

Ns
. s24d

Since the fixed-node calculations give an upper bound to the
ground-state energy, our strategy(see Ref.[16]) is to choose
a trial wave function with variable nodal surfaces and mini-
mize the fixed-node GFMCkHlmix.

The trial wave functionCVsRd is now used in three dif-
ferent contexts:(i) as the initial guess of the ground state,(ii )
as the importance function in Eq.(21), and(iii ) as the node
restriction function. The nodes of the Jastrow-Slater wave
function [Eq. (4)] equal those of noninteracting Fermi gas
and cannot be varied. So that wave function is not useful for
the present studies.

From physical considerations, a better trial wave function
must reflect the fact that the fermions with attractive interac-
tion can form bound Cooper pairs in the ground state. And
from mathematical considerations, the trial wave function
must have a variable nodal surface, which can be varied to
minimize the fixed-node GFMC energy. The BCS wave

function is such a wave function. Commonly, we write

uBCSlu = p
p

sukp
+ eiuvkp

âkp↑
† â− kp↓

† du0l,

ukp

2 + vkp

2 = 1, s25d

whereu0l denotes the vacuum andukp
andvkp

are real posi-
tive numbers. However, this wave function does not corre-
spond to a definite number of particles. In fact, expanding
the wave function we can write

uBCSlu = u0l + eiuP̂†u0l + ei2usP̂†d2u0l + ei3usP̂†d3u0l + ¯ ,

s26d

whereP̂†=opsvkp
/ukp

dâkp↑
† â−kp↓

† is the pair creation operator.
The component that corresponds toA particles orM =A/2
pairs can be obtained by transforming

uBCSlA =
1

2p
E

0

2p

e−iuMuBCSludu,

=sP̂†dMu0l. s27d

This component can be written as an antisymmetrized prod-
uct of the pair wave functionsfsr ij 8d,

CBCSsRd = Affsr118dfsr228d ¯ fsrMM8dg,

fsrd = o
p

vkp

ukp

eikp·r = o
p

ape
ikp·r , s28d

where the number of up-spin particlessMd is equal to the
number of down-spin particlessM8d. The variational param-
eters ap are real positive numbers. The free fermion gas,
Slater wave function is just a particular case of this wave
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function whenapÞ0 for ukpuøkF and =0 forukpu .kF.
We also consider systems having unpaired particles. In

particular, we can haveM pairs and one unpaired up- or
down-spin particle. This generalization is necessary as the
gap energyD is calculated from the odd-even staggering of
the ground state energy[16]. With one unpaired(↑ or ↓ spin)
particle in the statecku

sr d, with momentumku, the trial wave
function is given by[22]

CBCSsRd = Ahffsr118d ¯ fsrMM8dgcku
sr dj. s29d

The ground state is expected to haveukuu<ukFu in the weakly
interacting regime andku→0 in the strongly interacting re-
gime. This wave function can be calculated as a determinant
[22,16], which makes the numerical calculations relatively
simple.

Quantum Monte Carlo calculations use a finite number of
particles in a cubic periodic box of volumeL3 to simulate the
infinite uniform system. The momentum vectors in this box
are discrete,

kp =
2p

L
snpxx̂ + npyŷ + npzẑd, s30d

and the system has a shell structure with closures occurring
when the total number of particles =2,14,38,54, . . . for spin-
1/2 fermions. The shell numberI is defined such thatI =nx

2

+ny
2+nz

2, andEI =s"2/2mds4p2/L2dI.
In the present calculations, the pair wave functionfsr d

has the assumed form

fsr d = b̃srd + o
p,IøIC

aIe
ikp·r ,

b̃srd = bsrd + bsL − rd − 2bsL/2d for r ø L/2,

=0 for r . L/2,

bsrd = f1 + gbrgf1 − e−cbrg
e−br

cbr
. s31d

HereIc=4 is a cutoff shell number. We assume that the con-
tributions of shells withI . Ic to the pair wave function can

be approximated by a spherically symmetric functionb̃srd of
rangeL /2. We further reduce the statistical fluctuations by
using the Jastrow factor along withCBCS in the variational
wave function,

CVsRd = p
i,j8

fsr ij 8dCBCSsRd. s32d

The Jastrow factor does not change the nodal structure. Thus,
the average value of the estimated energy is independent of
fsrd, but the statistical error is reduced by using thefsrd from
LOCV calculations.

It is convenient to require that]b̃ /]r =0 at r =0. This is

because the local energy has terms likes1/rds]b̃ /]rd, which

can have large fluctuations at the origin when]b̃ /]r Þ0 at
r =0. The factorf1−e−cbrg cuts off 1 /cbr dependence ofb at
br,1/c. The energies are not too sensitive to the parameter

c, and its value is fixed at 10. In addition,g is chosen such

that ]b̃ /]r =0 at r =0; its value is 6 in the limitL→`.
The variational parameters areha0,a1, . . . ,aIc

j andb. We
wish to find a set of these parameters that minimize the
fixed-node GFMC estimate of energy. However, considering
that we have to allow simultaneous variation of all the pa-
rameters, methods based on unguided variation become dif-
ficult, if not infeasible. Again, we rely on the GFMC proce-
dure itself to optimize these parameters. Initial
configurations are obtained with a random distribution of the
parameters centered around a reasonable guess. Each of them
is propagated according to the nodal constraints provided by
their parameters with a singleET. The paths with the smallest
kHlmix acquire large amplitudes or weights ast→`. The
average among these paths gives an optimization over the
initial random distribution. This process is repeated several
times until convergence is achieved.

When we have an odd number of particles, the ground-
state momentumku [Eq. (29)] is an additional variational
parameter. We minimize the fixed-node GFMC energy of
systems with oddA by varyingku. As discussed in the next
section, the magnitude ofku changes fromkF to 0 as the
interaction strength increases and we go from the weakly
interacting BCS to the strongly interacting BEC regime. The
gap energy is obtained from the odd-even staggering of the
total energy

Ds2M + 1d = Es2M + 1d −
1

2
fEs2Md + Es2M + 2dg.

s33d

In doing so, the effects of interaction among quasiparticles
are neglected.

Results forakF=` are shown in Fig. 5. The energy per
particle E/A and the gapD do not have a significantA de-
pendence in this case. These results were reported in Ref. 16,
and results for other values ofakF are presented in the next
section.

IV. RESULTS

The values of the parameters,a0–4 and b, of the BCS
wave function are to be determined by minimizing the fixed-
node GFMC mixed energy for each value ofakF andA. The

FIG. 5. EsAd whenakF=−` from Ref. 16.

QUANTUM MONTE CARLO STUDIES OF SUPERFLUID… PHYSICAL REVIEW A 70, 043602(2004)

043602-7



minimum energy obtained is our estimate for the ground-
state energy of the system. The values of the parameters that
minimize this energy are not very sensitive toA, the number
of particles in the box. We find it sufficient to determine the
optimum parameters atA=10, 14, and 20, and interpolate
their values in theA=10, 14 andA=14, 20 ranges. The val-
ues of the parameters at these values ofA are listed in Table
I.

At akF=−1, the lowest energies are obtained without any

short rangeb̃srd and the optimum pair function has contri-
butions only from the states withI ø3. This is consistant
with the weak-coupling BCS theory in whichak goes to zero
whenk−kF becomes large.

When 1/akF.−1, lower energies are obtained withb̃srd
Þ0. In most cases, the values of the parameters do not
change significantly betweenA=14 and 20 The values listed
in Table I for A=14 are used for 14øAø20.

In the 0,1/akFø2 range, the optimum values of the
parameters ofCBCS do not seem to change significantly with
the akF. We have not obtained any significant improvements
to the energy from varying the parameters in the region
1/akF.0. In this region, we retain the values found for
1/akF=0 andA=14. Recall that only the nodal surfaces of
the ground-state wave function are constrained by those of
CBCS. The completeCV has an additional product of Jastrow
pair correlation functionsfsr ij 8d which depends onakF, and

the true ground-state wave function changes continuously
with akF.

The magnitude of the momentumku of the unpaired par-
ticle in the ground state is also determined by minimizing the
GFMC fixed-node energy. The minimum values are listed in
Table II. In the weak-coupling limit, the BCS ground state
for odd A hasukuu= ukFu. In the periodic box, the value ofkF

2

is 1 for 2,Aø14, and 2 for 14,Aø38 in units ofs2p /Ld2.
In the akF=0 to −3 range, the minimum values ofku

2 are as
indicated by the weak-coupling BCS theory. However, in the
−10 to 3 range, theku

2 is 1 for the entire range(11 to 19) of
odd values ofA considered. AtakF=2, the states withku

2

=0 and 1 are almost degenerate, and for 1/akF.0.5, the
ground states of oddA systems haveku=0, as expected when
the system consists of bound molecules condensed in the
zero momentum state, and the unpaired particle also in the
ku=0 state.

The calculated values of the ground-state energy are
shown in Figs. 6 and 7. The systems with 1/akFø1/3 seem
to haveE.0, while those with 1/akF.1/3 can haveE,0.
When 1/a.0, the two-body interaction is strong enough to
bind two particles and form molecules with energyEmol. The
energy per particle,E/A, of the superfluid Fermi gas is com-
pared withEmol/2 in Fig. 8. Within the computational errors
E/A.Emol/2 (see Table III), however at 1/akFù0.5 we find
thatE/A is very close toEmol/2. This behavior also indicates
that at these values ofakF the system approaches that com-
posed of Bose molecules forming a BEC. It has been argued
that the interaction between these molecules is weakly repul-TABLE II. Values of ku

2 in units of s2p /Ld2.

akF A=11,13 A=15,17,19

0 1 2

−1 1 2

−3 1 2

−10 1 1

` 1 1

10 1 1

3 1 1

2 0 or 1 0 or 1

1 0 0

0.75 0 0

0.5 0 0

TABLE I. Optimum values of the variational parameters.

akF A a0 a1 a2 a3 a4 b

−1 10 1.00 0.05 0 0 0 NA

14 1.00 1.00 0.010 0 0 NA

20 1.00 1.00 0.104 0.024 0 NA

−3 10 0.40 0.165 0.019 0.009 0.002 1.13

14 0.28 0.280 0.020 0.006 0.003 1.05

−10 10 0.295 0.096 0 018 0.007 0.002 0.48

14 0.220 0.130 0.019 0.007 0.003 0.44

` 10 0.315 0.103 0.020 0.010 0.003 0.50

14 0.181 0.102 0.024 0.006 0.004 0.44 FIG. 6. EsAd for 1/akFø1/3.

FIG. 7. EsAd for 1/akF.1/3. The results forakF=0.5 have
been multiplied by 0.5 for graphing.
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sive, with a molecule-molecule scattering length given by
amm=0.6a [23]. In this case, theE/A will always be greater
than Emol/2, and the gas will have positive pressure,E/A
increasing with the gas density orkF.

The pairing gaps calculated from the odd-even energy dif-
ference[Eq. (33)] are shown in Figs. 9 and 10. These gaps
are not very sensitive toA, and they are compared with the
predictions of BCS[3] and Gorkov[5] estimates given by

DBCS=
8

e2TF ep/s2akFd,

DGorkov= S2

e
D7/3

TF ep/s2akFd =
1

2
S2

e
D1/3

DBCS, s34d

where the chemical potential is approximated byTF as when
1/akF!0. At 1/akF!0, the calculated gaps are in between
these estimates, while at positive values of 1/akF they ap-
proach −Emol/2 as expected for a gas of Bose molecules(see
Fig. 10 and Table III).

Figures 8 and 11 also show theEmol for a d-function in-
teraction in addition to those for the present cosh potential
with mro=12. The two potentials give essentially the same
results for 1/akF,0.5, but at larger values the cosh potential
is more attractive. The values of the rms radiusRrms of the
molecule are listed in Table III. At large values of 1/akF, the

mRrms is not very large for the present choice ofmr0=12, and
much larger values ofm should be used to approximate the
d-function interaction.

The pressuresP=r2f]sE/Ad /]rgd and the adiabatic index
fG=sr /Pds]P/]rdg of the superfluid gas in the range
−20,akF,0 are shown in Fig. 12. For noninteracting Fermi
gas sakF=0d, E/A=EFG and we haveP=s2/3drEFG and G
=5/3. In thelimit akF→0, we can use the low-density ex-
pansion[Eq. (1)] to obtain

PsakF → 0d <
2

3
rEFGS1 +

5

3p
akFD ,

GsakF → 0d <
5

3
+

5

9p
akF. s35d

In the akF→−` limit, we haveE/A=jEFG, therefore

PsakF → − `d =
2

3
jrEFG,

GsakF → − `d =
5

3
, s36d

wherej=0.44±0.01 according to the present calculations.
The calculated value ofPsakFd / srEFGd is 2/3 atakF=0

and decreases monotonically tos2/3dj as akF→−`. How-
ever, the adiabatic indexGsakFd is 5/3 for bothakF=0 and
akF=−`, and has a minimum value of,1.6 atakF,−1.3.

TABLE III. Summary of the results in the strongly interacting
regime.

1/akF D /EFG EGFMC/AEFG Emol/2EFG Rrms/ r0 mRrms

0 0.99(4) 0.44(1) 0 ` `

0.1 1.03(5) 0.34(1) −0.01s1d 3.69 44.3

0.3̇ 1.37(5) 0.02(1) −0.20s1d 1.21 14.5

0.5 1.80(5) −0.33s1d −0.49s1d 0.74 8.9

1.0 3.2(1) −2.23s1d −2.31s1d 0.38 4.6

1.3̇ 5.7(3) −4.58s2d −4.63s1d 0.28 3.4

2.0 14.0(5) −12.84s3d −12.86s1d 0.19 2.3
FIG. 10. DsAd for 1/akF.1/3.

FIG. 8. E/A and Emol/2 for positive values of 1/akF for the
coshsmr0=12d potential andEmol/2 for thed-function potential.

FIG. 9. DsAd for 1/akFø1/3.
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V. CONCLUSIONS

The present work shows that accurate calculations of the
pairing gaps and energies of superfluid Fermi gases are pos-
sible with the fixed-node GFMC method. The unknown
nodal surfaces can be determined variationally by minimiz-
ing the fixed-node GFMC energy. This method gives the ex-
act result in the 1/akF→−` (Fermi gas) and 1/akF→ +`
(BEC of molecules) limits for short-range attractive interac-
tion, and seems to overcome the fermion sign problem. An
alternative method based on path-integral Monte Carlo simu-
lations is also being developed[24].

Our results are in qualitative agreement with the known
BCS-BEC crossover model(see Leggett[3]) where the gap
and chemical potentialsm0d are calculated self-consistently.
The gap is determined as the minimum of the Bogoliubov
quasiparticle energy Ek =Îsek −m0d2+ uDk8u

2, where ek

="2k2/2m is the single-particle excitation energy andDk8 is
the gap parameter. Two limiting cases were considered in
this referenced article. For 1/akF→−`, m0<TF.0, the
minimum of Ek occurs atk=kF and the minimum quasipar-
ticle energyD=DkF

8 =s8/e2dTFep/s2akFd. However, for 1/akF

→ +`, m0<Emol/2,0, the minimum ofEk is at k=0, and
its value D= um0u,uEmolu /2 becauseDk8,0. The BCS-BEC
crossover takes place whenm0=0 and this corresponds to

akF positive and of the order 1. The odd-even staggering
Ds2M +1d given by Eq.(33) presumably equals the mini-
mum quasiparticle energy in the limitM→`.

According to Leggett’s description, in the weak BCS su-
perfluids the ground state of systems with an odd number of
particles is expected to have momentumkF, while in the
molecular liquid with BEC it is expected to have zero mo-
mentum. With this criterion the calculated values ofku

2 (Table
II ) suggest that the BCS-to-BEC transition occurs in the
range −0.5,1/akF,0.5. It appears to be a smooth transition
or crossover.

A recent experiment by Bartensteinet al. also seems to
corroborate some of our findings. In fact, in their paper[25]
the BCS-BEC crossover regime for6Li is reported to be
−0.5&1/akF&0.5. In addition, in the unitary limitsakF

= ±`d they measuredE/A=0.32−10
+13EFG, which includes

within its range our resultE/A=s0.44±0.01dFG.
We can notice that in the BCS regimeD is much smaller

than E/A, while in the BEC regimeD,uEu /A,uEmolu /2.
However, in the transition regionD is significantly larger
than uEu /A.
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