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Rydberg atoms in a magnetic guide
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We investigate electronically excited atoms in a magnetic guide. It turns out that the Hamiltonian describing
this system possesses a wealth of both unitary as well as antiunitary symmetries that constitute an uncommon
extensive symmetry group. One consequence is the twofold degeneracy of any energy level. The spectral
properties are investigated for a wide range of field gradients and the spatial distributions of the spin polar-
ization are analyzed. Wavelengths, oscillator strengths, and selection rules are provided for the corresponding
electromagnetic transitions. The effects due to an additional homogeneous bias field constituting a loffe-
Pritchard trap are explored equally.
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I. INTRODUCTION ticle whose magnetic moment couples either adiabati¢a]ly
) ) or nonadiabatically{7-12 to the external field. This holds

E_xternal fleld§ are powadqys w@ely used to _control thewith the exception of two very recent workd3,17 that
motion of atoms including their cooling and trapping as well consjder the electronic structure of atoms with a single active
as the preparation of the|r internal states. thlcal lattices angdectron subject to a three-dimensional quadrupole field. A
atom chips are two major examples of devices that allow ongayiety of interesting new phenomena have been observed
to deal W|th atomic e_nsembles but also possess the perspggere. The symmetries of this system cause each energy level
tive of manipulating single atoms for the purpose of quantumyg, pe degenerate in the presence of the field. Furthermore the
information processing. To this end it is indispensable to uninimate coupling of the spin and spatial degrees of freedom
derstand the structure and behavior(ekcited individual  jeads to a complex spatial distribution of the spin polariza-
atoms in traps. In the case of the atom ofpe Ref[1] and  jon of individual electronic states. A remarkable property of
references therejntight magngtlc traps on the m_lcromete_r the electronic states in the three-dimensiof@d) quadru-
scale can be created, exhibiting large field grad|ents WhIC ole trap is the fact that they possess a magnetic-field-
are_not accessible in the case of macrosopic traps._H[gthﬁduced permanent electric dipole moment whose size
excited Rydberg atoms therefore start to *feel” the variationgirongly varies with the Rydberg state considered. Besides
i.e., the inhomogeneity of the magnetic field across the exme 3D quadrupole field there is another generic inhomoge-
tension of their wave functions. This naturally leads to theeqys magnetic field configuration which is employed to trap
questlon: How do mho_mogeneous magn_etlc field configurazioms in particular on the atom chip]. This is the so-called
tions qlter the electronic structure of excited atpms?_ _ side guide which is created by superimposing the magnetic

During the past decades many thorough investigationge|q of a current carrying wire with a homogeneous bias
have been performed on the behavior and properties of eXje|q oriented perpendicular to the wire. The resulting mag-
cited (Rydberg atoms in homogeneous magnetic fieldée  petic guide can be augmented to a loffe-Pritchard type 2D
the books and reviewt2—6)). Indeed, investigations on at- 55 by applying an additional homogeneous bias field paral-
oms in strong magnetic fields provided major contributionsig| 1o the wire. It is exactly this configuration which is stud-
to a variety of different research areas such as semiclassics gl in the present work, i.e., we investigate the structure and
nonintegrable systems, “quantum chaos,” nonlinear dynamyroperties of electronically excited atoms in a magnetic

ics, and astrophysics of magnetized stars and it elucidateg ije. According to the effects obtained for atoms in a 3D
and significantly advanced our understanding of magnetize uadrupole trap in Ref§13,17 we expect also the atoms in

structures in general. __ aside guide to exhibit interesting unusual features.

In contrast to the case of a homogeneous magnetic field The paper is organized as follows. In Sec. Il we introduce
there exist no studies on the electronic structure of atoms ighe field configuration generated by a so-called side guide.
the presence of inhomogeneous ex.ternal fields: all mvestlgawe specify our approach, which is particularly suited for
tions in the literature on the behavior of ultracold atoms intracold atoms with a single active electron, and derive the
inhomogeneous fields typically treat the atom as a point parggrresponding Hamiltonian. This Hamiltonian exhibits a

wealth of both unitary and antiunitary symmetries and con-
stitutes an uncommon large symmetry group which is ana-

*Electronic address: ilesanov@physi.uni-heidelberg.de lyzed in Sec. Ill. In particular these symmetries lead to a

"Electronic address: joerg.schmiedmayer@physi.uni-twofold degeneracy of any energy level, similar to the case
heidelberg.de of an atom in a 3D quadrupole trap. Arbitrary s@r&;ystems

*Corresponding author. in a field configuration obeying certain symmetries are dis-
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the symmetry-adapted electronic states. In Sec. V the latter
are studied when an additional homogeneg@affe) field is
applied. The numerical methods being employed in order to
solve the stationary Schrodinger equation are briefly outlined
in Sec. VI. A discussion of our results is provided in Sec.
VII. We analyze the spectra for a wide range of gradients.
Furthermore, we explore properties of the electronic spin
such as spin expectation values and distributions of the spin
polarization. Selection rules and dipole strengths of electric
dipole transitions are calculated. We close with a discussion
of the electronic structure in case a homogeneous magnetic
field is applied in addition to the field of the magnetic guide.
Section VIl contains the summary and outlook.

/7 T T VANNN
PAYNNYN
!
!
NNV /S

7 7]

VNN
[V
ed

N

NN
IR

X —= — —

II. THE FIELD CONFIGURATION

AND THE HAMILTONIAN = = - = =

Alkali-metal atoms are used throughout many experi- ~ < < - - T
ments in ultracold atomic physics. Besides a single active - - L e e
electron they possess a closed shell core and the total elec-
tronic spin is therefore exclusively carried by the outer elec- == < — - > >
tron. We assume the motion of this valence electron to take
place in the Coulomb potential of a single positive point N[~ < < = ' B
charge. Since the focus of this work is to understand funda- S e e e
mental features of electronically excited atoms in a certain
inhomogeneous magnetic field we do not account for quan- == o« — - = s>
tum defects, which would require the consideration of core-
electron scattering processes. We also neglect relativistic ef- <= = - - T
fects such as spin-orbit and hyperfine coupling. Both - . L

interaction possess an® dependence with being the dis-
tance between the outer electron and the nucleus. For ® y
(highly) excited states their contributions can safely be ne-
glected or, if necessary, accounted for by means of perturb%r
tion theory. Since we fOCl.JS on ultracold atoms eﬁe9t5 of the(b) Intersection forx=0 revealing the translational invariance with
center of masgc.m) motion on the electronic motion are respect to the coordinate.
neglected here. Specifically we assume an infinitely heavy

core (c.m.) located at the minimum of the magnetic field.

FIG. 1. Vectorial plots of the magnetic fie(8). (a) Intersection
z=0. The quadrupolar shape of the field is clearly recognized.

Employing the above approximations, the Hamiltonian de- . B - X2+ 2xy+y?
scribing the motion of the valence electron in the presence of B=—|-y|+—7=5 X2 + 2xy - y?
an external magnetic field reads Po 0 VZpp 0
L 2 y(y? = 3¢)
S OstB 23 2 2
H=—[p+eAN?- ——=+=—3B(). 1 +—| = x(x*-3y?) |. 2
LA e R U NG | (2)

The magnetic field is introduced via the minimal coupling These are the quadrupolar, hexapolar, and octopolar expan-
including the vector potential thereby providing the kinetic Sion terms of the field. Here we restrict ourselves to the
energy in the presence of the field. The third term represent§iear term which should provide a good approximation of
the coupling between the spin of the electron and the extethe magnetic field configuration as long @s>1. Thus we

nal field. A common configuration for the manipulation of obtain the expression

neutral atoms is the so-called magnetic side gyide This

particular setup is generated by a current carrying wire . X
whose “circular” magnetic field is superimposed by an exter- B=b|l-vy|. (3
nal homogeneous bias field perpendicular to the current flow. 0

As a result the field vanishes along a line parallel to the wire

at a distancepy= gl /27B that is completely determined by Hereb is the magnetic field gradient determining the linear
the current and the homogeneous magnetic field strerjth growth of the field with increasing distance from the line of
The Taylor expansion of the field arouipg yields zero field. Figure 1 shows two vectorial plots along cuts
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through the field. TABLE |I. Symmetry operations of the Hamiltoniai). Top
The cut through thex-y plane reveals the quadrupolar part: unitary symmetries. Bottom part: antiunitary symmetries.
shape of the field of the side guide whose translational in

variance along the axis can be easily observed in Figbl  2x=0xP,P; 3y=PyoyP,  2,=PsPyo,
A corresponding vector potential in the Coulomb gauge id,,S PyP xS P.Pyl5S; PyP,14S,
given by
To,P, TP,P,P,0, TR0, TR,
0 TP1,,Si TPS TPyyS TP,P,P,1,,S,
A=bl 0 |. (4)
Xy

chargeZand the field with gradient 1. f— c the Coulomb

term vanishes sinc2— 0. In this limit the energy level spac-
ing is expected to scale accordinghi#®.

Inserting the expression®) and (4) into the Hamiltonian
(1), thereby adopting atomic uni%syields

_1, 1 b* 22,0

arLi Vi DXyp, + Y 5 (X =y lll. SYMMETRIES AND DEGENERACIES
IN SPIN-% SYSTEMS

(5
The first two terms of Eq(5) represent the nonrelativistic
hydrogen atom. The third term, which is linear with respec
to b, replaces the angular Zeeman teTmvhich would occur
in a homogeneous field. Here the spatial coordinatesaind
y couple with the momentum in thedirection. The succes-
sive diamagnetic term prqportional b3 rep(esentg an oscil- Each symmetry is composed of a humber of elementary
lator coupling term confining the electronic motion in the _operations which are shown in Table II.

andy directions except for the axis exit channels. This is All symmetry operations are either unitary or antiunitary.

reminiscent of but also very different from the situation in aThe antiunitary ones involve the conventional time reversal

homogeneous field, where the diamagneticinteractions_in th8peratorT. In ‘spite of its simplicity our system therefore

. . ! . Sliossesses a wealth of symmetry properties. The algebra of
C||Ilatt0rs.. Flna}llytthg]f|ﬁh t(:'rrr reprgser:ts the dcouplmgf of thtﬁthe underlying symmetry group possesses a complicated
electronic spin 1o the spatial coordinates and arises om Mgy ,.,re  some features of which will be discussed in the

mteractlon 0';. Its m(zjigneng momenttr:/vlth ﬂ:.e lf'eld' (;/_Ve therefo lowing. The operatorg,, X,, andX, generate a subgroup
encounter a linear dependence on the spatial coordinates ag eying the algeerEi,E,-]=2iEijk2k reminiscent of angular

the gradientb. This term prevents the factorization of the momentum operators. We ha\&zzl. Interestingly these

motions in coordinate space and spin space. Finally one o both real and spi Ad look i
should note that the only explicit dependence on the coordiguantltles act on both real and spin space. A deeper look into

natez is due to the Coulomb term. Without this rotationally the representation theory of our group reveals a twofold de-

. : ) : . ! eneracy of any energy level similar to those we encountered
invariant interaction the system would be invariant under: . S . . ;

. ; . in our investigations of atoms in a three-dimensional quad-
translations with respect to ttecoordinate.

- . . — 1 rupole trap[13,17.
an(I;’gr_f(k))[rlr)smgihtgeHg:rir?iﬁgllqczzlré(;aglggotr;e‘\erlssformatxmb x Alternatively this degeneracy can also be established as
P= P follows. The operation&., and To,P, obey{X,, To,P,}=0.

Let |E,m) be an energy eigenstate and at the same time an

In this section we analyze the structure of the Hamiltonian
(5) in detail. After studying its symmetries we discuss how
tthese symmetries affect the excitation spectrum. As a result
of a tedious and elaborate analysis of the Hamiltoiiigmwe
found 15 distinct symmetry operations leaving it invariant. A
complete list is provided in Table I.

— 1 Z 1
H=b2*H==p? - ———= +xyp,+ - x3y? eigenstate oF, with
P e IR Y g .
1 3,|E, m) = m|E, m) (7)
+ E(Xf’x_y"y) (6)  and w=+1. Employing the above anticommutator one ob-
tains

with Z=b13 and where we have for simplicity omitted the B B
overbar on the phase space variables. This shows us that 2 ToPE,m =~ ToP2 |, m) = — mToyPE. m). (8)
employing a scaled energiscaled Hamiltonianthe only  The stateTo,P,|E, ) can be identified withE,—m). Hence,

free parameter is the scaled Coulomb coupling stremgth as long asr+ 0,° there is always an orthogonal pair of states

that depends on the field gradient. The scaled HamiltoniaRossessing the same energy, nam@ysr) and |E, —). We

describes the motion of an electron in the Coulomb field of éhave to emphasize that there occur no further degeneracies in
the system. In principle one could think of performing the
above calculation repeatedly but now substitutifig,P,

1 _ — — 1. ; H i . . . . . .
n=1, me=1, 8=1, e=1: The magnetic gradient unit then be- \yith any operator listed in Table | which anticommutes with
comesb=1 a.u.=.44181x 10 T/m. The magnetic field strength

unitisB=1 a.u.=2.35051X 10° T. -
ZB(xpy—ng/2 whereB is the field strength. 3SinceEZ is a unitary operator the case=0 cannot occur.
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TABLE II. Set of discrete operations out of which all symmetry operations of the Hamiltgbjacan be
composed. Note th&; andS, are given in a basis whekg, is diagonal.

Operator Operation Designation
Py, Xj— =X X; parity
T A—A Conventional time reversal
oy Oy— =0y 0,0y Pauli spin matrixx
ay Oy— =0y  0,——0y Pauli spin matrixy
o, Ox— =0y Oy——0y Pauli spin matrixz
Ixy X—Y y—X (p——¢p+ml2) Coordinate exchange
Sl=(9ilo) Ox— =0y Oy— =0y 0,0y
SZ=(8§)) Ox— =0y  Oy— 0y 0,70
3,. It turns out that all of the resulting states generated by IV. %, PyPlS,, AND ToP, EIGENSTATES

this scheme are either superposition$fr) and|E, —) or
differ only by a phase factor from one of these states.

Out of the 15 symmetry operations one can choose sev- PyP,l S| k) = K|K). (12
eral sets of commuting operators. For the following investi-
gation we choose the skt, %, P P,l,,S,. The combination Since
of >, and P P,,,S, leads to the additional commuting

The operatoiP,P,,,S, obeys the eigenvalue relation

: = (PP S) k) = &* 13
operatorP,P,1,,S,. We have found the properties 1= (PyPaly )10 = 1) (13
* the eigenvaluec can adopt the four values +1 and. fhe
2_ 2_ _
(PyP )= (PP S)" = - %, © reader should note tha®P,l, S, is a unitary but non-
5 4 - Hermitian operator. We therefore encounter complex eigen-
(2= (PyP,yS)"* = (PP, S)* = 1. (100 values. If we applyE, to the states) we find by exploiting
For completeness we provide here the general embedding §4a- (9
the above-derived degeneracies due to symmetries. Let us S k= 4i)=|ik= £i), (14)

assume we have a general Séilsystem with the following
accompanying properties.

(1) There are two operatos andB commuting with the k= £1)=~[k=£1). (15
underlying Hamiltonian[H,A]=[H,B]=0.
(2) A andB anticommute{A,B}=0.

(3) Ais a Hermitian operatoB is an(antiunitary opera- (TowP)(PyPAS) —i(PPA,S)(ToyP,) =0
tor which can be written as a produBtRSwhereR andS
exclusively act on the real space and the spin space, resp
tively.

By using the relation

e finds the degenerate pairs of states inRj#,l,,S, sub-
spaces: |E,+1),|E,-i) and |E,-1),|E,+i). Since non-
(4) The operatolSis traceless: T6=0. Hermitian operators do not represent physical observables

If these conditions are satisfied any state is doubly degerY the quantum number should be of direct relevance for

erate. This is seen as follows. Property 4 immediately leadd® €xperimental observation. -
to Tr B=0. Hence, we find the nonzero eigenvaluesab We now derive the expectation value of an observable

appear pairwise with opposite signs. If nd,b) is an in an eigenstate dt,. Assume we havgY,2}=0 and hence

eigenstate oB and at the same time an energy eigenstate —_
property 2 implies that (B,mlYZJE, m) =~ (B 72 YIE m), (16
BAE,b) = - ABJE,b) = -bAE,b) = - b|E,~b). (1) w(E, 7|Y|E, ) = - w(E, 7| Y|E, m). (17)

Hence,|E,b) andA|E, b)=|E, -b) are two degenerate energy This immediately leads to the result
eigenstates of the system.

In the present case the two anticommuting operators are (E,nY|E,m)=0. (18)
3, andTa,P,. For the case of an atom in a three-dimensional .
quadrupole field we havA=J, andB=Ta,P,. In a homoge- | N€ same arguments hold for an observaBleobeying
neous magnetic field the remaining symmetries constitute atf-: PyPzxy 2t =0 in which case we obtain
Abelian symmetry group leading to exclusively one- (E, K|Z|E, ) =0 (19)
dimensional irreducible representations, i.e., no degeneracies ' ' '
occur. Finally we remark that the reader can find in RE8] In the preceding section we showed the degeneracy of the
a discussion of degeneracies in séilsystems based on the states|E,n) and To,P,E, 7). By superimposing these two
properties of time-reversal operators. states eigenstates of the operafo;P, can be constructed:
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TABLE Ill. Symmetries of the Hamiltonia22), i.e., side guide To accomplish the above we adopt spherical coordinates.
with loffe field. Top line: unitary symmetries. Bottom line: antiuni- The Hamiltonian(5) then becomes
tary symmetries.

1 1 J
. H=-=A,,,— - —ibr sing cosp| sirfd cosor —
s, PP, PP1S) P00 ¢ 5"5< ar
TP,0, TP S TPPPLLS, TP, PR
- sirtd— | + —risin*g sirf¢ cog
1% 6’) 2 ¢ ¢
1 i
|E, £)ToxPz= ?HE, )+ To,P,|E, m)]. (20 + Er Siﬂﬁ( 0 € ) ) (23
V2 2 e’ 0
The corresponding eigenvalue relation is With an additional loffe field applied we have to consider the
ToPJE,+) = +|E, +). (21) Hamiltonian(22) which reads in spherical coordinates
B d B B
H, :H—iz'ﬁ+§'rzsin20+ E'az. (24)
V. ADDITIONAL HOMOGENEOUS FIELD
IN z-DIRECTION (IOFFE FIELD) We utilize a Sturmian basis set of the form
The application of an additional homogeneous magnetic |n,|,m,S>=R%’k)(r)Y{“(a,gzﬁNs). (25)

field along thez direction(loffe field) has a dramatic impact
on the properties of the system. In particular the symmetryThese functions form a complete set in real and spin space

properties are affected. The Hamiltonian becomes but are not orthogonal. The angular part is covered by the
) well-known spherical harmonic¥"(9, ¢) whereas the two
H, =—1AX - 1 +b xypl+b—x2y2+l—)(XUX spinor components are addressed by the spin orbjsals
27 P+ y2+ 2 2 2 =|1) or|]). For the radial part we employ

B B? B
Yoy + SRR+ S OC Y+ oy (22) REM(r) = 4/ ﬁeﬂ@(gr)kﬁk(cr) (26)

with B, being the field strength of the loffe field. Since both ... | : ; ;
the 2D quadrupolédue to the side guideand the magnetic with L (r) being the associated Laguerre polynomials. The

. : ' %arameterk and/{ can be adapted in order to gain an optimal
field are perpendicular to each other the homogeneous erIconver ence behavior in any spectral region. In particular the
terms can simply be added to the Hamilton{&y. We find 9 y sP glon. 'n p

. : . nonlinear variational parametémas to be adapted such that
the well known Zeeman as well as the diamagnetic oscnlatolrt corresponds to the inverse of the characteristic length scale
term. The coupling of the spin to the loffe field leads to a po ; o . 9

. ) . . of the desired wave functions. Similar basis sets have been
term proportional too,. The symmetries oH, are listed in

Table III. employed previously by several other authfitd—-14.

Due to the presence of the additional homogeneous ﬁelﬁni:[rehge%%?ebrglsig);ﬂﬁgﬁg)nn of ?n gnergy eigensiijein a
numerous symmetries are Iqsee Table | for comparison £25) reads
The remaining operations form a non-Abelian algebra. In
contrast to the group operations listed in Table | there are no
two anticommuting operators. Hence it is not possible to
construct pairs of degenerate energy eigenstates as discussgdm our knowledge of the symmetries of the system we can
above. Thus, applying the loffe field lifts the degeneraciedurther specify the appearance of the expansion. In Sec. IlI
occuring in the absence of it. Even witp a finite loffe field thewe choseH, %, andP,P,l,\S, to be the set of commuting
operations,, P/P,,S, and P,P,,S, together withH, operators whose eigenfunctions we want to construct. We
form a set of commuting operators. now demandE) to be an eigenstate &, P,l,,S,. Exploiting

the relations

|E>:2 CnImJnaIvm1S>- (27)

nims

VI. NUMERICAL TREATMENT PP S 1) = —ie7 ™2(= 1)), (29)

In order to obtain many eigenvalues and eigenfunctions of ,
the Hamiltoniang5) and(22) particularly for highly excited PyP,IS Y1) = e ™2(= 'Y 1), (29
Rydberg states we adopt the linear variational principle. Here
the bound state solutions of the Schrédinger equation ard )
expanded in a finite set of square integrable basis function§Paces:
Determining the expansion coefficients is equivalent to solv- " — "
ing a generalized eigenvalue problem in the case of nonor-|E' +th=2> [Rn(an'nglTilJr bn'nglm N+ R“(C“'nglle
thogonal basis functions. The latter is done numerically by nim
employing standard linear algebra techniques and routines. + Yo 1), (30)

e construct the following expansions for the foursub-
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J— -2
|E: - 1> = E [Rn(anImlellm+1 + anmYzzllr]:?L3)|T> + Rn(CnIngIrm2 x10
i -1.998
+ dunY 21 1] (31) ~1.999
5
_ _ & -2.000
|E, + |> = E [Rn(anlezzllm+2 + anngInrf”D + Rn(CnIngmJil w
nim -2.0011
k=1
+ Y5 D], (32) 2002} k-t
|E- - i> = 2 [Rn(anlezzllnri2 + anngIrn+4)|T> + Rn(CnImlellerl 0 05 _61
nim (a) b[a.u] x 10
+ anmYzzllTis)H)]- (33) -0.018
The eigenfunctiong30)—33) are automatically also eigen-
functions to2,, [see Eqs(14) and(15)]. Due to the structure -0.019
of the spherical harmonicg" one has to ensure than| <I. _
In our calculations the sums run over all valid combinations I -002
of n=N, I<L, andm=<M where the maximum indicd\, L, m
and M can be fixed individually. The expansion becomes —0.021
exact if M,N,L—. We want to remark that due to the =1
particular choice of the basis functions the std&sc) are 0.022
invariant under the operationP,. B > 2 5
Performing the linear variational principle with one of the ) bla.u] 10

above expansions leads to a generalized eigenvalue problem
HU:ESI{: whereH andS are the corresponding matrix 'éP-  FIG. 2. (a) Splitting of the energy levels belonging to the5
resentation of the Hamiltonia(23) and the overlap matrix, multiplet (v=+1 subspacewith increasing gradient. The level
respectively: structure is dominated by the linear Zeeman term. The splitting is
linear and symmetric around the energy kor0. (b) Intra n mani-

H= <E’K|H|E’K>’ S=(E.«E ). (34) fold mixing of then=5 multiplet in thex=1 subspace. Due to the
The vectory contains the expansion coefficierds,, bnim increasing dominance of the diamagnetic term the level splitting
Crime @Ndd, - becomes nonlinear.

Due to the particular choice of the basis functi¢2s) the
matricesH andS become extremely sparsely occupi&lis  we will refer to the gradient as the relevant quantity charac-
a pentabanded matpixin order to solve the generalized ei- terizing the different regimes. All figures in this subsection
genvalue equation we utilize the so-called Arnoldi methodshow energy levels for manifolds belonging to rather small
together with the shift-and-invert method. We adopt routinesralues forn (typically n=5-7) and for large gradientéve
from the ARPACK package. A more detailed description cancover the rangd=10'-10) that are not accessible in the
be found in[17]. laboratory. This was done for reasons of illustration: Our
observations and results equally hold for weaker gradients
and highem manifolds(gradients achievable for tight traps
on atom chips are of the order b&107®) which, however,

In this section we analyze our computational results, i.e.due to the high level density, are less suited for a graphical
the eigenvalues and eigenfunctions obtained via the numerpresentation. In the weak gradient regime the spectral behav-
cal approach described in the previous section. We discuder is determined by the linear Zeeman terms. Although the
the spectra and expectation values of several observables pgncipal quantum number is not a good quantum number
well as the properties of the electronic spin. Furthermoreany given level can be assigned to a certaimultiplet. The
selection rules for electric dipole transitions as well as theilevels split symmetrically around the zero-field energy ex-
strengths are derived. Results for the case of the addition&libiting the expected linear dependence lonin Fig. 2a)

presence of a homogeneous bias field are presented as wéhis is exemplarily shown for the=5 multiplet.
The intermediate regime is characterized by the occurence

of intra n manifold mixing. Although neighboringh mani-
folds are still distinguishable the levels now aquire a nonlin-
With respect to the spectral behavior one can distinguistearb dependence which is due to the increasing importance
three regimes: the weak, the intermediate, and the strongf the diamagnetic term. Sublevels belonging to different
gradient regimes, each of which reveals individual characterangular momenta mix and thus avoided level crossings ap-
istics. The appearance of these regimes is not determined Ipear. The onset of this intermediate regime scales according
the gradient and the degree of excitation, i.e., energy, but bto ben®. Figure 2b) shows the regime of intermediate gra-
the scaled energgsee discussion in Sec). IFor simplicity  dients of then=5 multiplet. Interestingly we observe here

VII. RESULTS AND DISCUSSION

A. Spectral properties
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05 :
-0.01 b=10"" k=-1

— -0.012 —_ . : L)

E. E' H .;'l“§;3£°;.

W 0014 r O ErrEREEEYE S #

U\? . LN
-0.016
-0.5
bla.u] x 107 @ 5 1r? 15
FIG. 3. Intern manifold mixing between thex=6 andn=7

multiplets in thexk=1 subspace. The mixing threshold is indicated
by the dashed line. A large number of avoided crossings occur. 0.1
that this nonlinear behavior in tHemixing regime is very g 0 TR A
weakly pronounced for the atom in the side guide compared N T 3-"_=‘-.‘- R
to an atom in a homogeneous magnetic figld As we enter (GN
the strong gradient regime adjacemtmanifolds begin to -0.1}
overlap. The spectra are strongly i.e., nonperturbatively, in- ]
fluenced by the diamagnetic term. Figure 3 shows this imter —0.2t E:o”
manifold mixing for then=6 andn=7 multiplets where the . .
strong coupling leads to large avoided crossings. The mixing ) 14.8 15 16.2
threshold scales according toe<n™Y2 (indicated by the n
dashed line in Fig. 3 FIG. 4. (a) Expectation value of the component of the elec-

tronic spin operator for several excited states 1077). (b) Zoomed
B. Properties of the electronic spin view of the n=15 multiplet. The magnitude ofS) decreases for
states possessing a large energy shift due to the external field.

1. S, expectation value

In order to study the mutual influence of coordinate and <\If|f’><f’|§§|ﬁ>(f’]\p>
spin space let us investigate the properties of the electronic Wsg(r) = - )
spin. Thex andy components of the spin operator obey Bl 4[]
{2,,.84=1{2,,5}=0. Hence using Eq.18) we arrive at _ (W|P) (o, cosp— o, Sing)(F1W)
(8)=(8)=0 @) AP+ (AP
»=0 R (Nd(Me’]
=2~ =(cosy(h). (36)
Only the expectation value @, is nonzero in general. This ()| +[d(r)|

is not obvious since the Hamiltonig@3) does not contain an

explicit dependence o8, Wsg(F) describes the spatial distribution of the spin polariza-

Figure 4a) shows the expectation valys,) for several tion rellative o the local magnetic fieleB(F):l indicate_s .
excited states as a function of the principal quantum numbetlhe.Spln to be_onented paraIIe_I to the field _whereas we find it
n, which serves as an energetic label. The expectation vaIu%;'t'p"’w’l”eI allg'ned foMisg(F) =—1. According to .Eq.(36)
are arranged along vertical lines each of which belongs to 4/se(") can be interpreted as the local expectation value of
certain n multiplet. With increasing degree of excitation the cosine of the angle’ betweenS and B. Since in a ho-
these lines widen and begin to overlap as the interixing ~ mogenous field the projection of the spin onto the field di-
regime is reached. A zoomed view of the 15 multiplet is ~ rection is conservedNsgf) would be either +1 or -1
shown in Fig. 4b). We find states experiencing a large en-throughout the whole space. In the field of the side guide,
ergy shift due to the external field thereby possessing a smafiowever, we expect a much richer structure resulting from
S, expectation value. For the states shown in this fig®p  the coupling of the coordinate and the spin degrees of free-

vanishes fom>15.2 andn<14.8. dom.
Figure 5 shows three tomographic cuts of a the spin po-

larizationWsg of the 83rd excited state in the=1 subspace.

In the vicinity of the coordinate center we observe a large
We now study the relative alignment of the electronic spinnumber of nodes. From= 60 on the complex nodal struc-
and the magnetic field. For a two-component spift)  ture is replaced by a smooth regular pattern exhibiting a pe-

=(|u),|d))" we define riodicity with respect to the azimuthal angie Here Wgg(r)

2. Spatial distributions of the spin polarization
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. FIG. 6. Graphical representation of allowed dipole transitions

@ -100 50 [0 ] 0 100 betweenk subspaces. The arrows point froeto «'.
a x [a.u.

z=-20
100

.
6 —

50

G =—
T -

yla.u]
o

ently have a antiparallel alignment in the=0 and y=0
planes and a parallel one between these planes. The densities
are invariant under the operatioRgP, and P,l,, which are
equivalent tax, andP,P,l,,S, when acting on real and scalar
quantities.

100 ¢

50t

y[a.u]
o

C. Electric dipole transitions

We now consider electromagnetic transitions between
electronic states in the framework of the dipole approxima-
tion. The transition amplitude between the initial statend
the final statéf) is then given by the squared modulus of the
matrix elementi|DIf). In the length gaug® takes the forms
D= (1/\2)(xxiy)=(1/\2)r sinfet'¢ andD,=z=r cosd for
o* and 7 transitions, respectively.

-100  -50 0 50 100

Exploiting the symmetry properties of theP,l,.S,
eigenstates yields
(E,k|(PyPyS)*Z PP S|E" k")
_ =k k' (E,k|ZE", k") =-(E,k|Z]E’, k") (37
E, which leads to the expression
>
(" k" + 1)(E,k|ZE", k") = 0. (38)
Here we have usetE, «|(P,P,l,,S,)*=(«|«". Apparently the
matrix element forrr transitions can be nonzero only for the
-180 following combinations ofk and «’:
00 50 0 50 100 (k)= (1,-D,(-1,2,G,-1),(-0,i). (39
(c) x[a.u.]

The above shows also that the expectation value ofzthe
FIG. 5. Tomographic cuts through the spin polarizatitigs of ~ Coordinate vanishes for any eigenstate, ie., we have

the 83rd excited state. The state belongs tath8 multiplet within  (E. |2|E, x)=0. For theo™ transition one obtains in a simi-

the k=1 subspacéb=10"). The cuts are made at+20 andz lar way

=0. Positive and negative values are indicated white and black,

P e
respectively. We observe a rich pattern of different spin polariza- ok k) = (0,2),(1,=0), (= 1)), (=1,- 1), (40)
tions around the origin. From=~60 on the nodal structure is re- . . o

placed by a regular striped pattern varying periodically with the o (k") =(=1,1),(L,),(- 1,-0),(,— D). (41)

azimuthal angla. Figure 6 presents an overview of the allowed dipole tran-

becomes almost independent of theoordinate. This feature Sitions between th& subspaces.

seems to be induced mainly by the magnetic interaction We have calculated the dipole strengths for transitions
which is invariant under translations alomgOne identifies from the ground state to excited states.

four sectors reminiscent of the quadrupolar structure of the Figure 7 shows the results we obtain fer transitions
magnetic field of the guides. In the present case we appabetween thec=1 andx’=-1 subspace. In Fig.(& we ob-

043409-8



RYDBERG ATOMS IN A MAGNETIC GUIDE PHYSICAL REVIEW A70, 043409(2004)

1_35 k=1 oK =1 n=7 x107° k=i = nT?
x 10 1
3 S osf
o~ o n=8
.y n=9 z 0.6 n=9
[y n=8 o8 n=10
¥ 05 n=11 = 04 Y
n=10 - n-12
n=12 0.2¢ I
92 92.5 93 92 92.5 93
(@) A [nm] (a) A [nm]
x107° x 107
15 n=12 20} n=re
K=-i—>«=-1
5 k=1-5K=-1 5
3, S 157
o« 10 o
L A
== il
fa) o 10
7 =
5 A
il ]
ain ‘ \H‘I‘\ . L. MI Wl
91.8 91.805 91.81 91.815 91.8 91.805 91.81 91.815
(b) A [nm] (b) A [nm]
FIG. 7. (@ Dipole strenghts forr transition from the ground FIG. 8. (a) Dipole strenghts fow* transition from the ground
state of thex=1 subspace to excited states belonging to ##e  state of thex=-i subspace to excited states belonging to A%
-1 subspacegb=10""). The line for smallesh belongs to then -1 subspacdb=10"7). The line for smallesh belongs to then

=1—7 transition.(b) Zoomed view of the line belonging to the =17 transition.(b) Zoomed view of the line belonging to the

transition to then=12 multiplet. The line center is dominated by transition to then=12 multiplet. The line consists of three bunches

two sublines. The two bunches accompanying the line center at itsach of which consisting of a number of sublines. The line is domi-

left and right hand sides spossess a much smaller dipole strengtthated by two sublines, one each located in the left and right hand
side bunches.

serve a general decrease of the dipole strengths with decreas-

ing transition wavelengths. However, the decrease is ndiomogeneous field strengB) it is given by p.=B,/b. Tak-

monotonic as it would be in the case of a homogeneous or g into account the scaling) = n? we expect states with
3D quadrupole field17]. One rather finds a modulation on

top of the transition amplitudes where the8, n=10, and _ \/E
n=12 multiplets exhibit smaller dipole strengths than both of <~V p (42)
their neighbors. Figure(B) shows a zoomed view of the } .
=112 transition line. Its structure is dominated by two to be equally affected by both fields. Hence, the states having
sublines located in the line center. The central bunch is ald<Nc or N>n. should be dominated by the homogeneous
most symmetrically accompanied by two bunches of subline§eld or the field of the side guide, respectively.
located for smaller and larger wavelengths, respectively. Figure 9 shows the expectation valuesSpfor a gradient
For o* transitions the dipole strengths are systematically®= 107" and ‘a homogeneous field strendgh= 10°°. This
decreasing with decreasing wavelengffig. 8a)]. In the y|eld§ the critical principal quantum numbeg=10. Indeed
zoomed view[Fig. &b)] we also notice the structure consist- One finds fom<10 the expected dominance of the homoge-
ing of three bunches of sublines. Again there are two domineous field. In this regimeS,) is approximately allowed to
nating lines which are now located in the two outer bunchegpossess one of the two vaIue%.iThis is due to the fact that
rather than in the central one. S, becomes an approximate constant of motion. Forl0
we observe the expectation values to move toward zero,
which is expected from the results shown in Fig. 4. We have
As discussed in Sec. Il an additionally applied homoge-+o remark that since the symmetfy persists the expectation
neous field leads to severe changes of the symmetry propevalues ofS, and S, vanish even for finite strength of the
ties of the atomic system. Apart from the lifting of the de- homogeneous field.
generacies also a significant influence on the electronic spin Apart from the spin expectation value also the spin polar-
and the transition amplitudes has to be expected. ization exhibits significant changes if a loffe field is switched
Apparently there has to be a critical radipg at which  on. For a sufficiently high field strength or low degree of
both fields are equal in strength. For a given gradieand  excitation (n<n;), respectively, the structure of the elec-

D. Magnetic guide with a loffe field
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05 — .
L B ! i ;
b=10"7 100
B,=10° 4
=y K=-1 °
3 : . 50
A Of- e =
7 : s 0
v -

-
ot e
P A"

-05 s d

FIG. 9. Expectation values of ttecomponent of the electronic 80 =0 g 5 100
spin at a finite homogeneous field stren(Bh=107°) and a gradient (&) Klau]
of b=10". At low degree of excitation the homogeneous field
dominates the electronic states. In this regi§eecomes an ap-

proximate constant of motion admitti,) to possess one of the

two possible values +1/2. States lying above the critical principal
guantum numben; become increasingly dominated by the quadru-

pole field. As a result the expecation values tend tow&p=0.

tronic states is dominated by the loffe field. Here the spin is
expected to be aligned with the homogeneous field. Since
Wsg describes the projection of the electronic spin onto the
direction of the side guide field which is perpendicular to the
loffe field one expect®Vsg to be approximately zero in this
regime.

Figure 10 illustrates th&B polarizationWsg [EQ. (36)] -100 -50 0 50 100
for the state shown in Fig. 5 but for a loffe field strength ®) x[au]

B,=107°. The state is located inside the8 multiplet which

lies below the critical quantum numbey=10. Thus the state
structure is dominated by the loffe field. As expected from
the discussion above we observe large gray regions indicat-
ing Wgg=0. The geometry of the side guide field is barely
recognized for the cut made at0. Unlike in Fig. 5 there
are only small regions exhibiting a well-defined spin orien-
tation that is dominated by the side guide, i.e., eithgg=

-1 or WSB::I"

Figure 11 shows the dipole strengths fer transitions
from the ground state in the=1 subspace to various states
in the k=-1 subspace. Compared to tBe=0 case the dipole
strengths are increased by approximately 70%. The transition
strengths increase with increasing transition wavelengths. 100 -50 0 50 100
Again there seems to occur some kind of modulation as al- ©
ready seen in Fig.(@) but being less pronounced here. In the
present case the=12 transition exhibits a Iarger transition FIG. 10. Tomographic cuts through the spin polarizatitvgg
amplitude than its neighbors. In Fig. (b} we show a [Eq. (36)] of the 83rd excited state at a finite loffe field strength
zoomed view of the line belonging to the=12 transition. B,=107°. The state belongs to the=8 multiplet inside thex=1
Due to the presence of the homogeneous field a number afibspacéb=10"7). The cuts are made at +20 andz=0. Positive
additional lines appear some of which are marked by an arand negative values are indicated by white and black, respectively.
row. In contrast to thé,=0 case then=12 line is dominated One observes large gray regions Withyg=~ 0.
by a single subline originating from a transition induced by

y[a.ul

x [a.u.]

the presence of the homogeneous field. for the atomic core our approach could be straightforwardly
extended to describe, e.g., alkali-metal atoms. The magnetic
VIIl. CONCLUSION AND OUTLOOK guide represents a microtrap used to confine ultracold atomic

systems. The motion of the valence electron has been de-
We have studied electronically excited hydrogen atomsscribed by an effective one-body approach. Both the cou-
located in a magnetic guide. Including pseudopotenfie®  pling of the spatial degrees of freedgpara- and diamagne-
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2.5 gradient regime degeneratemanifolds split up symmetri-
x 1073 B105 cally around the zero field energy. For the intramixing
2 " regime only a very weak restructuring takes place inside any
n multiplet i.e., we observe only a minor nonlinear behavior
heg of the energies on the gradient. For even higher gradients
inter n mixing takes place where states belonging to adjacent
n=9 multiplets begin to mix and avoided crossings dominate the
n-12 n=10 spectrum. Scaling relations for both the inter and the intra
057 = n=m mixing have been provided.
Effects due to the coupling of the spin and spatial degrees
92 92.5 93 of freedom have been studied in detail. An analysis of the
(a) 2 [nm] spin-field orientation has been performed by utilizing the dis-
tribution of the spin polarization. For electronic states in the
magnetic guidé\gg reveals a rich nodal and island structure
which is absent for an atom in a uniform field. Moreover an
analysis of theS, expectation value has been performed. It
3r 1 has been shown that states that are energetically strongly
affected by the presence of the magnetic guide possess a
small expectation value @,.
We have derived selection rules for the quantum number
l H \ J ] «x belonging to thePP,l,,S, symmetry operator for linearly
J as well as circularly polarized dipole transitions. Wave-
ol .u\ |l | Hll. L Ll lengths and dipole strengths from the ground to Rydberg
91.8 91.805 91.81 states were analyzed. In particular fertransitions we have
(b) A [nm] found a global modulation of the transition amplitudes. The
impact of the presence of an additional homogeneous mag-
FIG. 11. (@) Dipole strengths forr transition from the ground netic field (along the wire involved in the setup of the side
state of thex=1 subspace to excited states belonging to #/¢  gyjide) on several relevant quantities has been studied. This

_ —10°7 —1(r5 ; : . o
1 subspaceb=10"" andB,=10"). The line for smallesk belongs  jncjydes theS, expectation values and the electric dipole
to then=1—7 transition.(b) Zoomed view of the line belonging to transition amplitudes.

the transition to the=12 multiplet. Several additional lines appear

at finite homogeneous_ field ;treng(tsome are markec_i by an ar present work. Neglecting the fine and hyperfine structure of
row). The line center is dominated by a single subline emergin

f o C he atom as well as omitting the influence of the core scat-
rom a transition which is induced by the external homogeneou%erin . . )
field. g events represent, at least for certain species and re
gimes(high excitationy certainly a good approximation to
tism) as well as the spin degrees of freedom to the externghe true physical system. Another approximation is the fact
field have been taken into account. The linear variationathat we centered the nucleus at the minimum of the field
principle has been used to solve the stationary Schrédingeronfiguration. This is suggested by our assumption that we
equation: Employing a Sturmian basis set enabled us to corhave ultracold atoms with an extremely small kinetic ¢c.m.
verge a large number of eigenfunctions. energy in tight traps leading to a well-localized atomic c.m.
A careful inspection of the Hamiltonian yields an amaz-Nevertheless, it is expected that the c.m. motion blurs the
ingly large number of symmetries involving both the spin effects occurring for an atom with a fixed nucleus. Beyond
and spatial degrees of freedom: We have found 15 symmetiyjs it is well known that already in the presence of a homo-
operations of both unitary and antiunitary character. This alyeneous magnetic field the c¢.m. and electronic motions of
lows for a classification of the electronic eigenstates withyioms do not separate, i.e., they perform an intimately

respect to a complete set of commuting constants of mOtiOQ:oupled motior{20—24. Then the immediate question arises

The latter involve the Hermitiah, operator which is @ com- ot this coupling might look like in our inhomogeneous
bined spin and parity operator and the unitary but non-

Hermitian operatoP,P,S, which involves parity and per field configuration and in particular what its impact on the
. yrz'x ! =S i - ; P : : L i
mutation operators. Employing specific anﬂcommutmgovera" electronic motion is. To investigate this is a challeng

operators of this symmetry group, we could prove the two.ing task which needs careful consideration and clearly goes

fold degeneracy of each energy level. This feature is indeefi€Yond the scope of the present work.

shown to be generic for spib—systems exhibiting certain

symmetry properties. We have discussed how the symmetries

are affected if an additional homogeneous magnetic field is ACKNOWLEDGMENTS
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Let us now comment on the approach chosen in the
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