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We investigate electronically excited atoms in a magnetic guide. It turns out that the Hamiltonian describing
this system possesses a wealth of both unitary as well as antiunitary symmetries that constitute an uncommon
extensive symmetry group. One consequence is the twofold degeneracy of any energy level. The spectral
properties are investigated for a wide range of field gradients and the spatial distributions of the spin polar-
ization are analyzed. Wavelengths, oscillator strengths, and selection rules are provided for the corresponding
electromagnetic transitions. The effects due to an additional homogeneous bias field constituting a Ioffe-
Pritchard trap are explored equally.
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I. INTRODUCTION

External fields are nowadays widely used to control the
motion of atoms including their cooling and trapping as well
as the preparation of their internal states. Optical lattices and
atom chips are two major examples of devices that allow one
to deal with atomic ensembles but also possess the perspec-
tive of manipulating single atoms for the purpose of quantum
information processing. To this end it is indispensable to un-
derstand the structure and behavior of(excited) individual
atoms in traps. In the case of the atom chip(see Ref.[1] and
references therein) tight magnetic traps on the micrometer
scale can be created, exhibiting large field gradients which
are not accessible in the case of macrosopic traps. Highly
excited Rydberg atoms therefore start to “feel” the variation,
i.e., the inhomogeneity of the magnetic field across the ex-
tension of their wave functions. This naturally leads to the
question: How do inhomogeneous magnetic field configura-
tions alter the electronic structure of excited atoms?

During the past decades many thorough investigations
have been performed on the behavior and properties of ex-
cited (Rydberg) atoms in homogeneous magnetic fields(see
the books and reviews[2–6]). Indeed, investigations on at-
oms in strong magnetic fields provided major contributions
to a variety of different research areas such as semiclassics of
nonintegrable systems, “quantum chaos,” nonlinear dynam-
ics, and astrophysics of magnetized stars and it elucidated
and significantly advanced our understanding of magnetized
structures in general.

In contrast to the case of a homogeneous magnetic field
there exist no studies on the electronic structure of atoms in
the presence of inhomogeneous external fields: all investiga-
tions in the literature on the behavior of ultracold atoms in
inhomogeneous fields typically treat the atom as a point par-

ticle whose magnetic moment couples either adiabatically[1]
or nonadiabatically[7–12] to the external field. This holds
with the exception of two very recent works[13,17] that
consider the electronic structure of atoms with a single active
electron subject to a three-dimensional quadrupole field. A
variety of interesting new phenomena have been observed
there. The symmetries of this system cause each energy level
to be degenerate in the presence of the field. Furthermore the
intimate coupling of the spin and spatial degrees of freedom
leads to a complex spatial distribution of the spin polariza-
tion of individual electronic states. A remarkable property of
the electronic states in the three-dimensional(3D) quadru-
pole trap is the fact that they possess a magnetic-field-
induced permanent electric dipole moment whose size
strongly varies with the Rydberg state considered. Besides
the 3D quadrupole field there is another generic inhomoge-
neous magnetic field configuration which is employed to trap
atoms in particular on the atom chip[1]. This is the so-called
side guide which is created by superimposing the magnetic
field of a current carrying wire with a homogeneous bias
field oriented perpendicular to the wire. The resulting mag-
netic guide can be augmented to a Ioffe-Pritchard type 2D
trap by applying an additional homogeneous bias field paral-
lel to the wire. It is exactly this configuration which is stud-
ied in the present work, i.e., we investigate the structure and
properties of electronically excited atoms in a magnetic
guide. According to the effects obtained for atoms in a 3D
quadrupole trap in Refs.[13,17] we expect also the atoms in
a side guide to exhibit interesting unusual features.

The paper is organized as follows. In Sec. II we introduce
the field configuration generated by a so-called side guide.
We specify our approach, which is particularly suited for
ultracold atoms with a single active electron, and derive the
corresponding Hamiltonian. This Hamiltonian exhibits a
wealth of both unitary and antiunitary symmetries and con-
stitutes an uncommon large symmetry group which is ana-
lyzed in Sec. III. In particular these symmetries lead to a
twofold degeneracy of any energy level, similar to the case
of an atom in a 3D quadrupole trap. Arbitrary spin-1

2 systems
in a field configuration obeying certain symmetries are dis-
cussed. Section IV contains a discussion of the properties of
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the symmetry-adapted electronic states. In Sec. V the latter
are studied when an additional homogeneous(Ioffe) field is
applied. The numerical methods being employed in order to
solve the stationary Schrödinger equation are briefly outlined
in Sec. VI. A discussion of our results is provided in Sec.
VII. We analyze the spectra for a wide range of gradients.
Furthermore, we explore properties of the electronic spin
such as spin expectation values and distributions of the spin
polarization. Selection rules and dipole strengths of electric
dipole transitions are calculated. We close with a discussion
of the electronic structure in case a homogeneous magnetic
field is applied in addition to the field of the magnetic guide.
Section VII contains the summary and outlook.

II. THE FIELD CONFIGURATION
AND THE HAMILTONIAN

Alkali-metal atoms are used throughout many experi-
ments in ultracold atomic physics. Besides a single active
electron they possess a closed shell core and the total elec-
tronic spin is therefore exclusively carried by the outer elec-
tron. We assume the motion of this valence electron to take
place in the Coulomb potential of a single positive point
charge. Since the focus of this work is to understand funda-
mental features of electronically excited atoms in a certain
inhomogeneous magnetic field we do not account for quan-
tum defects, which would require the consideration of core-
electron scattering processes. We also neglect relativistic ef-
fects such as spin-orbit and hyperfine coupling. Both
interaction possess anr−3 dependence withr being the dis-
tance between the outer electron and the nucleus. For
(highly) excited states their contributions can safely be ne-
glected or, if necessary, accounted for by means of perturba-
tion theory. Since we focus on ultracold atoms effects of the
center of mass(c.m.) motion on the electronic motion are
neglected here. Specifically we assume an infinitely heavy
core (c.m.) located at the minimum of the magnetic field.
Employing the above approximations, the Hamiltonian de-
scribing the motion of the valence electron in the presence of
an external magnetic field reads

H =
1

2me
fpW + eAW srWdg2 −

e2

4pe0urWu
+

gsmB

"
SWBW srWd. s1d

The magnetic field is introduced via the minimal coupling
including the vector potential thereby providing the kinetic
energy in the presence of the field. The third term represents
the coupling between the spin of the electron and the exter-
nal field. A common configuration for the manipulation of
neutral atoms is the so-called magnetic side guide[1]. This
particular setup is generated by a current carrying wire
whose “circular” magnetic field is superimposed by an exter-
nal homogeneous bias field perpendicular to the current flow.
As a result the field vanishes along a line parallel to the wire
at a distancer0=m0I /2pB that is completely determined by
the currentI and the homogeneous magnetic field strengthB.
The Taylor expansion of the field aroundr0 yields

BW <
B

r01
x

− y

0
2 +

B
Î2r0

21− x2 + 2xy+ y2

x2 + 2xy− y2

0
2

+
B

r0
31 ysy2 − 3x2d

− xsx2 − 3y2d
0

2 . s2d

These are the quadrupolar, hexapolar, and octopolar expan-
sion terms of the field. Here we restrict ourselves to the
linear term which should provide a good approximation of
the magnetic field configuration as long asr0@1. Thus we
obtain the expression

BW = b1 x

− y

0
2 . s3d

Hereb is the magnetic field gradient determining the linear
growth of the field with increasing distance from the line of
zero field. Figure 1 shows two vectorial plots along cuts

FIG. 1. Vectorial plots of the magnetic field(3). (a) Intersection
for z=0. The quadrupolar shape of the field is clearly recognized.
(b) Intersection forx=0 revealing the translational invariance with
respect to thez coordinate.
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through the field.
The cut through thex-y plane reveals the quadrupolar

shape of the field of the side guide whose translational in-
variance along thez axis can be easily observed in Fig. 1(b).
A corresponding vector potential in the Coulomb gauge is
given by

AW = b1 0

0

xy
2 . s4d

Inserting the expressions(3) and (4) into the Hamiltonian
(1), thereby adopting atomic units,1 yields

H =
1

2
pW2 −

1
Îx2 + y2 + z2

+ bxypz +
b2

2
x2y2 +

b

2
sxsx − ysyd.

s5d

The first two terms of Eq.(5) represent the nonrelativistic
hydrogen atom. The third term, which is linear with respect
to b, replaces the angular Zeeman term2 which would occur
in a homogeneous field. Here the spatial coordinates inx and
y couple with the momentum in thez direction. The succes-
sive diamagnetic term proportional tob2 represents an oscil-
lator coupling term confining the electronic motion in thex
and y directions except for the axis exit channels. This is
reminiscent of but also very different from the situation in a
homogeneous field, where the diamagnetic interactions in the
x and y direction separate and represent pure harmonic os-
cillators. Finally the fifth term represents the coupling of the
electronic spin to the spatial coordinates and arises from the
interaction of its magnetic moment with the field. We here
encounter a linear dependence on the spatial coordinates and
the gradientb. This term prevents the factorization of the
motions in coordinate space and spin space. Finally one
should note that the only explicit dependence on the coordi-
natez is due to the Coulomb term. Without this rotationally
invariant interaction the system would be invariant under
translations with respect to thez coordinate.

Performing the canonical scaling transformationx̄=b1/3x
and p̄=b−1/3p the Hamiltonian(5) becomes

H = b−2/3H̄ =
1

2
pW2 −

Z̄
Îx2 + y2 + z2

+ xypz +
1

2
x2y2

+
1

2
sxsx − ysyd s6d

with Z̄=b−1/3 and where we have for simplicity omitted the
overbar on the phase space variables. This shows us that
employing a scaled energy(scaled Hamiltonian) the only

free parameter is the scaled Coulomb coupling strengthZ̄
that depends on the field gradient. The scaled Hamiltonian
describes the motion of an electron in the Coulomb field of a

chargeZ̄ and the field with gradient 1. Ifb→` the Coulomb

term vanishes sinceZ̄→0. In this limit the energy level spac-
ing is expected to scale according tob2/3.

III. SYMMETRIES AND DEGENERACIES
IN SPIN- 1

2 SYSTEMS

In this section we analyze the structure of the Hamiltonian
(5) in detail. After studying its symmetries we discuss how
these symmetries affect the excitation spectrum. As a result
of a tedious and elaborate analysis of the Hamiltonian(5) we
found 15 distinct symmetry operations leaving it invariant. A
complete list is provided in Table I.

Each symmetry is composed of a number of elementary
operations which are shown in Table II.

All symmetry operations are either unitary or antiunitary.
The antiunitary ones involve the conventional time reversal
operatorT. In spite of its simplicity our system therefore
possesses a wealth of symmetry properties. The algebra of
the underlying symmetry group possesses a complicated
structure, some features of which will be discussed in the
following. The operatorsSx, Sy, andSz generate a subgroup
obeying the algebrafSi ,S jg=2iei jkSk reminiscent of angular
momentum operators. We haveSi

2=1. Interestingly these
quantities act on both real and spin space. A deeper look into
the representation theory of our group reveals a twofold de-
generacy of any energy level similar to those we encountered
in our investigations of atoms in a three-dimensional quad-
rupole trap[13,17].

Alternatively this degeneracy can also be established as
follows. The operationsSz and TsxPz obey hSz,TsxPzj=0.
Let uE,pl be an energy eigenstate and at the same time an
eigenstate ofSz with

SzuE,pl = puE,pl s7d

and p= ±1. Employing the above anticommutator one ob-
tains

SzTsxPzuE,pl = − TsxPzSzuE,pl = − pTsxPzuE,pl. s8d

The stateTsxPzuE,pl can be identified withuE,−pl. Hence,
as long aspÞ0,3 there is always an orthogonal pair of states
possessing the same energy, namely,uE,pl and uE,−pl. We
have to emphasize that there occur no further degeneracies in
the system. In principle one could think of performing the
above calculation repeatedly but now substitutingTsxPz
with any operator listed in Table I which anticommutes with

1"=1, me=1, a0=1, e=1: The magnetic gradient unit then be-
comesb=1 a.u. =4.4418131015 T/m. The magnetic field strength
unit is B=1 a.u. =2.350513105 T.

2Bsxpy−ypxd /2 whereB is the field strength. 3SinceSz is a unitary operator the casep=0 cannot occur.

TABLE I. Symmetry operations of the Hamiltonian(5). Top
part: unitary symmetries. Bottom part: antiunitary symmetries.

Sx=sxPyPz Sy=PxsyPz Sz=PxPysz

IxyS1 PyPzIxyS2 PxPyIxyS1
* PxPzIxyS2

*

TsxPz TPxPyPzsy TPxsz TPy

TPyIxyS1 TPzIxyS2 TPxIxyS1
* TPxPyPzIxyS2

*
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Sz. It turns out that all of the resulting states generated by
this scheme are either superpositions ofuE,pl anduE,−pl or
differ only by a phase factor from one of these states.

Out of the 15 symmetry operations one can choose sev-
eral sets of commuting operators. For the following investi-
gation we choose the setH, Sz, PyPzIxyS2. The combination
of Sz and PyPzIxyS2 leads to the additional commuting
operatorPxPzIxyS2

* . We have found the properties

sPyPzIxyS2d2 = sPxPzIxyS2
*d2 = − Sz, s9d

sSzd2 = sPyPzIxyS2d4 = sPxPzIxyS2
*d4 = 1. s10d

For completeness we provide here the general embedding of
the above-derived degeneracies due to symmetries. Let us
assume we have a general spin-1

2 system with the following
accompanying properties.

(1) There are two operatorsA andB commuting with the
underlying Hamiltonian:fH ,Ag=fH ,Bg=0.

(2) A andB anticommute:hA,Bj=0.
(3) A is a Hermitian operator.B is an(anti)unitary opera-

tor which can be written as a productB=RSwhereR andS
exclusively act on the real space and the spin space, respec-
tively.

(4) The operatorS is traceless: TrS=0.
If these conditions are satisfied any state is doubly degen-

erate. This is seen as follows. Property 4 immediately leads
to Tr B=0. Hence, we find the nonzero eigenvalues ofB to
appear pairwise with opposite signs. If nowuE,bl is an
eigenstate ofB and at the same time an energy eigenstate
property 2 implies that

BAuE,bl = − ABuE,bl = − bAuE,bl = − buE,− bl. s11d

Hence,uE,bl andAuE,bl= uE,−bl are two degenerate energy
eigenstates of the system.

In the present case the two anticommuting operators are
Sz andTsxPz. For the case of an atom in a three-dimensional
quadrupole field we haveA=Jz andB=TsxPz. In a homoge-
neous magnetic field the remaining symmetries constitute an
Abelian symmetry group leading to exclusively one-
dimensional irreducible representations, i.e., no degeneracies
occur. Finally we remark that the reader can find in Ref.[18]
a discussion of degeneracies in spin-1

2 systems based on the
properties of time-reversal operators.

IV. Sz, PyPzI xyS2, AND TsxPz EIGENSTATES

The operatorPyPzIxyS2 obeys the eigenvalue relation

PyPzIxyS2ukl = kukl. s12d

Since

ukl = sPyPzIxyS2d4ukl = k4ukl s13d

the eigenvaluek can adopt the four values ±1 and ±i. The
reader should note thatPyPzIxyS2 is a unitary but non-
Hermitian operator. We therefore encounter complex eigen-
values. If we applySz to the statesukl we find by exploiting
Eq. (9)

Szuk = ± il = uk = ± il, s14d

Szuk = ± 1l = − uk = ± 1l. s15d

By using the relation

sTsxPzdsPyPzIxyS2d − isPyPzIxyS2dsTsxPzd = 0

one finds the degenerate pairs of states in thePyPzIxyS2 sub-
spaces: uE, +1l,uE,−il and uE,−1l,uE, +il. Since non-
Hermitian operators do not represent physical observables
only the quantum numberp should be of direct relevance for
the experimental observation.

We now derive the expectation value of an observableY
in an eigenstate ofSz. Assume we havehY,Szj=0 and hence

kE,puYSzuE,pl = − kE,puSzYuE,pl, s16d

pkE,puYuE,pl = − pkE,puYuE,pl. s17d

This immediately leads to the result

kE,puYuE,pl = 0. s18d

The same arguments hold for an observableZ obeying
hZ,PyPzIxyS2j=0 in which case we obtain

kE,kuZuE,kl = 0. s19d

In the preceding section we showed the degeneracy of the
statesuE,pl and TsxPzuE,pl. By superimposing these two
states eigenstates of the operatorTsxPz can be constructed:

TABLE II. Set of discrete operations out of which all symmetry operations of the Hamiltonian(5) can be
composed. Note thatS1 andS2 are given in a basis wheresz is diagonal.

Operator Operation Designation

Pxi
xi →−xi xi parity

T A→A* Conventional time reversal

sx sy→−sy sz→−sz Pauli spin matrixx

sy sx→−sx sz→−sz Pauli spin matrixy

sz sx→−sx sy→−sy Pauli spin matrixz

Ixy x→y y→x sf→−f+p /2d Coordinate exchange

S1= s 0 1
−i 0

d sx→−sy sy→−sx sz→−sz

S2= s −i 0
0 1

d sx→−sy sy→sx sz→sz
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uE, ±lTsxPz =
1
Î2

fuE,pl ± TsxPzuE,plg. s20d

The corresponding eigenvalue relation is

TsxPzuE, ±l = ± uE, ±l. s21d

V. ADDITIONAL HOMOGENEOUS FIELD
IN z-DIRECTION (IOFFE FIELD)

The application of an additional homogeneous magnetic
field along thez direction(Ioffe field) has a dramatic impact
on the properties of the system. In particular the symmetry
properties are affected. The Hamiltonian becomes

HI = −
1

2
Dx,y,z −

1
Îx2 + y2 + z2

+ b xypz +
b2

2
x2y2 +

b

2
sxsx

− ysyd +
BI

2
sxpy − ypxd +

BI
2

8
sx2 + y2d +

BI

2
sz s22d

with BI being the field strength of the Ioffe field. Since both
the 2D quadrupole(due to the side guide) and the magnetic
field are perpendicular to each other the homogeneous field
terms can simply be added to the Hamiltonian(5). We find
the well known Zeeman as well as the diamagnetic oscillator
term. The coupling of the spin to the Ioffe field leads to a
term proportional tosz. The symmetries ofHI are listed in
Table III.

Due to the presence of the additional homogeneous field
numerous symmetries are lost(see Table I for comparison).
The remaining operations form a non-Abelian algebra. In
contrast to the group operations listed in Table I there are no
two anticommuting operators. Hence it is not possible to
construct pairs of degenerate energy eigenstates as discussed
above. Thus, applying the Ioffe field lifts the degeneracies
occuring in the absence of it. Even with a finite Ioffe field the
operationsSz, PyPzIxyS2, and PxPzIxyS2

* together with HI
form a set of commuting operators.

VI. NUMERICAL TREATMENT

In order to obtain many eigenvalues and eigenfunctions of
the Hamiltonians(5) and(22) particularly for highly excited
Rydberg states we adopt the linear variational principle. Here
the bound state solutions of the Schrödinger equation are
expanded in a finite set of square integrable basis functions.
Determining the expansion coefficients is equivalent to solv-
ing a generalized eigenvalue problem in the case of nonor-
thogonal basis functions. The latter is done numerically by
employing standard linear algebra techniques and routines.

To accomplish the above we adopt spherical coordinates.
The Hamiltonian(5) then becomes

H = −
1

2
Dr,u,f −

1

r
− ibr sinf cosfSsin2u cosur

]

] r

− sin3u
]

] u
D +

b2

2
r4sin4u sin2f cos2f

+
b

2
r sinuS 0 eif

e−if 0
D . s23d

With an additional Ioffe field applied we have to consider the
Hamiltonian(22) which reads in spherical coordinates

HI = H − i
BI

2

]

] f
+

BI
2

8
r2sin2u +

BI

2
sz. s24d

We utilize a Sturmian basis set of the form

un,l,m,sl = Rn
sz,kdsrdYl

msu,fdusl. s25d

These functions form a complete set in real and spin space
but are not orthogonal. The angular part is covered by the
well-known spherical harmonicsYl

msu ,fd whereas the two
spinor components are addressed by the spin orbitalsusl
= u↑ l or u↓ l. For the radial part we employ

Rn
sz,kdsrd =Î n!

sn + 2kd!
e−szr/2dszrdkLn

2kszrd s26d

with Ln
2ksrd being the associated Laguerre polynomials. The

parametersk andz can be adapted in order to gain an optimal
convergence behavior in any spectral region. In particular the
nonlinear variational parameterz has to be adapted such that
it corresponds to the inverse of the characteristic length scale
of the desired wave functions. Similar basis sets have been
employed previously by several other authors[14–16].

The general expansion of an energy eigenstateuEl in a
finite set of basis functions(25) reads

uEl = o
nlms

cnlmsun,l,m,sl. s27d

From our knowledge of the symmetries of the system we can
further specify the appearance of the expansion. In Sec. III
we choseH, Sz, and PyPzIxyS2 to be the set of commuting
operators whose eigenfunctions we want to construct. We
now demanduEl to be an eigenstate ofPyPzIxyS2. Exploiting
the relations

PyPzIxyS2Yl
mu↑l = − ie−ipm/2s− 1dlYl

mu↑l, s28d

PyPzIxyS2Yl
mu↓l = e−ipm/2s− 1dlYl

mu↓l, s29d

we construct the following expansions for the fourk sub-
spaces:

uE, + 1l = o
nlm

fRnsanlmY2l+1
4m+1 + bnlmY2l

4m+3du↑l + R̄nscnlmY2l+1
4m+2

+ dnlmY2l
4m+4du↓lg, s30d

TABLE III. Symmetries of the Hamiltonian(22), i.e., side guide
with Ioffe field. Top line: unitary symmetries. Bottom line: antiuni-
tary symmetries.

Sz PyPzIxyS2 PxPzIxyS2
*

TPxsz TPzIxyS2 TPxPyPzIxyS2
* TPy
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uE,− 1l = o
nlm

fRnsanlmY2l
4m+1 + bnlmY2l+1

4m+3du↑l + R̄nscnlmY2l
4m+2

+ dnlmY2l+1
4m+4du↓lg, s31d

uE, + il = o
nlm

fRnsanlmY2l
4m+2 + bnlmY2l+1

4m+4du↑l + R̄nscnlmY2l+1
4m+1

+ dnlmY2l
4m+3du↓lg, s32d

uE,− il = o
nlm

fRnsanlmY2l+1
4m+2 + bnlmY2l

4m+4du↑l + R̄nscnlmY2l
4m+1

+ dnlmY2l+1
4m+3du↓lg. s33d

The eigenfunctions(30)–(33) are automatically also eigen-
functions toSz [see Eqs.(14) and(15)]. Due to the structure
of the spherical harmonicsYl

m one has to ensure thatumuø l.
In our calculations the sums run over all valid combinations
of nøN, l øL, andmøM where the maximum indicesN, L,
and M can be fixed individually. The expansion becomes
exact if M ,N,L→`. We want to remark that due to the
particular choice of the basis functions the statesuE,kl are
invariant under the operationTPy.

Performing the linear variational principle with one of the
above expansions leads to a generalized eigenvalue problem
HvW =ESvW, whereH andS are the corresponding matrix rep-
resentation of the Hamiltonian(23) and the overlap matrix,
respectively:

H = kE,kuHuE,kl, S= kE,kuE,kl. s34d

The vectorvW contains the expansion coefficientsanlm, bnlm,
cnlm, anddnlm.

Due to the particular choice of the basis functions(25) the
matricesH andS become extremely sparsely occupied(S is
a pentabanded matrix). In order to solve the generalized ei-
genvalue equation we utilize the so-called Arnoldi method
together with the shift-and-invert method. We adopt routines
from the ARPACK package. A more detailed description can
be found in[17].

VII. RESULTS AND DISCUSSION

In this section we analyze our computational results, i.e.,
the eigenvalues and eigenfunctions obtained via the numeri-
cal approach described in the previous section. We discuss
the spectra and expectation values of several observables as
well as the properties of the electronic spin. Furthermore,
selection rules for electric dipole transitions as well as their
strengths are derived. Results for the case of the additional
presence of a homogeneous bias field are presented as well.

A. Spectral properties

With respect to the spectral behavior one can distinguish
three regimes: the weak, the intermediate, and the strong
gradient regimes, each of which reveals individual character-
istics. The appearance of these regimes is not determined by
the gradient and the degree of excitation, i.e., energy, but by
the scaled energy(see discussion in Sec. I). For simplicity

we will refer to the gradient as the relevant quantity charac-
terizing the different regimes. All figures in this subsection
show energy levels for manifolds belonging to rather small
values forn (typically n=5–7) and for large gradients(we
cover the rangeb=10−7–10−4) that are not accessible in the
laboratory. This was done for reasons of illustration: Our
observations and results equally hold for weaker gradients
and highern manifolds(gradients achievable for tight traps
on atom chips are of the order ofb=10−8) which, however,
due to the high level density, are less suited for a graphical
presentation. In the weak gradient regime the spectral behav-
ior is determined by the linear Zeeman terms. Although the
principal quantum numbern is not a good quantum number
any given level can be assigned to a certainn multiplet. The
levels split symmetrically around the zero-field energy ex-
hibiting the expected linear dependence onb. In Fig. 2(a)
this is exemplarily shown for then=5 multiplet.

The intermediate regime is characterized by the occurence
of intra n manifold mixing. Although neighboringn mani-
folds are still distinguishable the levels now aquire a nonlin-
earb dependence which is due to the increasing importance
of the diamagnetic term. Sublevels belonging to different
angular momenta mix and thus avoided level crossings ap-
pear. The onset of this intermediate regime scales according
to b~n−6. Figure 2(b) shows the regime of intermediate gra-
dients of then=5 multiplet. Interestingly we observe here

FIG. 2. (a) Splitting of the energy levels belonging to then=5
multiplet (k= ±1 subspace) with increasing gradient. The level
structure is dominated by the linear Zeeman term. The splitting is
linear and symmetric around the energy forb=0. (b) Intra n mani-
fold mixing of then=5 multiplet in thek=1 subspace. Due to the
increasing dominance of the diamagnetic term the level splitting
becomes nonlinear.
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that this nonlinear behavior in thel mixing regime is very
weakly pronounced for the atom in the side guide compared
to an atom in a homogeneous magnetic field[2]. As we enter
the strong gradient regime adjacentn manifolds begin to
overlap. The spectra are strongly i.e., nonperturbatively, in-
fluenced by the diamagnetic term. Figure 3 shows this intern
manifold mixing for then=6 andn=7 multiplets where the
strong coupling leads to large avoided crossings. The mixing
threshold scales according tob~n−11/2 (indicated by the
dashed line in Fig. 3).

B. Properties of the electronic spin

1. Sz expectation value

In order to study the mutual influence of coordinate and
spin space let us investigate the properties of the electronic
spin. Thex and y components of the spin operator obey
hSz,Sxj=hSz,Syj=0. Hence using Eq.(18) we arrive at

kSxl = kSyl = 0. s35d

Only the expectation value ofSz is nonzero in general. This
is not obvious since the Hamiltonian(23) does not contain an
explicit dependence onSz.

Figure 4(a) shows the expectation valuekSzl for several
excited states as a function of the principal quantum number
n, which serves as an energetic label. The expectation values
are arranged along vertical lines each of which belongs to a
certain n multiplet. With increasing degree of excitation
these lines widen and begin to overlap as the intern mixing
regime is reached. A zoomed view of then=15 multiplet is
shown in Fig. 4(b). We find states experiencing a large en-
ergy shift due to the external field thereby possessing a small
Sz expectation value. For the states shown in this figurekSzl
vanishes forn.15.2 andn,14.8.

2. Spatial distributions of the spin polarization

We now study the relative alignment of the electronic spin
and the magnetic field. For a two-component spinoruCl
=suul , udldT we define

WSBsrWd =
kCurWlkrWuSWBW urWlkrWuCl

uSW uuBW uukCurWlu2

=
kCurWlssx cosf − sy sinfdkrWuCl

ukrWuulu2 + ukrWudlu2

= 2
Refu*srWddsrWdeifg
uusrWdu2 + udsrWdu2

= kcosglsrWd. s36d

WSBsrWd describes the spatial distribution of the spin polariza-
tion relative to the local magnetic field.WSBsrWd=1 indicates
the spin to be oriented parallel to the field whereas we find it
antiparallel aligned forWSBsrWd=−1. According to Eq.(36)
WSBsrWd can be interpreted as the local expectation value of

the cosine of the angleg betweenSW and BW . Since in a ho-
mogenous field the projection of the spin onto the field di-
rection is conservedWSBsrWd would be either +1 or −1
throughout the whole space. In the field of the side guide,
however, we expect a much richer structure resulting from
the coupling of the coordinate and the spin degrees of free-
dom.

Figure 5 shows three tomographic cuts of a the spin po-
larizationWSB of the 83rd excited state in thek=1 subspace.
In the vicinity of the coordinate center we observe a large
number of nodes. Fromr<60 on the complex nodal struc-
ture is replaced by a smooth regular pattern exhibiting a pe-
riodicity with respect to the azimuthal anglef. HereWSBsrWd

FIG. 3. Inter n manifold mixing between then=6 and n=7
multiplets in thek=1 subspace. The mixing threshold is indicated
by the dashed line. A large number of avoided crossings occur.

FIG. 4. (a) Expectation value of thez component of the elec-
tronic spin operator for several excited statessb=10−7d. (b) Zoomed
view of the n=15 multiplet. The magnitude ofkSzl decreases for
states possessing a large energy shift due to the external field.

RYDBERG ATOMS IN A MAGNETIC GUIDE PHYSICAL REVIEW A70, 043409(2004)

043409-7



becomes almost independent of thez coordinate. This feature
seems to be induced mainly by the magnetic interaction
which is invariant under translations alongz. One identifies
four sectors reminiscent of the quadrupolar structure of the
magnetic field of the guides. In the present case we appar-

ently have a antiparallel alignment in thex=0 and y=0
planes and a parallel one between these planes. The densities
are invariant under the operationsPxPy and PzIxy which are
equivalent toSz andPyPzIxyS2 when acting on real and scalar
quantities.

C. Electric dipole transitions

We now consider electromagnetic transitions between
electronic states in the framework of the dipole approxima-
tion. The transition amplitude between the initial stateuil and
the final stateufl is then given by the squared modulus of the
matrix elementki uDufl. In the length gaugeD takes the forms
Ds±=s1/Î2dsx± iyd=s1/Î2dr sinue±if andDp=z=r cosu for
s± andp transitions, respectively.

Exploiting the symmetry properties of thePyPzIxyS2
eigenstates yields

kE,kusPyPzIxyS2d+z PyPzIxyS2uE8,k8l

= k*k8kE,kuzuE8,k8l = − kE,kuzuE8,k8l s37d

which leads to the expression

sk*k8 + 1dkE,kuzuE8,k8l = 0. s38d

Here we have usedkE,kusPyPzIxyS2d+=kkuk* . Apparently the
matrix element forp transitions can be nonzero only for the
following combinations ofk andk8:

p:sk,k8d = s1,− 1d,s− 1,1d,si,− id,s− i,id. s39d

The above shows also that the expectation value of thez
coordinate vanishes for any eigenstate, i.e., we have
kE,k uzuE,kl=0. For thes± transition one obtains in a simi-
lar way

s+:sk,k8d = si,1d,s1,− id,s− 1,id,s− i,− 1d, s40d

s−:sk,k8d = s− i,1d,s1,id,s− 1,− id,si,− 1d. s41d

Figure 6 presents an overview of the allowed dipole tran-
sitions between thek subspaces.

We have calculated the dipole strengths for transitions
from the ground state to excited states.

Figure 7 shows the results we obtain forp transitions
between thek=1 andk8=−1 subspace. In Fig. 7(a) we ob-

FIG. 5. Tomographic cuts through the spin polarizationWSB of
the 83rd excited state. The state belongs to then=8 multiplet within
the k=1 subspacesb=10−7d. The cuts are made atz= ±20 andz
=0. Positive and negative values are indicated white and black,
respectively. We observe a rich pattern of different spin polariza-
tions around the origin. Fromr <60 on the nodal structure is re-
placed by a regular striped pattern varying periodically with the
azimuthal anglef.

FIG. 6. Graphical representation of allowed dipole transitions
betweenk subspaces. The arrows point fromk to k8.
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serve a general decrease of the dipole strengths with decreas-
ing transition wavelengths. However, the decrease is not
monotonic as it would be in the case of a homogeneous or a
3D quadrupole field[17]. One rather finds a modulation on
top of the transition amplitudes where then=8, n=10, and
n=12 multiplets exhibit smaller dipole strengths than both of
their neighbors. Figure 7(b) shows a zoomed view of then
=1→12 transition line. Its structure is dominated by two
sublines located in the line center. The central bunch is al-
most symmetrically accompanied by two bunches of sublines
located for smaller and larger wavelengths, respectively.

For s+ transitions the dipole strengths are systematically
decreasing with decreasing wavelength[Fig. 8(a)]. In the
zoomed view[Fig. 8(b)] we also notice the structure consist-
ing of three bunches of sublines. Again there are two domi-
nating lines which are now located in the two outer bunches
rather than in the central one.

D. Magnetic guide with a Ioffe field

As discussed in Sec. II an additionally applied homoge-
neous field leads to severe changes of the symmetry proper-
ties of the atomic system. Apart from the lifting of the de-
generacies also a significant influence on the electronic spin
and the transition amplitudes has to be expected.

Apparently there has to be a critical radiusrc at which
both fields are equal in strength. For a given gradientb and

homogeneous field strengthBI it is given byrc=BI /b. Tak-
ing into account the scalingkrl~n2 we expect states with

nc =ÎBI

b
s42d

to be equally affected by both fields. Hence, the states having
n!nc or n@nc should be dominated by the homogeneous
field or the field of the side guide, respectively.

Figure 9 shows the expectation values ofSz for a gradient
b=10−7 and a homogeneous field strengthBI =10−5. This
yields the critical principal quantum numbernc=10. Indeed
one finds forn!10 the expected dominance of the homoge-
neous field. In this regimekSzl is approximately allowed to
possess one of the two values ±1

2. This is due to the fact that
Sz becomes an approximate constant of motion. Forn.10
we observe the expectation values to move toward zero,
which is expected from the results shown in Fig. 4. We have
to remark that since the symmetrySz persists the expectation
values ofSx and Sy vanish even for finite strength of the
homogeneous field.

Apart from the spin expectation value also the spin polar-
ization exhibits significant changes if a Ioffe field is switched
on. For a sufficiently high field strength or low degree of
excitation sn,ncd, respectively, the structure of the elec-

FIG. 7. (a) Dipole strenghts forp transition from the ground
state of thek=1 subspace to excited states belonging to thek=
−1 subspacesb=10−7d. The line for smallestl belongs to then
=1→7 transition.(b) Zoomed view of the line belonging to the
transition to then=12 multiplet. The line center is dominated by
two sublines. The two bunches accompanying the line center at its
left and right hand sides spossess a much smaller dipole strength.

FIG. 8. (a) Dipole strenghts fors+ transition from the ground
state of thek=−i subspace to excited states belonging to thek=
−1 subspacesb=10−7d. The line for smallestl belongs to then
=1→7 transition.(b) Zoomed view of the line belonging to the
transition to then=12 multiplet. The line consists of three bunches
each of which consisting of a number of sublines. The line is domi-
nated by two sublines, one each located in the left and right hand
side bunches.
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tronic states is dominated by the Ioffe field. Here the spin is
expected to be aligned with the homogeneous field. Since
WSB describes the projection of the electronic spin onto the
direction of the side guide field which is perpendicular to the
Ioffe field one expectsWSB to be approximately zero in this
regime.

Figure 10 illustrates theSB polarizationWSB [Eq. (36)]
for the state shown in Fig. 5 but for a Ioffe field strength
BI =10−5. The state is located inside then=8 multiplet which
lies below the critical quantum numbernc=10. Thus the state
structure is dominated by the Ioffe field. As expected from
the discussion above we observe large gray regions indicat-
ing WSB=0. The geometry of the side guide field is barely
recognized for the cut made atz=0. Unlike in Fig. 5 there
are only small regions exhibiting a well-defined spin orien-
tation that is dominated by the side guide, i.e., eitherWSB=
−1 or WSB=1.

Figure 11 shows the dipole strengths forp transitions
from the ground state in thek=1 subspace to various states
in thek=−1 subspace. Compared to theBI =0 case the dipole
strengths are increased by approximately 70%. The transition
strengths increase with increasing transition wavelengths.
Again there seems to occur some kind of modulation as al-
ready seen in Fig. 7(a) but being less pronounced here. In the
present case then=12 transition exhibits a larger transition
amplitude than its neighbors. In Fig. 11(b) we show a
zoomed view of the line belonging to then=12 transition.
Due to the presence of the homogeneous field a number of
additional lines appear some of which are marked by an ar-
row. In contrast to theBI =0 case then=12 line is dominated
by a single subline originating from a transition induced by
the presence of the homogeneous field.

VIII. CONCLUSION AND OUTLOOK

We have studied electronically excited hydrogen atoms
located in a magnetic guide. Including pseudopotentials[19]

for the atomic core our approach could be straightforwardly
extended to describe, e.g., alkali-metal atoms. The magnetic
guide represents a microtrap used to confine ultracold atomic
systems. The motion of the valence electron has been de-
scribed by an effective one-body approach. Both the cou-
pling of the spatial degrees of freedom(para- and diamagne-

FIG. 9. Expectation values of thez component of the electronic
spin at a finite homogeneous field strengthsBI =10−5d and a gradient
of b=10−7. At low degree of excitation the homogeneous field
dominates the electronic states. In this regimeSz becomes an ap-
proximate constant of motion admittingkSzl to possess one of the
two possible values ±1/2. States lying above the critical principal
quantum numbernc become increasingly dominated by the quadru-
pole field. As a result the expecation values tend towardkSzl=0.

FIG. 10. Tomographic cuts through the spin polarizationWSB

[Eq. (36)] of the 83rd excited state at a finite Ioffe field strength
BI =10−5. The state belongs to then=8 multiplet inside thek=1
subspacesb=10−7d. The cuts are made atz= ±20 andz=0. Positive
and negative values are indicated by white and black, respectively.
One observes large gray regions withWSB<0.
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tism) as well as the spin degrees of freedom to the external
field have been taken into account. The linear variational
principle has been used to solve the stationary Schrödinger
equation: Employing a Sturmian basis set enabled us to con-
verge a large number of eigenfunctions.

A careful inspection of the Hamiltonian yields an amaz-
ingly large number of symmetries involving both the spin
and spatial degrees of freedom: We have found 15 symmetry
operations of both unitary and antiunitary character. This al-
lows for a classification of the electronic eigenstates with
respect to a complete set of commuting constants of motion.
The latter involve the HermitianSz operator which is a com-
bined spin and parity operator and the unitary but non-
Hermitian operatorPyPzIxyS2 which involves parity and per-
mutation operators. Employing specific anticommuting
operators of this symmetry group, we could prove the two-
fold degeneracy of each energy level. This feature is indeed
shown to be generic for spin-1

2 systems exhibiting certain
symmetry properties. We have discussed how the symmetries
are affected if an additional homogeneous magnetic field is
applied in order to obtain a Ioffe-Pritchard type trap. In this
case only seven symmetry operations remain includingSz,
PyPzIxyS2, andPxPzIxyS2

* .
Spectra have been investigated up to energies correspond-

ing to a principal quantum number ofn<15. In the low

gradient regime degeneraten manifolds split up symmetri-
cally around the zero field energy. For the intran mixing
regime only a very weak restructuring takes place inside any
n multiplet i.e., we observe only a minor nonlinear behavior
of the energies on the gradient. For even higher gradients
inter n mixing takes place where states belonging to adjacent
multiplets begin to mix and avoided crossings dominate the
spectrum. Scaling relations for both the inter and the intran
mixing have been provided.

Effects due to the coupling of the spin and spatial degrees
of freedom have been studied in detail. An analysis of the
spin-field orientation has been performed by utilizing the dis-
tribution of the spin polarization. For electronic states in the
magnetic guideWSB reveals a rich nodal and island structure
which is absent for an atom in a uniform field. Moreover an
analysis of theSz expectation value has been performed. It
has been shown that states that are energetically strongly
affected by the presence of the magnetic guide possess a
small expectation value ofSz.

We have derived selection rules for the quantum number
k belonging to thePyPzIxyS2 symmetry operator for linearly
as well as circularly polarized dipole transitions. Wave-
lengths and dipole strengths from the ground to Rydberg
states were analyzed. In particular forp transitions we have
found a global modulation of the transition amplitudes. The
impact of the presence of an additional homogeneous mag-
netic field (along the wire involved in the setup of the side
guide) on several relevant quantities has been studied. This
includes theSz expectation values and the electric dipole
transition amplitudes.

Let us now comment on the approach chosen in the
present work. Neglecting the fine and hyperfine structure of
the atom as well as omitting the influence of the core scat-
tering events represent, at least for certain species and re-
gimes(high excitations), certainly a good approximation to
the true physical system. Another approximation is the fact
that we centered the nucleus at the minimum of the field
configuration. This is suggested by our assumption that we
have ultracold atoms with an extremely small kinetic c.m.
energy in tight traps leading to a well-localized atomic c.m.
Nevertheless, it is expected that the c.m. motion blurs the
effects occurring for an atom with a fixed nucleus. Beyond
this, it is well known that already in the presence of a homo-
geneous magnetic field the c.m. and electronic motions of
atoms do not separate, i.e., they perform an intimately
coupled motion[20–24]. Then the immediate question arises
what this coupling might look like in our inhomogeneous
field configuration and in particular what its impact on the
overall electronic motion is. To investigate this is a challeng-
ing task which needs careful consideration and clearly goes
beyond the scope of the present work.
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FIG. 11. (a) Dipole strengths forp transition from the ground
state of thek=1 subspace to excited states belonging to thek=
−1 subspace(b=10−7 andBI =10−5). The line for smallestl belongs
to then=1→7 transition.(b) Zoomed view of the line belonging to
the transition to then=12 multiplet. Several additional lines appear
at finite homogeneous field strength(some are marked by an ar-
row). The line center is dominated by a single subline emerging
from a transition which is induced by the external homogeneous
field.
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