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Analysis of chaos-induced pulse trains in the ionization of hydrogen
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We examine excitatioby a short laser pulgef a hydrogen atom in parallel electric and magnetic fields,
from an initial tightly bound state to a state above the classical ionization threshold. We predict that the atom
ionizes by emitting a train of electron pulses. This prediction is based on the classical dynamics of electron
escape. In particular, the pulse train is due to classical chaos, which occurs for nonvanishing magnetic field. We
connect the structure of the pulse train to fractal structure in the escape dynamics, and discuss several issues of
experimental interest, with a particular emphasis on understanding the resolution of individual pulses. A brief
account of this work appeared previously as a Ldt®ys. Rev. Lett.92, 073001(2004)].

DOI: 10.1103/PhysRevA.70.043407 PACS nuniber32.80.Rm, 32.80.Fb, 05.45.Ac, 05.45.Df

[. INTRODUCTION angle 0 [4]. Nevertheless, over certain intervals @fcalled
) ) ) _ escape segmentsll trajectories have similar qualitative be-
Our work is motivated by the experiments of Lankhuijzen hayior, and most strike the detector within a short interval of
and Noordam[1], in which rubidium atoms in a constant time. Thus the family of trajectories within each escape seg-
applied electric field were excited from the ground state to amnent gives rise to a single electron pulse.
energy above the classical saddle by a siienv picosec- More formally, we identify the escape segments by first
ond) laser pulse. The resulting electron flux striking a detecreducing the electron dynamics from a Hamiltonian flow to
tor was then measured as a function of time. This ionizatioran area-preserving map on a two-dimensional phase space.
signal revealed a train of electron pulses, rather than an exfhis map possesses a prominent fixed point, related to a
ponential decay. This observation can be qualitatively experiodic orbit of the full electron dynamics. The stable and
plained by the following semiclassical analyg#. Photoab- unstable manifolds of this fixed poirgtvhich are curves in
sorption promotes the valence electron from a low-energyhe plang intersect to form what is called a homoclinic
bound state into an outgoing wave, which can be modeleéngle. Homoclinic tangles are a basic mechanism for chaotic
semiclassically as an ensemble of trajectories propagatini@nsport and escape, and the intricate manner in which the
away from the atomic core in all directions and with a nar_qnstable m_anlfol_d intersects the initial ens:_emb_le of trajecto-
row range of energies. Some trajectories head directly dowrfi€S (Which itself is well approximated by a line in the plgne
hill, and are accelerated by the external field toward a detecqe'c'nes the escape segments. - -
tor, creating an initial prompt pulse of electrons. Other The escape segments exhibit fractal structure-within-

: LE ; structure as well as a certain self-similarity, which we call
trajectories initially head uphill, are turned aroqnd by.the“epistrophic self-similarity.” This fractal structure is reflected
field, and return to the core where they scatter in all direc

. . ; ; in the structure of the pulse train. Here, we concentrate on
tions. Some of these scattered trajectories head downhill, CleRe early time behavior, embodied in the first several pulses.

A%e pulse train becomes more and more complicated as time
SBrogresses.
Our theoretical analysis is intended to stimulate experi-

events create additional pulses. Similar results have al
been obtained in quantum computatig@s

Here, we predict that a hydrogen atom, p_Iaced N COMinental efforts to observe chaos-induced pulse trains in hy-

I?irogen, or related systems. Such observations would not
only elucidate a fundamental ionization mechanism, but

Eally occurred as §Il L.ette[B].% Tho}ygh c}hese pulse trlfunfs would also provide a convenient laboratory tool for studying
ear a certain similarity to those found experimentally O shaotic transport and escape.

rubidium, the mechanism for pulse creation is fundamentally Our paper is summarized as follows. Section Il lays the

fbundation for the theory of the ionization process. In par-
.~ & ticular, Sec. Il B explains how the initial outgoing wave
gpacket is modeled by a classical ensemble of trajectories

magnetic field. This can be outlined as follows. Due to themoving away from the nucleus. The classical propagation of

chaotic dynamics, the behavior of a trajectory moving awayiq' ensemble yields an electron pulse train striking the de-
from the nucleus depends intricately upon its initial 0utgoiNGye ooy first illustrated in Sec. Il C. Section Il D connects the

pulse train to the “fractal” escape-time plot—the time it takes
a trajectory to strike the detector plotted as a function of its
*Permanent address: School of Natural Sciences, University dhitial outgoing angled.
California, Merced, CA 95344, USA. Electronic address: Section Il examines the classical dynamics of ionizing
kmitchell@ucmerced.edu trajectories. In particular, after transforming to parabolic co-
"Electronic address: jbdelo@wm.edu ordinategSec. Il A) and identifying a particularly important

emission of an electron pulse traifThis prediction origi-
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periodic orbit(Sec. Ill B), we introduce a two-dimensional simplicity the z component of angular momentum(r X p)
surface of section in phase space, which allows the dynamids set to zero. As is commad.g., Refs[5(b),6]], Eq. (1) is
to be reduced to a discrete-“time” Poincaré return rfgc.  expressed in scaled variablgs,z,p,,p,) that are related to
I C), Section Il D discusses the escape mechanism assodhe original unscaled variablesp,z,p,.p,) by (p.2)
ated with the homoclinic tangle of this map. _("A1/2 5E1/ —(p E-l4 n F-14 =X
_ _ =(pF2,2FY?) and(p,,p,) = (p,F4,p,F 1'%, whereF is the
Section 1V discusses regular features of the fractal Struci’}\pplied electric-field strengttin atomic unit3. The scaled

ture, with a focus on “epistrophes” —regular sequences o . PP e .
escape segments that occur on all scales throughout tK&1€rgy iISE=EF~"“and the scaled magnetic-field strength is

escape-time plot. Section IV B describes the relevance oB=BF®4 whereE and B are the corresponding physical
epistrophes to the pulse train. Section IV C illustrates howvalues (in atomic unit3. Similarly, the scaled time id
changes in the structure of the tangle are reflected in thetg3/4
pulse train. Applying the preceding scalings to the quantum momen-
. Sgcti_on \% analyzgs the averaging Qf the pulse t_rgin over gum operators=-ifid/dg; implies p;=-ifisd/dq;, where
dlstrlbqtlon of engrgleQE and launch timeq,. Spemﬁpally, ﬁs=hlel’4=ﬁ(IAE/E)1’2 is a scaled version of the Planck con-
we derive an optimal laser pulse leng®ec. V B; we illus- stant. In atomic units/=1)
trate the advantage of exciting to highéistategSec. V Q; ' '
and we examine the benefits of chirped laser pu(&es. 1
V E). In Sec. V F, we consider different initial angular states, fis= ———,
e.g., due to different laser excitation schemes. NV2|E]
Section VI presents our conclusions. Finally, Appendix A il ENa12 e
gives a perturbative analysis of the dynamics in the vicinity/VhereN=(2|E|)™?is the ersatz principal quantum number.
of the prominent periodic orbit, and Appendix B considersEquation (2) confirms one’s intuition that by exciting the

the (minimal) dependence of the pulse train on the detecto@tom to higher energies, the effective value of Planck’s con-
position. stant is lowered, and the system is more “classical.”

2

1. OVERVIEW OF THE IONIZATION PROCESS B. The initial outgoing wave packet

The ionization process is summarized as follows. The hy- The laser field contributes an additional term to the
drogen atom is placed in parallel external electric and magtamiltonian,
netic fields, with the electron in a low-energy eigenstate; the
applied fields are not strong enough to significantly alter this HL(t) = F.Dg(t), )

state. Next, a short laser pulse strikes the atom, promoting \ﬁhereFL is the peak electric-field strengtin scaled units

e e e 0% D= ¢ he ipo operalor, il laser plazatorenc
e ' d P electron positiorr, andg(t) is the time dependence. We in-
That is, just as a pebble dropped into a pond produces

circular outgoing ripple, photoexcitation of the atom by a(Z:’lude only the absorption term of the laser field, for which

short laser pulse produces a spherical outgoing wave pack Vf’,e assumeg(t):gen:(t)expl(—lTLt), W'Fh “L thelcentral Iatlser d
which propagates away from the atom in all directions. Th requency andgendt) a slowly varying envelope centere

wave packet evolves in the Coulomb field of the proton plusaboutt:O and ha\(lng a maX|mun21 am‘;’"t”de of 1. We typi-
the applied electric and magnetic fields. Over the course ofally use a Ggu;s,lagbmﬂ_):exq—t /(4A7)], whereA, is the
time, some of the wave packet slips over the classical barrieptandard deviation of thiatensity of the laser pulse. In Eq.
is drawn downhill by the applied electric field, and strikes(3) @nd the remainder of Sec. I B, we work in an inertial

the detector, which measures the ionization (defined as fame. _ _
the rate of electrons striking the detegtas a function of Using first-order time-dependent quantum perturbation
time. theory, the initial Coulomb eigenstaté;) generates the ex-

cited time-dependent sta#,(t)) according to

A. Hamiltonian and scaled variables (ihg a1t - H)|[W,(0) = H_(exp(- iE;t/id| )

The HamiltonianH of the electron in Coulomb plus ap- _ . _
plied parallel electric and magnetic fields is given in cylin- = FLGendDiexp(- IEt/A5)Dy) = |S(1),
drical coordinate$p,z) and atomic unit§e=f=m,=1) by (4)

1,0, : whereE; is the energy ofis) andE.=E;+%sw_ is the central
H(p,z,p,.p,) = E(pp +p;) +V(p,2 =E, (13 energy of the excited staf@,(t)). The inhomogeneous term
|S(t)) acts as a source f¢W,(t)), yielding

- — 1 1 2 2 )
V(P,Z)— V’/—p2+22+2+ SB , (1b) ‘I’x(r-t):f dr’dt’K(r,t;r’,t’)S(r’,t’), (5)

where the linear term iB is eliminated by working in a
frame rotating about the axis with frequencyw=B/2; for ~ whereK(r,t;r’,t’) is the propagator foH.
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Time t(scaled units)
2 3 4 5 6 7 8 9

Referenceg5-8] discuss excitation by a steady-state la-
ser, i.e.,0en=1, to a definite energy close to the zero-field
ionization thresholdi.e., N is large. In this case, the com-
pact source|S) generates an outgoing spherical Coulomb
wave () in the vicinity of the atom, where the external
fields are not strong enough to be significant. At a suffi-
ciently large radius, this wave is well approximated by the
decompositiofRef. [6], Eq. (2.12)]

0.25
0.2
0.151

0.1

(6)

lonization rate (arb. units)

C —
thoulr) = g exp(iN8r/fi)) (6, ¢),

where)(6, ¢) gives the angular distribution of the wave and
C is a constant. The spherical anglésand ¢ are defined 0
relative to the positivez axis. The outgoing wave can be
described semiclassically by an ensemble of classical trajec-
tories moving radially away from the nucleus; these trajec-
tories have a fixed energy and are continuously emitted
from the source for all times, with angular distribution
|V(8, ¢)|2. The subsequent evolution of these trajectories de-
scribes the steady-state quantum wave function.
The computation ofy in terms of the initial statéy;) and
the dipole operatoD is discussed in Ref{6], Appendix A3
and Ref[5(b)], Sec. V B. See alspr]. Assuming thez com-
ponent of the angular momentum is zero, as in EQ, 81 . . . . . . .
(6, ¢) reduces tQ)(6). 2 3 4 5 6 7 8 9
For the pulsed laser considered here, the outgoing wave Time  t(scaled units)
Youdr) is primarily emitted over the time interval; deter-

mined by gen(t). The energy of the wave is not sharp, but gcjeq energ=-1.3), the electron fluxionization ratg striking

has a deviatiol\g about the central enerdy, satisfying the e detectorat z=-4) is plotted as a function of time after atomic

uncertainty relationAgA=%¢/2 (equality for a Gaussian excitation. The thin dark line models the outgoing electron wave

pulse) A sufficiently tight energy resolution ensures the va-packet by an ensemble of trajectories with precise energy and

lidity of Eq. (6), meaning th&physica) time interval should |aunch time. The thick shaded line uses an ensemble represented by

be much longer than an atomic unit, or in scaled unifs a minimum uncertainty Gaussian wave packet vits Az=0.062.

> 1/N3. Semiclassically, we then model the electron pulse byrhe central(physica) energy of the wave packet B=-1/(2N?)

an ense_mble of classical trajectorie_s that have a range %ith N=80. This impliesf::19 V/cm and one scaled unit of tinte

launch timesA, and a range of energiels. o equals 52 ps(b) The time it takes a trajectory to strike the detector
More formally, the initial distribution of trajectories in the

! < . ) is plotted as a function of the initial launch angle
energy-time plane is given by the Wigner functign(E,t)
of f(t)=genft)eXp(—IEt/ i),

(b) Direct

FIG. 1. (a) For hydrogen in an electric field onlgB=0 and

Within semiclassical theory, the evolution of the initial
wave packet is approximated by following the trajectories
within the corresponding classical distribution. This approxi-
mation involves both evolving the classical densithe
_ . ._square root of the density yields the quantum amplituake
The Wigner functlon is the quantum gnalog of a classicalyg| a5 determining the quantum phad®/ computing the
phase-szpacez density. For a Gaussian envelgpe(t  accumulated actionIn this paper, we ignore the phase in-
=exd~t*/(4Ap)], the Wigner function off(t) is itself a  formation(that is, we ignore interferengand concentrate on
Gaussian, the classical density. For early times and for sufficiently high
excitation(large N), this should yield a reasonable approxi-
mation to the intensity seen at the detector.

Wi(E,t) = f ’ ds &Fsf(t + §/2)f" (t - 5/2). (7)

Wi(E, 1) = A t/A)) (B~ EC)ZI(ZAE), 8)
with normalizationA=227A, andAg=%/ (2A),. The initial
electron wave packet is modeled by a classical ensemble of

. . L. : . C. Numerical computation of the ionization rate
trajectories beginning at the nucleus and propagating radially

outward with a distribution of energies and launch times

given byW;(E,t) and a distribution of launch anglésgiven
by |)(6)|sin 6. So long ad)/(6)|? is independent of, this

Figure 1a) shows the ionization rate computed for zero
magnetic field. The computation begins with an initial en-
semble of radially outgoing trajectories as described in Sec.

outgoing distribution is valid in either an inertial frame or the Il B. These trajectories are integrated until they reach the

rotating frame of Eqs(l).

detector, located at=-4, or until some maximum cutoff
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Time ¢ (scaled units) lterate at escape
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FIG. 2. The ionization rate for hydrogen in parallel fields, w8k 4.5,E=-1.3, is plotted vs the time after atomic excitation. As in Fig.
1(a), the thin dark line uses an ensemble with precise energy and launch time, and the thick shaded line uses a Gaussian wave packet of the
same form as in Fig.(&). In this caseN=80 yields a physical magnetic-field strengthl:’ﬂt 0.49 T.(b) The time it takes a trajectory to
strike the detector is plotted as a function of the initial launch afglehe dashed lines connect icicles to their corresponding puls@s. in
The lowest icicle, having only its upper portion visible in Figbg represents the direct trajectori€s) The number of iterates of the
Poincaré map required to escape the complex is plotted. Each escape segment corresponds to an icicl®)in(d) The epistrophic
structure of the first several escape segments is shown. The dashed lines connect segments within one epistrophe. The solid arrows show the
creation of new epistrophes according to the Epistrophe Start Rule. The asterisk denotes a strophe segment which does not fit into the pattern
of epistrophes.

time is attained. The total number of trajectories striking the  In both Figs. 1a) and 2a), the angular distribution is as
detector per unit timéhe ionization ratgis then recorded as wave, with ))=1. This distribution is chosen for theoretical

a function of time. The thin line in Fig.(d) is the unaver- convenience, since it weights all directions evenly. In Sec.
aged ionization rate, computed using a classical ensembM F, we consider other distributions which may be more ex-
with a single fixed energiz=-1.3 and a precise launch time perimentally appropriate.

t=0. The thick line is the result using a Gaussian distribution We focus first on understanding pulse trains generated by
(8) of energies and launch times, with=Az=0.062 and a fixed energyE and launch time=0, i.e., the thin lines.
central energye.=-1.3. Both lines show a single pulse of
electrons, with an exponentially decaying tail. The thick line
is simply a smoothed version of the thin line, since the be-

havior of the trajectories does not vary significantly oxer We examine first the case of no magnetic field. Figure
Figure 2a) shows the ionization rate for nonzero mag- 1(b) shows the time it takes a trajectoryith fixed E
netic field B=4.5; all other parameters are as in Figa)l  -_1 3 andB=0) to strike the detector as a function of its
The thin line in Fig. 2a), for fixed energyE=-1.3 and nitia| outgoing angled. The trajectory that heads directly
launch timet=0, exhibits a train of pulses, in sharp contrast yownhill (=) reaches the detector first. Asdecreases,
to_the single pulse in Fig.(®. The thick Ilne_ averages OUt the initial velocity points further and further away from the
this structure somewnhat, but pulses are still discernible. Agqnhill direction, and the trajectory takes longer and longer
time increases, th.e pulses proliferate and overlap, merging o sirike the detector. Eventually a critical angt is
form a “lumpy” tail. reached, at which the trajectory takes an infinite time to es-
cape. This trajectory is bound forever. All trajectories above
The detector positioz=-4 is unrealistically close to the atom. the critical angle are also bound forever.
However, Appendix B shows that this makes little difference in our ~ The thin ionization curve in Fig.(&) is equal to the slope
results. dé/dt of the escape-time plot in Fig.(l), weighted by the

D. The escape-time plot
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initial angular distributior))(6)|?sin 6. The pulse in Fig. (&)
starts at the earliest escape time in Figh)land then trails
off to zero as# approaches the critical angle add/dt goes
to zero.

We now turn on the magnetic field. Figuré® shows the
escape-time plot foE=-1.3, B=4.5, with the range o
restricted to the transition region between direct trajectories
that strike the detector quickly at largeand trajectories that
are bound for a longpossibly infinitg time at smallé. This
transition is much more complicated than in Figh)l Rather
than a single critical angle, there are many critical angles
fact, an infinite number with fractal behavior and structure
on all scales[9]. Following Ref.[10], we use the term
“icicle” for a smooth region of the plot located between two
critical angles.

As in Fig. 1, the slopalf/dt in Fig. 2b), together with FIG. 3. A contour plot of the effective potenti®,, (B=4.5,
the weighting|)(6)|?sin 6, yields the thin ionization curve in  E=-1.3) is shown with unstable periodic orbitsertical curvey
Fig. 2a). Each icicle, therefore, contributes one pulse to theplaced symmetrically near the left and right saddle points. Three
train. The pulse begins at the tip, or earliest time, of an iciclejonizing trajectories are also shown.
wheredg/dt is infinite. The initial pulse height is therefore
also infinite, so long as the weight fact@v(6)|sin @ does 1
not vanish(The height of the direct pulse is finite since this h(u,v,py,p,) = E(pﬁ +p)) +Vy,(uv) -2, (133
factor vanishes sufficiently rapidly &-=1.) The area under-
neath a pulse is finite, regardless of its initial heiglg., the

singularity is integrable, being proportional to—ty) 2], V, (U,0) = — E(W2+0?) + EBZ(U4UZ+ W) + l(u“— Y.
and equald)(6)|%sin 6 integrated across the range of the Y 8 2
icicle. A pulse eventually exhibits exponential decay as one (13b)

moves out along an edge of the iciglassuming the edge ) ) o . )

does not coincide with a zero of the weight fact®tarts(c) Settlng_h:O, this Hamiltonian generates the same trajectories

and(d) of Fig. 2 will be discussed later, in Sec. IV A. as _settlngH:I_E, although parameterized by a new timelike
In conclusion, to understand the structure of the electroiyariables, defined byds/dt=1/(2r). Note thatE appears as

pulse train, we must explore the structure of the escape-tim@ parameter in the Hamiltonizm

plot. This, in turn, requires a detailed understanding of the In EQ.(13b), B acts as a coupling constant betweenuhe

classical escape dynamics. andv motions. WherB=0, the Hamiltonian is separable, and
there is no chaos. WhdB+ 0, mixing between thel andv
ll. CLASSICAL ESCAPE DYNAMICS motions produces chaos responsible for the pulse train.

The effective potentiaV,,, plotted in Fig. 3, contains a
_ i smooth well about the nuclefs=v=0). The elimination of
Following standard practicge.g., Refs.[5(b),5(C)]], we  the Coulomb singularity makes the numerical propagation of
define parabolic coordinatési,v) and their conjugate mo- rajectories near the nucleus more tractable. Several ionizing
menta(py, p,) by trajectories are also drawn in Fig. 3. They begin at the
U= + V’rTz I VJ: 9) nucleus, undergo some oscillations within the potential well,
- ' - ' and then eventually pass over the saddle region and escape
through either the left or right exit channel. The left and right
Pu=vP,+UPz Py =UP, ~ VP, (10 exit channels are physically equivalent sincau;v) and
wherer =\p2+22=(u2+v?)/2. We allowu andv to take both ~ —(u,v) correspond to the same physical positigee Eq.
positive and negative valugse<u,v <) corresponding (11).] Figure 3 is analogous to Fig. 2 of RgB], which is
to a fourfold covering of the cylindrical coordinatés=0,  Presented in the physicak coordinates.
-0 <z<x), Equations(9) and (10) have the following in-
verse transformations:

A. Transformation to parabolic coordinates

B. An important periodic orbit

Figure 3 shows two symmetrically placed periodic orbits
p=w, z= }(uz— ), (11) nearv=+1.3. Any escaping trajectory must cross the curve
formed by one of these orbits. This curve is callggeaiodic
orbit dividing surface or PODS, in molecular reaction

vp, +Up, up, —vp, theory[11]. It acts as a kind of gatekeeper to escape. Once a
b~ Tvz Pz= Tvz (12 trajectory has crossed over the curve into the exit channel, it
cannot return.
We introduce an effective Hamiltoniam=2r(H-E), which The two periodic orbits inuv space reduce to a single
equals physical orbit inpz space. The period,, of this orbit plays
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- @ Tpo
4 4
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5 =
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-0.2 0

FIG. 4. Contour plots ofa) the timeT, for the periodic orbit to
leave and return to the axis andb) the Liapunov exponent le of
the periodic orbit. Foxb), D=1 in regions 1 and LlandD=2 in

regions 2 and 2 The dashed lines separate regions with and with-

out overshooisee Sec. IV ¢ The three X's marklB=4.5 with E

=-1.92,-1.3,-0.5, which are used for numerical computations i

this paper.

a critical role in our analysis. Hergp, is the time it takes the
orbit to travel fromp=0 back top=0, maintainingp>0
(equivalentlyu>0), i.e., T, is half the period of the orbit in
Fig. 3. Figure 4a) plots T,, computed numerically as a func-
tion of E andB. For B= 2, the period is approximatelisee
Appendix A

2

—— 14
yry (14

Tpo=
with frequencyw,,~ VB?+4. This approximation is indepen-
dent of E and falls to zero a8 goes to infinity, consistent
with Fig. 4(@). Furthermore, in the largB limit, T,, reduces
to the cyclotron periodT;=27/B (as it must For E
=-1.3 andB=4.5, direct numerical computation yields,
=1.2752, whereas Eq14) yields the close approximation
Tpo=1.2759. Partb) of Fig. 4 will be discussed later, in Sec.
[l D.

C. Surface of section and Poincaré map

n
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0.5
Do o]
-0.5

-1
-1.54
-2*

FIG. 5. The surface-of-section plot f&=0, E=—-1.3 shows left
and right fixed pointsz, andz,, whose stable mainfolds;, ands,,
coincide with their unstable manifold&, andi{,. The initial elec-
tron trajectories populate the vertical lin®. The shaded regions
are energetically forbidden.

map, a discrete-time map on the surface of section, is defined
as follows. An initial point on the surface evolves under the
Hamiltonian(13). The trajectory initially moves away from
thev axis in theuv plane, but is ultimately turned around by
the potentiaM(u,v), subsequently returning to tleaxis and
intersecting the surface of section. This new intersection is
defined to be the image of the initial point under the Poincaré
map. We view the Poincaré map as a map from the initial
coordinategv, p,) to the final coordinate®’, p,); this inter-
pretation is possible because it does not depend on the sign
of p.
We examine the Poincaré map first for zero magnetic
field. Figure 5 is the surface-of-section plot f&=0, E
=-1.3. Within this plot are left and right fixed pointsand
Z,, located where the two periodic orbits in Fig. 3 puncture
the surface of section. Each of these fixed points is unstable,
and the attached curves are its stable and unstable manifolds
(that is, the sets of points that converge to the fixed point
under forward and backward iterates, respectiydly.this
case, a brancly(, of the left unstable manifold exactly coin-
cides with a brancks, of the right stable manifold, and vice
versa. The other four branches go to infinity and do not in-
tersect.

Notice that the surface-of-section plot is invariant under
(v,p,)——(v,p,)- In fact, the pointdv,p,) and «v,p,) on
the surfaceu=0 are physically identical, as seen from Egs.
(11) and(12).

All trajectories that are launched from the nucleus at the
precise timet=0 and with a precise energy startwstv =0
with h=0 and with the parametét in Eq. (13) fixed. Thus,
the initial ensemble populates the lidg, which is that seg-
ment of thep, axis within the energetically allowed region of
the surface of section. This line is parametrized by the initial
outgoing angled according top, =2 sin 8/2, as derived from

We define a two-dimensional Poincaré surface of sectiofEqgs.(9) and(10) and the fact thap’+p?=4 atu=v=0.

in the four-dimensionalu,v,p,,p,) phase space by the con-

The line of initial conditionsL, intersects the stable/

straintsu=h=0. A point on this surface is specified, up to the unstable manifolds at two points, corresponding to the single

sign of p,, by its coordinateqv,p,). The Poincaré return

(physica) critical angle 6, in Fig. 1(b). Within the eye-
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15 -1 -05 0 05 1

FIG. 6. The surface-of-section plot f&@=4.5, E=-1.3 shows FIG. 7. The surface-of-section plot fB=4.5,E=-1.3 in thepq
that the right stable manifold, (thin solid curve and left unstable  coordinates contains a single fixed pamt whose stable manifold
manifold ¢/, (thick dashed curveno longer coincide. The same is S (thin curvg and unstable manifold/ (thick curve intersect to
true of § andi4;. form a homoclinic tangle. The capture lob€s are shaded white,

the escape lobes, purple, and the complex light blue.

shaped region bounded by the stable/unstable manifolds, al .
trajectories are bound forever. Outside this region, all '[rajec?—S lable(S) and unstabldt/) manifolds. The segments

tories escape, either to the southwest or the northeast in Figgl(lj Z{;{S gpngpféxt%zﬂ gﬁll;ngp;i%gn:;img \F/)vli{;‘r?ii \f;]hécgovr\:ﬁ
5. ' '

Wi id i field. Fi 6i h%ex correspond to the excited neutral atom. If a trajectory
e now consider a honzero magnetic field. Figure 61s they 55 outside the complex, it will subsequently progress to

surface-of-section plot foB=4.5,E=-1.3. As before, there infinity, resulting in ionization. We therefore need to under-
are two unstable fixed points. However, their stable and ungiznd how points map out of the complex.

stable manifolds no longer poincide, but rather intersect The homoclinic intersectionP, iterates forward to
transverse_ly,_ forming a cqmpllcate_d pattern of curves callqul,pz,ps,___, converging t@, along the uppeS boundary
a heteroclinic tangle. This complicated structure produ_cegf the complex. Similarly, it iterates backward to
pha;e-space transport and escape. In_partlcular, each mtq:f_—l,p_z,p_s’_“, converging tey along the lowet/ bound-
section bef[v'veerﬁo and' the stable mamfol_cS_e or .Sr Pro-  ary of the complex. Betweei®, and P, is another ho-
duces a critical angle, i.e., an edge of an icicle, in Fi®)2  mqclinic intersectionQ,, whose iterate®,, are interleaved
The infinity of icicles (and he_nc_e_ the |nf|n|ty_ of elect_ron between thé®,. The segments a§ and/ that join Py to Q,
pulses thus results. frpm the infinity of such intersections. i, Figs. 7 and 8 bound a region called the escape Bpe
We elaborate on this in Secs. Il D and IV. Similarly, the segments that jof@_; to P, bound the capture
lobe Cy. The forward and backward iterates of these lobes
D. The homoclinic tangle produce a sequence of escape loBgsind of capture lobes
- - ) ) C,. Some of these lobes are shown in Figs. 7 and 8.
We simplify Fig. 6 by defining new canonical coordinates “rransport in and out of the complex occurs via a “turn-
(g,p) that exploit the inversion sym.metl(yo,p%)'e—(v,pv). stile” [12]: The escape lobE_;, which is inside the complex,
In terms of canonical polar cogdmatdes(gﬁﬁ)/ﬂd maps toE,, which is outside the complex; similarly, the cap-
p=-tarr’(p,/v), we definep==1l sin 2¢=+2vp,/\v*+p;  ture lobe C,, which is outside the complex, maps @,
andq=\1 cos 2p=(v?-p?)/\2(v?+p?). In these new(q,p)  which is inside the complex. All points that escapeniiter-
coordinates, fv,p,) and «v,p,) are identified. Thus, the ates lie in the lobé_,.
surface-of-section plot in these coordinates, as shown in Fig. We characterize the structure of the tangle by two quan-
7, contains a single unstable fixed pomtwhose stable and tities, a local geometric quantity and a global topological
unstable manifolds intersect transversely, forming a hoquantityD. (i) The Liapunov factore>1 is the largest ei-
moclinic tangle. The vertical line of initial conditions in Fig. genvalue of the Poincaré map, linearized about the fixed
6 becomes a horizontal line in Fig. 7, terminatinggatp ~ Point z. It characterizes the rate at whiéj andC, become
=0. thinner as their bases converge upgn @) The minimum
We now review how a homoclinic tangle, as in Fig. 7, delay timeD is the fewest iterates any scattering trajectory
produces phase-space transport and es¢apelq. Since may spend within the complexA scattering trajectory is
some of the structure in Fig. 7 is hard to resolve, we includedne that begins outside the complex, is captured by the com-
a qualitative picture in Fig. @). Similar qualitative tangles plex, spends some number of iterates within the complex,
occur in Figs. 8) and &c) and in Fig. 3 of Ref[15] and and eventually escapgslternatively, the delay timeD is
Figs. 3 and 4 of Ref[16]. The pointP, is a transverse the smallesh such thate_,,,) intersectsC, or, more gener-
homoclinic intersection, i.e., an intersection between theally, E,_.; intersectsCy for arbitrary k. For Figs. 7 and
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(a)

(o)
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o, NP1

Eo 1

Py Complex Zx

Co

FIG. 8. Three qualitative depictions of homoclinic tangles with
different topological structurga) D=1 (qualitatively the same as
Fig. 7), (b) D=2 (E_, intersectsC; but overshoots ) (c) D=2. The
labels in(c) apply to(a) and(b) as well. The complex is the shaded
region bounded by the segments®fandi/ joining zyx to Py. The
capture lobeC, is bounded by the segments &fandi/ joining Qg
to P,. Other lobes are defined similarly. The progression ftaro
(c) corresponds to fixing the scaled magnetic fiBld/hile decreas-
ing the scaled energlf toward the saddle enerdy=-2.

8(a), the intersection betweeh , and Cy impliesD=1. For
Figs. 8b) and §c), however, the intersection betweén,
andC; implies D=2; the lobeE_; (not shown would reach
over and intersedt,,.

Figure 4b) shows the numerically computed Liapunov
exponent Ina as a function oft andB. ForB=3, In « is
approximately(see Appendix A

PHYSICAL REVIEW A 70, 043407(2004)

!’_ 3
In a~ Tpo\2<1 - §<p2>> : (15)
whereT, is given by Eq.(14) and
E+2
2\ — 1
= Eaa (18)

is the (approximatg average value op? along the periodic
orbit. Under this approximation, la has a weak linear de-
pendence ofE through{p?), consistent with the data in Fig.
4(b). Furthermore, a8 increases, Inx converges to zero
proportional toy2T,, For E=-1.3 andB=4.5, direct nu-
merical computation yields lae=1.743, whereas Eq.15)
yields the good approximation kn=1.726.

The two solid curves in Fig.(#) denote changes in the
topological parameteld. Based on numerical computations,
D=1 in regions 1 and "1 D=2 in regions 2 and 2 and
D>2 in the region to the left and below region 2. The
dashed curves denote where the lobes exhibit “overshoot,” a
point revisited in Sec. IV C.

IV. EPISTROPHE STRUCTURES

A. Epistrophes in the discrete-escape-time plot

Figure Zc) records the number of iterates of the Poincaré
map required for a poin@ along £, to escape the complex,
i.e., to land in the escape lold&,. This discrete-time plot
gives a rectification of the continuous-time plot FighR
Each icicle is straightened into a singlecape segmenmtith
constant iterate number. Each escape segment that escapes
on thenth iterate is an interval of intersection between the
escape lobe&e_, and the line of initial conditionsC,. For
example, the intersection betweEn, and L, in Fig. 7 yields
the segment labeled Al in Fig(@.

Throughout the discrete-escape-time plot Fig) 2nd on
all scales there are regular sequences of escape segments,
which we call epistrophes (“Epistrophe” is a term from
rhetoric or poetry meaning “a regular, repeated ending fol-
lowing variable beginnings)”We previously[15] studied
general properties of epistrophes arising from a general ho-
moclinic tangle, which we summarized in an epistrophe
theorem:(i) An epistrophe is an infinite sequence of succes-
sive escape segmendg k=Kg, ... ,», that escape on thidh
iterate. (ii) Each epistrophe converges monotonically upon
the end point of an earlier escape segméiid. This conver-
gence is geometric with rate equal to the Liapunov faetor
of the fixed point z. More precisely, letv, be the width of
segment,, g, be the distance betweep ande,,,, andd, be
the distance frong, to the point of convergence. Then,

lim we* =K, 17
k—s 00
lim gy =Ky, (18)
k—o0
lim dea®=Ky, (19

K00

for someK,,,K4,Kq>0. (iv) The asymptotic tails of any two
epistrophes differ only by a change of scale. Equivalently,
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B. Epistrophe structure of pulse trains

L W
lfl Ok K (20 To each escape segment there corresponds an icicle, and
hence an electron pulse. Thus, an epistrophe of escape seg-
" ments produces aepistropheof electron pulses, where the
lim — = ¢, (21) pulse sizes decay exponentially with rateln Figs. 2a) and
ke O 2(b) we explicitly connect the first nine pulses to their cor-

; - responding icicles and label them according to the scheme in
>
where y, ¢=>0 do not depend on the epistrophe conS|deredFig. 2d). The first pulse is the large direct pulse. The second,

(v) With rare exceptiornot seen in the present papean l&ird, and sixth pulses are the first three pulses of Ahe

istroph nver n h en int of ever . . : ) ;
gggsrtngﬁ e converges upon each end point of every eSCar?aplstrophe. Notice the rapid decay in pulse size, siace

The recursive structure of the epistrophes gives the:5'71' The time between successive pulses in an epistrophe

escape-time plot structure-within-structure on all scales. ThE rri(cjnl:j?:grbei?il;aéitgo ;ht% Sg\r/'gﬁl;g;}'_ngggek ttcl)rlz]—eof(()éet?e
removal of escape segments on each iterate is analogous ) 2 N X T
the construction of the middle-third Cantor set, and the set oﬁﬁB)' (This result is exact for the asymptotic behavior of an

trajectories that never escape has an analogous fractal stru%Q'Stmphe.‘ . .
ture. The epistrophe start rule is also reflected in the pulse

The epistrophe structure of Fig(Q is illustrated in Fig. train. SinceD+1=2, the twopulsesB1 andC1, spawned by

; - : the Al pulse, occur almost concurrently with tA& pulse,
2(d). The A epistrophe(of which the first four segments
Al---A4 are showhconverges upon the upper end point of or about X, after theAl pulse. TheB2 and C2 pulses

; o ; follow roughly T, after theB1 andC1 pulses.
the direct segment. Similarly, tH& and C epistrophes con- po € 0 g .
verge upon the upper and lower end points of Afe seg- The next pulse in the train is associated with the strophe

; : segmentmarked by the asterigkNotice that it is large com-
ment, respectively. The first segmeqtislabeled of the two ared to other pulses nearby in time. This is typical of the

epistrophes converging upon the upper and lower end poin . .
of the A2 segment occur on the fifth iterate. The escap ehavior we observe for the strophe segments and their as-

segments in each epistrophe decay with asymptotic aate sociated pulses, and numerical evidence indicates that the
=571 strophe pulses come to dominate at long times.

In Ref. [16], we discussed at which iterakg an epistro- This completes our analysis and explanation of the unav-

phe begins. The topological structure of the homocliniceraged pulse train, shown as the thin I|ne_|n Fig)2n Sec._
V, we discuss the resolution of pulses in the energy-time-

’;asncglgesfslg\év;grl‘?st.tr\}séedr:\tjsltoggda ac esr)t/?r:rt])olri?;m;rlgﬁlrifﬁr; ?cf)qverageq pulse train, shown as the thick line. Firs_t, however,
computing this minimal set and showed that the escape se ve CO”S'deT .hOW the structure of the pulse train changes
ments within the set eventually, i.e., at large enough iterate, hen the minimum delay tim® is changed.
obey an “epistrophe start rule”. An escape segment on the
nth iterate spawns two new epistrophes on iteigten+D C. Varying the topological parameter D
+1. This rule is seen in Fig.(8), for whichD+1=2.(Recall
thatD=1 in Fig. 7. The B andC epistrophes start at=4,
two iterates after thd1l segment ah=2. Similarly, theA2
segmenin=3) spawns two new epistrophesrat5.
Calculations show that there are also escape segments t
do not belong to the minimal set. These segments are n
predicted by the symbolic algorithm mentioned above, an
they do not fit the simple pattern p(edicted by the Epist.ropht?:Or example, theB and C epistrophes in Fig.(® are
Start Rule. Such a segment, which we calstrophe is spawned ah=6, three iterates after th&l segment. Simi-

marked by an asterisk in Figs(8—2(d). Numerical evi- .
dence indicates that strophes tend to be big segments a'lf(illy;')ljrsee%i E%d(é;) pulses are roughly concurrent with the

that at large iterate they are the dominant escape segments,.l.he topology of the tangle in Fig.(8) is intermediate

compared to those predicted in the minimal set. between Fids and 8¢). Passing from Fi o Fi
We use the ternepistrophic self-similarityo describe the E(b)’ the Iobgelé_(?z:ontragts),. so that ﬁ no Ionggr. i(ﬁgerseq%

At B=4.5,E=-1.92, the minimum escape tini® equals
2, as shown in Fig. @). Figure §c) depicts the qualitative
topological structure of th®=2 homoclinic tangle. This to-
logical structure is reflected in the structure of the electron
Ise train shown in Fig. 9. In particular, the Epistrophe Start
ule (Sec. IV A) states that epistrophes are spawned after
+1=3 iterates, rather than the two iterates seen in Fig. 2.

above situation: thr_oughout the escape-time plot gnd on alf, ' climination of this intersection implig3=2. The “tip”
scales there are epistrophes; they are all asymptotically sel St E_,, however, still “overshoots” its intersection witby.

similar and each is similar to every other. However, thereP ssing from Fig. ®) to Fig. 8¢), E_, continues to contract
. . y -2

may also be Stfophe segments which occur on all scales A that it does not oversho@Y. Figure 4b) provides param-
which, at long times, may come to dominate the regular ePiS;ier ranges for these topologies: region 2 Bes2 with no

trophe structure. overshoot, region 2hasD=2 with overshoot, region 1 has
D=1 with no overshoot, and regiorf hasD=1 with over-

*The exception only occurs when the end point in question is noShoot.
on the stable manifold. This only happens on&hkoundary of the The overshoot of the lobe in Fig(l® creates additional
complex. intersections with the line of initial condition@nd conse-
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FIG. 9. A. sequence of plots analogous to Fig. 2 vBth4.5, E=-1.92. The averaged pulse train (& is excited toN=80 with A,

=0.17,Ag=0.019. The physical field strengths &e8.5 V/cm,B=0.27 T, and one scaled unit of time equals 93 ps.

quently additional escape segments and puldes are not right. It then bends into a nearly straight vertical cuivine
accounted for in the epistrophe start rule of Sec. IV and Refsame qualitative behavior is seen for thé andC1 curves.
[16]. However, such overshoot does not produce the stroph€he remaining six curves bend similarly, but outside the
segmentgand pulsegin Figs. 2 and 9, which are created by range of the figure.

topological structure of another variety. In a future publica-

tion we will present a more detailed topological analysis of 3Shortly above the point where the strophe curve turns vertical, it

the tangle to address these phenomena. See also Ref cates into two curves, representing the splitting of the initial
[14,17. icicle into two icicles.

V. PULSE RESOLUTION -1

We study how energy and time averaging affects the reso-
lution of electron pulses. In Sec. V F we also consider how
different initial angular distributions affect pulse strength.

-1.14

A. Variation of arrival time with energy

At a fixed energy, each pulse has a sharp initial arrival
time, which is the earliest time of the corresponding icicle.
As the energy is varied, this arrival time also varies, as

Scaled Energy E

shown in Fig. 10 for the early icicles. As the energy is in- Direct
creased, the trajectories move faster and tend to strike the _, .|
detector earlier, implying a general shift of the pulses toward
earlier times.
Six of the curves in Fig. 10 are nearly straight lines, with B S S A

only a slight bowing. The remaining three curves, however, Arrival Time ¢ (scaled units)

are substantially bent. This bending is related to the creation G, 10. The(earliesj arrival time of each icicle labeled in Fig.
of the corresponding icicles. For example, the strophe curveyp) is shown as a function of energy. The valBe4.5 is held
denoted with an asterisk, is createdeat —1.34, where ithas  fixed. For many icicles, the behavior is close to linear over the
an infinite arrival time. This arrival time rapidly decreases asenergy range plotted. Howevek1, C1, and * display notable non-
the energy is raised, until the curve enters Fig. 10 from thdinear behavior.
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ANALYSIS OF CHAOS-INDUCED PULSE TRAINS IN..

It is fortunate that the basic structure of the pulse train is
roughly constant over the range of excitation enerdiés
used in averaging. This constancy is exhibited by the arrival
times(Fig. 10 as well as the weak variation 3}, anda as
functions ofE at B=4.5 (Fig. 4).

B. The optimal A,

We ask how the energy dependence of the curves in Fig.
10 affects the resolution of a pulse in the energy-time-
averaged pulse train. If in Fig. 10 the arrival time of an icicle
were independent of energy, we would get the sharpest mea-
sured electron pulse by minimizing the duration of the laser
pulse. However, since the arrival time does vary with energy,
we optimize the resolution of an electron pulse by balancing

0.14

0.05 4

o

lonization rate (arb. units)

0.05 4

PHYSICAL REVIEW A 70, 043407(2004)

N =20

o
L

o
L

N =400

the energy spread and time duration of the laser pulse.
For a given electron pulse, assume thgt is small

Fr ok

2 3 4 5 6 7

enough that its curve in Fig. 10 may be approximated by a Time t(scaled units)

straight line. Themg creates a deviation in arrival timg/
=|b[Ag, where b=(dt/dE)|e-¢_ is the inverse slope of the

curve in Fig. 10, at the central energy. The unaveraged pulse o . -
9 gy ged p gged pulse train is the thin curve. Ife), A=Ag=0.12, F

is thus averaged by convolving with two Gaussians of width
A, and A{ =|b|#g/ (2A,), or equivalently, by convolving with
a single Gaussian of width, = VAZ+A/?. The minimum

value of A is V|b|#%s and is attained at

A= A¢ o= LLE 22

t— Stopt— 5 (22)
[

AE = AE,opt: Ta (23)

Unless otherwise stated, we compuig,, by evaluatingb
for the direct pulse. FoB=4.5, E=-1.3 this yieldsb=
—1.00 andA; o5~ Ag opr This works well because the slopes
of most other curves in Fig. 10 do not differ much from that
of the direct pulse. The smoothed curves in Fig®) and
9(a) were obtained in this way.

C. Increasing the excitation energy

We imagine increasing the physical excitation eneE‘gy
=-1/(2N?) while simultaneously adjusting the physical field

strengthsf: andB so that the scaled quantiti€&andB are

FIG. 11. The energy-time-averaged pulse trdmck curve for
B=4.5,E=-1.3 and(a) N=20, (b) N=80, (c) N=400. The unaver-

=4.8 kV/cm,B=32 T, t scale=0.81 ps; inb), A;=Ag=0.062, F
=19 V/cm, B=0.49 T, t scale=52 ps; in(c), A;=Ag=0.028, F
=0.030 V/cm,B=0.0039 T,t scale=6.5 ns.

pulses. This phenomenon is understood by examining the
strophe arrival time curve in Fig. 10. At the central energy
E.=-1.3 (the dashed ling the curvature is significant and
affects the energy averaging as follows. A Gaussian distribu-
tion of energies abouk; places equal weight above the
dashed line as below. However, the variation in arrival time
above the line is smaller than the variation below the line,
since the curve becomes more vertical abByeTherefore,
the energy-averaged pulse density tends to pile up at a time
preceding the unaveraged pulse. As increases, this shift
becomes more pronounced, as illustrated in Fig. 12. For large
enoughAg (Ag=0.04), this shift is further enhanced by the
fact that the strophe pulse disappears entirely belBw
~-1.34. The shift is also enhanced by an increase in the
strength of the pulsé.e., the width of the escape segment
as the energy increases.

Finally, the temporal shift discussed here occurs for any
pulse whose arrival time exhibits large curvature, i.e., the

held fixed. This leaves the classical Hamiltonian unchangeesiophe” nature of the pulse is not relevant.

[either Eq.(1) or Eqg. (13)], while decreasing the effective
Planck constant by 1/N [see Eq(2)]. Thus, the extent of

the Gaussian wave packet in the energy-time plane decreases
by 1/N and the energy-time-averaged pulse train more
closely approximates the unaveraged pulse train. Figure 11
shows this convergence fdl=20,80,400, in each case
choosingA, according to Eq(22). The width of the averaged
electron pulses is governed By, which scales as kN.

D. Averaging the strophe pulse

0.03

lon. rate

0

0.02 1

0.01 4

(@)

()

(©)

7

9 7

8

9 7

Time t(scaled units)

Notice in Fig. Z2a) that the energy-time-averaged strophe

FIG. 12. ForB=4.5,E=-1.3, andA;=0.062, the energy-time-
averaged strophe pulgicated att= 8) is seen to shift to earlier

pulse is not centered on the unaveraged strophe pulse. Ratheifies asAg increases(a) Ag=0.013(N=400), (b) Ag=0.038(N

it is shifted toward earlier time, preceding tlB2 andC2

=133, (c) Ag=0.063(N=80).

043407-11



MITCHELL et al. PHYSICAL REVIEW A 70, 043407(2004)

Time t(scaled units)
! 2 s 4 5 6 7

0.1

044(a
0.05 1 ’(I? ( )
W E 1’ ’\W
3
91 g o
@ 8 041(b) i
= o)
g E “ p:l: W-
. 0.05 A
-(% l w S :
) Chirped @ 047(C)
L 0 =
® %11(c) S 02 D2
C
.9 0 F-—
8 02(d) —
S Chirped m 0.41 e ——
— —_—
0.6 1 F
0.8 1
] "
L 1.2
Chirped 14l |
m - /2 —_—
S sy i
. . . . . . . . Al
2 3 4 5 6 7 8 9 1.81
Time {(scaled units) 21 Direct
2.2 T T T T
FIG. 13. The energy-time-averaged pulse tréinick curve 1 2 4 6 7

3 5
generated by a chirped laser pulse Bor4.5 E=-1.3. The chirping Time £ (scaled units)

for plots (a)(c) is calibrated on the direct pulse witla) N=20,
A¢=0.06, Ag=0.26; (b) N=80, A;=0.04, Ag=0.097; (c) N=400,
A¢=0.01,A=0.078. The chirping for plotd) is calibrated on the
strophe pulse witiN=400,A;=0.05,Ag=0.016.

FIG. 14. The unaveraged pulse train Bt4.5, E=-0.50 for
three different initial angular distribution&a) s, (b) p., (¢) p,. Part
(d) shows the corresponding escape-time plot.

pulse five (C1). Consequently, in Figs. 18-13c) pulse
four is sharp(especially forN=400 whereas pulse five is
Chirping the laser pulse can increase the time resolutiobroad and not readily discernible.
of a pulse within the train. Since higher-energy electrons As explained in Sec. VD, the strophe pulse in Figs.
reach the detector earlier than lower-energy ones, we cat3(a)-13c) is shifted to earlier time when averaged. The
enhance the resolution by chirping the laser pulse so thatsolution of the strophe pulse is also increased when com-
higher-energy electrons begin later than lower-energy onegared to Fig. 11. This is because the slope of the strophe
We increase the frequency of the chirped pulse linearly ircurve in Fig. 10 is close to that of the direct pulse above
time with rate 1b:(dE/dt)|E:Ec, matching the linear depen- E.=-1.3.

E. Chirping

dence of arrival time on energy for a given pulsee Sec. Figure 13d) shows the pulse train generated by a chirp
V B). More precisely, the Wigner function of the linearly calibrated on the strophe pulse, rather than the direct pulse.
chirped Gaussian pulse is The resulting strophe pulse is close to its unaveraged posi-

tion and width. Since the chirp is not matched to the other

W(E, 1) = Ae - bEV%/(202) -(E - EQ(203) (24) pulses, they are significantly wider than in Fig(d3

We determineA; by numerically adjusting it until a good F. Varying the angular distribution
resolution is obtained. In Fig. 2@), the initial outgoing angular distribution is an
Figure 13 shows energy-time-averaged pulse trains genes-wave. Any other distributio)(6)|? (such as g wave
ated by a chirped laser pulse. In paf&—(c), the chirping does not change the overall character of our results. How-
rate 1b matches the direct pulse. Hence, the direct pulsever, the size of an electron pulse will change, depending on
shows a notable enhancement over Fig. 11 for all three vakhe angle at which it is launched, i.e., on #hposition of the
ues ofN. Other pulses whose slopes in Fig. 10 roughly matckcorresponding icicle. This effect is most dramatic for icicles
that of the direct pulse are also enhanced, whereas thosear a zero of the angular distribution, which produce highly
pulses whose slopes differ markedly from the direct pulsesuppressed pulses, as demonstrated in Fig. 14. The scaled
have weaker, if any, enhancement. This distinction is clearlyenergyE=-0.5 is chosen so that the cluster of icicles near
seen in pulses four and five. In Fig. 10, the slope of the direcA1 will be near6=7/2. Another cluster of icicles is nea
pulse closely matches that of pulse f¢Bad), but not that of =0. For an initials state[Fig. 2@], |J(6)|?>=1 is uniform.
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For an initialp, state[Fig. 2(b)], however, there is a node at 016
0=, which suppresses the direct pulse, and a nodi&=8x,
which suppresses the upper icicle cluét€onversely, for an
initial p, state[Fig. 2(c)], there is a node af=7/2, which
suppresses thel icicle cluster. Thus, for p,-state the pulse
train exhibits a prominent direct pulse followed by a lull, due
to the suppressedl cluster, and the subsequent arrival of
the =0 cluster of pulses.

0.14 1
0.12 1

0.1 1

NN

VI. CONCLUSIONS

lonization rate (arb. units)

0.06 ——
0.04 ~

We predict that an excited hydrogen atom in applied fields

can decay through emission of a train of electron pulses. Our -
analysis models the initial outgoing electron wave function KM
by an ensemble of classical trajectories, a portion of which 0 :

eventually strike the detector. For the pulsed laser experi- a2 8 4 5 & 7
. - - Time t(scaled units)
ment under consideration here, quantum interference should

not play a major role at the early times studied, since the 5 15 Tuo unaveraged pulse trains ®r4.5, E=—1.3. For
electron pulses do not significantly overlap one another at thg\e ower train, the detector is placedzat—4. For the upper train
plane of the detector. However, for a continuous-wave eXCi(verticalIy offset by 0.0§ the detector is placed at—1.2x 10%
tation of an atom, ionizing electron trajectories will create anthe upper train is shifted in time to align its second pulse with that
interference pattern on the detector. In a remarkable series gf the lower train.

experiments, such patterns have been imaged for both pho-

todetachmen(18] and photoionizatior(19] in an applied stricting p to the physically allowed positive values yields

electric field. In future work, we W!|| apply the theoretical Eq. (14). This approximation gives a relative error of 3% or
tools used here to study such interference patterns f%etter forB=2.
continuous-wave photc_)ionization of hydrogen in external We develop an approximation for by considering the
elec_trlc and magnetic fields. . . z dependence of EqALl). Near the approximate positian
Finally, the existence of pulse trains is a direct conse— _y ot e periodic orbit, thep motion is much faster than
quence of chaot|c.escape arising from a homoclinic tangl.ethez motion, producing an effectivp-averaged potential,
As such, pulse trains should be visible in other systems dis-
playing this escape mechanism, for example certain open 1% 1
billiard geometries. Such geometries can be physically real- Vi2) = 213 14T (A2)
ized as light or microwave cavities. Pulsed microwave ex-
periments thus give another potential route to measuring/here (p?), given by Eq.(16), is p* averaged over ong
chaos-induced pulse trains. oscillation, within the harmonic approximation. The unstable
critical point of V, occurs atz.=-1+3(p?)/4 with curvature
|d?V,(z.)/dZ|=2-3p?)/2. The Liapunov exponent is then

APPENDIX A: PERTURBATIVE ANALYSIS ABOUT THE .
approximately

PERIODIC ORBIT

We develop approximations for boffy,, and Ina. For In a= Tpo\”|d2\/z(zc)/d22| ~ Tpo\E<1 —2(,32)). (A3)

sufficiently largeB, the radius of the periodic orbit ipz
space is small enough to justify expanding the potential Edyhis approximation gives a relative error of 10% or less for

(1b) through second order ip, B=3.
1 1p2 1 :
V(p,2) = =B%p2+ _P_3 — = 4+7+0(p%). (A1) APPENDIX B: DEPENDENCE OF PULSE TRAINS
8 2|1z° |7 ON THE DETECTOR POSITION

The z position of the periodic orbit lies near the classical The continuous-escape-time plots and ionization rates in
saddlez=-1, where the external electric field is balanced bythis paper were computed for a detectorzat-4, which is
the Coulomb field. Using the approximatia=-1, thep  unrealistically close to the atom by several orders of magni-
behavior is to lowest order harmonic, with angular frequencytude. In this appendix, we consider placing the detector far-
VB2/4+1. Note that this frequency assumesnakes a full  ther away. We find that the effect on the pulse train is mini-
oscillation through both positive and negative values. Remal.

The positionz, of the detector in scaled units is related to

— - -y ~ . . . . -2 A1/2
“To be precise, for @,-state)(6,¢) is not constant ing, but 'tSA POS|t|9n Zg in physical (atomig units by Zd_AZdF
1)(0, ¢)[? is. Furthermore, the classical Hamiltonigis or (13) are  =Z4E/E=24/(2N?|E|). For N=80, E=-1.3, and Z4=-2

applicable even with a few quanta i, because thé, contribu- X 10°~-1 cm, the scaled position of the detector Zg
tions to the Hamiltonians occur at ordkf. =-1.2x10%
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We integrate trajectories up to a “virtual” detectorzat The second term in E@B1), though large, is independent
=—4. Below z=7} it is reasonable to ignore the Coulomb of trajectory and only shifts the pulse train in time. The first
force, and the dynamics separates into uniform acceleratioterm in Eq.(B1), however, varies with trajectory, but only by
a,=-1 in thez direction and cyclotron motion in the trans- a small amount. Figure 15 shows the unaveraged pulse train
verse direction. Under uniform acceleration, the tifbéor a  with and without the correctioB1). (The origin has been
trajectory to travel between the virtual detectorzéitto the shifted in time to make the second pu|3es Coin()im do
physical detector aty is see slight shifts in the relative arrival times of pulses with
and without this term, but not by substantial amounts. These
slight shifts would decrease even further if the virtual detec-
wherep,<0 is thez momentum at the virtual detector. The tor were moved lower. Finally, EqB1) shows there is no
approximation in Eq(B1) holds becauséz)| <|zy and be-  significant change in the relative arrival times due to varying
cause the maximum value pf is 2(E-2zy) <2|Z]. the position of the physical detector.

St=p,+\ps + 2|z4— 74| = p,+ 2|z, (B1)
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