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We examine excitation(by a short laser pulse) of a hydrogen atom in parallel electric and magnetic fields,
from an initial tightly bound state to a state above the classical ionization threshold. We predict that the atom
ionizes by emitting a train of electron pulses. This prediction is based on the classical dynamics of electron
escape. In particular, the pulse train is due to classical chaos, which occurs for nonvanishing magnetic field. We
connect the structure of the pulse train to fractal structure in the escape dynamics, and discuss several issues of
experimental interest, with a particular emphasis on understanding the resolution of individual pulses. A brief
account of this work appeared previously as a Letter[Phys. Rev. Lett.92, 073001(2004)].
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I. INTRODUCTION

Our work is motivated by the experiments of Lankhuijzen
and Noordam[1], in which rubidium atoms in a constant
applied electric field were excited from the ground state to an
energy above the classical saddle by a short(few picosec-
ond) laser pulse. The resulting electron flux striking a detec-
tor was then measured as a function of time. This ionization
signal revealed a train of electron pulses, rather than an ex-
ponential decay. This observation can be qualitatively ex-
plained by the following semiclassical analysis[2]. Photoab-
sorption promotes the valence electron from a low-energy
bound state into an outgoing wave, which can be modeled
semiclassically as an ensemble of trajectories propagating
away from the atomic core in all directions and with a nar-
row range of energies. Some trajectories head directly down-
hill, and are accelerated by the external field toward a detec-
tor, creating an initial prompt pulse of electrons. Other
trajectories initially head uphill, are turned around by the
field, and return to the core where they scatter in all direc-
tions. Some of these scattered trajectories head downhill, cre-
ating a second pulse of electrons. Subsequent rescattering
events create additional pulses. Similar results have also
been obtained in quantum computations[2].

Here, we predict that a hydrogen atom, placed in com-
bined electric and magnetic fields, can also ionize through
emission of an electron pulse train.(This prediction origi-
nally occurred as a Letter[3].) Though these pulse trains
bear a certain similarity to those found experimentally for
rubidium, the mechanism for pulse creation is fundamentally
different. Pulses are not created through core scattering
(since there are no core electrons). Rather, the pulses are a
result of classical chaos, which occurs for nonvanishing
magnetic field. This can be outlined as follows. Due to the
chaotic dynamics, the behavior of a trajectory moving away
from the nucleus depends intricately upon its initial outgoing

angleu [4]. Nevertheless, over certain intervals ofu (called
escape segments), all trajectories have similar qualitative be-
havior, and most strike the detector within a short interval of
time. Thus the family of trajectories within each escape seg-
ment gives rise to a single electron pulse.

More formally, we identify the escape segments by first
reducing the electron dynamics from a Hamiltonian flow to
an area-preserving map on a two-dimensional phase space.
This map possesses a prominent fixed point, related to a
periodic orbit of the full electron dynamics. The stable and
unstable manifolds of this fixed point(which are curves in
the plane) intersect to form what is called a homoclinic
tangle. Homoclinic tangles are a basic mechanism for chaotic
transport and escape, and the intricate manner in which the
unstable manifold intersects the initial ensemble of trajecto-
ries (which itself is well approximated by a line in the plane)
defines the escape segments.

The escape segments exhibit fractal structure-within-
structure as well as a certain self-similarity, which we call
“epistrophic self-similarity.” This fractal structure is reflected
in the structure of the pulse train. Here, we concentrate on
the early time behavior, embodied in the first several pulses.
The pulse train becomes more and more complicated as time
progresses.

Our theoretical analysis is intended to stimulate experi-
mental efforts to observe chaos-induced pulse trains in hy-
drogen, or related systems. Such observations would not
only elucidate a fundamental ionization mechanism, but
would also provide a convenient laboratory tool for studying
chaotic transport and escape.

Our paper is summarized as follows. Section II lays the
foundation for the theory of the ionization process. In par-
ticular, Sec. II B explains how the initial outgoing wave
packet is modeled by a classical ensemble of trajectories
moving away from the nucleus. The classical propagation of
this ensemble yields an electron pulse train striking the de-
tector, first illustrated in Sec. II C. Section II D connects the
pulse train to the “fractal” escape-time plot—the time it takes
a trajectory to strike the detector plotted as a function of its
initial outgoing angleu.

Section III examines the classical dynamics of ionizing
trajectories. In particular, after transforming to parabolic co-
ordinates(Sec. III A) and identifying a particularly important
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periodic orbit (Sec. III B), we introduce a two-dimensional
surface of section in phase space, which allows the dynamics
to be reduced to a discrete-“time” Poincaré return map(Sec.
III C ), Section III D discusses the escape mechanism associ-
ated with the homoclinic tangle of this map.

Section IV discusses regular features of the fractal struc-
ture, with a focus on “epistrophes” —regular sequences of
escape segments that occur on all scales throughout the
escape-time plot. Section IV B describes the relevance of
epistrophes to the pulse train. Section IV C illustrates how
changes in the structure of the tangle are reflected in the
pulse train.

Section V analyzes the averaging of the pulse train over a
distribution of energiesDE and launch timesDt. Specifically,
we derive an optimal laser pulse length(Sec. V B); we illus-
trate the advantage of exciting to higherN states(Sec. V C);
and we examine the benefits of chirped laser pulses(Sec.
V E). In Sec. V F, we consider different initial angular states,
e.g., due to different laser excitation schemes.

Section VI presents our conclusions. Finally, Appendix A
gives a perturbative analysis of the dynamics in the vicinity
of the prominent periodic orbit, and Appendix B considers
the (minimal) dependence of the pulse train on the detector
position.

II. OVERVIEW OF THE IONIZATION PROCESS

The ionization process is summarized as follows. The hy-
drogen atom is placed in parallel external electric and mag-
netic fields, with the electron in a low-energy eigenstate; the
applied fields are not strong enough to significantly alter this
state. Next, a short laser pulse strikes the atom, promoting a
fraction of the initial electron state to an energy above the
classical ionization threshold, forming a radial wave packet.
That is, just as a pebble dropped into a pond produces a
circular outgoing ripple, photoexcitation of the atom by a
short laser pulse produces a spherical outgoing wave packet,
which propagates away from the atom in all directions. The
wave packet evolves in the Coulomb field of the proton plus
the applied electric and magnetic fields. Over the course of
time, some of the wave packet slips over the classical barrier,
is drawn downhill by the applied electric field, and strikes
the detector, which measures the ionization rate(defined as
the rate of electrons striking the detector) as a function of
time.

A. Hamiltonian and scaled variables

The HamiltonianH of the electron in Coulomb plus ap-
plied parallel electric and magnetic fields is given in cylin-
drical coordinatessr ,zd and atomic unitsse="=me=1d by

Hsr,z,pr,pzd =
1

2
spr

2 + pz
2d + Vsr,zd = E, s1ad

Vsr,zd = −
1

Îr2 + z2
+ z+

1

8
B2r2, s1bd

where the linear term inB is eliminated by working in a
frame rotating about thez axis with frequencyv=B/2; for

simplicity thez component of angular momentumẑ·sr 3pd
is set to zero. As is common[e.g., Refs.[5(b),6]], Eq. (1) is
expressed in scaled variablessr ,z,pr ,pzd that are related to
the original unscaled variablessr̂ , ẑ, p̂r , p̂zd by sr ,zd
=sr̂F̂1/2, ẑF̂1/2d andspr ,pzd=sp̂rF̂

−1/4, p̂zF̂
−1/4d, whereF̂ is the

applied electric-field strength(in atomic units). The scaled

energy isE=ÊF̂−1/2 and the scaled magnetic-field strength is

B=B̂F̂−3/4, where Ê and B̂ are the corresponding physical
values (in atomic units). Similarly, the scaled time ist

= t̂F̂3/4.
Applying the preceding scalings to the quantum momen-

tum operators,p̂j =−i"] /]q̂j implies pj =−i"s] /]qj, where

"s="F̂1/4="sÊ/Ed1/2 is a scaled version of the Planck con-
stant. In atomic unitss"=1d,

"s =
1

NÎ2uEu
, s2d

whereN=s2u Êud−1/2 is the ersatz principal quantum number.
Equation (2) confirms one’s intuition that by exciting the
atom to higher energies, the effective value of Planck’s con-
stant is lowered, and the system is more “classical.”

B. The initial outgoing wave packet

The laser field contributes an additional term to the
Hamiltonian,

HLstd = FLDgstd, s3d

whereFL is the peak electric-field strength(in scaled units),
D=r ·e is the dipole operator, with laser polarization« and
electron positionr , andgstd is the time dependence. We in-
clude only the absorption term of the laser field, for which
we assumegstd=genvstdexps−ivLtd, with vL the central laser
frequency andgenvstd a slowly varying envelope centered
aboutt=0 and having a maximum amplitude of 1. We typi-
cally use a Gaussiangenvstd=expf−t2/ s4Dt

2dg, whereDt is the
standard deviation of theintensityof the laser pulse. In Eq.
(3) and the remainder of Sec. II B, we work in an inertial
frame.

Using first-order time-dependent quantum perturbation
theory, the initial Coulomb eigenstateucil generates the ex-
cited time-dependent stateuCxstdl according to

si"s ] /] t − HduCxstdl = HLstdexps− iEit/"sducil

= FLgenvstdexps− iEct/"sdDucil = uSstdl,

s4d

whereEi is the energy ofucil andEc=Ei +"svL is the central
energy of the excited stateuCxstdl. The inhomogeneous term
uSstdl acts as a source foruCxstdl, yielding

Cxsr,td =E
−`

`

dr8dt8Ksr,t;r8,t8dSsr8,t8d, s5d

whereKsr ,t ; r8 ,t8d is the propagator forH.
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References[5–8] discuss excitation by a steady-state la-
ser, i.e.,genv=1, to a definite energy close to the zero-field
ionization threshold(i.e., N is large). In this case, the com-
pact sourceuSl generates an outgoing spherical Coulomb
wave coutsrd in the vicinity of the atom, where the external
fields are not strong enough to be significant. At a suffi-
ciently large radius, this wave is well approximated by the
decomposition[Ref. [6], Eq. (2.12)]

coutsrd =
C

r3/4 expsiÎ8r/"sdYsu,fd, s6d

whereYsu ,fd gives the angular distribution of the wave and
C is a constant. The spherical anglesu and f are defined
relative to the positivez axis. The outgoing wave can be
described semiclassically by an ensemble of classical trajec-
tories moving radially away from the nucleus; these trajec-
tories have a fixed energyE and are continuously emitted
from the source for all times, with angular distribution
uYsu ,fdu2. The subsequent evolution of these trajectories de-
scribes the steady-state quantum wave function.

The computation ofY in terms of the initial stateucil and
the dipole operatorD is discussed in Ref.[6], Appendix A3
and Ref.[5(b)], Sec. V B. See also[7]. Assuming thez com-
ponent of the angular momentum is zero, as in Eq.(1),
Ysu ,fd reduces toYsud.

For the pulsed laser considered here, the outgoing wave
coutsrd is primarily emitted over the time intervalDt deter-
mined bygenvstd. The energy of the wave is not sharp, but
has a deviationDE about the central energyEc, satisfying the
uncertainty relationDEDtù"s/2 (equality for a Gaussian
pulse.) A sufficiently tight energy resolution ensures the va-
lidity of Eq. (6), meaning the(physical) time interval should
be much longer than an atomic unit, or in scaled unitsDt
@1/N3. Semiclassically, we then model the electron pulse by
an ensemble of classical trajectories that have a range of
launch timesDt and a range of energiesDE.

More formally, the initial distribution of trajectories in the
energy-time plane is given by the Wigner functionWfsE,td
of fstd=genvstdexps−iEct /"sd,

WfsE,td =E
−`

`

ds eisE/"sfst + s/2df*st − s/2d. s7d

The Wigner function is the quantum analog of a classical
phase-space density. For a Gaussian envelopegenvstd
=expf−t2/ s4Dt

2dg, the Wigner function of fstd is itself a
Gaussian,

WfsE,td = Ae−t2/s2Dt
2de−sE − Ecd2/s2DE

2d, s8d

with normalizationA=2Î2pDt andDE="s/ s2Ddt. The initial
electron wave packet is modeled by a classical ensemble of
trajectories beginning at the nucleus and propagating radially
outward with a distribution of energies and launch times
given byWfsE,td and a distribution of launch anglesu given
by uYsudu2sin u. So long asuYsudu2 is independent off, this
outgoing distribution is valid in either an inertial frame or the
rotating frame of Eqs.(1).

Within semiclassical theory, the evolution of the initial
wave packet is approximated by following the trajectories
within the corresponding classical distribution. This approxi-
mation involves both evolving the classical density(the
square root of the density yields the quantum amplitude) as
well as determining the quantum phase(by computing the
accumulated action). In this paper, we ignore the phase in-
formation(that is, we ignore interference) and concentrate on
the classical density. For early times and for sufficiently high
excitation(largeN), this should yield a reasonable approxi-
mation to the intensity seen at the detector.

C. Numerical computation of the ionization rate

Figure 1(a) shows the ionization rate computed for zero
magnetic field. The computation begins with an initial en-
semble of radially outgoing trajectories as described in Sec.
II B. These trajectories are integrated until they reach the
detector, located atz=−4, or until some maximum cutoff

FIG. 1. (a) For hydrogen in an electric field only(B=0 and
scaled energyE=−1.3), the electron flux(ionization rate) striking
the detector(at z=−4) is plotted as a function of time after atomic
excitation. The thin dark line models the outgoing electron wave
packet by an ensemble of trajectories with precise energy and
launch time. The thick shaded line uses an ensemble represented by
a minimum uncertainty Gaussian wave packet withDt=DE=0.062.

The central(physical) energy of the wave packet isÊ=−1/s2N2d
with N=80. This impliesF̂=19 V/cm and one scaled unit of timet
equals 52 ps.(b) The time it takes a trajectory to strike the detector
is plotted as a function of the initial launch angleu.
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time is attained.1 The total number of trajectories striking the
detector per unit time(the ionization rate) is then recorded as
a function of time. The thin line in Fig. 1(a) is the unaver-
aged ionization rate, computed using a classical ensemble
with a single fixed energyE=−1.3 and a precise launch time
t=0. The thick line is the result using a Gaussian distribution
(8) of energies and launch times, withDt=DE=0.062 and
central energyEc=−1.3. Both lines show a single pulse of
electrons, with an exponentially decaying tail. The thick line
is simply a smoothed version of the thin line, since the be-
havior of the trajectories does not vary significantly overDE.

Figure 2(a) shows the ionization rate for nonzero mag-
netic field B=4.5; all other parameters are as in Fig. 1(a).
The thin line in Fig. 2(a), for fixed energyE=−1.3 and
launch timet=0, exhibits a train of pulses, in sharp contrast
to the single pulse in Fig. 1(a). The thick line averages out
this structure somewhat, but pulses are still discernible. As
time increases, the pulses proliferate and overlap, merging to
form a “lumpy” tail.

In both Figs. 1(a) and 2(a), the angular distribution is ans
wave, withY=1. This distribution is chosen for theoretical
convenience, since it weights all directions evenly. In Sec.
V F, we consider other distributions which may be more ex-
perimentally appropriate.

We focus first on understanding pulse trains generated by
a fixed energyE and launch timet=0, i.e., the thin lines.

D. The escape-time plot

We examine first the case of no magnetic field. Figure
1(b) shows the time it takes a trajectory(with fixed E
=−1.3 andB=0) to strike the detector as a function of its
initial outgoing angleu. The trajectory that heads directly
downhill su=pd reaches the detector first. Asu decreases,
the initial velocity points further and further away from the
downhill direction, and the trajectory takes longer and longer
to strike the detector. Eventually a critical angleuc is
reached, at which the trajectory takes an infinite time to es-
cape. This trajectory is bound forever. All trajectories above
the critical angle are also bound forever.

The thin ionization curve in Fig. 1(a) is equal to the slope
du /dt of the escape-time plot in Fig. 1(b), weighted by the

1The detector positionz=−4 is unrealistically close to the atom.
However, Appendix B shows that this makes little difference in our
results.

FIG. 2. The ionization rate for hydrogen in parallel fields, withB=4.5,E=−1.3, is plotted vs the time after atomic excitation. As in Fig.
1(a), the thin dark line uses an ensemble with precise energy and launch time, and the thick shaded line uses a Gaussian wave packet of the

same form as in Fig. 1(a). In this case,N=80 yields a physical magnetic-field strength ofB̂=0.49 T. (b) The time it takes a trajectory to
strike the detector is plotted as a function of the initial launch angleu. The dashed lines connect icicles to their corresponding pulses in(a).
The lowest icicle, having only its upper portion visible in Fig. 2(b), represents the direct trajectories.(c) The number of iterates of the
Poincaré map required to escape the complex is plotted vsu. Each escape segment corresponds to an icicle in(b). (d) The epistrophic
structure of the first several escape segments is shown. The dashed lines connect segments within one epistrophe. The solid arrows show the
creation of new epistrophes according to the Epistrophe Start Rule. The asterisk denotes a strophe segment which does not fit into the pattern
of epistrophes.
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initial angular distributionuYsudu2sin u. The pulse in Fig. 1(a)
starts at the earliest escape time in Fig. 1(b) and then trails
off to zero asu approaches the critical angle anddu /dt goes
to zero.

We now turn on the magnetic field. Figure 2(b) shows the
escape-time plot forE=−1.3, B=4.5, with the range ofu
restricted to the transition region between direct trajectories
that strike the detector quickly at largeu and trajectories that
are bound for a long(possibly infinite) time at smallu. This
transition is much more complicated than in Fig. 1(b). Rather
than a single critical angle, there are many critical angles(in
fact, an infinite number), with fractal behavior and structure
on all scales[9]. Following Ref. [10], we use the term
“icicle” for a smooth region of the plot located between two
critical angles.

As in Fig. 1, the slopedu /dt in Fig. 2(b), together with
the weightinguYsudu2sin u, yields the thin ionization curve in
Fig. 2(a). Each icicle, therefore, contributes one pulse to the
train. The pulse begins at the tip, or earliest time, of an icicle,
wheredu /dt is infinite. The initial pulse height is therefore
also infinite, so long as the weight factoruYsudu2sin u does
not vanish.(The height of the direct pulse is finite since this
factor vanishes sufficiently rapidly atu=p.) The area under-
neath a pulse is finite, regardless of its initial height[i.e., the
singularity is integrable, being proportional tost− t0d−1/2],
and equalsuYsudu2sin u integrated across theu range of the
icicle. A pulse eventually exhibits exponential decay as one
moves out along an edge of the icicle(assuming the edge
does not coincide with a zero of the weight factor.) Parts(c)
and (d) of Fig. 2 will be discussed later, in Sec. IV A.

In conclusion, to understand the structure of the electron
pulse train, we must explore the structure of the escape-time
plot. This, in turn, requires a detailed understanding of the
classical escape dynamics.

III. CLASSICAL ESCAPE DYNAMICS

A. Transformation to parabolic coordinates

Following standard practice[e.g., Refs.[5(b),5(c)]], we
define parabolic coordinatessu,vd and their conjugate mo-
mentaspu,pvd by

u = ± Îr + z, v = ± Îr − z, s9d

pu = vpr + upz, pv = upr − vpz, s10d

wherer =Îr2+z2=su2+v2d /2. We allowu andv to take both
positive and negative valuess−`,u,v,`d corresponding
to a fourfold covering of the cylindrical coordinatessrù0,
−`,z,`d. Equations(9) and (10) have the following in-
verse transformations:

r = uv, z=
1

2
su2 − v2d, s11d

pr =
vpu + upv

u2 + v2 , pz =
upu − vpv

u2 + v2 . s12d

We introduce an effective Hamiltonianh=2rsH−Ed, which
equals

hsu,v,pu,pvd =
1

2
spu

2 + pv
2d + Vuvsu,vd − 2, s13ad

Vuvsu,vd = − Esu2 + v2d +
1

8
B2su4v2 + u2v4d +

1

2
su4 − v4d.

s13bd

Settingh=0, this Hamiltonian generates the same trajectories
as settingH=E, although parameterized by a new timelike
variables, defined byds/dt=1/s2rd. Note thatE appears as
a parameter in the Hamiltonianh.

In Eq. (13b), B2 acts as a coupling constant between theu
andv motions. WhenB=0, the Hamiltonian is separable, and
there is no chaos. WhenBÞ0, mixing between theu andv
motions produces chaos responsible for the pulse train.

The effective potentialVuv, plotted in Fig. 3, contains a
smooth well about the nucleussu=v=0d. The elimination of
the Coulomb singularity makes the numerical propagation of
trajectories near the nucleus more tractable. Several ionizing
trajectories are also drawn in Fig. 3. They begin at the
nucleus, undergo some oscillations within the potential well,
and then eventually pass over the saddle region and escape
through either the left or right exit channel. The left and right
exit channels are physically equivalent since +su,vd and
−su,vd correspond to the same physical position.[See Eq.
(11).] Figure 3 is analogous to Fig. 2 of Ref.[3], which is
presented in the physicalrz coordinates.

B. An important periodic orbit

Figure 3 shows two symmetrically placed periodic orbits
nearv= ±1.3. Any escaping trajectory must cross the curve
formed by one of these orbits. This curve is called aperiodic
orbit dividing surface, or PODS, in molecular reaction
theory[11]. It acts as a kind of gatekeeper to escape. Once a
trajectory has crossed over the curve into the exit channel, it
cannot return.

The two periodic orbits inuv space reduce to a single
physical orbit inrz space. The periodTpo of this orbit plays

FIG. 3. A contour plot of the effective potentialVuv (B=4.5,
E=−1.3) is shown with unstable periodic orbits(vertical curves)
placed symmetrically near the left and right saddle points. Three
ionizing trajectories are also shown.
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a critical role in our analysis. Here,Tpo is the time it takes the
orbit to travel from r=0 back tor=0, maintainingr.0
(equivalentlyu.0), i.e.,Tpo is half the period of the orbit in
Fig. 3. Figure 4(a) plotsTpo computed numerically as a func-
tion of E andB. For B*2, the period is approximately(see
Appendix A)

Tpo <
2p

ÎB2 + 4
s14d

with frequencyvpo<ÎB2+4. This approximation is indepen-
dent of E and falls to zero asB goes to infinity, consistent
with Fig. 4(a). Furthermore, in the largeB limit, Tpo reduces
to the cyclotron periodTcycl=2p /B (as it must). For E
=−1.3 andB=4.5, direct numerical computation yieldsTpo
=1.2752, whereas Eq.(14) yields the close approximation
Tpo=1.2759. Part(b) of Fig. 4 will be discussed later, in Sec.
III D.

C. Surface of section and Poincaré map

We define a two-dimensional Poincaré surface of section
in the four-dimensionalsu,v ,pu,pvd phase space by the con-
straintsu=h=0. A point on this surface is specified, up to the
sign of pu, by its coordinatessv ,pvd. The Poincaré return

map, a discrete-time map on the surface of section, is defined
as follows. An initial point on the surface evolves under the
Hamiltonian(13). The trajectory initially moves away from
thev axis in theuv plane, but is ultimately turned around by
the potentialVsu,vd, subsequently returning to thev axis and
intersecting the surface of section. This new intersection is
defined to be the image of the initial point under the Poincaré
map. We view the Poincaré map as a map from the initial
coordinatessv ,pvd to the final coordinatessv8 ,pv8d; this inter-
pretation is possible because it does not depend on the sign
of pu.

We examine the Poincaré map first for zero magnetic
field. Figure 5 is the surface-of-section plot forB=0, E
=−1.3. Within this plot are left and right fixed pointszl and
zr, located where the two periodic orbits in Fig. 3 puncture
the surface of section. Each of these fixed points is unstable,
and the attached curves are its stable and unstable manifolds
(that is, the sets of points that converge to the fixed point
under forward and backward iterates, respectively.) In this
case, a branchU, of the left unstable manifold exactly coin-
cides with a branchSr of the right stable manifold, and vice
versa. The other four branches go to infinity and do not in-
tersect.

Notice that the surface-of-section plot is invariant under
sv ,pvd°−sv ,pvd. In fact, the pointssv ,pvd and −sv ,pvd on
the surfaceu=0 are physically identical, as seen from Eqs.
(11) and (12).

All trajectories that are launched from the nucleus at the
precise timet=0 and with a precise energy start atu=v=0
with h=0 and with the parameterE in Eq. (13) fixed. Thus,
the initial ensemble populates the lineL0, which is that seg-
ment of thepv axis within the energetically allowed region of
the surface of section. This line is parametrized by the initial
outgoing angleu according topv=2 sinu /2, as derived from
Eqs.(9) and (10) and the fact thatpu

2+pv
2=4 at u=v=0.

The line of initial conditionsL0 intersects the stable/
unstable manifolds at two points, corresponding to the single
(physical) critical angle uc in Fig. 1(b). Within the eye-

FIG. 4. Contour plots of(a) the timeTpo for the periodic orbit to
leave and return to theu axis and(b) the Liapunov exponent lna of
the periodic orbit. For(b), D=1 in regions 1 and 1+ and D=2 in
regions 2 and 2+. The dashed lines separate regions with and with-
out overshoot(see Sec. IV C). The three X’s markB=4.5 with E
=−1.92,−1.3,−0.5, which are used for numerical computations in
this paper.

FIG. 5. The surface-of-section plot forB=0, E=−1.3 shows left
and right fixed points,z, andzr, whose stable mainfolds,S, andSr,
coincide with their unstable manifolds,Ur andU,. The initial elec-
tron trajectories populate the vertical lineL0. The shaded regions
are energetically forbidden.
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shaped region bounded by the stable/unstable manifolds, all
trajectories are bound forever. Outside this region, all trajec-
tories escape, either to the southwest or the northeast in Fig.
5.

We now consider a nonzero magnetic field. Figure 6 is the
surface-of-section plot forB=4.5, E=−1.3. As before, there
are two unstable fixed points. However, their stable and un-
stable manifolds no longer coincide, but rather intersect
transversely, forming a complicated pattern of curves called
a heteroclinic tangle. This complicated structure produces
phase-space transport and escape. In particular, each inter-
section betweenL0 and the stable manifoldS, or Sr pro-
duces a critical angle, i.e., an edge of an icicle, in Fig. 2(b).
The infinity of icicles (and hence the infinity of electron
pulses) thus results from the infinity of such intersections.
We elaborate on this in Secs. III D and IV.

D. The homoclinic tangle

We simplify Fig. 6 by defining new canonical coordinates
sq,pd that exploit the inversion symmetrysv ,pvd°−sv ,pvd.
In terms of canonical polar coordinatesI =spv

2+v2d /2 and
f=−tan−1spv /vd, we definep=−ÎI sin 2f=Î2vpv /Îv2+pv

2

and q=ÎI cos 2f=sv2−pv
2d /Î2sv2+pv

2d. In these newsq,pd
coordinates, +sv ,pvd and −sv ,pvd are identified. Thus, the
surface-of-section plot in these coordinates, as shown in Fig.
7, contains a single unstable fixed pointzX whose stable and
unstable manifolds intersect transversely, forming a ho-
moclinic tangle. The vertical line of initial conditions in Fig.
6 becomes a horizontal line in Fig. 7, terminating atq=p
=0.

We now review how a homoclinic tangle, as in Fig. 7,
produces phase-space transport and escape[12–16]. Since
some of the structure in Fig. 7 is hard to resolve, we include
a qualitative picture in Fig. 8(a). Similar qualitative tangles
occur in Figs. 8(b) and 8(c) and in Fig. 3 of Ref.[15] and
Figs. 3 and 4 of Ref.[16]. The point P0 is a transverse
homoclinic intersection, i.e., an intersection between the

stablesSd and unstable(U) manifolds. The segments ofS
andU joining zX to P0 bound a region of the plane which we
call thecomplex. Roughly speaking, points within the com-
plex correspond to the excited neutral atom. If a trajectory
maps outside the complex, it will subsequently progress to
infinity, resulting in ionization. We therefore need to under-
stand how points map out of the complex.

The homoclinic intersectionP0 iterates forward to
P1,P2,P3, ..., converging tozX along the upperS boundary
of the complex. Similarly, it iterates backward to
P−1,P−2,P−3, ..., converging tozX along the lowerU bound-
ary of the complex. BetweenP0 and P1 is another ho-
moclinic intersectionQ0, whose iteratesQn are interleaved
between thePn. The segments ofS andU that join P0 to Q0
in Figs. 7 and 8 bound a region called the escape lobeE0.
Similarly, the segments that joinQ−1 to P0 bound the capture
lobe C0. The forward and backward iterates of these lobes
produce a sequence of escape lobesEn and of capture lobes
Cn. Some of these lobes are shown in Figs. 7 and 8.

Transport in and out of the complex occurs via a “turn-
stile” [12]: The escape lobeE−1, which is inside the complex,
maps toE0, which is outside the complex; similarly, the cap-
ture lobe C0, which is outside the complex, maps toC1,
which is inside the complex. All points that escape inn iter-
ates lie in the lobeE−n.

We characterize the structure of the tangle by two quan-
tities, a local geometric quantitya and a global topological
quantity D. (i) The Liapunov factora.1 is the largest ei-
genvalue of the Poincaré map, linearized about the fixed
point zX. It characterizes the rate at whichEn andCn become
thinner as their bases converge upon zX. (ii ) The minimum
delay timeD is the fewest iterates any scattering trajectory
may spend within the complex.(A scattering trajectory is
one that begins outside the complex, is captured by the com-
plex, spends some number of iterates within the complex,
and eventually escapes.) Alternatively, the delay timeD is
the smallestn such thatE−sn+1d intersectsC0 or, more gener-
ally, Ek−sn+1d intersectsCk for arbitrary k. For Figs. 7 and

FIG. 6. The surface-of-section plot forB=4.5, E=−1.3 shows
that the right stable manifoldSr (thin solid curve) and left unstable
manifold U, (thick dashed curve) no longer coincide. The same is
true of S, andUr.

FIG. 7. The surface-of-section plot forB=4.5,E=−1.3 in thepq
coordinates contains a single fixed pointzX, whose stable manifold
S (thin curve) and unstable manifoldU (thick curve) intersect to
form a homoclinic tangle. The capture lobesCn are shaded white,
the escape lobesEn purple, and the complex light blue.
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8(a), the intersection betweenE−2 andC0 implies D=1. For
Figs. 8(b) and 8(c), however, the intersection betweenE−2
andC1 implies D=2; the lobeE−3 (not shown) would reach
over and intersectC0.

Figure 4(b) shows the numerically computed Liapunov
exponent lna as a function ofE and B. For B*3, ln a is
approximately(see Appendix A)

ln a < Tpo
Î2S1 −

3

8
kr2lD , s15d

whereTpo is given by Eq.(14) and

kr2l =
E + 2

B2/4 + 1
s16d

is the (approximate) average value ofr2 along the periodic
orbit. Under this approximation, lna has a weak linear de-
pendence onE throughkr2l, consistent with the data in Fig.
4(b). Furthermore, asB increases, lna converges to zero
proportional toÎ2Tpo. For E=−1.3 andB=4.5, direct nu-
merical computation yields lna=1.743, whereas Eq.(15)
yields the good approximation lna=1.726.

The two solid curves in Fig. 4(b) denote changes in the
topological parameterD. Based on numerical computations,
D=1 in regions 1 and 1+, D=2 in regions 2 and 2+, and
D.2 in the region to the left and below region 2. The
dashed curves denote where the lobes exhibit “overshoot,” a
point revisited in Sec. IV C.

IV. EPISTROPHE STRUCTURES

A. Epistrophes in the discrete-escape-time plot

Figure 2(c) records the number of iterates of the Poincaré
map required for a pointu alongL0 to escape the complex,
i.e., to land in the escape lobeE0. This discrete-time plot
gives a rectification of the continuous-time plot Fig. 2(b).
Each icicle is straightened into a singleescape segmentwith
constant iterate number. Each escape segment that escapes
on thenth iterate is an interval of intersection between the
escape lobeE−n and the line of initial conditionsL0. For
example, the intersection betweenE−2 andL0 in Fig. 7 yields
the segment labeled A1 in Fig. 2(c).

Throughout the discrete-escape-time plot Fig. 2(c) and on
all scales there are regular sequences of escape segments,
which we call epistrophes. (“Epistrophe” is a term from
rhetoric or poetry meaning “a regular, repeated ending fol-
lowing variable beginnings.”) We previously [15] studied
general properties of epistrophes arising from a general ho-
moclinic tangle, which we summarized in an epistrophe
theorem:(i) An epistrophe is an infinite sequence of succes-
sive escape segmentsek, k=k0, . . . ,`, that escape on thekth
iterate. (ii ) Each epistrophe converges monotonically upon
the end point of an earlier escape segment.(iii ) This conver-
gence is geometric with rate equal to the Liapunov factora
of the fixed point zX. More precisely, letwk be the width of
segment«k, gk be the distance between«k and«k+1, anddk be
the distance from«k to the point of convergence. Then,

lim
k→`

wka
k = Kw, s17d

lim
k→`

gka
k = Kg, s18d

lim
k→`

dka
k = Kd, s19d

for someKw,Kg,Kd.0. (iv) The asymptotic tails of any two
epistrophes differ only by a change of scale. Equivalently,

FIG. 8. Three qualitative depictions of homoclinic tangles with
different topological structure:(a) D=1 (qualitatively the same as
Fig. 7), (b) D=2 (E−2 intersectsC1 but overshoots it), (c) D=2. The
labels in(c) apply to(a) and(b) as well. The complex is the shaded
region bounded by the segments ofS andU joining zX to P0. The
capture lobeC1 is bounded by the segments ofS andU joining Q0

to P1. Other lobes are defined similarly. The progression from(a) to
(c) corresponds to fixing the scaled magnetic fieldB while decreas-
ing the scaled energyE toward the saddle energyE=−2.
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lim
k→`

wk

gk
= x, s20d

lim
k→`

wk

dk
= f, s21d

wherex ,f.0 do not depend on the epistrophe considered.
(v) With rare exception(not seen in the present paper), an
epistrophe converges upon each end point of every escape
segment.2

The recursive structure of the epistrophes gives the
escape-time plot structure-within-structure on all scales. The
removal of escape segments on each iterate is analogous to
the construction of the middle-third Cantor set, and the set of
trajectories that never escape has an analogous fractal struc-
ture.

The epistrophe structure of Fig. 2(c) is illustrated in Fig.
2(d). The A epistrophe(of which the first four segments
A1¯A4 are shown) converges upon the upper end point of
the direct segment. Similarly, theB andC epistrophes con-
verge upon the upper and lower end points of theA1 seg-
ment, respectively. The first segments(unlabeled) of the two
epistrophes converging upon the upper and lower end points
of the A2 segment occur on the fifth iterate. The escape
segments in each epistrophe decay with asymptotic ratea
=5.71.

In Ref. [16], we discussed at which iteratek0 an epistro-
phe begins. The topological structure of the homoclinic
tangle shows that there must be a certain “minimal set” of
escape segments. We developed a symbolic algorithm for
computing this minimal set and showed that the escape seg-
ments within the set eventually, i.e., at large enough iterate,
obey an “epistrophe start rule”: An escape segment on the
nth iterate spawns two new epistrophes on iteratek0=n+D
+1. This rule is seen in Fig. 2(d), for whichD+1=2.(Recall
that D=1 in Fig. 7). The B andC epistrophes start atn=4,
two iterates after theA1 segment atn=2. Similarly, theA2
segmentsn=3d spawns two new epistrophes atn=5.

Calculations show that there are also escape segments that
do not belong to the minimal set. These segments are not
predicted by the symbolic algorithm mentioned above, and
they do not fit the simple pattern predicted by the Epistrophe
Start Rule. Such a segment, which we call astrophe, is
marked by an asterisk in Figs. 2(b)–2(d). Numerical evi-
dence indicates that strophes tend to be big segments and
that at large iterate they are the dominant escape segments,
compared to those predicted in the minimal set.

We use the termepistrophic self-similarityto describe the
above situation: throughout the escape-time plot and on all
scales there are epistrophes; they are all asymptotically self-
similar and each is similar to every other. However, there
may also be strophe segments which occur on all scales and
which, at long times, may come to dominate the regular epis-
trophe structure.

B. Epistrophe structure of pulse trains

To each escape segment there corresponds an icicle, and
hence an electron pulse. Thus, an epistrophe of escape seg-
ments produces anepistropheof electron pulses, where the
pulse sizes decay exponentially with ratea. In Figs. 2(a) and
2(b) we explicitly connect the first nine pulses to their cor-
responding icicles and label them according to the scheme in
Fig. 2(d). The first pulse is the large direct pulse. The second,
third, and sixth pulses are the first three pulses of theA
epistrophe. Notice the rapid decay in pulse size, sincea
=5.71. The time between successive pulses in an epistrophe
is roughly equal to the periodTpo=1.28, the time for the
periodic orbit in Fig. 3 to travel fromu=0 back tou=0 (Sec.
III B ). (This result is exact for the asymptotic behavior of an
epistrophe.)

The epistrophe start rule is also reflected in the pulse
train. SinceD+1=2, the twopulsesB1 andC1, spawned by
the A1 pulse, occur almost concurrently with theA3 pulse,
or about 2Tpo after theA1 pulse. TheB2 and C2 pulses
follow roughly Tpo after theB1 andC1 pulses.

The next pulse in the train is associated with the strophe
segment(marked by the asterisk). Notice that it is large com-
pared to other pulses nearby in time. This is typical of the
behavior we observe for the strophe segments and their as-
sociated pulses, and numerical evidence indicates that the
strophe pulses come to dominate at long times.

This completes our analysis and explanation of the unav-
eraged pulse train, shown as the thin line in Fig. 2(a). In Sec.
V, we discuss the resolution of pulses in the energy-time-
averaged pulse train, shown as the thick line. First, however,
we consider how the structure of the pulse train changes
when the minimum delay timeD is changed.

C. Varying the topological parameter D

At B=4.5, E=−1.92, the minimum escape timeD equals
2, as shown in Fig. 4(b). Figure 8(c) depicts the qualitative
topological structure of theD=2 homoclinic tangle. This to-
pological structure is reflected in the structure of the electron
pulse train shown in Fig. 9. In particular, the Epistrophe Start
Rule (Sec. IV A) states that epistrophes are spawned after
D+1=3 iterates, rather than the two iterates seen in Fig. 2.
For example, theB and C epistrophes in Fig. 9(d) are
spawned atn=6, three iterates after theA1 segment. Simi-
larly, theB1 andC1 pulses are roughly concurrent with the
A4 pulse in Fig. 9(a).

The topology of the tangle in Fig. 8(b) is intermediate
between Figs. 8(a) and 8(c). Passing from Fig. 8(a) to Fig.
8(b), the lobeE−2 contracts, so that it no longer intersectsC0.
The elimination of this intersection impliesD=2. The “tip”
of E−2, however, still “overshoots” its intersection withC1.
Passing from Fig. 8(b) to Fig. 8(c), E−2 continues to contract
so that it does not overshootC1. Figure 4(b) provides param-
eter ranges for these topologies: region 2 hasD=2 with no
overshoot, region 2+ hasD=2 with overshoot, region 1 has
D=1 with no overshoot, and region 1+ hasD=1 with over-
shoot.

The overshoot of the lobe in Fig. 8(b) creates additional
intersections with the line of initial conditions(and conse-

2The exception only occurs when the end point in question is not
on the stable manifold. This only happens on theU boundary of the
complex.
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quently additional escape segments and pulses) that are not
accounted for in the epistrophe start rule of Sec. IV and Ref.
[16]. However, such overshoot does not produce the strophe
segments(and pulses) in Figs. 2 and 9, which are created by
topological structure of another variety. In a future publica-
tion we will present a more detailed topological analysis of
the tangle to address these phenomena. See also Refs.
[14,17].

V. PULSE RESOLUTION

We study how energy and time averaging affects the reso-
lution of electron pulses. In Sec. V F we also consider how
different initial angular distributions affect pulse strength.

A. Variation of arrival time with energy

At a fixed energy, each pulse has a sharp initial arrival
time, which is the earliest time of the corresponding icicle.
As the energy is varied, this arrival time also varies, as
shown in Fig. 10 for the early icicles. As the energy is in-
creased, the trajectories move faster and tend to strike the
detector earlier, implying a general shift of the pulses toward
earlier times.

Six of the curves in Fig. 10 are nearly straight lines, with
only a slight bowing. The remaining three curves, however,
are substantially bent. This bending is related to the creation
of the corresponding icicles. For example, the strophe curve,
denoted with an asterisk, is created atE<−1.34, where it has
an infinite arrival time. This arrival time rapidly decreases as
the energy is raised, until the curve enters Fig. 10 from the

right. It then bends into a nearly straight vertical curve.3 The
same qualitative behavior is seen for theA1 andC1 curves.
The remaining six curves bend similarly, but outside the
range of the figure.

3Shortly above the point where the strophe curve turns vertical, it
bifurcates into two curves, representing the splitting of the initial
icicle into two icicles.

FIG. 9. A. sequence of plots analogous to Fig. 2 withB=4.5, E=−1.92. The averaged pulse train in(a) is excited toN=80 with Dt

=0.17,DE=0.019. The physical field strengths areF̂=8.5 V/cm,B̂=0.27 T, and one scaled unit of time equals 93 ps.

FIG. 10. The(earliest) arrival time of each icicle labeled in Fig.
1(b) is shown as a function of energy. The valueB=4.5 is held
fixed. For many icicles, the behavior is close to linear over the
energy range plotted. However,A1, C1, and * display notable non-
linear behavior.

MITCHELL et al. PHYSICAL REVIEW A 70, 043407(2004)

043407-10



It is fortunate that the basic structure of the pulse train is
roughly constant over the range of excitation energiesDE
used in averaging. This constancy is exhibited by the arrival
times(Fig. 10) as well as the weak variation ofTpo anda as
functions ofE at B=4.5 (Fig. 4).

B. The optimal Dt

We ask how the energy dependence of the curves in Fig.
10 affects the resolution of a pulse in the energy-time-
averaged pulse train. If in Fig. 10 the arrival time of an icicle
were independent of energy, we would get the sharpest mea-
sured electron pulse by minimizing the duration of the laser
pulse. However, since the arrival time does vary with energy,
we optimize the resolution of an electron pulse by balancing
the energy spread and time duration of the laser pulse.

For a given electron pulse, assume thatDE is small
enough that its curve in Fig. 10 may be approximated by a
straight line. ThenDE creates a deviation in arrival timeDt8
= ubuDE, where b=sdt/dEduE=Ec

is the inverse slope of the
curve in Fig. 10, at the central energy. The unaveraged pulse
is thus averaged by convolving with two Gaussians of widths
Dt andDt8= ubu"s/ s2Dtd, or equivalently, by convolving with
a single Gaussian of widthDt,tot=ÎDt

2+Dt8
2. The minimum

value ofDt,tot is Îubu"s and is attained at

Dt = Dt,opt=Îubu"s

2
, s22d

DE = DE,opt=Î "s

2ubu
. s23d

Unless otherwise stated, we computeDt,opt by evaluatingb
for the direct pulse. ForB=4.5, E=−1.3 this yieldsb<
−1.00 andDt,opt<DE,opt. This works well because the slopes
of most other curves in Fig. 10 do not differ much from that
of the direct pulse. The smoothed curves in Figs. 2(a) and
9(a) were obtained in this way.

C. Increasing the excitation energy

We imagine increasing the physical excitation energyÊ
=−1/s2N2d while simultaneously adjusting the physical field

strengthsF̂ and B̂ so that the scaled quantitiesE andB are
held fixed. This leaves the classical Hamiltonian unchanged
[either Eq.(1) or Eq. (13)], while decreasing the effective
Planck constant"s by 1/N [see Eq.(2)]. Thus, the extent of
the Gaussian wave packet in the energy-time plane decreases
by 1/N and the energy-time-averaged pulse train more
closely approximates the unaveraged pulse train. Figure 11
shows this convergence forN=20,80,400, in each case
choosingDt according to Eq.(22). The width of the averaged
electron pulses is governed byDt,tot, which scales as 1/ÎN.

D. Averaging the strophe pulse

Notice in Fig. 2(a) that the energy-time-averaged strophe
pulse is not centered on the unaveraged strophe pulse. Rather
it is shifted toward earlier time, preceding theB2 and C2

pulses. This phenomenon is understood by examining the
strophe arrival time curve in Fig. 10. At the central energy
Ec=−1.3 (the dashed line), the curvature is significant and
affects the energy averaging as follows. A Gaussian distribu-
tion of energies aboutEc places equal weight above the
dashed line as below. However, the variation in arrival time
above the line is smaller than the variation below the line,
since the curve becomes more vertical aboveEc. Therefore,
the energy-averaged pulse density tends to pile up at a time
preceding the unaveraged pulse. AsDE increases, this shift
becomes more pronounced, as illustrated in Fig. 12. For large
enoughDE sDE*0.04d, this shift is further enhanced by the
fact that the strophe pulse disappears entirely belowE
<−1.34. The shift is also enhanced by an increase in the
strength of the pulse(i.e., the width of the escape segment)
as the energy increases.

Finally, the temporal shift discussed here occurs for any
pulse whose arrival time exhibits large curvature, i.e., the
“strophe” nature of the pulse is not relevant.

FIG. 11. The energy-time-averaged pulse train(thick curve) for
B=4.5,E=−1.3 and(a) N=20, (b) N=80, (c) N=400. The unaver-

aged pulse train is the thin curve. In(a), Dt=DE=0.12, F̂

=4.8 kV/cm, B̂=32 T, t scale=0.81 ps; in(b), Dt=DE=0.062, F̂

=19 V/cm, B̂=0.49 T, t scale=52 ps; in(c), Dt=DE=0.028, F̂

=0.030 V/cm,B̂=0.0039 T,t scale=6.5 ns.

FIG. 12. ForB=4.5, E=−1.3, andDt=0.062, the energy-time-
averaged strophe pulse(located att<8) is seen to shift to earlier
times asDE increases:(a) DE=0.013 sN=400d, (b) DE=0.038 sN
=133d, (c) DE=0.063sN=80d.
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E. Chirping

Chirping the laser pulse can increase the time resolution
of a pulse within the train. Since higher-energy electrons
reach the detector earlier than lower-energy ones, we can
enhance the resolution by chirping the laser pulse so that
higher-energy electrons begin later than lower-energy ones.
We increase the frequency of the chirped pulse linearly in
time with rate 1/b=sdE/dtduE=Ec

, matching the linear depen-
dence of arrival time on energy for a given pulse(see Sec.
V B). More precisely, the Wigner function of the linearly
chirped Gaussian pulse is

WsE,td = Ae−st − bEd2/s2Dt
2de−sE − Ecd2/s2DE

2d. s24d

We determineDt by numerically adjusting it until a good
resolution is obtained.

Figure 13 shows energy-time-averaged pulse trains gener-
ated by a chirped laser pulse. In parts(a)–(c), the chirping
rate 1/b matches the direct pulse. Hence, the direct pulse
shows a notable enhancement over Fig. 11 for all three val-
ues ofN. Other pulses whose slopes in Fig. 10 roughly match
that of the direct pulse are also enhanced, whereas those
pulses whose slopes differ markedly from the direct pulse
have weaker, if any, enhancement. This distinction is clearly
seen in pulses four and five. In Fig. 10, the slope of the direct
pulse closely matches that of pulse foursB1d, but not that of

pulse five sC1d. Consequently, in Figs. 13(a)–13(c) pulse
four is sharp(especially forN=400) whereas pulse five is
broad and not readily discernible.

As explained in Sec. V D, the strophe pulse in Figs.
13(a)–13(c) is shifted to earlier time when averaged. The
resolution of the strophe pulse is also increased when com-
pared to Fig. 11. This is because the slope of the strophe
curve in Fig. 10 is close to that of the direct pulse above
Ec=−1.3.

Figure 13(d) shows the pulse train generated by a chirp
calibrated on the strophe pulse, rather than the direct pulse.
The resulting strophe pulse is close to its unaveraged posi-
tion and width. Since the chirp is not matched to the other
pulses, they are significantly wider than in Fig. 13(c).

F. Varying the angular distribution

In Fig. 2(a), the initial outgoing angular distribution is an
s wave. Any other distributionuYsudu2 (such as ap wave)
does not change the overall character of our results. How-
ever, the size of an electron pulse will change, depending on
the angle at which it is launched, i.e., on theu position of the
corresponding icicle. This effect is most dramatic for icicles
near a zero of the angular distribution, which produce highly
suppressed pulses, as demonstrated in Fig. 14. The scaled
energyE=−0.5 is chosen so that the cluster of icicles near
A1 will be nearu=p /2. Another cluster of icicles is nearu
=0. For an initials state[Fig. 2(a)], uYsudu2=1 is uniform.

FIG. 13. The energy-time-averaged pulse train(thick curve)
generated by a chirped laser pulse forB=4.5,E=−1.3. The chirping
for plots (a)–(c) is calibrated on the direct pulse with(a) N=20,
Dt=0.06, DE=0.26; (b) N=80, Dt=0.04, DE=0.097; (c) N=400,
Dt=0.01,DE=0.078. The chirping for plot(d) is calibrated on the
strophe pulse withN=400,Dt=0.05,DE=0.016.

FIG. 14. The unaveraged pulse train atB=4.5, E=−0.50 for
three different initial angular distributions:(a) s, (b) p±, (c) pz. Part
(d) shows the corresponding escape-time plot.
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For an initialp± state[Fig. 2(b)], however, there is a node at
u=p, which suppresses the direct pulse, and a node atu=0,
which suppresses the upper icicle cluster.4 Conversely, for an
initial pz state[Fig. 2(c)], there is a node atu=p /2, which
suppresses theA1 icicle cluster. Thus, for apz-state the pulse
train exhibits a prominent direct pulse followed by a lull, due
to the suppressedA1 cluster, and the subsequent arrival of
the u=0 cluster of pulses.

VI. CONCLUSIONS

We predict that an excited hydrogen atom in applied fields
can decay through emission of a train of electron pulses. Our
analysis models the initial outgoing electron wave function
by an ensemble of classical trajectories, a portion of which
eventually strike the detector. For the pulsed laser experi-
ment under consideration here, quantum interference should
not play a major role at the early times studied, since the
electron pulses do not significantly overlap one another at the
plane of the detector. However, for a continuous-wave exci-
tation of an atom, ionizing electron trajectories will create an
interference pattern on the detector. In a remarkable series of
experiments, such patterns have been imaged for both pho-
todetachment[18] and photoionization[19] in an applied
electric field. In future work, we will apply the theoretical
tools used here to study such interference patterns for
continuous-wave photoionization of hydrogen in external
electric and magnetic fields.

Finally, the existence of pulse trains is a direct conse-
quence of chaotic escape arising from a homoclinic tangle.
As such, pulse trains should be visible in other systems dis-
playing this escape mechanism, for example certain open
billiard geometries. Such geometries can be physically real-
ized as light or microwave cavities. Pulsed microwave ex-
periments thus give another potential route to measuring
chaos-induced pulse trains.

APPENDIX A: PERTURBATIVE ANALYSIS ABOUT THE
PERIODIC ORBIT

We develop approximations for bothTpo and lna. For
sufficiently largeB, the radius of the periodic orbit inrz
space is small enough to justify expanding the potential Eq.
(1b) through second order inr,

Vsr,zd =
1

8
B2r2 +

1

2

r2

uzu3
−

1

uzu
+ z+ Osr4d. sA1d

The z position of the periodic orbit lies near the classical
saddlez=−1, where the external electric field is balanced by
the Coulomb field. Using the approximationz=−1, the r
behavior is to lowest order harmonic, with angular frequency
ÎB2/4+1. Note that this frequency assumesr makes a full
oscillation through both positive and negative values. Re-

stricting r to the physically allowed positive values yields
Eq. (14). This approximation gives a relative error of 3% or
better forB*2.

We develop an approximation for lna by considering the
z dependence of Eq.(A1). Near the approximate positionz
=−1 of the periodic orbit, ther motion is much faster than
the z motion, producing an effectiver-averagedz potential,

Vzszd =
1

2

kr2l
uzu3

−
1

uzu
+ z, sA2d

where kr2l, given by Eq.(16), is r2 averaged over oner
oscillation, within the harmonic approximation. The unstable
critical point of Vz occurs atzc=−1+3kr2l /4 with curvature
ud2Vzszcd /dz2u =2−3kr2l /2. The Liapunov exponent is then
approximately

ln a < Tpo
Îud2Vzszcd/dz2u < Tpo

Î2S1 −
3

8
kr2lD . sA3d

This approximation gives a relative error of 10% or less for
B*3.

APPENDIX B: DEPENDENCE OF PULSE TRAINS
ON THE DETECTOR POSITION

The continuous-escape-time plots and ionization rates in
this paper were computed for a detector atz=−4, which is
unrealistically close to the atom by several orders of magni-
tude. In this appendix, we consider placing the detector far-
ther away. We find that the effect on the pulse train is mini-
mal.

The positionzd of the detector in scaled units is related to

its position ẑd in physical (atomic) units by zd= ẑdF̂
1/2

= ẑdÊ/E= ẑd/ s2N2uEu d. For N=80, E=−1.3, and ẑd=−2
3108<−1 cm, the scaled position of the detector iszd
=−1.23104.

4To be precise, for ap±-stateYsu ,fd is not constant inf, but
uYsu ,fdu2 is. Furthermore, the classical Hamiltonians(1) or (13) are
applicable even with a few quanta inLz, because theLz contribu-
tions to the Hamiltonians occur at order"s

2.

FIG. 15. Two unaveraged pulse trains forB=4.5, E=−1.3. For
the lower train, the detector is placed atz=−4. For the upper train
(vertically offset by 0.06), the detector is placed atz=−1.23104.
The upper train is shifted in time to align its second pulse with that
of the lower train.
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We integrate trajectories up to a “virtual” detector atzd8
=−4. Below z=zd8 it is reasonable to ignore the Coulomb
force, and the dynamics separates into uniform acceleration
az=−1 in thez direction and cyclotron motion in the trans-
verse direction. Under uniform acceleration, the timedt for a
trajectory to travel between the virtual detector atzd8 to the
physical detector atzd is

dt = pz + Îpz
2 + 2uzd − zd8u < pz + Î2uzdu, sB1d

wherepz,0 is thez momentum at the virtual detector. The
approximation in Eq.(B1) holds becauseuzd8 u ! uzdu and be-
cause the maximum value ofpz

2 is 2sE−zd8d,2uzd8u.

The second term in Eq.(B1), though large, is independent
of trajectory and only shifts the pulse train in time. The first
term in Eq.(B1), however, varies with trajectory, but only by
a small amount. Figure 15 shows the unaveraged pulse train
with and without the correction(B1). (The origin has been
shifted in time to make the second pulses coincide.) We do
see slight shifts in the relative arrival times of pulses with
and without this term, but not by substantial amounts. These
slight shifts would decrease even further if the virtual detec-
tor were moved lower. Finally, Eq.(B1) shows there is no
significant change in the relative arrival times due to varying
the position of the physical detector.
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