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We investigate coherent accumulation processes in three-level atoms excited by a train of ultrashort pulses
in the case where the atomic relaxation times are greater than the laser repetition period. In this situation the
resonances of the laser field with the atomic system are determined by the laser frequency comb rather than by
the spectrum of a single pulse. Using the density matrix formalism, we develop a perturbative theory that is
valid for arbitrary pulse shapes. The excitation of a Doppler-broadened atomic vapor by hyperbolic-secant
pulses and 0p pulses is analyzed. It is shown that pulse shape has a great influence on the accumulation
process and can change the spectral periodicity of the pattern impressed on the Doppler profile of the medium
due to the two-photon absorption process. The effect of interpulse phases is also investigated, and we show that
the atomic populations can vary by more than one order of magnitude with small variations of the laser
repetition rate, while being insensitive to variations of the laser offset. Finally, the theory is adapted for the
temporal-coherent-control technique, and its results are compared with previously reported experimental data.
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I. INTRODUCTION

The field of coherent control of quantum systems com-
prises a set of techniques designed for finding the pulse
shape that maximizes one of the possible outcomes of the
system at the expense of the others. The desired outcome
varies from one system to another: in atoms or molecules, for
example, the goal is usually to excite a specific internal state,
while for chemical reactions it is to control the ratio of com-
peting products of a reaction[1,2]. One of the simplest tech-
niques employed in coherent control is known as temporal
coherent control where combinations of ultrashort pulses
with variable relative delays are used to excite the sample
[3]. In these configurations the pulses usually have the same
shape, and control is achieved by scanning their relative de-
lay. Another important technique is known as optimal control
[4], which is accomplished by the shaping amplitude and
phase of the spectral components of individual pulses. This is
commonly done with the aid of a programmable liquid-
crystal light modulator[5], which allows one to modify the
pulse spectrum in a very general manner. Some pulse shapes,
however, are better produced by simply propagating the
pulses from the laser through an atomic vapor[6]. This is the
case, for example, for zero-area pulses(0p pulses) [6,7]. The
main characteristic of the action of 0p pulses on an atomic
transition is that they leave no population on the higher-lying
state on their passage through the sample, even though they
have finite energy.

The coherent control techniques are habitually designed
for the excitation of the system by single pulses from the
laser. However, it was recently shown that the accumulation
of excitation in the sample with a sequence of laser pulses
coming from passively mode-locked femtosecond lasers can
have great influence on a temporal-coherent-control signal

from a rubidium vapor[8]. Accumulation occurs when the
relaxation times of the medium are longer than the laser
pulse repetition periodTR, which is determined by the round-
trip time of the pulse within the laser cavity. For most fem-
tosecond laser oscillatorsTR<1–10 ns, and accumulation
should therefore be present for atoms with relaxation times
greater than 10 ns, when excited by such pulse trains. It is
therefore important to discuss a generalization of the
coherent-control schemes considering the interaction of a
quantum system with the whole train of pulses coming out of
the laser. In the frequency domain, the periodic pulse train of
a mode-locked laser can be described as a comb of equidis-
tant modes. This frequency comb has received great attention
in the last years in connection with its application in metrol-
ogy at optical frequencies[9–11]. For atomic systems, the
frequency comb determines the resonances between the atom
and laser field in the case when the atomic coherence sur-
vives between two consecutive laser pulses[12]. In this situ-
ation, a coherent accumulationof excitation occurs in the
sample, and the final atomic populations are determined by
constructive or destructive interferences between the coher-
ences excited by the sequence of pulses from the laser[12].
The result of this process can be understood as a temporal
analog of a multiple-slit interferometer experiment[13].

An important application of these ideas has been the use
of frequency combs in spectroscopic measurements with a
resolution that is much better than the one determined by the
Fourier transform from a single pulse in the train. Basically,
the resolution is now given by the width of the comb’s teeth
in the frequency domain, which can be extremely small. This
effect has been explored since 1978, when the feasibility of
Doppler-free two-photon spectroscopy with multiple light
pulses was demonstrated[14]. One of the best examples of
the application of pulse trains for high-resolution spectros-
copy was given by Snaddenet al. in 1996 in the two-photon
spectroscopy of laser-cooled rubidium[15].

In this paper we study the interaction of a train of femto-
second optical pulses with a sequential two-photon transition*Electronic address: vianna@ufpe.br
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in the case where the relaxation times of both atomic coher-
ences and populations are greater than the pulse repetition
period, resulting in an accumulative process during the pulse
train. This problem has been investigated previously by Yoon
et al. [16], where the emphasis was on metrological applica-
tions, and they considered a cold atom system, with no Dop-
pler broadening. Differently from these works our emphasis
is in coherent control. In particular, the procedure developed
here is applied to the coherent control of the two-photon
transition by pairs of optical pulses with variable delayt.
Despite the fact that we study atoms in a vapor cell excited
by pairs of copropagating pulses, the theory presented here
can also be applied to different systems, such as atoms in a
magneto-optical trap. The paper is organized in the following
manner: in Sec. II we present the optical Bloch equations for
a three-level system interacting with a train of pulses deliv-
ered by a femtosecond laser and develop an efficient iterative
numerical scheme to solve them. In Sec. III the iterative
procedure is compared with direct numerical integration of
the Bloch equations. Pulse shape effects are studied in detail
for two different pulse envelopes, hyperbolic-secant and 0p
pulses, interacting with a Doppler-broadened three-level sys-
tem. In Sec. IV we discuss the role of the femtosecond pulse
train parameters—the laser repetition period and interpulse
phase difference—in the outcome of the sequential two-
photon absorption process. In Sec. V previously reported re-
sults from coherent-control experiments of a three-level atom
in cascade configuration are discussed in the light of the
theory developed here, which takes into account coherent
accumulation in these systems. Finally in Sec. VI the con-
clusions are presented.

II. ITERATIVE SOLUTION

We consider a three-level atom in a cascade configuration
interacting with an electric fieldEstd from a laser pulse, with
central frequencyvL. The fundamental, intermediate, and
upper levels are labeledu1l, u2l, and u3l, respectively. The

Hamiltonian of the system is given byĤ=Ĥ0+Ĥint, where

Ĥ0="v12u2lk2u+"v13u3lk3u is the Hamiltonian of the free

atom, withvi j =v j −vi and v1,v2,v3. The couplingĤint
describing the interaction between the atom and the electric
field is

Ĥint = − m12Estdu1lk2u − m23Estdu2lk3u + H.c.

We consider that the pulse bandwidth is large enough to
cover both thev12 andv23 frequencies.

The Bloch equations describing the temporal evolution of
the various elementsrkl of the atomic density matrix are
given, in the rotating-wave approximation, by

]r33

]t
= Si

m23E * std
"

s23 + c.c.D −
r33

T33
, s1ad

]r22

]t
= Si

m12E * std
"

s12 + c.c.D − Si
m23E * std

"
s23 + c.c.D

−
r22

T22
+

r33

T33
, s1bd

]s23

]t
= id23s23 + i

m23Estd
"

sr33 − r22d + i
m12E * std

"
s13 −

s23

T23
,

s1cd

]s12

]t
= id12s12 + i

m12Estd
"

s2r22 + r33 − 1d − i
m23E * std

"
s13

−
s12

T12
, s1dd

]s13

]t
= id13s13 + i

m12Estd
"

s23 − i
m23Estd

"
s12 −

s13

T13
, s1ed

where Tkl is the relaxation time of the elementkl of the
density matrix, andEstd=Estde−ivLt is the slowly varying en-
velope of the laser pulse. The population of level 1,r11, was
eliminated from Eqs.(1) by the normalization condition
o jr j j =1. The coherences are represented in terms of their
slowly varying envelopes:s12=r12e

−ivLt, s23=r23e
−ivLt, and

s13=r13e
−2ivLt. The three detunings are defined relative to

the laser’s central frequencyvL as

d12 = v12 − vL, s2ad

d23 = v23 − vL, s2bd

d13 = v13 − 2vL = d12 + d23. s2cd

A realistic model for a stabilized train of pulses coming
out of the laser must take into account the existence of the
phase difference between two consecutive pulses. Following
Ref. [17] and consideringTR as the laser repetition period,
we write this phase difference asDC=FR+vLTR, whereFR
is the round-trip phase acquired by the laser within the cav-
ity, and the second term comes from the group retardation in
one cavity round trip. The electric field for the pulse train is
therefore

ETstd = o
n=0

`

Est − nTRdeinDC = Fo
n=0

`

Est − nTRdeinFRGeivLt

= ETstdeivLt. s3d

It is clear from Eq.(3) that we can apply the rotating-wave
approximation for the whole train, where the slowly varying
envelope is nowETstd instead ofEstd. The frequency spec-
trum of ETstd consists of a comb of laser modes separated by
Dv=2p /TR and centered atvL. The frequency of theNth
mode of the laser is then given byvN, where

vN = vL +
2pN

TR
+

FR

TR
. s4d

It is known that in order to characterize a certain mode of the
laser spectrum only two parameters are necessary, which are
the mode separationDv and the frequency offset, which is
related to the phasefR [9]. In Eq. (4) the central frequency
vL is an arbitrary parameter and is kept fixed in the calcula-
tions performed here.
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In this article, we are interested in the situation where the
atomic relaxation times are greater than the laser repetition
period, and therefore both populations and coherences can
accumulate in the sample. The atomic system is supposed to
start at the ground state and later each subsequent pulse will
find the atom in an arbitrary state. Numerical integration of
the Bloch equations(1) can provide the temporal evolution
of the system for any initial condition. However, such inte-
gration requires computational times that forbid its wide ap-
plication to all problems treated in this article.

In order to circumvent this limitation, we have developed
a numerical procedure that allows us to probe the temporal
evolution of the system very efficiently. This calculation is
based on an iterative solution in which the state of the system
before thesn+1dth pulse from the laser is a function of the
state before thenth pulse. The iterative expressions for the
atomic state are obtained directly from the integration of
Eqs.(1) under the three following approximations:

(i) The pulse is very short compared to all atomic relax-

ation timesTkl. Thus, we can write

Estdet/Tkl < Estd.

(ii ) The pulse is very short compared to the laser repeti-
tion periodTR.

(iii ) Estd is weak enough to keep only the lowest-order
term in the perturbative series.

Approximation (i) is easily satisfied by femtosecond
pulses interacting with atomic systems, for which the relax-
ation times are on the order of 1 ns or greater. Approxima-
tion (ii ) is also easily satisfied for most femtosecond lasers,
even taking into account distortions introduced by the propa-
gation of the pulse through a resonant medium, as discussed
in the next section. Approximation(iii ) is clearly the most
restrictive one, as expected for a perturbative theory.

Let ri j
n be the elementi j of the density matrix describing

the atomic state before thenth pulse. IfEnstd is the envelope
of the nth pulse, the state before thesn+1dth pulse is then
given by

r33
n+1 = e−TR/T33huI3u2 + s1 − uI2u2dr33

n + uI2u2r22
n − sI2

*s23
n + c.c.d + sI3
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where
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The set(5) of equations forms the basis for all subsequent
discussions. Note thatI1 and I2 are proportional to the Fou-
rier transform of the pulse at the frequencies of the first and
second transitions, respectively. These factors are thus re-
lated to the processes of absorption and stimulated emission
on these transitions. The factorI3 is related to two-photon
processes connecting levels 1 and 3. The termsI4 and I5
represent second-order contributions to the one-photon tran-
sitions and are related to absorption saturation and stimulated
emission of the first and second transitions, respectively.I6 is
related to the variation of the population in level 2 caused by
spontaneous emission from level 3 to level 2 and from level
2 to level 1.

III. PULSE-SHAPE EFFECTS

If the laser repetition period is smaller than the relaxation
times of the system, the atoms never fully relax between
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consecutive pulses from the laser. In this situation, the me-
dium accumulates excitation in the form of coherence and
population in the excited states as the sequence of pulses
arrives. In order to treat this problem, the first step was de-
ducing Eqs.(5), which describe the interaction of individual
pulses from the train with the atom in an arbitrary initial
state. The next step is to employ these expressions to deter-
mine the temporal evolution of the system with a sequence
of pulses. This is done by the successive application of Eqs.
(5) to a certain initial state. Since this set of equations pro-
vides the state of the system before the arrival of the next
pulse, its successive application results in the description of
the desired temporal evolution over the whole pulse train.

In Secs. III A and III B we investigate the excitation of a
sequential transition by trains of hyperbolic-secant pulses
and 0p pulses, respectively. In order to make a connection
with previously reported experimental data[8,18], the values
of the parameters used in the calculations correspond to the
excitation of the sequential transition 5S→5P3/2→5D in a
rubidium vapor by a Ti:sapphire laser femtosecond. Thus the
laser is tuned to 778 nm, and we consider pulses of temporal
width Tp=140 fs, with repetition periodTR=13 ns. The lev-
els 5S, 5P3/2, and 5D are labeledu1l, u2l, and u3l, respec-
tively. The lifetimes of levelsu2l andu3l areT22=26.7 ns and
T33=241 ns[19]. For the homogeneous broadening, we con-
sider only radiative processes and takeT12=2T22=53.4 ns,
T13=2T33=482 ns, andT23=fs2T22d−1+s2T33d−1g−1=48.1 ns.
We also consider an inhomogeneous Doppler broadening of
linewidth dD /2p=0.2 GHz. The ratio between the dipole
moments of the first and second transitions ism23/m12.0.2
[20]. In both Secs. III A and III B, the magnitude of the
electrical field is such thatm12E0/"=0.2 THz, whereE0 is
the peak value ofEstd. Also, from these parameters, we have
I6sTRd.0.07.

In what followsdi j
0 represents the detuning, relative to the

laser’s central frequencyvL, for a group of atoms at rest in
the laboratory reference frame. In this case the detunings for
an arbitrary group of atoms in the Doppler profile can be
written asd12=d12

0 −d, d23=d23
0 −d, andd13=d13

0 −2d, whered
is the Doppler detuning with respect to the one-photon tran-
sitions and we neglect the difference(on the order of 10−3d)
in the Doppler detunings of the first and second transitions.
For simplicity, we also considerd13

0 =0, which means that the
laser central frequency is resonant by two photons for the
group of atoms at rest in the laboratory frame. The detunings
can then be written as

d12 = − D − d, s7ad

d23 = D − d, s7bd

d13 = − 2d, s7cd

where D=sv23−v12d /2=2p31.056 THz for the rubidium
transition we are considering. Note that the detuningd labels
the different groups of atoms within the Doppler profile.

A. Hyperbolic-secant pulses

In order to clarify how Eqs.(5) are applied to our prob-
lem, in Fig. 1 we compare results from a direct numerical

integration of Eqs.(1) with those obtained from Eqs.(5). We
consider a train of hyperbolic-secant pulses interacting with
an atom initially in the ground state. Equations(1) were in-
tegrated for one arbitrary group of atoms within the Doppler
profile using a standard fourth-order Runge-Kutta method
with adaptative step size[21]. The results forr22std and
r33std are plotted as the solid lines in Fig. 1(a). Equations(5)
are applied to the state of the system before an arbitrary
pulse of the train and provide the state just before the next
pulse arrives. The results forr22 and r33, after successive
applications of Eqs.(5) to the initial state, are given by open
circles in Figs. 1(a) and 1(b). As the lifetime of levels 2 and
3 are very different, their transient behavior also occurs in
different time scales as shown in pictures(a) and(b) of Fig.
1. As an estimate for the efficiency of this iterative solution
we notice that in a computer where the numerical integration
of Eqs. (1) takes about 1.5 h, the calculation based in Eqs.
(5) takes less than 10 s. In order to obtain the behavior over
the whole Doppler profile the first method becomes too slow
to implement.

The results fort.2 ms in Fig. 1(b) determine the value of
the stationary stater f for coherent accumulation. All the den-
sity matrix elements reach a stationary value in the same way
and they are numerically independent of the initial condition.
This behavior indicates that the final state of the system only
depends on a self-consistent condition that relatesrn+1 to rn.
This condition, however, cannot be simplyrn+1=rn, as in
incoherent accumulation theories[8,22], since there is a
phase differenceFR between two pulses. For the set(5) of
equations, the final self-consistent expression for the density

FIG. 1. Temporal evolution of the populationsr22 andr33 start-
ing at the fundamental state, interacting with a train of hyperbolic-
secant pulses. In picture(a) the solid lines come from direct numeri-
cal integration of Eqs.(1). The (a) and (b) frames show different
scales of the same temporal evolution where the open circles come
from successive applications of Eqs.(5). In (b) we plot one open
circle out of three to improve visualization. We setFR=0 andd
=0.
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matrix is quite cumbersome to write down due to the many
variables involved. We have preferred to follow a more di-
rect approach: the expression forrn+1 is iterated, beginning
in the initial stater0, until it reaches the stationary state we
wish to calculate.

In Fig. 1 we have consideredFR=0, TR=13 ns, and the
group of atoms withd=0. If the conditionsd12TR=2pN12
and d23TR=2pN23 are satisfied withN12 and N23 integers,
then we have an enhancement factor of order of 13 as com-
pared to the final resultr22 due to a single pulse, given by the
first maximum of solid line in Fig. 1. Forr33 this enhance-
ment factor is of order of 35 000. These values are much
larger than the incoherent enhancement factors expected
from the theories that consider only population accumulation
[8,22]. For the values ofT22 and T33 used here, these inco-
herent factors areg22=1.6 andg33=18 for the populations
r22 and r33, respectively. Such large enhancement factors
result from the constructive interference between the coher-
ences excited by the sequence of pulses. This can be under-
stood considering that the phases acquired by the coherences
with the succession of pulses are analogous to the phases that
result in the interference in a multiple-slit experiment
[13,23]. Based on Eqs.(5) and for the three-level system that
we study here, the conditions for constructive interference,
whenFR=0, are

d12TR = − DTR − dTR = 2N12p, s8ad

d23TR = DTR − dTR = 2N23p, s8bd

d13TR = − 2dTR = 2N13p, s8cd

where N12, N23, and N13 are integers. Note that when the
conditions(8a) and (8b) are satisfied, then Eq.(8c) is ful-
filled. These conditions correspond to the case of Fig. 1.

For other groups of atoms, withdÞ0, the conditions(8)
are not necessarily fulfilled. In this case the picture is more
complex and can lead to constructive or destructive interfer-
ences, depending on the value ofd. For a vapor of alkali
atoms at room temperature, the inhomogeneous Doppler
broadening is usually much larger than the homogeneous
broadening. Since the different velocity groups correspond to
different detunings, they are in different situations with re-
spect to the accumulation process. This is illustrated in Fig.
2, where the solid lines give the variation of the final popu-
lations,(a) r22

f and(b) r33
f with the detuningd, for the same

parameters of Fig. 1 and weighted by the Doppler profile
exps−d2/2dD

2 d. Notice thatTp!dD
−1, which guarantes the va-

lidity of Eqs. (5) for all d considered here.
Using definition(4) for the frequency of theNth mode of

the laser the conditions(8) to obtain constructive interfer-
ence forFR=0 can also be written as

v12 = vN12
, s9ad

v23 = vN23
, s9bd

v13 = vN12
+ vN23

. s9cd

These relations indicate that the peak structure in solid
lines of Fig. 2 is a direct consequence of the resonance con-
ditions. This observation is reinforced when considering
FRÞ0 in our analysis. In this case, the conditions for con-
structive interference are still the same as in Eqs.(9), so the
inclusion ofFRÞ0 in Fig. 2 leads to a simple translation of
the peaks by a quantity equal toFR/2pTR. We notice that for
a hyperbolic-secant pulse excitation the 1→2 one-photon
transition dominates the accumulation process. As a result,
the two-photon Doppler profile shows a periodicity of 1/TR,
instead of the expected 1/2TR.

In order to illustrate the transition from constructive to
destructive interference asd departs from a value satisfying
conditions(9), we also plot in Fig. 2 the dashed lines which
give the result for the same calculation, but with no accumu-
lation in the coherence. This is accomplished by artificially
setting T12=T23=T13=1 ns into Eqs.(5). In this case, the
approximation of short pulses(T22, T33, T12, T23, T13, TR
@Tp) is still valid, but the coherences do not survive from
one pulse to the next. The variation withd of final popula-
tions,r22

f andr33
f , is now determined by the Doppler profile.

In a crude manner it can be said that the part of the solid
curve above the dashed line in Fig. 2 results from construc-
tive interference, while the part below it results from destruc-
tive interference.

B. 0p pulses

One important characteristic of the set of equations(5) is
that, once the short-pulse approximation is satisfied, then
they are valid for any arbitrary pulse shape. This feature is
useful in the coherent-control techniques which involve ma-
nipulation of the phase and amplitude of individual pulse
shapes, which are crucial to determine the final atomic exci-
tation. In this section we discuss the accumulative processes
but now considering a 0p pulse, and our emphasis will be on

FIG. 2. The final populations(a) r22
f and(b) r33

f for the different
atomic velocity groups in the inhomogeneous profile, excited by a
train of hyperbolic-secant pulses. We considerFR=0 and TR

=13 ns. The dashed lines are obtained settingT12=T23=T13=1 ns.
In picture (b) the dashed line was multiplied by 50 to improve
visualization.
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the comparison with excitation by hyperbolic-secant pulses.
We show that these two pulse shapes yield significant quali-
tative differences in the final result, indicating the impor-
tance of studying the details of a quantum system interacting
with a train of pulses of arbitrarily shaped pulses.

In Fig. 3 are presented the results for the temporal evolu-
tion of the populationsr22 andr33 interacting with a train of
0p pulses. This figure is completely analogous to Fig. 1: the
solid lines in Figs. 3(a) and 3(b) are the results of numerical
integration of Eqs.(1), whereas the open circles result from
the successive applications of Eqs.(5) to the ground state. In
Fig. 3(c) we show in a large temporal scale only the results
from the successive applications of Eqs.(5) to the ground
state. The parameters are the same used in Fig. 1, the only
difference being the shape of the pulse.

One of main characteristics of a 0p pulse interacting with
a two-level atom is a null excitation of the sample after the
pulse passes through it[24]. In other words, it may be said
that the trailing edge of the 0p pulse undoes the action of the
leading edge, which can be verified after all the transients
that happen during the interaction of the pulse with the
atomic system are finished. For a cascaded three-level atom,
a 0p pulse that is resonant with the intermediate transition
also tends to cancel this transition. This explains the large
transient in Fig. 3(a) and the negligible value forr22 before
the next pulse arrives. However, when accumulation is taken
into account, the intermediate level will be also excited by
stimulated emission and spontaneous decay from the highest-
lying level. This is the origin of the small plateau that ap-
pears in Fig. 3(c), which clearly evolves on the same time
scale as ther33 population reaches its stationary state.

The contribution of the fast transient and the slowly

evolving plateau to the temporal average of the final state of
r22 can be calculated through the average ofr22 in the exci-
tation periodsTRd. It is verified that the plateau corresponds
to about 3/4 of the final average population of level 2. We
remark that the fast transient induced by the 0p pulse is a
linear effect that has approximately the same shape over the
whole pulse train. Therefore, the plateau is responsible for
any variation of ther22 population due to accumulation ef-
fects. Based on these observations, in the following analysis
we will only consider the contribution of the plateau,r22

f , to
the population of level 2.

The temporal behavior for the populationr33 shown in
Fig. 3 is very similar to that shown in Fig. 1. The enhance-
ment factor ofr33

f relative to single-pulse excitation deter-
mined by the first maximum of the solid line in Fig. 3(b),
but, however, is about 1300, much smaller than the value
obtained for a hyperbolic-secant train of pulses. This is due
to the fact that the sequential excitation pathway through
level 2 is now negligible. Note also that the enhancement
factor for ther22 population cannot be defined since ther22
excitation by a single 0p pulse vanishes. As can be seen in
Figs. 3(c) and 3(b) the final stationary populationr33

f is
larger than the final population of level 2, but ther33 excita-
tion due to a single pulse is smaller than the average(fast)
transient population ofr22. The population inversion in the
second transition observed in Fig. 3 is therefore a conse-
quence of the accumulation process.

The most significant characteristic of excitation by a train
of 0p pulse appears in the analysis of the excitation of the
system over the Doppler profile. Figure 4 shows the station-
ary density matrix elementsr22

f and r33
f for all groups of

atoms within the velocity distribution.
Compared to Fig. 2 which is obtained for a train of

hyperbolic-secant pulses, it is noticeable that the periodicity
of the peak structure forr22

f is now 1/2TR instead of 1/TR as

FIG. 3. Temporal evolution of the populationsr22 andr33 start-
ing at the fundamental state, interacting with a train of 0p pulses.
The solid lines, in(a) and(b), come from direct numerical integra-
tion of Eqs.(1). The open circles come from successive applications
of Eqs.(5). The pictures(a), (b), and(c) show different scales of the
same temporal evolution. In(c), we plot one open circle out of three
to improve visualization. We consider an optical density ofa0l
=21 and the other parameters are the same as in Fig. 1.

FIG. 4. The final populations(a) r22
f and (b) r33

f of the system
excitated by a train of 0p pulses for all group of atoms in the
Doppler profile. All the parameters are the same of Fig. 3. The
dashed lines are obtained settingT12=T23=T13=1 ns and the results
are multiplied by five to improve visualization.
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in Fig. 2. Ther33
f population shows the same periodicity as

r22
f . From conditions(8), we see that this periodicity indi-

cates that ther13 resonant coherence drives the process, be-
ing responsible for the observed constructive and destructive
interferences. This means that for excitation with a train of
0p pulse the two-photon transition dominates the accumula-
tion process, contrary to what is predicted for hyperbolic-
secant pulse excitation where the one-photon transition is
dominant where the 1→2 one-photon transition is dominant.

The effect of the 0p pulse in Eqs.(5) corresponds toI1
<0. In this case the nonzero source terms forr22 are related
to the second transition. These terms originate from incoher-
ent decay and stimulated emission from level 3 to level 2,
which explains whyr22

f follows r33
f . Note that the relation

between coherent and incoherent excitation profiles(dashed
line in Fig. 4) is also the same forr22

f andr33
f .

IV. PARAMETERS OF THE FREQUENCY COMB

The recent developments in the stabilization and measure-
ment of the main parameters that characterize the pulse train
delivered by femtosecond lasers have introduced a new para-
digm in the area of metrology at optical frequencies[9–11].
In these lasers typically 105–106 modes are excited, each one
with a frequency given by Eqs.(4) [25]. As previuosly men-
tioned, the two main parameters that characterize the fre-
quency comb are the mode separation and the frequency off-
set, which are directly related toTR andFR, respectively, and
it is important to be able to control these two parameters
independently[10]. In this section we investigate the depen-
dence of the atomic populations of the three-level system on
the parameters of frequency comb: interpulse phase differ-
enceFR, pulse repetition periodTR, and hyperbolic-secant
pulse shape. The atomic system is supposed to be Doppler
broadened, but with a frequency spread that is much nar-
rower than the pulse spectrum.

In what follows we refer to the resonance conditions Eqs.
(9) obtained forFR=0. As previously noted, once these con-
ditions are satisfied, if one makesFRÞ0, this will corre-
spond to a simple shift in the position of the peaks. For a
particular group of atoms this phase change can have a dra-
matic effect. When considering a Doppler-broadened atomic
system, the analysis becomes a bit more subtle. To find the

total population in a determined atomic level one must now
take an average over the inhomogeneously broadened pro-
file. If the Doppler width is much larger than the mode spac-
ing, dD@2p /TR, the effect of varyingFR for this average
value is therefore null, as may be seen from the dashed line
in Fig. 5. This is so because if Eqs.(9) are satisfied for some
group of atoms and a certainFR, this will remain true for any
otherFR.

On the other hand, varying the pulse repetition periodTR
leads to changes of the mode spacing, therefore determining
whether Eqs.(9) will be satisfied or not. To illustrate this
point Fig. 6 depicts the variation of the average over the
Doppler profile of the excited populations,kr22lI and kr33lI

with dTR, a small change in the pulse repetition period. It is
clear that whilekr22lI remains constant,kr33lI varies by more
than an order of magnitude. This behavior may be under-
stood by examining the resonance conditions(8), from which
it can be verified that ifTR=pN/D, then there will always be
a group of atoms with a particulard that satisfies all three
conditions given in Eqs.(8). In this casekr33lI reaches its
maximum value.

The populationkr22lI is not sensitive to this problem, as it
is governed by the coherencer12 for which the detuningd12
always satisfies the resonance condition for some group of
atoms. The populationkr33lI, however, depends crucially on
both the 1→2 and the 2→3 transitions, and must therefore
satisfy all three conditions in Eqs.(8). These conditions for
kr33lI may be stated in a simpler manner, by noting that for
the laser modes to match both atomic transitions, then the
difference between the atomic frequencies,D, must be equal
to some multiple of the mode spacing 2p /TR. For 0p pulses
the above results do not apply because the sequential excita-
tion mechanism which is responsible for the dependence of
kr33lI with TR is no longer effective.

The results from Figs. 5 and 6 may have an interesting
application in the control of femtosecond lasers for optical
metrology. The fact that the populationkr33lI is sensitive to
TR but not to FR indicates that monitoring this population
provides an interesting procedure for independent control of
TR: variations inTR produce measureable changes ofkr33lI,
while this quantity is independent ofFR.

FIG. 5. Population in the intermediate state,r22, for excitation
with a hyperbolic-secant pulse, as a function of the interpulse phase
FR for one particular detuning,d=0 (solid line), and its value av-
eraged over the Doppler profile,kr22lI (dashed line). In the last
case, no variation withFR is observed.

FIG. 6. Variation of the average populationskr22lI andkr33lI for
excitation with a hyperbolic-secant pulse, as a function of the inter-
pulse separationTR: kr22lI is independent ofTR because some group
of atoms is always found to be resonant by one-photon absorption,
while kr33lI only satisfies all resonance conditions whenTR

=pN/D.
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V. TEMPORAL COHERENT CONTROL

In this section we apply the theory developed in the pre-
vious sections to the temporal coherent control of a three-
level atom in a cascade configuration, including accumula-
tion in both populations and coherences, and compare the
results with previously reported experimental data in a ru-
bidium vapor [18]. Although this is not the best testing
ground for the theory developed here, as only the total popu-
lation kr33lI (averaged over the Doppler profile) is measured,
this can be considered as a first test. Also, as the relaxation
times of both atomic coherences and populations involved in
the experiment are greater than the pulse repetition period,
the present theory is more adequate to describe the experi-
mental results. In Ref.[18] a vapor of Rb atoms, enclosed in
a 5-cm-long sealed cell, is excited by pairs of laser pulses
tuned tolL=778 nm, which corresponds to the sequential
5S-5P3/2-5D transition. The excitation source is a Ti:sap-
phire laser generating pulses of<100 fs and a repetition pe-
riod of 13 ns. The measurement ofkr33lI is performed indi-
rectly by monitoring the fluorescence at 420 nm from the
6P3/2-5S transition, which is proportional to the 5D popula-
tion. The blue fluorescence is collected from the center of the
cell in a right angle geometry. At the focal region the beam
waist is<70 mm, and the average laser power is<100 mW.
Once the pulse arrives at the center of the cell it has evolved
into a 0p pulse, due to propagation in a resonant medium. In
this case our theory predicts thatkr33lI is insensitive to the
phaseFR.

In order to describe this new situation, the first modifica-
tion to be introduced in Eqs.(5) is to take into account that in
Ref. [18] a train of copropagating pulse pairs is used instead
of a train of single pulses. We consider pairs of pulses of
equal shape, separated by a temporal delayt, which is typi-
cally much shorter than the pulse periodTR. The envelope of
the nth pulse pair is given byEnstd=En1std+es−ivLtdEn1st−td.
The integralsI1–I5 in Eqs.(5) now depend ont and must be
rewritten as

I1 = i
m12

"
f1 + e−iv12tgẼn1sd12d, s10ad

I2 = i
m23

"
f1 + e−iv23tgẼn1sd23d, s10bd

I3 = F * s0d + e−iv12tF * s− td + e−iv23tF * std + e−iv13tF * s0d,

s10cd

I4 = 2Gs0d + e−iv12tGs− td + e−iv12tGstd, s10dd

I5 = 2Hs0d + e−iv23tHs− td + e−iv23tHstd, s10ed

where the functionsFstd, Gstd, andHstd are defined as

Fstd = −
m12m23

"2 E
−`

`

dtE
−`

t+t

dt8En1
* stdEn1

* st8deid23teid12t8, s11ad

Gstd =
m12

2

"2 E
−`

`

dtE
−`

t+t

dt8En1stdEn1
* st8de−id12teid12t8, s11bd

Hstd =
m23

2

"2 E
−`

`

dtE
−`

t+t

dt8En1stdEn1
* st8de−id23teid23t8. s11cd

These functions all represent second-order processes in the
applied fields but onlyFstd connects states 1, 2, and 3.
Within the existing terms some present oscillations in the
optical domain while others can be correlated to Ramsey-
fringe-like experiments[3], occurring at time scales ofTopt
<2p /vL and Tquant<2p /2vL, respectively. We only con-
sider the data taken at scan rates that are fast compared to the
electronic aquisition times, in which case the interferometric
effects are averaged to zero. Under this condition other
(slower) oscillations occur at a periodTosc=p /D, as shown
in Fig. 7(a). These oscillations are related to stimulated emis-
sion in the transition 3→2 [8,18] and are properly explained,
considering only population accumulation[8]. The magni-
tudes of the final population in levels 2 and 3 predicted by
incoherent accumulation theories, however, are significantly
smaller than what is observed in the present theory.

As previously mentioned, this is only a first test of our
method, and we are mainly interested in its sensitivity with
the chosen fitting parameters, which are the pulse duration,
pulse chirp, repetition periodsTRd, and the phasesFRd. In
this particular case, where the system is Doppler broadened
and it interacts with a 0p pulse, it was important to observe
that the qualitative form of the outcome of our simulations is
sensitive to the frequency comb parameters only around the
central peak.

To compare the numerical calculations with the experi-
mental data, averages over 200 different values within each
optical period are performed in the numerical calculations in
order to simulate the effect of the fast scanning. For each
value of the pulse separationt, the iterative procedure was
applied to obtain the final atomic coherences and popula-

FIG. 7. (a) Variation of the blue fluorescence with relative delay,
t, between the pulse pairs for an atomic density of 7
31012 atoms/cm3 and(b) numerical results for the variation of the
population kr33lI as a function oft, averaged over the Doppler
profile.

FELINTO, ACIOLI, AND VIANNA PHYSICAL REVIEW A 70, 043403(2004)

043403-8



tions. Averaging over the Doppler profile was also performed
as it is the total populationkr33lI that is experimentally ob-
served.

For the frequency comb parameters we have takenFR
equal to zero, because of the insensitivity of the observed
output to this parameter. Because the form of Eqs.(5), we
conclude that the interval over whichTR should be adjusted
is determined by 2p /D<1 ps. Out of this range the results
start to repeat themselves. The value ofTR which gives the
best agreement with theory was found to be 13.0005 ns.

Another parameter that deserves attention is the frequency
chirp of the laser. At the entrance of the cell the pulse is
approximated by a hyperbolic-secant pulse which evolves
into a 0p pulse due to propagation in the resonant medium.
A quadratic phase in the frequency domain, defined by
fsVd=aTp

2V2/4, is introduced in the pulse entering the cell,
wherea is an adimensional parameter that characterizes the
chirp, V is the frequency measured from the center of the
pulse spectrum, andTp is the pulse duration. The introduc-
tion of chirp influences mainly the peak in the signal ob-
served fort<0.

In Fig. 7 are shown the comparison between(a) the ex-
perimental results and(b) the numerical results, and the main
parameters used in the later arem12E0/"=1.4 THz, a=0.8,
and TR=13.0005 ns. It is important to recall that as only
kr33lI is experimentally measured we cannot completely test
the theory developed here. The overall behavior of the
coherent-control experiment, however, has been satisfacto-
rily reproduced. The main differences compared to the theory
presented in Ref.[8] are observed around the central peak,
where accumulation in the coherencesr12 and r23 play an
important role for the sequential excitation process.

It is important to note that for the numerical data pre-
sented in Fig. 7 we reached our computational limits: it has
taken about 7 h to obtain these results. Full numerical inte-

gration of the Bloch equations would be out of question in
this case.

VI. CONCLUSIONS

In this article we have presented a numerical iterative pro-
cedure to treat the problem of accumulation effects in both
the population and coherences of an atomic system, for a
sequential two-photon transition. The total excited popula-
tions in the intermediate and final states have been compared
to incoherent accumulation theories, where dramatic differ-
ences are observed. We have used this procedure to analyze
the effects of envelope pulse shapes for the outcome of the
two-photon absorption process. In particular it is predicted
that for a 0p pulse the spectral structure in the final popula-
tion of bothr22

f andr33
f has a periodicity which is twice that

predicted for a hyperbolic-secant pulse envelope. This indi-
cates that for a 0p pulse the direct two-photon transition
dominates the accumulation process, while the one-photon
sequential transitions are dominant for the hyperbolic-secant
pulses. Also, it has been shown that, depending on the pulse
shape and the kind of measurement that is performed, the
atomic system response may be more or less sensitive to the
frequency comb parametersFR and TR. A method is pro-
posed for controlling the pulse repetition periodTR, indepen-
dently of the interpulse phaseFR, which is important for
optical metrology with femtosecond lasers. Further, we have
analyzed the outcome of coherent-control experiments using
pairs of pulses, including coherent-accumulation effects.
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