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Casimir-Polder interaction between an atom and a cavity wall under the influence
of real conditions
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The Casimir-Polder interaction between an atom and a metal wall is investigated under the influence of real
conditions including the dynamic polarizability of the atom, finite conductivity of the wall metal, and nonzero
temperature of the system. Both analytical and numerical results for the free energy and force are obtained over
a wide range of atom-wall distances. Numerical computations are performed for an Au wall and metastable
He', Na, and Cs atoms. For the Hatom we demonstrate, as an illustration, that at short separations of about
the Au plasma wavelength at room temperature the free energy deviates up to 35% and the force up to 57%
from the classical Casimir-Polder result. Accordingly, such large deviations should be taken into account in
precision experiments on atom-wall interactions. The combined account of different corrections to the Casimir-
Polder interaction leads to the conclusion that at short separations the corrections due to the dynamic polariz-
ability of an atom play a more important role than—and suppress—the corrections due to the nonideality of the
metal wall. By comparison of the exact atomic polarizabilities with those in the framework of the single
oscillator model, it is shown that the obtained asymptotic expressions enable calculation of the free energy and
force for the atom-wall interaction under real conditions with a precision of 1%.
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I. INTRODUCTION The early stages of measurements and calculations of the
The interactions of atoms with a single cavity wall have coefficientCy for both metal and dielectric surfaces are re-

long been investigated in different physical, chemical, anJIected in_R(_afs.[g—lj} and Refs[12,13, res_pectively, but
nly qualitative agreement between experiment and theory

?rg)r[r?%/l;ﬁlougr(;,z(:]‘s;::’glin%tdelqg tﬁgsr?i[;pr?(i)r?teians? i:Cna;eO”_nﬁlas achieved. The same can be said on measuring the van
. e ger Waals forces between a Rydberg atom and a metallic
technologlpal apphcanqns O.f atoms near surfaces an urface in Ref[14]. More precise measurements of the van
mesoscopic-scale atomic devices, there is a need for accurgig, \naals and Casimir-Polder interaction between an atom
characterization of atom-surface interactions. Recent experisng a metal or dielectric wall, respectively, were performed
mental studies include “quantum reflection” of ultracold j, Refs.[15,16 and Ref[17]. The increased precision high-
metastable Ne atoms on Si or glass surfa@sand low-  jighted the need for more exact theoretical expressions for
energy’He atoms on a quartz surfafdj, ultracold Rb atoms  the potential at zero temperature evolving from the van der
or a Rb Bose-Einstein condensate interacting with Cu or sili\Waals potentiaV/s(a) into the Casimir-Polder potentis,(a)
con nitride surface$4], and diffraction of atoms and mol- with increase ofa [17]. This potential should take into ac-
ecules from silicon nitride nanostructure transmission grateount the realistic experimental conditions like the finite con-
ings [5,6]. ductivity of the wall metal. Additionally the dependence of
At separations less than a few nanometefisut larger the electric polarizability of the atom on frequen¢gye-
than several angstromthe interaction potential between an glected inV(a)] is influential up to separations where the
atom and a wall takes the foriy(a)=—Cs/a® [7] and it  thermal corrections to the Casimir-Polder interaction become
describes the nonretarded van der Waals force. At muchssential. Accordingly the thermal effects should be taken
larger separations, where the effects of retardation are esseifito account together with the effects of retardation.
tial, the atom-wall interaction is usually described by the During the last few years great progress was made in the
Casimir-Polder potentiaV,(a)=-C,/a* [8]. In between measurements of the Casimir force b.etwc_aen two _macrobod—
these limits the interaction smoothly changes frugia) to €S (€€, .g., Ref§18-23 and the review irf24)). Finally,
V,(a) asa is increased. In accordance with the physical nathe theoretical expression for the Casimir force with all cor-

. .. rections due to deviations from a perfect surface was con-
ture of these potentials<C; depends only on the Planck’s firmed experimentally up to 1% at 95% confiderj2g]. Ex-
constant whereaS, depends also on the velocity of light.

periments on ultracold atomg25] and Bose-Einstein
condensates near surfades26,27 are likely to bring the
measurements of atom-wall interactions to the same level of

*On leave from North-West Technical University, St.Petersburg,precision that was already achieved in the case of the Ca-
Russia. simir force between macrobodies. Thus, there is urgent need

Ton leave from Noncommercial Partnership “Scientific Instru-in obtaining the theoretical results for atom-wall interactions
ments,” Moscow, Russia, and Federal University of Paraiba, JoAwith increased precision presented in forms convenient for
Pessoa, Brazil. the comparison with experiments.
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The general foundations for the calculation of the van deproper account of the atomic polarizability, finite conductiv-
Waals and Casimir forces between bodies described by thigy of the wall metal, and nonzero temperature is necessary
frequency-dependent dielectric permittivityw) at arbitrary  for precision calculations of the Casimir-Polder interaction
temperatureT are given by the famous Lifshitz theory between an atom and a wall. Section V contains our discus-
[28,29. Lifshitz theory leads to the formula representing thesjon and conclusions.
free energy of the atom-wall interaction in terms of the sum
over discrete Matsubara frequencies zero temperature it
was derived in Refs[30-33). The above potential¥/;(a)
and V,(a) are obtained from this formula as the limiting

cases at small distancas< A, (wherek, is the characteristic Let us start from the Lifshitz formula expressing the free
absorption wavelength of the dielectric materehd at large  energy per unit area in the configuration of two parallel semi-
distancesa>\, (when temperature goes {0 ZEroespec-  gnaceqone dielectric and the other one metalliseparated

tively. In Ref. [34] the Lifshitz formula for the atom-wall ",y istancea, at temperatureTl in thermal equilibrium
interaction was used to compute numerically the free energ§28_3q. '

of hydrogen atoms, hydrogen molecules, and helium atom
in the proximity of a silver wall as a function of separation e
distance and temperature. The atomic dynamic polarizability FoM@,T) === k, dk,
was represented in the framework of a single-oscillator Ti=0 Jo
model. However, the errors introduced into the values of the ) M —2aq
van der Waals and Casimir-Polder force by the single- XAIn[2 =&,k )r(&.k e ]
pscililg_tor model as pppos_ed to using the exact atomic polar- +In[1 —r'i(&,ki)rT(&,kl)e_zaq']}- (1)
izabilities were not investigated. ) o ) .

In the present paper we derive the analytic results for th&lere the reflection coefficients for dielectric and metal, re-

Casimir-Polder atom-wall interaction applicable over widespectively, are defined as

Il. LIFSHITZ FORMULA FOR AN ATOM (MOLECULE)
NEAR A METAL WALL

ranges of separations and temperatures. This can be done DM DM

using different approximations for the atomic dynamic polar- TF'M(&,M) = %,

izabilities giving sufficiently precise results at all Matsubara etk

frequencies contributing to the Casimir-Polder force. We

start from a brief simple and transparent rederivation of the le,M -q

free energy for the atom-wall interaction from the Lifshitz roM@E.k ) = o 2
formula for two semispaces at nonzero temperature. k™" +a

The separation region covered in calculations of the fregne dielectric permittivities>"M=£PM(i¢) are calculated at

energy and force extends froa® A, (where\ is the plasma  he imaginary Matsubara frequenciesi =2mkgTI/4,|

wavelength of the wall metato about Sum and larger. At - =g 1,2 . k;'is the Boltzmann constant, and the following
the shortest separation covered, the thermal corrections afgjiations are introduced:

shown to be negligible. In this region the analytical expres-

sions obtained for the Casimir-Polder energy and force take 5 §|2 oM ) 5 Mglz

exact account of the atomic dynamic polarizability and we o =\/Ki+ 2’ k=KLt 2 3
present a perturbative expansion in powers of the relative

penetration depth of the electromagnetic zero-point oscilla¢k, is the wave vector in the boundary planes restricting both
tions into the metal of a wall. For larger separations, thesemispacgs A prime near the summation sign means that
analytical expressions given for the free energy and force arghe term forl=0 has to be multiplied by 1/2.

exact in terms of temperature but perturbative in the small In order to derive the free energy for an atom near a metal
parameters characterizing the atomic polarizability and thevall, we consider a rarefied dielectric and expand the dielec-
relative penetration depth. The obtained expressions overlagic permittivity in powers of the number of atoms per unit
in the region of intermediate separations and can be used t@lumeN preserving only the first-order contributi¢as:
calculate the free energy and force between different atoms

(molecule$ and metallic walls made of different metals with eP(i§) = 1+ dma(i§)N+O(N?), (4)

0,
accuracy of 1%. where a(w) is the dynamic polarizability of an atom.

The paper is organized as follows. In Sec. Il the main - . .
notation is introduced and the rederivation of the Lifshitz Subsutu_tmg Eq(4)_|nto Eqs.(Z) and(3) and expanding
up to the first power i\, we obtain

formula for the free energy of an atom- and metal-wall in-
teraction at nonzero temperature is presented. In Sec. lll it is &

shown that this formula is not subject to certain difficulties r‘?(a,ki) = Tra(i§|)N<2 —2—'2> +O(N?),

that arise in the case of two metal wallsee Ref[35] and a¢

references therejn We present two analytical expressions )

for the Casimir-Polder free energy and force applicable at . N¢§

short and large separations and overlapping at moderate rE(f"kL):”“('fl)@J'O(NZ)' (5)
separations. Section IV contains the computational results for '

different atoms near an Au cavity wall. It is shown that With account of Eq(5), the free energyl) takes the form
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0

2 a(|§|wc f dye_y

(2 )3 1q

§ & <2y (G.y) + 0N @Gy = @Gy -
|:<2—q_l>r (§|, L)+ 2 2 L(gl! L):| : I l | : I (12)

IC
X e 24 + O(N?). (6) According to the above derivation, the free enefgg) of
the atom-wall system is a direct consequence of the Lifshitz
formula (1) for two semispaces, one dielectric and the other
one metallic. At zero temperature in the linaft,eM — oo the
latter leads[24,32 to the classical Casimir result for the

FOM(@,T) = Nfc FM(z, T)dz+ O(N?), (7) ~ energy per unit area in a configuration of two plates made of
a ideal metal[36]:

FoM(a,T) = > alig) J k,dk, FMa,T)=-
1=0 0

Using the additivity of the first-order term in the expan-
sion of the free energy in powers bf one can also write

where 7*M(z,T) is the free energy of one atom spaced Ea) = - 7he
apart of a metal wall. 720a%°

Equating the right-hand sides of E¢6) and(7) and cal- -
culating a derivative with respect tin the limit N— 0, we On the other hand, the Casimir-Polder energy at zero tem-

(13

obtain perature for an atom near a wall made of ideal metal is ob-
tained from Eqgs(9), (11), and(12) in the limit eM — co:

FM@,T) =~ kg T2 ali ) f k,dk, e EAM(a) = - he 2 f dea(i{w) (2 + 20+ 2)et. (14)

1=0 l6ma” J,
{Zr (&,k)) + [rM(§|,kL) r (fhki)]}- At large separations the contributing frequencies are low, so
that a(i {w;) = @(0) and Eq.(14) leads to the often-used for-
(8)  mula first derived in Ref[8]:
The obtained expression for the free energy of an atom-wall EAM(g) = — 3hc (0) (15)
interaction(up to the notationcoincides with the results of 0 8ma’

Refs.[30—33 extended to the case of nonzero temperature.
Note that to compare with the previously obtained results atnote, however, that in fact the approximation of static polar-

T=0 one should make in E@8) a substitution izability works well at separations where the thermal correc-
tions to the Casimir-Polder force become essential; see Secs.
* A Il and V).
kBTE’ — — dé. (9 Note that in a recent wor[37] the magnitude of the en-
1=0 2mJo ergy obtained waé—g times less than in Eq15) [one more
For use in the next section, it is convenient to express EcEXtra factor of 1(4) is caused by the different units used in
(8) in terms of dimensionless variables ef. [37]]. In contrast to Ref[8], where the boundary con-
ditions were imposed on field potentials, in REB7] the
2a8  § boundary conditions for the field strength were used as the
y=2aq, 4{=—1=—", (10 primary ones. This results in the multipié instead ofg as
¢ We in EQ. (15). According to Ref[37] the boundary conditions

in terms of the field strength describe the two-dimensional

where “’FE_“’C(a)z(:/ _(23) is .the characteristic frequency of ideally conducting layer. The possibility of physical realiza-
the Casimir-Polder interaction between an atom and a Wa"tion of such layer is questionable.

Then the reflection coefficient®) for a metal can be written From the expression for the free energy, E), the force

as acting on an atom near a metal wall can be simply obtained:
T
e y— Ny + (e -1 d F"M@,T
Mgy) = My =y + e - 1) FAM(a,T):——()
'y +\y2+ (e - 1) da
TR =-2ksT> a(ig) | Kk, dk, gPe 2
W+ e -1) -y Ble
Mgy = — (1D) = °

W2+ BN -1)+y

§2
X {erg.,ku +55ME k) - rM(f..kl)]}.

wheree=M(if ). In terms of dimensionless variables the ac
free energy(8) takes the form (16)
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In terms of dimensionless variabl¢s0), Eq. (16) takes Remarkably, in the configuration of an atom near a wall
the form no thermodynamical inconsistency arises. This is explained
" by the fact that in the above EqE) and (12) the metal
KeTor . ” _ flecti flicient™ i ltiplied by the second power of
AM __kel y reflection coefficient’] is multip y p
FH@T) 8a4§) a(lec)Ll ydye frequency. As a result, it does not contribute at zero fre-

quency independently of its value.
x{2y2r)' (4. y) + SN Gy = Gy - As we will see in Sec. IV, in the configuration of an atom
(17)  near a wall the comparative role of the finite conductivity
) o corrections is less than for two parallel plates. Because of
In perfect analogy with Eq(15), the Casimir-Polder en-  thjs, the plasma model dielectric permittivitl9) can be
ergy of an atom and a wall made of ideal metal at zerq;sed not only in the separation region fror to 2.3 um

temperature is given by (where, as was shown in Rg#3], it gives results closer to
3the those obtained from the optical tabulated data for the com-
FoM=- 2 =a(0) (18  plex refractive index than from the Drude moylelt also at
7a

a=2.3 um. In fact, for gold at such large separations the
(see Secs. Il and IV for the corrections to this formula duecharacteristic frequency belongs to the region of the anoma-
to real experimental conditions lous skin effect where the effects of nonlocality are essential.
In Sec. IV we will see, however, that at=2.3 um the over-
all correction due to the nonideality of a metal does not
IIl. ANALYTICAL REPRESENTATIONS FOR THE exceed 1% and therefore is not sensitive to the model used
CASIMIR-POLDER INTERACTION for its description. o
The second function that should be fixed in order to de-
Starting in this section and in the rest of the paper we willrive the analytic representations for the free energy is the
consider the retarded Casimir-Polder interaction, which takedynamic polarizability of an atom. It is given by the familiar
place at sufficiently large separations between the atom angikpression(see, for instance, Refl1])
cavity wall and for which analytical results can be obtained.
To find the analytical representations for the free en¢t@y alifoy) = 9_22 fon (21)
one should fix in some way the expression for the dielectric T m4 W+ W27
permittivity along the imaginary frequency axike nonide-
ality of a metal in atom-wall interaction was discussed inwheremis the electron mass arfg, is the oscillator strength
Ref. [38]). At separations larger than the plasma wavelengttof the nth excited-state to ground-state transition. For our
A, but less than about 2,8m, where the characteristic fre- purposes it is convenient to represent B2{) identically in
quency o, [see Eq.(10)] belongs to the region of infrared the form
optics, the dielectric permittivity can be described by the

free-electron plasma model aifiwy) = (0) C—nz (22)
wz n 1 +:8A,ngl
i£)=1 +—b
elig)=1+ §|2 ' (19 where the following notations are introduced:
Here w,=2mc/\, is the plasma frequency of a metal under f wc(@)
consi(a)gratign P P q y Ch= %1 BA,n = BA,n(a) = :) y (23)
: on’ 0
It is common knowledge that(w) ~ 1/w whenw— 0. By wénE Tn )
this reason, in connection with the zero-frequency term of n' Yo’

the Lifshitz formula(1), describing the case of two parallel

plates, the Drude dielectric function was discusgz®i4qQ: and a(0) is the static atomic polarizability.

Now let us consider the free energy from Ef2) using
w? Eqg. (19) at separationa=\, and expand it in powers of the
e(i§) =1 +ﬁp(7)], (200 small parameterB,= B,(a)=w(a)/ w,= 35/ (2a), where &

bLety =\p/(2m) is the penetration depth of electromagnetic zero-

where ¥(T) <w, is the relaxation parameter. It was found, point oscillations into real metal. Substituting E49) into

howevelr[41,42, that the substitution of E¢20) into Eq.(1) Eq. (11) and preserving terms up to the second poweBjn

leads to a violation of the Nernst heat theorem and thereforene obtains

is inadmissible[this grave result is caused by the equality 5

r“f(o,ki):o which holds for Drude metals, whereas for ideal Mg y)=1 —%ﬁ + 2_§|4

metal both reflection coefficients at zero frequency are equal 1o y "Py?

to unity]. The resolution of this thermodynamical puzzle was

found in Refs.[35,42. It is based on the use of the surface M —1- 2 32

impedance boundary condition instead of the bulk dielectric G =1 B+ 2y 24

permittivity depending only on frequenaya model which  With the help of Eq.(24) the expansion of the free energy

was found to be inadequate to describe a real metal (12) takes the form

B
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T % The coefficientss and g; in Eq. (29) are known functions
FMa,T)=- fasz'a(ig,wc) dye?Y depending on temperature and are defined as
1=0 ¢
P ' I . 1 . e’ o= 7e’(e’+ 1)
x[y2+ (;‘ - Sz.zy)/sp+ (257‘— y—'2 * §|2y2)/3§] e-1 (€= 1 €-1°"
(25) e7(e?7 + 4™+ 1) 7e7(e3 + 116*"+ 1167 + 1)
= T— 1 4 v = T— 1 5 ’
Quite analogously, the expansion for the force follows from (€"-1) (€"-1)
Eq. (17):
7e7(e* + 2687 + 6667 + 26" + 1)
P - %= (e - 1)° (0
FAa,T) =~ "% alifw) | ydye”
4a" 15, 4 B
a & = 7>, IT(0,7),
x{yh(;'—%fy po+ 2= L+ v 3. 6=72 T4

(26) wherel'(a,X) is the incomplete gamma function.

_ _ _ _ As is seen from Eq.30), at high temperaturger, equiva-
Notice that exactly the same expressions are obtained if thiently, at large separatiopsll s and g; are exponentially
reflection coefficients are expressed in terms of the surfacemall. As a result, the correction fact@29) and the free
impedance in accordance with RE35]. Taking into account  energy(28) take the especially simple forms
that the role of the finite conductivity of the metal is sup- T
pressed by the atomic dynamic polarizabilisee Sec. IV, aT) = T FAM(3 T) = - ~B_ (0 31
the corrections of higher orders than 2 in E(5) and(26) @) 6’ @m 4a3a( ), (3Y)
can be neglected. . . .

We consider next the two asymptotic domains of EqS.demonstratlng that at high temperatufésge separations

: the Casimir-Polder free energy is linear in temperature. In
(25) and(26)—namely, large separatioas=(1-1.9 um and ) . )
small separationa.,<a=(1-1.5um, which overlap a@ fact, Eq.(31) is applicable starting from=5 um (see Sec.

~(1-1.5.m. At large separations the additional set of pa-lv)' The same result at high temperatures follows from the
rametersg, , defined in Eq(23), can be used. In fact, for zero-frequency term of the Lifshitz formul@?) if an ideal

) metallic wall is considered.
the atoms of interesfsee Sec. Y the parameterg, , be- | ; . :
. n analogy with the free energy, the asymptotic expression
come less than 0.1 @&=(1-1.9um. Both parameters, 9y 9y ymp P

. . for the Casimir-Polder force between an atom and a wall at
and B, , further decrease with the increaseaofThen, up to large separationga is greater than 1—1.5m) can be ob-

the second power in these parameters, the dynamic polarigsineq Substituting Eq27) into Eq. (26), we represent the
ability of Eq. (22) is force in the form

aligwe) = a(0) X cy(1 - B2 D). (27) FAM(@,T) =FaM@«(a,T). (32

HereFyM(a) is defined in Eq(18), and the correction factor

We now substitute Eq27) into Eq.(25) and perform the  for the forcex(a,T) is
integration iny and the summation it [44]. For conve-
nience, the free energy obtained is represented in the form K@) = 2_7'4[3 + B8y + 65, + 35, + 55— 2(35, + 35+ 5,) B,
FMaT)=E"(@)n(@T), (28)

+ (65, + 653+ 5S4 + 355~ gg) 85 — (65, + 653+ 35

whereEj™(a) is the Casimir-Polder energy of an atom near a )
wall made of ideal metal at zero temperat{see Eq(15)]. +55) 2, CHIBA,n:|’ (33
We also introduce the dimensionless temperature parameter n
7=27T/ T, Where the effective temperature is defined fromwhere the notation was introduced in Eg0).
ke Tetr=7iwc=fic/(2a). In terms of this parameter the dimen- At the high-temperaturelarge-separationlimit of Eqg.
sionless Matsubara frequencies are expressefl=ds. The  (33) one has
result for the correction facton(a,T) is AT

B

4a*

K(a,T):g, FAM(,T) = - 2B 1(0). (34)

r
n(a,T)=é[1+250+281+sz—(382+3ss—94)ﬁp _ ,
The same result is obtained &t o from the zero-frequency
_ 2 term of Eq.(17) for the ideal metal wall.
¥ (25 2%+ 3%~ 55+ 00y Now we return to Egs(25) and (26) and consider the
— (25, + 255+ 59>, CBan |- (299  asymptotically small separationg,<a<(1-1.5um. In
n ’ this separation region the thermal corrections are negligible.
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Thus one can replace the summation in E§) by an inte- [here the integration interval is separated into two parts
gration as in Eq(9). Substituting also the dynamic polariz- where different Taylor series expansions of arttawill be
ability from Eq.(22), using Eq.(15), and changing the order used. Expanding arcta(z) on the right-hand side of E¢36)

of the integrations i’ andy we obtain and integrating with respect tn we arrive at44]
AM 1 AM N T 2 Y dg
E*Ma) = —EgM@X ¢, | dye¥|y?| — 2
6 n 0 0 1 +:8A,n§ 1 1B T
| = ——e YBan3, + —T'(3,1/Ba ) — 3., 37
+(lfy §4d§ _3ny é’zd{ )ﬁ lgi,ne E1 2 ( ﬁA,n) 22 ( )
yJo 1+B5.8 T o 14838 7°
N (2 YoM (Y g where
o L+Bind® Yo 1+BRn0

+y2fy§2—(¥2)ﬁg] %9 523 OV s,
0 1+BA,n§ l_k=O (2k+ 1)(2k+4)1 1\ ' BA,n ’

The integrals in Eq(35) can be calculated in terms of the
infinite series and higher transcendental functions. By way of

example, consider the first integral - 1)
- Y dg 3,22 oGl 2- 21Uy, (39
= f ayyer| % = @ DAL ‘
0 0 1 +ﬁ§,n§2 "
1 1/ﬂA,n
= f dy y’e™ arctariBany) and,F,(z,2,;2) is the degenerate hypergeometric function.
Ban| Jo Calculating all other integrals in E¢35) in a similar way,
o we obtain the energy of the Casimir-Polder atom-wall inter-
+ f dyy’e™ arctariBa ny) (36)  action at short separations:
1UBan

E*M(a) = EgV(a) n(a,0) = éEéWa)E cn{ Bane VPans, + gna, 1Ban)— S+ {4ﬁ;?ne‘”ﬁkn23 + gﬁ;?n[ﬂz\?nno, 1IBan)
-4 8 2 —6 -1/ 10 ¢
+30(2, 1) 1= 4Banl (1, 1Bar) = 2Banl (3, 1Bar) + 434 | Byt | = Bane ™ A5 = " Brnl'(0, 1/Ba)

2 22
=SB, 1Ban)+ LB (4, LIBar) + 2 Bar 28T (L LB Brl (= 1, 1Bar) = T(3, 18] + 26] BS} :

(39
[
I—_|ere21,2_2 are defined in Eq(38) and the following nota- * (- DK(4K2 + 16k + 11)
tions are introduced: 5= gl (k+ 2)(2k+ 1)(2k+ 3)(2k+5)
- (CD4Kk+2) _ X1F1(1,2+5;1/Ba ),
23_21 2K+ D2k i AT A Ban), o |
s oy CUET 162557
o (- 1kt 8T & (2k+1)(2k+2)(2k + 3)
3422 (= 2k 1,18 ),
ko1 (2k+1)(2k+3) XT'(- 2k = 2,1/Ba,)- (40)
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Starting from Eq(26), instead of Eq(25), and repeating
all calculations similarly to Eq9.35)—(40), one can find the 1.4
asymptotic expression for the Casimir-Polder force acting
between an atom and a metal wall at small separations:

FAM(@) = FQM(a)K(a, 0)
) 2_14F3M<a>2 Gl fBy(@). Ban(@ ). (4D)

In this formulaFj™(a) is defined in Eq(18). The quantity
{f[By(@), Ban(@)]} is obtained from the quantity in the figure
brackets of Eq(39) by the substitutions

I'(8,1/Bpn) = I'(6+1,1iBan),

-1
1F1(1, 7 1Bp ) — ya 1Fi(Ly+1;1/Ban) (42 0.8
VBA,n

[note that these substitutions should be made in both Egs.
(39 and(40)].

In the next section the obtained analytical expressions for
the free energy and force will be used to calculate the cor-
rections to the Casimir-Polder interaction due to the real
properties of the wall metal and the dynamic polarizability of
different atoms.

1 2 3 4 5
a (pm)

IV. COMPUTATIONS OF THE CASIMIR-POLDER FIG. 1. Correction factor to the Casimir-Polder energy of & He

INTERACTION BETWEEN DIFEERENT ATOMS atom near an Au wall calculated &t=300 K with account of the
AND GOLD WALL finite conductivity of the metal and the dynamic polarizability of the

atom (curve 1), with account of only the dynamic polarizability
We start with calculation of the Casimir-Polder interaction (curve 2, with account of only the finite conductivitgurve 3, and
between the metastable helium atom*ﬁ[e?’S) and an Au for an ideal metal and an atom described by the static polarizability
wall. For Au there is agreement in the literature on the valugCurve 4 versus separation.
of the plasma frequency),=9.0 eV=1.3% 10'® rad/s. The . .
dynamic polarizability of He can be represented with suffi- B8,=0. Thus curve 2 represents an ideal metal wall with ac-

cient precision in the framework of a single-oscillator model:count of the dynamic polarizability of the atom and nonzero
temperature. Curve 3 is also computed by E89) and(39)

«(0) 43) but with all parameterg, ,=0, thereby taking into account
1+,3i§ ' the nonideality of the metal and nonzero temperature but
o i ) disregarding the dependence of the atomic polarizability on
which is a particular case of E¢22) with ¢,=4,, and :3% frequency. Finally, curve 4 is computed with E¢&9) and
=Pp1=wc/wg  where  wo=wy=1.18 eV=1.794 10" (39) but with both3,=0 andB, ,=0. Curve 4 represents the
rad/s[45]. Equation(43) with a given value ofwy WOrks  cage of an ideal metal at nonzero temperature and an atom
rather well for'aII frequencies contributing to the Casimir- yoscribed by the static polarizability. All curves 1-4 can be
Polder interactiorisee below. _ compared with a horizontal straight ling(a,T)=1 (not

In Fig. 1 the values %fMthe correction factg(a,T) to the  ghown representing the case of an atom described by its
Casimir-Polder energf,™(a) [see Eq.(15)] are presented  static polarizability near a wall made of an ideal metal at
for the atom He near an Au wall[recall that the Casimir- zgrg temperature.

Polder free energy is obtained as a prodgg(a) (a, T) in As is seen from Fig. 1, at short separations the effect of
accordance with Eq28)]. Curve 1 in Fig. 1 was computed the finite conductivity of the wall metal in the case of an
by Eqg. (29) at separation®=>1.2 um and by Eq.(39) at  atom described by the static polarizabiligompare curves 3
separations\,<a<1.2 um (for Au the plasma wavelength and 4 is much greater than for an atom described by its
Ap=137 nm. Thus curve 1 represents our result for the cor-dynamic polarizabilitycompare curves 1 and.2n particu-
rection factorz(a, T) accounting for the finite conductivity |ar, for a real atom near an Au wall the finite conductivity
of the metal, the dynamic polarizability of the atom, andcorrections are much less than for two metal plates. It is
nonzero temperature. known [24] that for two parallel plates the use of the plasma

For comparison, in Fig. 1 the other results fgia, T) are  model instead of the optical tabulated data leads to error up
plotted, omitting various of the above factors. Curve 2 isto 2%. In our case, however, the use of the plasma model
obtained using Egs(29) and (39) as in curve 1, but with  dielectric function(19) leads to less than 1% error in the

a’(igwc) =

042901-7



BABB, KLIMCHITSKAYA, AND MOSTEPANENKO PHYSICAL REVIEW A 70, 042901(2004)

FoMk in accordance with Eq32), whereFyM was defined in
Eq. (18)]. The correction factok(a,T) was computed using
Eqg. (33) at separationa=1.3 um and using Eq(41) at
separations,<a<1.3 um. Curves 1-4 in Fig. 2 are num-
bered analogously to those in Fig. 1. Curve 1 takes into
account all corrections to the Casimir-Polder force—i.e., the
finite conductivity of the metal, the atomic dynamic polariz-
ability, and nonzero temperature. Curve 2 was computed
with B8,=0 (ideal meta), curve 3 withg, ,=0 (atom with a
frequency-independent polarizabilifyand curve 4 with both
ﬂp:ﬁA,n:O-

The curves in Fig. 2 demonstrate qualitatively the same
characteristic features as were already discussed with respect
to Fig. 1. In particular, at short separations the effect of the
finite conductivity is suppressed if the dynamic polarizability
is taken into accountcompare curves 3 and 4 with curves 1
and 2. Accounting for the dynamic polarizability proves to
be more important at small separations than does accounting
for the finite conductivity(this becomes clear if one com-
pares curves 2 and 3 with curve. At intermediate separa-
tions both effects lead to approximately equal contributions.
At a>8 um the high-temperature asymptote, given by Eq.
(34) for the ideal metal, becomes applicald¢a>6 um the
nonideality of a metal and frequency dependence of the po-
larizability of an atom are already negligible

From Fig. 2 it is seen that the correction factors play a

a (pm) stronger role in the case of the force than for the free energy.
] o For example, at the shortest separation considered here the
FIG. 2. Correction factor to the Casimir-Polder force between &,y /arq|| correction factor is 57%. At intermediate separations

He' atom and an Au wall calculated @300 K with account of ¢ apqyt 1_3,m the correction factor for the force is
the finite conductivity of the metal and the dynamic polarizability of 5% —9%

the atom(curve 1), with account of only the dynamic polarizability
(curve 2, with account of only the finite conductivitgurve 3, and

for an ideal metal and an atom described by the static polarizabilit
(curve 4 versus separation.

1 2 3 4 5

Let us now determine the accuracy of the obtained
symptotic expressions for the Casimir-Polder free energy
Egs.(29) and(39)] and force[Egs.(33) and(41)] and check

that they smoothly join aa approximately 1-1.5um. For
values of the Casimir-Polder free energy and force comparethis purpose we perform computations of the free energy and
to the use of(i¢) obtained by the optical tabulated data for force for several different atoms using the asymptotic expres-
the complex index of refraction. One can conclude also thasions and compare them with the result of numerical compu-
at short separations the proper account of the atomic dytations by the Lifshitz formulagl2) and(17). In doing so we
namic polarizability is more important than the proper ac-will also check the accuracy of the single oscillator model for
count of the finite conductivity. This becomes clear if onethe dynamic polarizability, given by E@43), by performing
compares curves 2 and 3 with curve 4. At intermediate sepahe test computations using accurate data for the atomic dy-
rations of about 1-3m the atomic dynamic polarizability namic polarizability.

and the finite conductivity of the metal play qualitatively  In Table | the computational results for the correction fac-
equal roles. Asa increases the dynamic polarizability be- tor z(a,T) to the Casimir-Polder free energy aE300 K
come negligible and the free energy is determined by onhare presented as functions of the separation distance listed in
«(0). Ultimately at separationsa>6 um the high- the first column. In column 2 the values gfa,T) for a He
temperature asymptotic expressii) for the ideal metal atom near an Au wall are computed numerically using the
becomes applicable. Lifshitz formula (12), dielectric permittivity (19), and the

Overall, from Fig. 1 one can conclude that at the shorteshighly accurate nonrelativistic atomic polarizability for the

separations considered here the corrections to the Casimirte” atom[46]. The dependence of the normalized dynamic

Polder interaction due to different relevant factors can be aatomic polarizability of H&, «a(ié€)/«(0), on frequency is

large as 35% and should be taken into account in comparisashown by curve 1 in Fig. 346]. The data of Fig. 3 have a

of measurement data with theory. At intermediate separationglative error of about I6. It is interesting to compare them

of about 1-3um the corrections may be of the order with the values given by the single oscillator mo@48) (if

5% —7%, which is also rather significant. plotted together as in Fig. 3 both sets of data would appear to
Now we consider the computational results for thecoincide. The largest difference is expected at the shortest

Casimir-Polder force. In Fig. 2 the values of the force cor-separation considered—i.e., @t 150 nm. Here the charac-

rection factorx(a,T) versus separation are plotted for the teristic frequency is equal te,=10 rad/s~ &,. Numerical

He' atom near an Au wal[the force can be found from data of Fig. 3 show that af< ¢, the differences in the
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TABLE |. Correction factoryp(a,T) to the Casimir-Polder energi/SM(a) for an atom near an Au wall at
T=300 K computed using the Lifshitz formul@5) and the exact dynamic polarizabilitg), the Lifshitz
formula and the single oscillator modéb), asymptotic expression for large separati@q@d) (c), and
asymptotic expression for short separati¢d9) (d).

a Metastable Henear Au wall Na near Au wall Cs near Au wall

(um) @ (b) (©) (d (b) (© (d) (b) (© (d

0.15 0.5039 0.5032 0.5050 0.6415 0.6452 0.5705 0.5731
0.2 0.5899 0.5900 0.5912 0.7194 0.7217 0.6551 0.6567
0.3 0.7070 0.7077 0.7083 0.8124 0.8134 0.7630 0.7637
0.4 0.7801 0.7810 0.7814 0.8635 0.8640 0.8259 0.8264
0.5 0.8285 0.8294 0.8298 0.8946 0.8950 0.8657 0.8661
0.6 0.8620 0.8627 0.8632 0.9149 0.9154 0.8922 0.8928
0.7 0.8859 0.8865 0.8872 0.9289 0.9235 0.9297 0.9108 0.9116
0.8 0.9035 0.9040 0.9051 0.9390 0.9354 0.9401 0.9243 0.9254
0.9 0.9167 0.9172 0.9187 0.9464 0.9440 0.9480 0.9342 0.9283 0.9358
1.0 0.9269 0.9272 0.9294 0.9520 0.9502 0.9541 0.9418 0.9375 0.9439
1.1 0.9347 0.9350 0.9281 0.9379 0.9562 0.9549 0.9590 0.9475 0.9444 0.9504
1.2 0.9409 0.9411 0.9360 0.9448 0.9594 0.9584 0.9520 0.9496 0.9556
1.3 0.9458 0.9460 0.9420 0.9504 0.9619 0.9612 0.9555 0.9537 0.9599
1.4 0.9498 0.9499 0.9468 0.9552 0.9640 0.9633 0.9583 0.9569

15 0.9531 0.9532 0.9508 0.9592 0.9656 0.9651 0.9606 0.9596

2.0 0.9668 0.9669 0.9659 0.9741 0.9739 0.9712 0.9708

2.5 0.9889 0.9889 0.9885 0.9935 0.9934 0.9917 0.9914

3.0 1.031 1.031 1.030 1.034 1.033 1.032 1.032

3.5 1.096 1.096 1.095 1.097 1.097 1.097 1.097

4.0 1.182 1.182 1.182 1.183 1.183 1.183 1.183

4.5 1.286 1.286 1.285 1.286 1.286 1.286 1.286

5.0 1.402 1.402 1.402 1.402 1.402 1.402 1.402

6.0 1.656 1.656 1.656 1.656 1.656 1.656 1.656

7.0 1.924 1.924 1.924 1.924 1.924 1.924 1.924

8.0 2.196 2.196 2.196 2.196 2.196 2.196 2.196

relative polarizability between the single-oscillator modelcontribution to the Casimir-Polder interactjort a separa-
and exact values are less than 1%. At higher frequencieion a=200 nm, w,~ &3, and for the highest contributing

these differences increase and have the value 288t &f,

Matsubara frequency,;y=10w., the single-oscillator model

=10, (the highest Matsubara frequency giving some minoreads to about 20% error.

a(i€)/(0)

0.

£ (au)

15

Columns 3, 4, and 5 contain the valuesga, T) for the
He" atom near an Au wall computed, respectively, by the use
of the Lifshitz formula(12), the asymptotic expressiqg9),
and the asymptotic expressigd9). To obtain the results of
the second column, Eqé19) and (43) were substituted di-
rectly into the Lifshitz formula(12). Columns 6, 7, and 8
contain the analogous computational results for the Na atom
and columns 9, 10, and 11 for the Cs atom. The effective
frequenciesw, [see the explanations after E@3)] for Na
and Cs were found be equal tey=2.14 eV=3.25
X 10* rad/s for Na andw,=1.55 eV=2.36< 10*° rad/s for
Cs. For this purpose the equatibty,=4Cs/[3¢%(0)] and the
data of Refs[47,48 for C4z and «(0) were used.

As is seen from Table {columns 2 and B the single-
oscillator model leads to practically the same results for the

FIG. 3. Accurate normalized atomic dynamic polarizabilities for correction factor; as the exact relative atomic polarizability.
He" (curve 1) and for Na(curve 2 versus frequency expressed in At the shortest separatics=150 nm, where the difference
atomic units(1 a.u. of frequency is equal to 27.21 eV

between the two computations is maximal, it is equal to only
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TABLE II. Correction factork(a, T) to the Casimir-Polder forcEéM(a) between an atom and an Au wall
at T=300 K computed using the Lifshitz formu({@6) and the exact dynamic polarizabilitg), the Lifshitz
formula and the single oscillator modéb), asymptotic expression for large separati@@8) (c), and
asymptotic expression for short separatioht) (d).

a Metastable Henear Au wall Na near Au wall Cs near Au wall

(um) @ (b) (©) (d) () (© (d) (b) (© (d)

0.15 0.4298 0.4284 0.4309 0.5707 0.5762 0.4959 0.4995
0.2 0.5151 0.5146 0.5163 0.6553 0.6586 0.5835 0.5858
0.3 0.6388 0.6394 0.6402 0.7625 0.7640 0.7028 0.7039
0.4 0.7214 0.7224 0.7229 0.8246 0.8254 0.7769 0.7775
0.5 0.7787 0.7798 0.7811 0.8637 0.8641 0.8257 0.8260
0.6 0.8198 0.8208 0.8211 0.8899 0.8902 0.8593 0.8596
0.7 0.8500 0.8511 0.8513 0.9083 0.9085 0.8834 0.8837
0.8 0.8729 0.8739 0.8741 0.9218 0.9221 0.9013 0.9016
0.9 0.8905 0.8914 0.8918 0.9320 0.9276 0.9324 0.9149 0.9152
1.0 0.9056 0.9052 0.9057 0.9399 0.9368 0.9405 0.9254 0.9259

11 0.9155 0.9161 0.9036 0.9170 0.9461 0.9438 0.9469 0.9336 0.9280 0.9345
12 0.9244 0.9249 0.9154 0.9261 0.9509 0.9492 0.9522 0.9402 0.9359 0.9414
1.3 0.9312 0.9318 0.9246 0.9337 0.9547 0.9533 0.9565 0.9453 0.9420 0.9471

14 0.9371 0.9374 0.9317 0.9400 0.9576 0.9565 0.9494 0.9468 0.9520
15 0.9416 0.9418 0.9373 0.9454 0.9598 0.9589 0.9525 0.9504 0.9560
2.0 0.9515 0.9516 0.9498 0.9623 0.9620 0.9580 0.9572

25 0.9505 0.9506 0.9498 0.9577 0.9575 0.9549 0.9545

3.0 0.9507 0.9507 0.9503 0.9556  0.9555 0.9537 0.9534

3.5 0.9620 0.9620 0.9617 0.9653 0.9652 0.9640 0.9639

4.0 0.9902 0.9902 0.9900 0.9925 0.9924 0.9916 0.9915

4.5 1.037 1.037 1.037 1.038 1.038 1.038 1.038

5.0 1.100 1.100 1.100 1.101 1.101 1.100 1.100

6.0 1.261 1.261 1.261 1.262 1.262 1.262 1.262

7.0 1.450 1.450 1.450 1.450 1.450 1.450 1.450

8.0 1.649 1.649 1.649 1.649 1.649 1.649 1.649

0.14% of the result. This difference quickly decreases withexact than for the atom of HeTo illustrate this, in Fig. 3 the
increasing separation. Because of this, one can conclude thatcurate normalized atomic dynamic polarizability of the Na
the Casimir-Polder free energy can be reliably computed bytom is presentegturve 2 using the data of Ref49]. Here
the use of the single-oscillator model. the differences with the dynamic polarizability given by the
Now let us compare columns 2 and 3 of Table | with single-oscillator model are much less than for the atom of
columns 3 and 4 representing the results obtained by thele". At the shortest separatiGar 150 nm and at the highest
above asymptotic expressions. It is seen that the results dflatsubara frequency contributing into the Casimir-Polder
column 4[asymptotic expressio(R9)] practically coincide free energy there is only 4% difference in the values of the
with the data of columns 2 and 3 at large separations, and thexact and approximate relative polarizability. This does not
results of column Basymptotic expressiof89)] coincide up lead to any noticeable change in the value of the correction
to a fraction of percent with the same data at short separdactor 5. For Cs, its effective frequenay, is less than for Na
tions. In the intermediate region of=~1.3um both but greater than for HeThus there is only a 0.1% difference
asymptotic expessions join smoothly deviating from resultsn the value of the correction factey occurring for Cs at the
of columns 2 and 3 by about 0.4%. shortest separatiom=150 nm. At larger separations the
Similar conclusions can be made from columns fe8  single-oscillator model leads to exactly the same results for
Na) and columns 9-1{for Cs). The single difference is that the Casimir-Polder free energy as the exact dynamic polariz-
for Na the smooth joining of both asymptotic expressionsability.
takes place ah=1 um, where the asymptotic values of the  Now we compare the results of the asymptotic and nu-
free energy deviate from the data of column 6 by aboummerical calculations of the Casimir-Polder force acting be-
0.2%. For Cs the asymptotic expressions for small and largeveen different atoms and an Au wall. These results are pre-
separations join smoothly @~ 1.1 um. At this separation sented in Table Il in the form of correction factefsee Egs.
they deviate from the numerical results of column 9 by ap«32) and (41)]. Table Il is organized similarly to Table I.
proximately 0.3%. Column 1 contains the values of separations; in column 2 the
It is notable that for the atoms of Na and Cs the single-numerical computations of are presented for Hdrom the
oscillator model for the dynamic polarizability is even more exact formula(26) with the dielectric permittivity(19) and
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accurate dynamic polarizabilitecurve 1 of Fig. 3. In col-  applicable at large separations and the other one at short
umns 3, 4, and 5 the values &ffor He" are calculated by separations. The asymptotic formula for large separations
Eq. (26) with the single-oscillator model, Eq33) at large  takes exact account of nonzero temperature and is presented
separations, and E@41l) at short separations, respectively. in the form of double-perturbation theory in powers of two
Columns 6—8 and 9-11, respectively, contain similar data fosmall parameters, the relative penetration depth of electro-
the atoms Na and Cs, as are given in columns 3-5 for He magnetic oscillations into a wall metgB,) and the relative
From columns 2 and 3 it is seen that use of the singlecharacteristic frequency of an atdi,). The asymptotic for-
oscillator model to calculate the force is a bit less exact thamnula for short separations was derived at zero temperature. It
it was in the case of the free-energy calculation. But evenakes into account exactly the atomic dynamic polarizability
here the maximal error of introduced by the single- and treats perturbatively, in powers of a small paramgger
oscillator model at a separatiom=150 nm is only 0.3%. the nonideality of the metal. In the region of intermediate
Comparison of column 2 or 3 with columns 4 and 5 showsseparations both asymptotic formulas join smoothly. It is no-
that the smooth joining of the two asymptotes occur@ at table that the single-oscillator model for the atomic dynamic
~1.5 um. At this separation each asymptote deviates frompolarizability (although it may deviate up to 30% from the
the numerical result by less than 0.5%. For the atoms Na angxact data at some contributing Matsubara frequencies with
Cs, respectively, the smooth joining of the asymptotes for théarge numbers leads to practically exact results for the
force correction factor takes place at=1.2um anda  Casimir-Polder free energy and force. We therefore conclude
~1.4 um. that the analytical expressions obtained for the Casimir-
Both Tables | and Il demonstrate that the single-oscillatorPolder interaction can be combined with the single-oscillator
model and the corresponding asymptotic formulas for largenodel for the dynamic polarizability preserving the final ac-
and short separations can be reliably used to calculate theuracy of approximately 1%.
Casimir-Polder free energy and force for different atoms near The important question for further discussion would the

a metal wall with a precision to better than 1%. obtained results be applicable in the case when the cavity
wall is at a temperaturé but the atom belongs to the Bose-
V. CONCLUSIONS AND DISCUSSION Einstein condensate with a temperatlige< T. According to

) our expectations, the above results would indeed apply to a
In the above we have performed both analytical and nuggge Einstein condensate and a wall. We believe this is so
merical calculations of the Casimir-Polder interaction of dif- because the Bose-Einstein condensate would have very low
ferent_ atoms and a gold cavity wall With account of real g|ative kinetic energy among the atorttey can be de-
experimental conditions such as the nonideality of a meta;jneq as ultracold atoms, but this is not the temperature that
wall, dynamic polarizability of the atom, and nonzero tem-jniarests us however, the atoms would still be subject to the
q‘ructuating fields present in the spatial vacuum separating the

perature. These calculations demonstrate significant devi
tions from the classical Casimir-Polder resulip to 35% for  gose Finstein condensate and the cavity wall, characterized
the temperatur@ (see also recent e-prif50]).

the free energy and up to 57% for the force in the case 6f Heb
atom near an Au wall at the shortest separation considered 'nyOne more important correction factor which was not dis-
cussed above is the wall roughness. As was shown in Ref.

the paper where the thermal corrections are still negligible
51], the roughness contribution to the Casimir-Polder force

We conclude that the proper account of real conditions i
necessary for interpretation of measurement data in precisigf.nveen an atom and a wall can be rather significant, leading
cavity QED experiments. o e to qualitative physical effects. The role of roughness can be
The simple and transparent derivation of the Lifshitz for-¢ayen into account in combination with the other corrections
mula for the free energy of atom-wall mteraptmns was per-by the method of the geometrical averagiig,24,43. The
forme‘?' at nonzero tempe(ature of a wall in te.rmst of th(“:'dif'fraction-type and other nonadditive contributions to the
reflection coefficients starting from the usual Lifshitz for- roughness corrections can be estimated along the lines of
mula for two semispaces. In the limiting case of an ideaIRefS' [43,53. However, the investigation of the role of
metal and an atom described by the static polarizability th?oughness should be adapted to some definite experiment
classical Casimir-Polder result was reproduced. and be based on the atomic forf9] and (or) scanning

T.he. combined account of dif_fergnt corrections to theelectron[53] microscope images of the wall surface profiles.
Casimir-Polder energy and force indicate that at short sepa-

rations(larger than the plasma wavelength of a wall metal
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