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The Casimir-Polder interaction between an atom and a metal wall is investigated under the influence of real
conditions including the dynamic polarizability of the atom, finite conductivity of the wall metal, and nonzero
temperature of the system. Both analytical and numerical results for the free energy and force are obtained over
a wide range of atom-wall distances. Numerical computations are performed for an Au wall and metastable
He* , Na, and Cs atoms. For the He* atom we demonstrate, as an illustration, that at short separations of about
the Au plasma wavelength at room temperature the free energy deviates up to 35% and the force up to 57%
from the classical Casimir-Polder result. Accordingly, such large deviations should be taken into account in
precision experiments on atom-wall interactions. The combined account of different corrections to the Casimir-
Polder interaction leads to the conclusion that at short separations the corrections due to the dynamic polariz-
ability of an atom play a more important role than—and suppress—the corrections due to the nonideality of the
metal wall. By comparison of the exact atomic polarizabilities with those in the framework of the single
oscillator model, it is shown that the obtained asymptotic expressions enable calculation of the free energy and
force for the atom-wall interaction under real conditions with a precision of 1%.
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I. INTRODUCTION

The interactions of atoms with a single cavity wall have
long been investigated in different physical, chemical, and
biological processes including adsorption and scattering
from various surfaces[1]. Due to the high interest in nano-
technological applications of atoms near surfaces and
mesoscopic-scale atomic devices, there is a need for accurate
characterization of atom-surface interactions. Recent experi-
mental studies include “quantum reflection” of ultracold
metastable Ne atoms on Si or glass surfaces[2] and low-
energy3He atoms on a quartz surface[3], ultracold Rb atoms
or a Rb Bose-Einstein condensate interacting with Cu or sili-
con nitride surfaces[4], and diffraction of atoms and mol-
ecules from silicon nitride nanostructure transmission grat-
ings [5,6].

At separationsa less than a few nanometers(but larger
than several angstroms) the interaction potential between an
atom and a wall takes the formV3sad=−C3/a3 [7] and it
describes the nonretarded van der Waals force. At much
larger separations, where the effects of retardation are essen-
tial, the atom-wall interaction is usually described by the
Casimir-Polder potentialV4sad=−C4/a4 [8]. In between
these limits the interaction smoothly changes fromV3sad to
V4sad asa is increased. In accordance with the physical na-
ture of these potentials,C3 depends only on the Planck’s
constant whereasC4 depends also on the velocity of light.

The early stages of measurements and calculations of the
coefficientC3 for both metal and dielectric surfaces are re-
flected in Refs.[9–11] and Refs.[12,13], respectively, but
only qualitative agreement between experiment and theory
was achieved. The same can be said on measuring the van
der Waals forces between a Rydberg atom and a metallic
surface in Ref.[14]. More precise measurements of the van
der Waals and Casimir-Polder interaction between an atom
and a metal or dielectric wall, respectively, were performed
in Refs.[15,16] and Ref.[17]. The increased precision high-
lighted the need for more exact theoretical expressions for
the potential at zero temperature evolving from the van der
Waals potentialV3sad into the Casimir-Polder potentialV4sad
with increase ofa [17]. This potential should take into ac-
count the realistic experimental conditions like the finite con-
ductivity of the wall metal. Additionally the dependence of
the electric polarizability of the atom on frequency[ne-
glected inV4sad] is influential up to separations where the
thermal corrections to the Casimir-Polder interaction become
essential. Accordingly the thermal effects should be taken
into account together with the effects of retardation.

During the last few years great progress was made in the
measurements of the Casimir force between two macrobod-
ies (see, e.g., Refs.[18–23] and the review in[24]). Finally,
the theoretical expression for the Casimir force with all cor-
rections due to deviations from a perfect surface was con-
firmed experimentally up to 1% at 95% confidence[23]. Ex-
periments on ultracold atoms[25] and Bose-Einstein
condensates near surfaces[4,26,27] are likely to bring the
measurements of atom-wall interactions to the same level of
precision that was already achieved in the case of the Ca-
simir force between macrobodies. Thus, there is urgent need
in obtaining the theoretical results for atom-wall interactions
with increased precision presented in forms convenient for
the comparison with experiments.
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The general foundations for the calculation of the van der
Waals and Casimir forces between bodies described by the
frequency-dependent dielectric permittivity«svd at arbitrary
temperatureT are given by the famous Lifshitz theory
[28,29]. Lifshitz theory leads to the formula representing the
free energy of the atom-wall interaction in terms of the sum
over discrete Matsubara frequencies(at zero temperature it
was derived in Refs.[30–33]). The above potentialsV3sad
and V4sad are obtained from this formula as the limiting
cases at small distancesa!l0 (wherel0 is the characteristic
absorption wavelength of the dielectric material) and at large
distancesa@l0 (when temperature goes to zero), respec-
tively. In Ref. [34] the Lifshitz formula for the atom-wall
interaction was used to compute numerically the free energy
of hydrogen atoms, hydrogen molecules, and helium atoms
in the proximity of a silver wall as a function of separation
distance and temperature. The atomic dynamic polarizability
was represented in the framework of a single-oscillator
model. However, the errors introduced into the values of the
van der Waals and Casimir-Polder force by the single-
oscillator model as opposed to using the exact atomic polar-
izabilities were not investigated.

In the present paper we derive the analytic results for the
Casimir-Polder atom-wall interaction applicable over wide
ranges of separations and temperatures. This can be done
using different approximations for the atomic dynamic polar-
izabilities giving sufficiently precise results at all Matsubara
frequencies contributing to the Casimir-Polder force. We
start from a brief simple and transparent rederivation of the
free energy for the atom-wall interaction from the Lifshitz
formula for two semispaces at nonzero temperature.

The separation region covered in calculations of the free
energy and force extends froma=lp (wherelp is the plasma
wavelength of the wall metal) to about 5mm and larger. At
the shortest separation covered, the thermal corrections are
shown to be negligible. In this region the analytical expres-
sions obtained for the Casimir-Polder energy and force take
exact account of the atomic dynamic polarizability and we
present a perturbative expansion in powers of the relative
penetration depth of the electromagnetic zero-point oscilla-
tions into the metal of a wall. For larger separations, the
analytical expressions given for the free energy and force are
exact in terms of temperature but perturbative in the small
parameters characterizing the atomic polarizability and the
relative penetration depth. The obtained expressions overlap
in the region of intermediate separations and can be used to
calculate the free energy and force between different atoms
(molecules) and metallic walls made of different metals with
accuracy of 1%.

The paper is organized as follows. In Sec. II the main
notation is introduced and the rederivation of the Lifshitz
formula for the free energy of an atom- and metal-wall in-
teraction at nonzero temperature is presented. In Sec. III it is
shown that this formula is not subject to certain difficulties
that arise in the case of two metal walls(see Ref.[35] and
references therein). We present two analytical expressions
for the Casimir-Polder free energy and force applicable at
short and large separations and overlapping at moderate
separations. Section IV contains the computational results for
different atoms near an Au cavity wall. It is shown that

proper account of the atomic polarizability, finite conductiv-
ity of the wall metal, and nonzero temperature is necessary
for precision calculations of the Casimir-Polder interaction
between an atom and a wall. Section V contains our discus-
sion and conclusions.

II. LIFSHITZ FORMULA FOR AN ATOM (MOLECULE)
NEAR A METAL WALL

Let us start from the Lifshitz formula expressing the free
energy per unit area in the configuration of two parallel semi-
spaces(one dielectric and the other one metallic), separated
by a distancea, at temperatureT in thermal equilibrium
[28–30]:

FDMsa,Td =
kBT

2p
o
l=0

`

8E
0

`

k'dk'

3hlnf1 − r i
Dsjl,k'dr i

Msjl,k'de−2aqlg

+ lnf1 − r'
Dsjl,k'dr'

Msjl,k'de−2aqlgj. s1d

Here the reflection coefficients for dielectric and metal, re-
spectively, are defined as

r i
D,Msjl,k'd =

«l
D,Mql − kl

D,M

«l
D,Mql + kl

D,M ,

r'
D,Msjl,k'd =

kl
D,M − ql

kl
D,M + ql

, s2d

the dielectric permittivities«l
D,M =«D,Msijld are calculated at

the imaginary Matsubara frequencies,jl =2pkBTl /" , l
=0,1,2, . . . ,kB is the Boltzmann constant, and the following
notations are introduced:

ql =Îk'
2 +

jl
2

c2, kl
D,M =Îk'

2 + «l
D,M jl

2

c2 s3d

(k' is the wave vector in the boundary planes restricting both
semispaces). A prime near the summation sign means that
the term forl =0 has to be multiplied by 1/2.

In order to derive the free energy for an atom near a metal
wall, we consider a rarefied dielectric and expand the dielec-
tric permittivity in powers of the number of atoms per unit
volumeN preserving only the first-order contribution[28]:

«Dsijld = 1 + 4pasijldN + OsN2d, s4d

whereasvd is the dynamic polarizability of an atom.
Substituting Eq.(4) into Eqs.(2) and (3) and expanding

up to the first power inN, we obtain

r i
Dsjl,k'd = pasijldNS2 −

jl
2

ql
2c2D + OsN2d,

r'
Dsjl,k'd = pasijld

Njl
2

ql
2c2 + OsN2d. s5d

With account of Eq.(5), the free energy(1) takes the form
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FDMsa,Td = −
kBTN

2 o
l=0

`

8asijldE
0

`

k'dk'

3FS2 −
jl

2

ql
2c2Dr i

Msjl,k'd +
jl

2

ql
2c2r'

Msjl,k'dG
3e−2aql + OsN2d. s6d

Using the additivity of the first-order term in the expan-
sion of the free energy in powers ofN, one can also write

FDMsa,Td = NE
a

`

FAMsz,Tddz+ OsN2d, s7d

where FAMsz,Td is the free energy of one atom spacedz
apart of a metal wall.

Equating the right-hand sides of Eqs.(6) and(7) and cal-
culating a derivative with respect toa in the limit N→0, we
obtain

FAMsa,Td = − kBTo
l=0

`

8asijldE
0

`

k'dk'qle
−2aql

3 H2r i
Msjl,k'd +

jl
2

ql
2c2fr'

Msjl,k'd − r i
Msjl,k'dgJ .

s8d

The obtained expression for the free energy of an atom-wall
interaction(up to the notation) coincides with the results of
Refs. [30–33] extended to the case of nonzero temperature.
Note that to compare with the previously obtained results at
T=0 one should make in Eq.(8) a substitution

kBTo
l=0

`

8 → "

2p
E

0

`

dj. s9d

For use in the next section, it is convenient to express Eq.
(8) in terms of dimensionless variables

y = 2aql, zl =
2ajl

c
;

jl

vc
, s10d

wherevc;vcsad=c/ s2ad is the characteristic frequency of
the Casimir-Polder interaction between an atom and a wall.
Then the reflection coefficients(2) for a metal can be written
as

r i
Mszl,yd =

«l
My − Îy2 + zl

2s«l
M − 1d

«l
My + Îy2 + zl

2s«l
M − 1d

,

r'
Mszl,yd =

Îy2 + zl
2s«l

M − 1d − y

Îy2 + zl
2s«l

M − 1d + y
, s11d

where«l
M =«Msizlvcd. In terms of dimensionless variables the

free energy(8) takes the form

FAMsa,Td = −
kBT

s2ad3o
l=0

`

8asizlvcdE
zl

`

dye−y

3h2y2r i
Mszl,yd + zl

2fr'
Mszl,yd − r i

Mszl,ydgj.

s12d

According to the above derivation, the free energy(12) of
the atom-wall system is a direct consequence of the Lifshitz
formula (1) for two semispaces, one dielectric and the other
one metallic. At zero temperature in the limit«D ,«M→` the
latter leads[24,32] to the classical Casimir result for the
energy per unit area in a configuration of two plates made of
ideal metal[36]:

Esad = −
p2"c

720a3 . s13d

On the other hand, the Casimir-Polder energy at zero tem-
perature for an atom near a wall made of ideal metal is ob-
tained from Eqs.(9), (11), and(12) in the limit «M→`:

E0
AMsad = −

"c

16pa4E
0

`

dzasizvcdsz2 + 2z + 2de−z. s14d

At large separations the contributing frequencies are low, so
that asizvcd<as0d and Eq.(14) leads to the often-used for-
mula first derived in Ref.[8]:

E0
AMsad = −

3"c

8pa4as0d s15d

(note, however, that in fact the approximation of static polar-
izability works well at separations where the thermal correc-
tions to the Casimir-Polder force become essential; see Secs.
III and IV).

Note that in a recent work[37] the magnitude of the en-
ergy obtained was15

13 times less than in Eq.(15) [one more
extra factor of 1/s4pd is caused by the different units used in
Ref. [37]]. In contrast to Ref.[8], where the boundary con-
ditions were imposed on field potentials, in Ref.[37] the
boundary conditions for the field strength were used as the
primary ones. This results in the multiple13

40 instead of3
8 as

in Eq. (15). According to Ref.[37] the boundary conditions
in terms of the field strength describe the two-dimensional
ideally conducting layer. The possibility of physical realiza-
tion of such layer is questionable.

From the expression for the free energy, Eq.(8), the force
acting on an atom near a metal wall can be simply obtained:

FAMsa,Td = −
] FAMsa,Td

] a

= − 2kBTo
l=0

`

8asijldE
0

`

k'dk'ql
2e−2aql

3 H2r i
Msjl,k'd +

jl
2

ql
2c2fr'

Msjl,k'd − r i
Msjl,k'dgJ .

s16d
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In terms of dimensionless variables(10), Eq. (16) takes
the form

FAMsa,Td = −
kBT

8a4o
l=0

`

8asizlvcdE
zl

`

ydye−y

3h2y2r i
Mszl,yd + zl

2fr'
Mszl,yd − r i

Mszl,ydgj.

s17d

In perfect analogy with Eq.(15), the Casimir-Polder en-
ergy of an atom and a wall made of ideal metal at zero
temperature is given by

F0
AM = −

3"c

2pa5as0d s18d

(see Secs. III and IV for the corrections to this formula due
to real experimental conditions).

III. ANALYTICAL REPRESENTATIONS FOR THE
CASIMIR-POLDER INTERACTION

Starting in this section and in the rest of the paper we will
consider the retarded Casimir-Polder interaction, which takes
place at sufficiently large separations between the atom and
cavity wall and for which analytical results can be obtained.
To find the analytical representations for the free energy(12)
one should fix in some way the expression for the dielectric
permittivity along the imaginary frequency axis(the nonide-
ality of a metal in atom-wall interaction was discussed in
Ref. [38]). At separations larger than the plasma wavelength
lp but less than about 2.3mm, where the characteristic fre-
quencyvc [see Eq.(10)] belongs to the region of infrared
optics, the dielectric permittivity can be described by the
free-electron plasma model

«sijld = 1 +
vp

2

jl
2 . s19d

Here vp=2pc/lp is the plasma frequency of a metal under
consideration.

It is common knowledge that«svd,1/v whenv→0. By
this reason, in connection with the zero-frequency term of
the Lifshitz formula(1), describing the case of two parallel
plates, the Drude dielectric function was discussed[39,40]:

«sijld = 1 +
vp

2

jlfjl + gsTdg
, s20d

where gsTd!vp is the relaxation parameter. It was found,
however[41,42], that the substitution of Eq.(20) into Eq.(1)
leads to a violation of the Nernst heat theorem and therefore
is inadmissible[this grave result is caused by the equality
r'

Ms0,k'd=0 which holds for Drude metals, whereas for ideal
metal both reflection coefficients at zero frequency are equal
to unity]. The resolution of this thermodynamical puzzle was
found in Refs.[35,42]. It is based on the use of the surface
impedance boundary condition instead of the bulk dielectric
permittivity depending only on frequency(a model which
was found to be inadequate to describe a real metal).

Remarkably, in the configuration of an atom near a wall
no thermodynamical inconsistency arises. This is explained
by the fact that in the above Eqs.(8) and (12) the metal
reflection coefficientr'

M is multiplied by the second power of
frequency. As a result, it does not contribute at zero fre-
quency independently of its value.

As we will see in Sec. IV, in the configuration of an atom
near a wall the comparative role of the finite conductivity
corrections is less than for two parallel plates. Because of
this, the plasma model dielectric permittivity(19) can be
used not only in the separation region fromlp to 2.3mm
(where, as was shown in Ref.[43], it gives results closer to
those obtained from the optical tabulated data for the com-
plex refractive index than from the Drude model) but also at
aù2.3 mm. In fact, for gold at such large separations the
characteristic frequency belongs to the region of the anoma-
lous skin effect where the effects of nonlocality are essential.
In Sec. IV we will see, however, that ataù2.3 mm the over-
all correction due to the nonideality of a metal does not
exceed 1% and therefore is not sensitive to the model used
for its description.

The second function that should be fixed in order to de-
rive the analytic representations for the free energy is the
dynamic polarizability of an atom. It is given by the familiar
expression(see, for instance, Ref.[11])

asizlvcd =
e2

mo
n

f0n

v0n
2 + vc

2zl
2 , s21d

wherem is the electron mass andf0n is the oscillator strength
of the nth excited-state to ground-state transition. For our
purposes it is convenient to represent Eq.(21) identically in
the form

asizlvcd = as0do
n

cn

1 + bA,n
2 zl

2 , s22d

where the following notations are introduced:

cn =
f0n

v0n
2 o

n8

f0n8

v0n8
2

, bA,n ; bA,nsad =
vcsad
v0n

, s23d

andas0d is the static atomic polarizability.
Now let us consider the free energy from Eq.(12) using

Eq. (19) at separationsaùlp and expand it in powers of the
small parameterbp;bpsad=vcsad /vp=d0/ s2ad, where d0

=lp/ s2pd is the penetration depth of electromagnetic zero-
point oscillations into real metal. Substituting Eq.(19) into
Eq. (11) and preserving terms up to the second power inbp,
one obtains

r i
Mszl,yd = 1 −

2zl
2

y
bp +

2zl
4

y2 bp
2,

r'
Mszl,yd = 1 − 2ybp + 2y2bp

2. s24d

With the help of Eq.(24) the expansion of the free energy
(12) takes the form

BABB, KLIMCHITSKAYA, AND MOSTEPANENKO PHYSICAL REVIEW A 70, 042901(2004)

042901-4



FAMsa,Td = −
kBT

4a3o
l=0

`

8asizlvcdE
zl

`

dye−y

3Fy2 + S zl
4

y
− 3zl

2yDbp + S2zl
4 −

zl
6

y2 + zl
2y2Dbp

2G .

s25d

Quite analogously, the expansion for the force follows from
Eq. (17):

FAMsa,Td = −
kBT

4a4o
l=0

`

8asizlvcdE
zl

`

ydye−y

3Fy2 + S zl
4

y
− 3zl

2yDbp + S2zl
4 −

zl
6

y2 + zl
2y2Dbp

2G .

s26d

Notice that exactly the same expressions are obtained if the
reflection coefficients are expressed in terms of the surface
impedance in accordance with Ref.[35]. Taking into account
that the role of the finite conductivity of the metal is sup-
pressed by the atomic dynamic polarizability(see Sec. IV),
the corrections of higher orders than 2 in Eqs.(25) and(26)
can be neglected.

We consider next the two asymptotic domains of Eqs.
(25) and(26)—namely, large separationsaù s1–1.5dmm and
small separationslpøaø s1–1.5dmm, which overlap ata
<s1–1.5dmm. At large separations the additional set of pa-
rametersbA,n, defined in Eq.(23), can be used. In fact, for
the atoms of interest(see Sec. IV) the parametersbA,n be-
come less than 0.1 ataù s1–1.5dmm. Both parametersbp

andbA,n further decrease with the increase ofa. Then, up to
the second power in these parameters, the dynamic polariz-
ability of Eq. (22) is

asizlvcd = as0do
n

cns1 − bA,n
2 zl

2d. s27d

We now substitute Eq.(27) into Eq. (25) and perform the
integration in y and the summation inl [44]. For conve-
nience, the free energy obtained is represented in the form

FAMsa,Td = E0
AMsadhsa,Td, s28d

whereE0
AMsad is the Casimir-Polder energy of an atom near a

wall made of ideal metal at zero temperature[see Eq.(15)].
We also introduce the dimensionless temperature parameter
t=2pT/Teff, where the effective temperature is defined from
kBTeff;"vc="c/ s2ad. In terms of this parameter the dimen-
sionless Matsubara frequencies are expressed aszl = lt. The
result for the correction factorhsa,Td is

hsa,Td =
t

6F1 + 2s0 + 2s1 + s2 − s3s2 + 3s3 − g4dbp

+ s2s2 + 2s3 + 3s4 − s5 + g6dbp
2

− s2s2 + 2s3 + s4do
n

cnbA,n
2 G . s29d

The coefficientssi and gi in Eq. (29) are known functions
depending on temperature and are defined as

s0 =
1

et − 1
, s1 =

tet

set − 1d2, s2 =
t2etset + 1d

set − 1d3 ,

s3 =
t3etse2t + 4et + 1d

set − 1d4 , s4 =
t4etse3t + 11e2t + 11et + 1d

set − 1d5 ,

s5 =
t5etse4t + 26e3t + 66e2t + 26et + 1d

set − 1d6 , s30d

gi = tio
l=1

`

l iGs0,tld,

whereGsa ,xd is the incomplete gamma function.
As is seen from Eq.(30), at high temperatures(or, equiva-

lently, at large separations) all si and gi are exponentially
small. As a result, the correction factor(29) and the free
energy(28) take the especially simple forms

hsa,Td =
t

6
, FAMsa,Td = −

kBT

4a3as0d, s31d

demonstrating that at high temperatures(large separations)
the Casimir-Polder free energy is linear in temperature. In
fact, Eq.(31) is applicable starting fromaù5 mm (see Sec.
IV ). The same result at high temperatures follows from the
zero-frequency term of the Lifshitz formula(12) if an ideal
metallic wall is considered.

In analogy with the free energy, the asymptotic expression
for the Casimir-Polder force between an atom and a wall at
large separations(a is greater than 1–1.5mm) can be ob-
tained. Substituting Eq.(27) into Eq. (26), we represent the
force in the form

FAMsa,Td = F0
AMsadksa,Td. s32d

HereF0
AMsad is defined in Eq.(18), and the correction factor

for the forceksa,Td is

ksa,Td =
t

24F3 + 6s0 + 6s1 + 3s2 + s3 − 2s3s2 + 3s3 + s4dbp

+ s6s2 + 6s3 + 5s4 + 3s5 − g6dbp
2 − s6s2 + 6s3 + 3s4

+ s5do
n

cnbA,n
2 G , s33d

where the notation was introduced in Eq.(30).
At the high-temperature(large-separation) limit of Eq.

(33) one has

ksa,Td =
t

8
, FAMsa,Td = −

3kBT

4a4 as0d. s34d

The same result is obtained atT→` from the zero-frequency
term of Eq.(17) for the ideal metal wall.

Now we return to Eqs.(25) and (26) and consider the
asymptotically small separations,lpøaø s1–1.5dmm. In
this separation region the thermal corrections are negligible.
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Thus one can replace the summation in Eq.(25) by an inte-
gration as in Eq.(9). Substituting also the dynamic polariz-
ability from Eq.(22), using Eq.(15), and changing the order
of the integrations inz andy we obtain

EAMsad =
1

6
E0

AMsado
n

cnE
0

`

dye−yFy2E
0

y dz

1 + bA,n
2 z2

+ S1

y
E

0

y z4dz

1 + bA,n
2 z2 − 3yE

0

y z2dz

1 + bA,n
2 z2Dbp

+ S2E
0

y z4dz

1 + bA,n
2 z2 −

1

y2E
0

y z6dz

1 + bA,n
2 z2

+ y2E
0

y z2dz

1 + bA,n
2 z2Dbp

2G . s35d

The integrals in Eq.(35) can be calculated in terms of the
infinite series and higher transcendental functions. By way of
example, consider the first integral

I =E
0

`

dy y2e−yE
0

y dz

1 + bA,n
2 z2

=
1

bA,n
FE

0

1/bA,n

dy y2e−y arctansbA,nyd

+E
1/bA,n

`

dyy2e−y arctansbA,nydG s36d

[here the integration interval is separated into two parts
where different Taylor series expansions of arctanszd will be
used]. Expanding arctanszd on the right-hand side of Eq.(36)
and integrating with respect toy, we arrive at[44]

I =
1

bA,n
4 e−1/bA,nS1 +

p

2
Gs3,1/bA,nd − S2, s37d

where

S1 = o
k=0

`
s− 1dk

s2k + 1ds2k + 4d1F1s1,2k + 5;1/bA,nd,

S2 = o
k=0

`
s− 1dk

s2k + 1dbA,n
2k+1Gs2 − 2k,1/bA,nd, s38d

and1F1sz1,z2;zd is the degenerate hypergeometric function.
Calculating all other integrals in Eq.(35) in a similar way,

we obtain the energy of the Casimir-Polder atom-wall inter-
action at short separations:

EAMsad ; E0
AMsadhsa,0d =

1

6
E0

AMsado
n

cnHbA,n
−4 e−1/bA,nS1 +

p

2
Gs3,1/bA,nd− S2 + F4bA,n

−5 e−1/bA,nS3 +
p

2
bA,n

−3 fbA,n
−2 Gs0,1/bA,nd

+ 3Gs2,1/bA,ndg− 4bA,n
−4 Gs1,1/bA,nd −

8

3
bA,n

−2 Gs3,1/bA,nd + 4S4Gbp+ F− bA,n
−6 e−1/bA,nS5 −

10

3
bA,n

−6 Gs0,1/bA,nd

−
2

3
bA,n

−4 Gs2,1/bA,nd+
22

15
bA,n

−2 Gs4,1/bA,nd +
p

2
bA,n

−3 f2bA,n
−2 Gs1,1/bA,nd+ bA,n

−4 Gs− 1,1/bA,nd − Gs3,1/bA,ndg + S6Gbp
2J .

s39d

HereS1,S2 are defined in Eq.(38) and the following nota-
tions are introduced:

S3 = o
k=1

`
s− 1dksk + 2d

s2k + 1ds2k + 3d21F1s1,2k + 4;1/bA,nd,

S4 = o
k=1

` s− 1dkkbA,n
−2k−6

s2k + 1ds2k + 3d
Gs− 2k − 1,1/bA,nd,

S5 = o
k=1

`
s− 1dks4k2 + 16k + 11d

sk + 2ds2k + 1ds2k + 3ds2k + 5d

31F1s1,2k + 5;1/bA,nd,

S6 = o
k=0

` s− 1dks8k2 + 16k − 2dbA,n
−2k−8

s2k + 1ds2k + 2ds2k + 3d

3Gs− 2k − 2,1/bA,nd. s40d

BABB, KLIMCHITSKAYA, AND MOSTEPANENKO PHYSICAL REVIEW A 70, 042901(2004)

042901-6



Starting from Eq.(26), instead of Eq.(25), and repeating
all calculations similarly to Eqs.(35)–(40), one can find the
asymptotic expression for the Casimir-Polder force acting
between an atom and a metal wall at small separations:

FAMsad ; F0
AMsadksa,0d

=
1

24
F0

AMsado
n

cnhffbpsad,bA,nsadgj. s41d

In this formulaF0
AMsad is defined in Eq.(18). The quantity

hffbpsad ,bA,nsadgj is obtained from the quantity in the figure
brackets of Eq.(39) by the substitutions

Gsd,1/bA,nd → Gsd + 1,1/bA,nd,

1F1s1,g;1/bA,nd → g − 1

gbA,n
1F1s1,g + 1;1/bA,nd s42d

[note that these substitutions should be made in both Eqs.
(39) and (40)].

In the next section the obtained analytical expressions for
the free energy and force will be used to calculate the cor-
rections to the Casimir-Polder interaction due to the real
properties of the wall metal and the dynamic polarizability of
different atoms.

IV. COMPUTATIONS OF THE CASIMIR-POLDER
INTERACTION BETWEEN DIFFERENT ATOMS

AND GOLD WALL

We start with calculation of the Casimir-Polder interaction
between the metastable helium atom He*s2 3Sd and an Au
wall. For Au there is agreement in the literature on the value
of the plasma frequency;vp=9.0 eV=1.3731016 rad/s. The
dynamic polarizability of He* can be represented with suffi-
cient precision in the framework of a single-oscillator model:

asizvcd =
as0d

1 + bA
2z2 , s43d

which is a particular case of Eq.(22) with cn=dn1 and bA
;bA,1=vc/v0 where v0;v01=1.18 eV=1.79431015

rad/s [45]. Equation(43) with a given value ofv0 works
rather well for all frequencies contributing to the Casimir-
Polder interaction(see below).

In Fig. 1 the values of the correction factorhsa,Td to the
Casimir-Polder energyE0

AMsad [see Eq.(15)] are presented
for the atom He* near an Au wall[recall that the Casimir-
Polder free energy is obtained as a productE0

AMsadhsa,Td in
accordance with Eq.(28)]. Curve 1 in Fig. 1 was computed
by Eq. (29) at separationsaù1.2 mm and by Eq.(39) at
separationslpøaø1.2 mm (for Au the plasma wavelength
lp=137 nm). Thus curve 1 represents our result for the cor-
rection factorhsa,Td accounting for the finite conductivity
of the metal, the dynamic polarizability of the atom, and
nonzero temperature.

For comparison, in Fig. 1 the other results forhsa,Td are
plotted, omitting various of the above factors. Curve 2 is
obtained using Eqs.(29) and (39) as in curve 1, but with

bp=0. Thus curve 2 represents an ideal metal wall with ac-
count of the dynamic polarizability of the atom and nonzero
temperature. Curve 3 is also computed by Eqs.(29) and(39)
but with all parametersbA,n=0, thereby taking into account
the nonideality of the metal and nonzero temperature but
disregarding the dependence of the atomic polarizability on
frequency. Finally, curve 4 is computed with Eqs.(29) and
(39) but with bothbp=0 andbA,n=0. Curve 4 represents the
case of an ideal metal at nonzero temperature and an atom
described by the static polarizability. All curves 1–4 can be
compared with a horizontal straight linehsa,Td=1 (not
shown) representing the case of an atom described by its
static polarizability near a wall made of an ideal metal at
zero temperature.

As is seen from Fig. 1, at short separations the effect of
the finite conductivity of the wall metal in the case of an
atom described by the static polarizability(compare curves 3
and 4) is much greater than for an atom described by its
dynamic polarizability(compare curves 1 and 2). In particu-
lar, for a real atom near an Au wall the finite conductivity
corrections are much less than for two metal plates. It is
known [24] that for two parallel plates the use of the plasma
model instead of the optical tabulated data leads to error up
to 2%. In our case, however, the use of the plasma model
dielectric function(19) leads to less than 1% error in the

FIG. 1. Correction factor to the Casimir-Polder energy of a He*

atom near an Au wall calculated atT=300 K with account of the
finite conductivity of the metal and the dynamic polarizability of the
atom (curve 1), with account of only the dynamic polarizability
(curve 2), with account of only the finite conductivity(curve 3), and
for an ideal metal and an atom described by the static polarizability
(curve 4) versus separation.
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values of the Casimir-Polder free energy and force compared
to the use of«sijd obtained by the optical tabulated data for
the complex index of refraction. One can conclude also that
at short separations the proper account of the atomic dy-
namic polarizability is more important than the proper ac-
count of the finite conductivity. This becomes clear if one
compares curves 2 and 3 with curve 4. At intermediate sepa-
rations of about 1–3mm the atomic dynamic polarizability
and the finite conductivity of the metal play qualitatively
equal roles. Asa increases the dynamic polarizability be-
come negligible and the free energy is determined by only
as0d. Ultimately at separationsa.6 mm the high-
temperature asymptotic expression(31) for the ideal metal
becomes applicable.

Overall, from Fig. 1 one can conclude that at the shortest
separations considered here the corrections to the Casimir-
Polder interaction due to different relevant factors can be as
large as 35% and should be taken into account in comparison
of measurement data with theory. At intermediate separations
of about 1–3mm the corrections may be of the order
5% –7%, which is also rather significant.

Now we consider the computational results for the
Casimir-Polder force. In Fig. 2 the values of the force cor-
rection factorksa,Td versus separation are plotted for the
He* atom near an Au wall[the force can be found from

F0
AMk in accordance with Eq.(32), whereF0

AM was defined in
Eq. (18)]. The correction factorksa,Td was computed using
Eq. (33) at separationsaù1.3 mm and using Eq.(41) at
separationslpøaø1.3 mm. Curves 1–4 in Fig. 2 are num-
bered analogously to those in Fig. 1. Curve 1 takes into
account all corrections to the Casimir-Polder force—i.e., the
finite conductivity of the metal, the atomic dynamic polariz-
ability, and nonzero temperature. Curve 2 was computed
with bp=0 (ideal metal), curve 3 withbA,n=0 (atom with a
frequency-independent polarizability), and curve 4 with both
bp=bA,n=0.

The curves in Fig. 2 demonstrate qualitatively the same
characteristic features as were already discussed with respect
to Fig. 1. In particular, at short separations the effect of the
finite conductivity is suppressed if the dynamic polarizability
is taken into account(compare curves 3 and 4 with curves 1
and 2). Accounting for the dynamic polarizability proves to
be more important at small separations than does accounting
for the finite conductivity(this becomes clear if one com-
pares curves 2 and 3 with curve 1). At intermediate separa-
tions both effects lead to approximately equal contributions.
At a.8 mm the high-temperature asymptote, given by Eq.
(34) for the ideal metal, becomes applicable(at a.6 mm the
nonideality of a metal and frequency dependence of the po-
larizability of an atom are already negligible).

From Fig. 2 it is seen that the correction factors play a
stronger role in the case of the force than for the free energy.
For example, at the shortest separation considered here the
overall correction factor is 57%. At intermediate separations
of about 1–3mm the correction factor for the force is
5% –9%.

Let us now determine the accuracy of the obtained
asymptotic expressions for the Casimir-Polder free energy
[Eqs.(29) and(39)] and force[Eqs.(33) and(41)] and check
that they smoothly join ata approximately 1–1.5mm. For
this purpose we perform computations of the free energy and
force for several different atoms using the asymptotic expres-
sions and compare them with the result of numerical compu-
tations by the Lifshitz formulas(12) and(17). In doing so we
will also check the accuracy of the single oscillator model for
the dynamic polarizability, given by Eq.(43), by performing
the test computations using accurate data for the atomic dy-
namic polarizability.

In Table I the computational results for the correction fac-
tor hsa,Td to the Casimir-Polder free energy atT=300 K
are presented as functions of the separation distance listed in
the first column. In column 2 the values ofhsa,Td for a He*

atom near an Au wall are computed numerically using the
Lifshitz formula (12), dielectric permittivity (19), and the
highly accurate nonrelativistic atomic polarizability for the
He* atom [46]. The dependence of the normalized dynamic
atomic polarizability of He* , asijd /as0d, on frequency is
shown by curve 1 in Fig. 3[46]. The data of Fig. 3 have a
relative error of about 10−6. It is interesting to compare them
with the values given by the single oscillator model(43) (if
plotted together as in Fig. 3 both sets of data would appear to
coincide). The largest difference is expected at the shortest
separation considered—i.e., ata=150 nm. Here the charac-
teristic frequency is equal tovc=1015 rad/s<j4. Numerical
data of Fig. 3 show that atjøj10 the differences in the

FIG. 2. Correction factor to the Casimir-Polder force between a
He* atom and an Au wall calculated atT=300 K with account of
the finite conductivity of the metal and the dynamic polarizability of
the atom(curve 1), with account of only the dynamic polarizability
(curve 2), with account of only the finite conductivity(curve 3), and
for an ideal metal and an atom described by the static polarizability
(curve 4) versus separation.
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relative polarizability between the single-oscillator model
and exact values are less than 1%. At higher frequencies
these differences increase and have the value 28% atj=j40
=10vc (the highest Matsubara frequency giving some minor

contribution to the Casimir-Polder interaction). At a separa-
tion a=200 nm, vc<j3, and for the highest contributing
Matsubara frequencyj30=10vc, the single-oscillator model
leads to about 20% error.

Columns 3, 4, and 5 contain the values ofhsa,Td for the
He* atom near an Au wall computed, respectively, by the use
of the Lifshitz formula(12), the asymptotic expression(29),
and the asymptotic expression(39). To obtain the results of
the second column, Eqs.(19) and (43) were substituted di-
rectly into the Lifshitz formula(12). Columns 6, 7, and 8
contain the analogous computational results for the Na atom
and columns 9, 10, and 11 for the Cs atom. The effective
frequenciesv0 [see the explanations after Eq.(43)] for Na
and Cs were found be equal tov0=2.14 eV=3.25
31015 rad/s for Na andv0=1.55 eV=2.3631015 rad/s for
Cs. For this purpose the equation"v0=4C6/ f3a2s0dg and the
data of Refs.[47,48] for C6 andas0d were used.

As is seen from Table I(columns 2 and 3), the single-
oscillator model leads to practically the same results for the
correction factorh as the exact relative atomic polarizability.
At the shortest separationa=150 nm, where the difference
between the two computations is maximal, it is equal to only

TABLE I. Correction factorhsa,Td to the Casimir-Polder energyE0
AMsad for an atom near an Au wall at

T=300 K computed using the Lifshitz formula(25) and the exact dynamic polarizability(a), the Lifshitz
formula and the single oscillator model(b), asymptotic expression for large separations(29) (c), and
asymptotic expression for short separations(39) (d).

a Metastable He* near Au wall Na near Au wall Cs near Au wall

smmd (a) (b) (c) (d) (b) (c) (d) (b) (c) (d)

0.15 0.5039 0.5032 0.5050 0.6415 0.6452 0.5705 0.5731

0.2 0.5899 0.5900 0.5912 0.7194 0.7217 0.6551 0.6567

0.3 0.7070 0.7077 0.7083 0.8124 0.8134 0.7630 0.7637

0.4 0.7801 0.7810 0.7814 0.8635 0.8640 0.8259 0.8264

0.5 0.8285 0.8294 0.8298 0.8946 0.8950 0.8657 0.8661

0.6 0.8620 0.8627 0.8632 0.9149 0.9154 0.8922 0.8928

0.7 0.8859 0.8865 0.8872 0.9289 0.9235 0.9297 0.9108 0.9116

0.8 0.9035 0.9040 0.9051 0.9390 0.9354 0.9401 0.9243 0.9254

0.9 0.9167 0.9172 0.9187 0.9464 0.9440 0.9480 0.9342 0.9283 0.9358

1.0 0.9269 0.9272 0.9294 0.9520 0.9502 0.9541 0.9418 0.9375 0.9439

1.1 0.9347 0.9350 0.9281 0.9379 0.9562 0.9549 0.9590 0.9475 0.9444 0.9504

1.2 0.9409 0.9411 0.9360 0.9448 0.9594 0.9584 0.9520 0.9496 0.9556

1.3 0.9458 0.9460 0.9420 0.9504 0.9619 0.9612 0.9555 0.9537 0.9599

1.4 0.9498 0.9499 0.9468 0.9552 0.9640 0.9633 0.9583 0.9569

1.5 0.9531 0.9532 0.9508 0.9592 0.9656 0.9651 0.9606 0.9596

2.0 0.9668 0.9669 0.9659 0.9741 0.9739 0.9712 0.9708

2.5 0.9889 0.9889 0.9885 0.9935 0.9934 0.9917 0.9914

3.0 1.031 1.031 1.030 1.034 1.033 1.032 1.032

3.5 1.096 1.096 1.095 1.097 1.097 1.097 1.097

4.0 1.182 1.182 1.182 1.183 1.183 1.183 1.183

4.5 1.286 1.286 1.285 1.286 1.286 1.286 1.286

5.0 1.402 1.402 1.402 1.402 1.402 1.402 1.402

6.0 1.656 1.656 1.656 1.656 1.656 1.656 1.656

7.0 1.924 1.924 1.924 1.924 1.924 1.924 1.924

8.0 2.196 2.196 2.196 2.196 2.196 2.196 2.196

FIG. 3. Accurate normalized atomic dynamic polarizabilities for
He* (curve 1) and for Na(curve 2) versus frequency expressed in
atomic units(1 a.u. of frequency is equal to 27.21 eV).
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0.14% of the result. This difference quickly decreases with
increasing separation. Because of this, one can conclude that
the Casimir-Polder free energy can be reliably computed by
the use of the single-oscillator model.

Now let us compare columns 2 and 3 of Table I with
columns 3 and 4 representing the results obtained by the
above asymptotic expressions. It is seen that the results of
column 4 [asymptotic expression(29)] practically coincide
with the data of columns 2 and 3 at large separations, and the
results of column 5[asymptotic expression(39)] coincide up
to a fraction of percent with the same data at short separa-
tions. In the intermediate region ofa<1.3 mm both
asymptotic expessions join smoothly deviating from results
of columns 2 and 3 by about 0.4%.

Similar conclusions can be made from columns 6–8(for
Na) and columns 9–11(for Cs). The single difference is that
for Na the smooth joining of both asymptotic expressions
takes place ata<1 mm, where the asymptotic values of the
free energy deviate from the data of column 6 by about
0.2%. For Cs the asymptotic expressions for small and large
separations join smoothly ata<1.1 mm. At this separation
they deviate from the numerical results of column 9 by ap-
proximately 0.3%.

It is notable that for the atoms of Na and Cs the single-
oscillator model for the dynamic polarizability is even more

exact than for the atom of He* . To illustrate this, in Fig. 3 the
accurate normalized atomic dynamic polarizability of the Na
atom is presented(curve 2) using the data of Ref.[49]. Here
the differences with the dynamic polarizability given by the
single-oscillator model are much less than for the atom of
He* . At the shortest separationa=150 nm and at the highest
Matsubara frequency contributing into the Casimir-Polder
free energy there is only 4% difference in the values of the
exact and approximate relative polarizability. This does not
lead to any noticeable change in the value of the correction
factorh. For Cs, its effective frequencyv0 is less than for Na
but greater than for He* . Thus there is only a 0.1% difference
in the value of the correction factorh occurring for Cs at the
shortest separationa=150 nm. At larger separations the
single-oscillator model leads to exactly the same results for
the Casimir-Polder free energy as the exact dynamic polariz-
ability.

Now we compare the results of the asymptotic and nu-
merical calculations of the Casimir-Polder force acting be-
tween different atoms and an Au wall. These results are pre-
sented in Table II in the form of correction factork [see Eqs.
(32) and (41)]. Table II is organized similarly to Table I.
Column 1 contains the values of separations; in column 2 the
numerical computations ofk are presented for He* from the
exact formula(26) with the dielectric permittivity(19) and

TABLE II. Correction factorksa,Td to the Casimir-Polder forceF0
AMsad between an atom and an Au wall

at T=300 K computed using the Lifshitz formula(26) and the exact dynamic polarizability(a), the Lifshitz
formula and the single oscillator model(b), asymptotic expression for large separations(33) (c), and
asymptotic expression for short separations(41) (d).

a Metastable He* near Au wall Na near Au wall Cs near Au wall
smmd (a) (b) (c) (d) (b) (c) (d) (b) (c) (d)

0.15 0.4298 0.4284 0.4309 0.5707 0.5762 0.4959 0.4995
0.2 0.5151 0.5146 0.5163 0.6553 0.6586 0.5835 0.5858
0.3 0.6388 0.6394 0.6402 0.7625 0.7640 0.7028 0.7039
0.4 0.7214 0.7224 0.7229 0.8246 0.8254 0.7769 0.7775
0.5 0.7787 0.7798 0.7811 0.8637 0.8641 0.8257 0.8260
0.6 0.8198 0.8208 0.8211 0.8899 0.8902 0.8593 0.8596
0.7 0.8500 0.8511 0.8513 0.9083 0.9085 0.8834 0.8837
0.8 0.8729 0.8739 0.8741 0.9218 0.9221 0.9013 0.9016
0.9 0.8905 0.8914 0.8918 0.9320 0.9276 0.9324 0.9149 0.9152
1.0 0.9056 0.9052 0.9057 0.9399 0.9368 0.9405 0.9254 0.9259
1.1 0.9155 0.9161 0.9036 0.9170 0.9461 0.9438 0.9469 0.9336 0.9280 0.9345
1.2 0.9244 0.9249 0.9154 0.9261 0.9509 0.9492 0.9522 0.9402 0.9359 0.9414
1.3 0.9312 0.9318 0.9246 0.9337 0.9547 0.9533 0.9565 0.9453 0.9420 0.9471
1.4 0.9371 0.9374 0.9317 0.9400 0.9576 0.9565 0.9494 0.9468 0.9520
1.5 0.9416 0.9418 0.9373 0.9454 0.9598 0.9589 0.9525 0.9504 0.9560
2.0 0.9515 0.9516 0.9498 0.9623 0.9620 0.9580 0.9572
2.5 0.9505 0.9506 0.9498 0.9577 0.9575 0.9549 0.9545
3.0 0.9507 0.9507 0.9503 0.9556 0.9555 0.9537 0.9534
3.5 0.9620 0.9620 0.9617 0.9653 0.9652 0.9640 0.9639
4.0 0.9902 0.9902 0.9900 0.9925 0.9924 0.9916 0.9915
4.5 1.037 1.037 1.037 1.038 1.038 1.038 1.038
5.0 1.100 1.100 1.100 1.101 1.101 1.100 1.100
6.0 1.261 1.261 1.261 1.262 1.262 1.262 1.262
7.0 1.450 1.450 1.450 1.450 1.450 1.450 1.450
8.0 1.649 1.649 1.649 1.649 1.649 1.649 1.649
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accurate dynamic polarizability(curve 1 of Fig. 3). In col-
umns 3, 4, and 5 the values ofk for He* are calculated by
Eq. (26) with the single-oscillator model, Eq.(33) at large
separations, and Eq.(41) at short separations, respectively.
Columns 6–8 and 9–11, respectively, contain similar data for
the atoms Na and Cs, as are given in columns 3–5 for He* .

From columns 2 and 3 it is seen that use of the single-
oscillator model to calculate the force is a bit less exact than
it was in the case of the free-energy calculation. But even
here the maximal error ofk introduced by the single-
oscillator model at a separationa=150 nm is only 0.3%.
Comparison of column 2 or 3 with columns 4 and 5 shows
that the smooth joining of the two asymptotes occurs ata
<1.5 mm. At this separation each asymptote deviates from
the numerical result by less than 0.5%. For the atoms Na and
Cs, respectively, the smooth joining of the asymptotes for the
force correction factor takes place ata<1.2 mm and a
<1.4 mm.

Both Tables I and II demonstrate that the single-oscillator
model and the corresponding asymptotic formulas for large
and short separations can be reliably used to calculate the
Casimir-Polder free energy and force for different atoms near
a metal wall with a precision to better than 1%.

V. CONCLUSIONS AND DISCUSSION

In the above we have performed both analytical and nu-
merical calculations of the Casimir-Polder interaction of dif-
ferent atoms and a gold cavity wall with account of real
experimental conditions such as the nonideality of a metal
wall, dynamic polarizability of the atom, and nonzero tem-
perature. These calculations demonstrate significant devia-
tions from the classical Casimir-Polder results(up to 35% for
the free energy and up to 57% for the force in the case of He*

atom near an Au wall at the shortest separation considered in
the paper where the thermal corrections are still negligible).
We conclude that the proper account of real conditions is
necessary for interpretation of measurement data in precision
cavity QED experiments.

The simple and transparent derivation of the Lifshitz for-
mula for the free energy of atom-wall interactions was per-
formed at nonzero temperature of a wall in terms of the
reflection coefficients starting from the usual Lifshitz for-
mula for two semispaces. In the limiting case of an ideal
metal and an atom described by the static polarizability the
classical Casimir-Polder result was reproduced.

The combined account of different corrections to the
Casimir-Polder energy and force indicate that at short sepa-
rations(larger than the plasma wavelength of a wall metal)
the corrections due to the dynamic polarizability play a much
more important role than do the corrections due to the non-
ideality of a wall metal. Moreover, it was found that the
dynamic polarizability of an atom leads to the suppression of
the finite conductivity corrections in comparison to the static
polarizability case.

On the basis of the Lifshitz formula for the atom-wall
interaction, two asymptotic expressions for the Casimir-
Polder free energy and force were obtained, one of which is

applicable at large separations and the other one at short
separations. The asymptotic formula for large separations
takes exact account of nonzero temperature and is presented
in the form of double-perturbation theory in powers of two
small parameters, the relative penetration depth of electro-
magnetic oscillations into a wall metalsbpd and the relative
characteristic frequency of an atomsbAd. The asymptotic for-
mula for short separations was derived at zero temperature. It
takes into account exactly the atomic dynamic polarizability
and treats perturbatively, in powers of a small parameterbp,
the nonideality of the metal. In the region of intermediate
separations both asymptotic formulas join smoothly. It is no-
table that the single-oscillator model for the atomic dynamic
polarizability (although it may deviate up to 30% from the
exact data at some contributing Matsubara frequencies with
large numbers) leads to practically exact results for the
Casimir-Polder free energy and force. We therefore conclude
that the analytical expressions obtained for the Casimir-
Polder interaction can be combined with the single-oscillator
model for the dynamic polarizability preserving the final ac-
curacy of approximately 1%.

The important question for further discussion would the
obtained results be applicable in the case when the cavity
wall is at a temperatureT but the atom belongs to the Bose-
Einstein condensate with a temperatureT0!T. According to
our expectations, the above results would indeed apply to a
Bose-Einstein condensate and a wall. We believe this is so
because the Bose-Einstein condensate would have very low
relative kinetic energy among the atoms(they can be de-
scribed as ultracold atoms, but this is not the temperature that
interests us); however, the atoms would still be subject to the
fluctuating fields present in the spatial vacuum separating the
Bose-Einstein condensate and the cavity wall, characterized
by the temperatureT (see also recent e-print[50]).

One more important correction factor which was not dis-
cussed above is the wall roughness. As was shown in Ref.
[51], the roughness contribution to the Casimir-Polder force
between an atom and a wall can be rather significant, leading
to qualitative physical effects. The role of roughness can be
taken into account in combination with the other corrections
by the method of the geometrical averaging[19,24,43]. The
diffraction-type and other nonadditive contributions to the
roughness corrections can be estimated along the lines of
Refs. [43,52]. However, the investigation of the role of
roughness should be adapted to some definite experiment
and be based on the atomic force[19] and (or) scanning
electron[53] microscope images of the wall surface profiles.
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