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Alignment and orientation effects in collisions of helium with Rydberg atoms due to the presence of static
electric and magnetic fields are predicted. Analytical expressions are obtained for the cross sections of the
state-to-state transitions within the manifold with the same principal quantum number. For moderate field-
induced inelasticity, the curves of the cross sections vs the fields intensity show modulations that are explained
in terms of the phase differences accumulated by the wave functions of the states involved in the collision. Due
to the presence of the magnetic field, transitions involving inversion of high magnetic quantum numbers are
dramatically quenched. The possibility of observing the predicted effects is discussed. The reported analytical
cross sections are expected to help in the understanding of the results.
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I. INTRODUCTION

Recently, interesting effects in collisions of rare-gas at-
oms with Rydberg atoms have been theoretically predicted
[1,2]. In particular, the presence of oscillations in the total
cross sections of state-to-state transitions as a function of the
relative velocity of the colliding atoms was interpreted as the
manifestation of interference effects induced by collisions of
helium atoms with calcium. The theoretical model on which
the predictions are based used the impact parameter method
(IPM). Further, some simplifying assumptions were adopted
to account for the mechanism responsible for the oscillations.
To the best of our knowledge, until now, the above interfer-
ence effects have not been observed in experiments. The key
parameter of the physical process associated with the onset
of the oscillations is the ratioDE/V, whereV denotes the
projectile-target relative velocity andDE is the collision en-
ergy defect which is fixed by the quantum defects of the
states involved in the collision event. ForDE→0 or V→`
the modulations in the cross sections disappear. To observe
the predicted phenomena, collisions of rare-gas atoms with
Rydberg atoms should be carried out, for a given arrange-
ment, at variable relative velocity of the colliding particles,
in order to change the parameterDE/V. On the other hand, it
is well known that by submitting the colliding system to the
action of an external static electric or magnetic field, the
energy separationDE can be varied and, consequently,
modulations of the excitation cross sections should occur at
fixed velocities of the colliding particles when the field
strength is changed.

It is the aim of the present paper to present a theoretical
treatment of alignment and orientation effects in collisions of
helium with high-angular-momenta hydrogen Rydberg at-
oms, germane to those predicted in[1,2], but due to the
presence of static electric and magnetic fields. The physical
conditions we envisage have a number of advantages:(i) the
state of the art in collision experiments of this kind in exter-
nal fields is very high and well assessed[3]; (ii ) a well es-
tablished theoretical model, the IPM, may be used[4], allow-
ing, in our case, to obtain analytically closed final formulas
for the cross sections to be obtained;(iii ) inspection of the

general formulas for some specific situations and limits
gives, in principle, the possibility to trace back precisely the
physical reasons for the obtained results without the need to
resort to a separate modeling for their interpretation. Con-
cerning the effects of an external static electric field, theoret-
ical studies on angular momentum mixing collisions and on
the initial orientation of the relative velocity of the colliding
atoms have been performed by Hickman[5] and de Prunele
[6], and measurements have been carried out, respectively,
by Slusheret al. [7] and by Kachruet al. [8] in collisions
between Xe and Xe Rydberg atoms and Xe and Na Rydberg
atoms(see also Ref.[9]).

Below, we first consider the effects of a static electric field
on the state-to-state transitions induced by the collision of
helium with hydrogen Rydberg atoms. The analysis will be
limited to the case in which the relative velocity of the col-
liding atoms is parallel to the direction of the electric field
and the states involved in the collision belong to the same
n-manifold. Moreover, within the range of values of the ex-
ternal field strength under consideration, the energy of the
Rydberg states is determined by the linear Stark effect, while
field-independent wave functions of the excited hydrogen
atom states will be assumed. Second, the effects of an addi-
tional parallel magnetic field will be considered as well.

II. STATE-TO-STATE CROSS SECTIONS

In this section the state-to-state cross sections will be de-
rived when the collision occurs in the presence of a static
external electric field. For the aims of our investigation, the
familiar IPM is particularly well suited. According to it, the
projectile positionR relative to the target core takes the form
Rstd=r+Vt wherer, the impact parameter, is perpendicular
to the direction of the static electric field, taken along thez
axis, andV = ẑV is the relative velocity of the colliding par-
ticles with ẑ a unit vector alongz. The choice of the parallel
geometry allows us to greatly simplify the numerical calcu-
lations to be accomplished below. Neglecting the helium po-
larizability, during the collision event the projectile is treated
as a structureless particle interacting only with the Rydberg
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electron through a potential that, in the Fermi approximation
[10], is represented by the zero-range potential

Wstd = 2psLs/mdd„r − Rstd…, s1d

whereLs=1.19a0 is the electron-helium scattering length,r
the electron coordinate,a0 the Bohr radius, andm
=memHe/ sme+mHed<me the reduced mass of the electron-
helium system. With the above assumptions, the Hamiltonian
of the target atom in the presence of the static electric field is
perturbed by the electron-projectile time-dependent potential
Wstd, Eq. (1). Therefore, by assuming that at the initial time
ti the atomic stateuCil is an eigenstate of the Hamiltonian of
the hydrogen atom in the presence of the static electric field
of intensityF, the transition amplitude at timet to the atomic
stateuC fl, at first order inW, is

Tif = − si/"dE
ti

t

kC fuWst8duCildt8, s2d

with i Þ f and uCil and uC fl eigenstates of

Ĥ0 =
p̂2

2me
−

e2

r
− eFz. s3d

For the electric field strengths and the atomic spectrum
region taken under consideration in the present paper, the
wave functions describing the states involved in the collision
may be taken as the field-free hydrogen wave function char-
acterized by the parabolic quantum numbersn1,n2,m, with
m the magnetic quantum number andn=n1+n2+ umu+1 the
principal quantum number. The electric field effect on the
energy of the statesun,n1,ml is taken into account, at first
order inF, by the following expression;

En,n1,m = − 1/s2n2d + 1.5ns2n1 − n + umu + 1dF, s4d

while the alignment effects caused by the electric field are
accounted for by the permanent electric dipole associated
with the atomic states. Note that atomic units are used. By
substituting Eq.(1) into Eq. (2), and usingz= ẑVt, the tran-
sition probability amplitude from the state described by the
wave functionCn,n1i,mi

sr dexps−iEitd, for ti →−`, to that de-
scribed byCn,n1f,mf

sr dexps−iEftd, for tf →`, is obtained as

Tif = − 2p isLs/VdE
−`

`

expsiDE z/VdCn,n1f,mf

* sRdCn,n1i,mi
sRddz

s5d

with R=r+z andDE=Ef −Ei the inelasticity of the collision.
The cross section of the process obtained upon integration
over the impact parameter is

ssi → fd = 2pE
0

`

uTif u2r dr. s6d

In Eq. (5),

Cn,n1i,mi
sr d = s21/2/n2dfn1,msh/ndfn2,msj/ndÎ1/2p expsim wd,

whereh ,j ,w are the parabolic coordinates and

fk,msxd =Î k!

sk + umu ! d
Lk

umusxdexpS−
x

2
Dxumu/2 s7d

with Lk
umusxd the associated Laguerre polynomials[11]. The

integral givingTif may be evaluated analytically. As shown
in the Appendix, the result of the integration is obtained in
terms of modified Bessel functions of the second kind. By
further integration over the impact parameter, as prescribed
by Eq. (6), an analytical closed form of the cross section is
arrived at, which is too involved to be reported here. In the
simplest case, when the initial state is a so-called circular
state with quantum numbersn1=n2=0,m=n−1, the cross
section of the process in which the atom makes a transition
to the state withn1f =1,n2f =0,mf =m−1 is obtained as

ssn,0,m→ n,1,m− 1d

= S2pLs

V
D2S s2md!

n m!
D4 s2m+ 1d2

2s4m+ 1d!
scos2xd2sm+2d

3F2m+ 1

4
−

2msm+ 1d
4m+ 3

cos2xG , s8d

where cos2x=f1+snDE/2Vd2g−1. In the Appendix, it will be
shown that the cross sectionsssi → fd may be expressed as
combinations of powers of cosx. Moreover, it is not difficult
to show that the rationDE/ s2Vd may be cast in the form
DE/DEm where DEm is the maximum value of the energy
that may be exchanged in an elastic collision between a
heavy particle and an electron moving, respectively, with ini-
tial velocities V and ve@V with ve=1/s2nd, the average
electron velocity in the state with principal quantum number
n. In our calculationsDE/DEm will be taken less than unity.

III. RESULTS

We note that the cross sections given by Eq.(6) are inde-
pendent of the signs ofDE, mi, and mf. From Eq. (5) it
clearly follows that the transition amplitude, for fixed veloc-
ity of the projectile, is determined by the overlap of the wave
functions of the states involved in the collision event, and by
the modulating factor expsiDEz/Vd. As DE may be changed
by varying the field strength, the modulation and, hence, the
cross sections may be controlled by the external field. More
precisely, the overlaps of the wave functions, for the values
of the field strength taken under consideration in the present
work, are not modified by the presence of the field. In ther-z
plane, their maxima and minima are located in the boxes
formed by the nodal lines of the wave functions, as illus-
trated in Fig. 1 where, as an example, the overlap between
the states with n=15, n1i =5, mi =5, n1f =6, mf =6 is
shown. Instead, the phase factor expsiDEz/Vd weighting the
overlap along the liner=r0, r0 being a given impact param-
eter, changes by varyingDE, altering appreciably the result
for the transition amplitude. This effect is illustrated in Fig. 2
where the transition probability times the impact parameter,
ruTif u2, as a function ofr is plotted for different values of the
field strength. It turns out that, when the field strength varies,
the major modifications take place when the trajectory of the
projectile intersects the maxima of the absolute values of the
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overlaps. The effect of the electric field on the cross sections
for transitions involving some selected states is shown in
Fig. 3. All the curves have been obtained for relative veloci-
tiesV=105 cm/sec. For the range of field strength taken un-
der consideration, the field effect is not univocal even if, by
further increasing the ratioDE/V, the cross sections are ex-
pected to suffer severe reduction due to fast oscillations of
the phase factor expsiDEz/Vd, irrespective of the two states
involved in the collision.

Before closing this section, we observe that for collisions
involving rare-gas atoms other than helium, because of the
effects due to their higher polarizability, Eq.(1) is likely to
become inadequate for describing the Rydberg-electron–rare-
gas interaction.

Although a discussion of such effects is beyond the aims
of the present work, we remark that Lebedev and Fabrikant
[14] have shown how to account for them. Working within
the impulse approximation(IA ) approach, they used the
electron–rare-gas scattering amplitude provided by the modi-
fied effective range theory[15,16] to incorporate the long-
range interaction due to the higher polarizability of the
heavier noble gases. Moreover, within the IA method, calcu-
lations have been carried out for Xe-Ca collisions[1] by
using an approximate expression of the electron–rare-gas-
atom scattering amplitude given in[16]. As already remarked
in the Introduction, the numerical results obtained in[1] dis-
played the presence of oscillations in the curve showing the
state-to-state transition cross sections as a function of the
velocity of the colliding atoms. In the case of our concern,
the external fields would not affect the Rydberg-electron–

rare-gas interaction, but only the initial and final atomic state
energies. Therefore, oscillatory behavior of the state-to-state
transition cross section as a function of the external field
intensity is expected too for rare-gas projectiles heavier than
helium.

IV. EFFECTS DUE TO A STATIC WEAK
MAGNETIC FIELD

As the cross sections given by Eq.(7) are invariant under
inversion of the sign ofDE and of the magnetic quantum
numbers, the cross sections of the transitions from a circular
state to one of the four states characterized bym= ± sn−1d
and n1 equal to either 0 or 1 turn out to be equal. If the
colliding system is submitted to an additional uniform static
magnetic field, parallel to the electric field, the symmetry
with respect to the inversion ofm breaks down. In fact, as-
suming such a strength of the field that the diamagnetic ef-
fects may be neglected, and ignoring spin-flip transitions, the
inelasticity of the collision,DE, takes the following form:

FIG. 1. (Color online) Contour plot of the overlap between the
wave functions of the statesu15,5,5l and u15,6,6l. Note the nodal
lines describing parabolas.

FIG. 2. (a) Weighted transition probabilities from the state
u15,0,14l to the stateu15,0,13l vs the impact parameter, for dif-
ferent values of the electric fieldF. The relative velocity of the
colliding atoms isV=105 cm/sec.(b) As for (a) for transition from
the stateu15,0,14l to the stateu15,0,12l.
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DE=1.5nf2sn1i −n1fd+ umiu− umfudgF+smi −mfdg, with g
=sB/B0d, where the magnetic field intensityB is measured in
gauss andB0=4.73109 G. The additional paramagnetic
term is a measure of the orientation effect brought about by
the magnetic field in the collision event. To evaluate this last
effect, the cross sections calculated by Eq.(8) at F
=500 V/cm, as a function of the magnetic field strength, are
shown in Fig. 4. The cross sections of the transitions with
mi −mf =1 are slightly influenced by the presence of the mag-
netic field, while sizable modifications occur for transitions
with inversion of the sign of the magnetic quantum number,
especially when the magnetic field strength increases. The
behavior of the curves at the highest values ofB considered
in Fig. 4 shows the stabilizing effect of the magnetic field on
the projection of the electron angular momentum along the
direction of the field. So the quenching of the cross sections,
when the magnetic field strength is high, is a measure of the
freezing of the magnetic quantum number operated by the
magnetic field during the collision event. For relatively low
field strengthsBø2 kGd andmf =−mi +1, the features of the
curves are similar to those of Fig. 2, and oscillations of the
cross sections may appear.

V. CONCLUDING REMARKS

In summary, by using the impact parameter method, ana-
lytical expressions of the cross sections of the state-to-state
transitions within manifolds with the same principal quantum
number have been obtained. For moderate field-induced en-
ergy differences, the curves of the cross sections vs the field
strength show modulation features that are explained in
terms of the phase differences accumulated by the wave
functions of the states involved in the collision. It has been
shown that, due to the presence of the magnetic field, tran-
sitions involving inversion of high magnetic quantum num-
bers are dramatically quenched. The results of the calcula-

tions may be extended to the case of collisional state-to-state
excitation of Rydberg states of alkali-metal atoms with, prac-
tically, zero quantum defects. By using external fields with
parameters well within the experimental state of the art, the
possibility of investigating the reported field effects on Ryd-
berg alkaline-metal atoms is open. In particular, advantage
may be taken of the experimental demonstrations([3] and
references therein,[13]) that it is possible to produce targets
of oriented elliptic Rydberg atoms of sufficient density and
arbitrary degree of ellipticity to perform atomic-collision and
spectroscopic studies.
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APPENDIX

Here we outline the evaluation of the transition amplitude
and cross section defined, respectively, by Eqs.(5) and(6) of

FIG. 3. State-to-state cross sectionsssn1i ,mi ;n1f ,mfd as a func-
tion of the electric field strength at the relative velocityV
=105 cm/sec. Dotted line, ss0,14;1,13d. Dashed line,
ss0,13;1,13d. Full line, ss0,14;0,12d. Dash-dotted line,
ss0,14;0,10d.

FIG. 4. (a) As for Fig. 2(a), for transition from the state
u15,0,11l to the stateu15,1,−13l, for different values of the mag-
netic field and forF=500 V/cm. (b) State-to-state cross sections
ssn1i ,mi ;n1f ,mfd as a function of the magnetic field strength at the
relative velocityV=105 cm/sec.
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the main text. Though rather involved, the following deriva-
tion is felt to be useful to obtain different, specific cases. By
introducing the parabolic coordinatesj=R+z and h=R−z,
the impact parameter may be written asr=Îhj. For fixed
r ,z=sj−r2/jd /2 and Eq.(5) is cast in the form

Tif = − 2pisLs/Vdexpfisumiu − umfudwgs1/pn4dI0 sA1d

with

I0 = s1/2dE
0

`

dj expfiasj − r2/jd/ng

3fn1i,mi
S j

n
D fn2i,mi

S r2

nj
D fn1f,mf

S j

n
D fn2f,mf

S r2

nj
Ds1 + r2/j2d

sA2d

and a=nDE/2V. By putting r /n= r̃ , j=nr̃t and using the
definitions of fn,m given by Eq. (7) and of the associated
Laguerre polynomialsLn

umusxd=ol=0
n cn,umu

l xl with

cn,umu
l = s− 1dl sn + umud!

n ! umu!
nsn − 1d ¯ sn − l + 1d

sumu + 1dsumu + 2d ¯ sumu + ldsld!
,

cn,umu
0 =

sn + umud!
n ! umu!

,

Eq. (A2) is written as

I0 = s1/2dnNif r̃
sumiu+umf u+1do

l1=0

n1i

o
l2=0

n2i

o
l3=0

n1f

o
l4=0

n2f

cn1i,umiu
l1

3cn2i,umiu
l2 cn1f,umf u

l3 cn2f,umf u
l4 r̃sl1+l2+l3+l4dIcsad, sA3d

where

Nif =Î n1i!

sn1i + umiud!
Î n2i!

sn2i + umiud!

3Î n1f!

sn1f + umfud!
Î n2f!

sn2f + umfud!

and

Icsad =E
0

`

xsl1+l3−l2−l4dexpS− r̃s1 + iadx − r̃
s1 − iad

x
D

3s1 + x−2ddx. sA4d

By using ([12], p. 340),

E
0

`

xsn−1dexpS− gx −
b

x
Ddx= 2Sb

g
Dsn/2d

Kns2Îbgd,

Eq. (A4) is reduced to a combination of modified Bessel
functionsKn:

Icsad = 2 exps− ilxdfe−ixKl+1s2r̃Î1 + a2d
+ eixKl−1s2r̃Î1 + a2dg , sA5d

with

l = l1 + l3 − l2 − l4, es−ixd =
1 − ia

Î1 + sad2
. sA6d

By using Eqs.(A3) and (A5), the transition probability am-
plitude is obtained as combinations of terms of the kind
cosfsi − jdxgKiszdKjszd giving rise to interference effects due
to the energy difference, induced by the external field, be-
tween the states involved in the collision event. ForDE
=0,a=0 and the interference effects disappear.

In order to evaluate the cross section of state-to-state tran-
sition, use is made of the following relation[12], p. 693:

E
0

`

zbKiszdKjszddz=
2sb−2d

b!
GSb + 1 + i + j

2
DGSb + 1 + i − j

2
D

3GSb + 1 − i + j

2
DGSb + 1 − i − j

2
D .

sA7d

In our case,b , i , j , and the arguments of theG function turn
out to be integer numbers.

Equation (6) together with Eqs.(A2), (A5), and (A7)
gives

ssi → fd = pS Ls

Vn2D2

Nif
2 o

L,L8

CsL,L8,i, fd
b ! Îs1 + a2db+1

hcosfsl − l8dxg

3fsl,l8d + 2 cosfsl − l8 + 2dxggsl,l8dj

wherel is defined in Eq.(A6) and

o
L,L8

; o
l1=0

n1i

o
l2=0

n2i

o
l3=0

n1f

o
l4=0

n2f

o
l18=0

n1i

o
l28=0

n2i

o
l38=0

n1f

o
l48=0

n2f

;

CsL,L8,i, fd = cn1i,umiu
l1 cn2i,umiu

l2 cn1f,umf u
l3 cn2f,umf u

l4 cn1i,umiu
l18

3cn2i,umiu
l28 cn1f,umf u

l38 cn2f,umf u
l48 ;

b = l1 + l2 + l3 + l4 + l18 + l28 + l38 + l48 + 2sumiu + umfud + 3;

l8 = l18 − l28 + l38 − l48,

fsl,l8d = sl1 + l3 + l18 + l38 + umiu + umfu + 2d ! sl1 + l3 + l28 + l48

+ umiu + umfu + 1d ! sl2 + l4 + l18 + l38 + umiu + umfu + 1d !

3sl2 + l4 + l28 + l48 + umiu + umfud ! + sl1 + l3 + l18 + l38

+ umiu + umfud ! sl1 + l3 + l28 + l48 + umiu + umfu + 1d !

3sl2 + l4 + l18 + l38 + umiu + umfu + 1d ! sl2 + l4 + l28 + l48

+ umiu + umfu + 2d!

gsl,l8d = sl1 + l3 + l18 + l38 + umiu + umfu + 1d ! sl1 + l3 + l28 + l48

+ umiu + umfu + 2d ! sl2 + l4 + l18 + l38 + umiu + umfud !

3sl2 + l4 + l28 + l48 + umiu + umfu + 1d!
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