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Elastic scattering and spin exchange cross sections'iHcollisions are computed using accurate adia-
batic potential curves for the center-of-mass energy rangé<lB< 100 eV. Both cross sections show con-
siderable structure which necessitates computation on a fine energy grid to resolve them. We analyze the
structures using a comparison equation method to find the poles of the scattering matrix in the complex energy
plane. We show that many features of the cross sections can be correlated with these poles and tabulate the
positions of the most important poles. Finding stationary phases in the partial wave cross sections, we also
explain in all details the glory oscillations of the elastic cross section that extends below 100 eV down to the
lowest energies.
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I. INTRODUCTION matrix has poles. Unfortunately, computing hundreds of par-

The elastic scattering and spin exchange cross sections fial waves for complex values @ presents formidable nu-
proton impact on atomic hydrogen are important for applica/nerical difficulties. Fortunately, accurate approximate for-
tions such as the study of fusion and astrophysical plasmagulas[10] based upon the comparison equation method are
For that reason, calculations have been published over thvailable that allow analytic continuation into the complex
years which usually employ the most accurate techniquegnergy plane so that positions of resonance poles can be
available at the timg¢1-6]. In the low-energy range, that is computed more tractably. In the work reported here, the po-
for impact energies below the first excitation threshold neasitions and widths are calculated and correlated with the
10 eV, the cross sections show considerable structure whicstructures seen in the cross sections. These identifications are
makes a detailed physical analysis of the underlying comeescribed in Sec. Il B.
parison of different calculations problematical unless the en- Not all of the resonances show up in the total cross sec-
ergy grid is extremely fine and the results computed withtion. This happens because several poles correspond to win-
great accuracy. Previous calculations have tended toward thifow resonances that are best seen in the partial cross sections
direction, but still greater accuracy is needed. In this manufor a given angular momentum. For that reason a selection of
script we report more accurate calculations on a fine energgartial waves is examined in more detail. The narrow reso-
grid for center-of-mass collision energies<100 eV. These nances are shown to fit the Fano line-shape formula, while
calculations are described in Sec. Il A. the broadest resonances do not. This analysis is presented in

It is a particular goal to interpret the source of the struc-Sec. || C.
tures seen in the computed cross sections given that some Additional features beyond those related to resonances are
structure is predicted for all ion-atom collisions in this en-seen in the elastic scattering cross section, but not in the spin
ergy range[7]. The H'+H system is an ideal prototype to exchange cross section. One of the most conspicuous of
study the origins of these ubiquitous structures. For that reahese features is a regular oscillation above energies of the
son we exploit the present high-energy-resolution calculaorder of 2 eV. This feature in analyzed in Sec. Il C in terms
tions to identify generic features that may be present in mossf the glory mechanisngsee Refs[11,17). Our concluding
ion-atom collisions at sufficiently low energy. remarks are given in Sec. Ill.

It is known that structures in cross sections are often re-  Atomic system of units will be used throughout the text,
lated to analytic properties of the underlying scattering maynless otherwise stated.
trix elements in the complex energy plane. In the case of
narrow, isolated resonances, it is also possible to use the
Fano line-shape theof$] or the standard Breit-Wigner reso- Il. CALCULATION, RESULTS, AND DISCUSSION
nance theory[9] to characterize the structure. Hodges and
Breig [3] identified some of the narrow features that showed
a Lorentzian line shape with shape resonances corresponding The radial wave functions which define the’ +H scat-
to waves trapped in a combination of an attractive potentiatering amplitudes satisfy Schrodinger equations in uncoupled
and an angular momentum barrier. In the present case, use partial waves of angular momenta and for most of the
these standard theories for all structures is not appropriatenergy range considered0*-10 e\) these are simple,
owing to the large apparent width of some of the features. state-uncoupled second-order ordinary differential equations

A better strategy is to relate structures to unique quantiof the form (see, for example, Ref§4—6] and references
ties, namely, the values of complex energies whereShe therein

A. Cross-section calculation
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d®> L(L+1 Oron — correct definition, consistent with conventions well estab-
R TR 2uE,(R) +2uE [F/(R) =0, (1)  |ished in the literaturg3,13 in the energy range considered
here, we treat the identical nuclei as indistinguishable, even
whereE,(R) is an adiabatic electronic potential as a functionfor E>1 eV, when the “elastic” cross-section transitions to
of internuclear distancR for either the 5o or 2po, state of  the total scattering cross section, containing the nonoverlap-
H*+H, u is the system reduced mass, aRff(R) is the  ping sum of direct and recoil channels.
nuclear wave function of the channal Of course, each of In general, if the nuclei are identical and the collision
the gerade states may, in fact, be coupled with the exciteéinergy is low enough, there is no way to distinguish which
gerade states. These are here below the threshold for tfien is elastically scattered and which ion results from charge
reaction, since the #=2) state is 10.2 eV above the transfer from the target nuclei, unless we label the particles
ground, Hn=1), state. Inelastic transition to (H=2), by their spin. Thus our use of the term spin exchange to
through Coriolis coupling of the @ and 2 molecular describe charge transf_er ip this system. In a typical situation
states, becomes important above ald®a0 eV, contribut-  Of an unpolarized projectile beam and target we must ac-

ing up to 2% to the elastic and momentum-transfer cros§ount for the appropriate spin statistics, which yields elastic
sections. This transition is taken into account in our Ca|Cu|a.CYOSS sections that contain contributions from both channels

tion, as described earlig4]. coherently. With the increase of collision energy these evolve

Elastic scattering takes place in each of the chanreetg 1 into the “total” scattering cross sections for the projectiles.
or 2po, and the total channel wave function has the This may be formalized by first defining the relative
asymptotic form center-of-mass motion of the nuclei by the veckR®eR;

exp(ikR) —Ifiz. The interchange of particles results in the change of the
' ) sigh R— -R, or equivalently, the change of scattering angle

) ) .6 into 7—6 while R is unchanged. A detector at angle
where f,(6) are the scattering amplitudes for the scatteringouid count both particles scattered @@nd 7— 6. When

Fa(R)|r_ — eXplik - R) + f,(6)

angled, written in terms of theS-matrix elements as nuclei have the same charge but are distinguishable by other
1 means, the scattering amplitude for the direct elakti®)
f(6) = ﬂz (2L + 1)(S_ - 1)P.(cos), (3)  and charge transfét(6) channels are commonly defined in
1K1 =0

terms of scattering amplitudes on uncoupled gerade and un-

whereS§ can be expressed in terms of the phase shijfts gerade ground stat¢$4,19, i.e.,

S =expi2n) andk is the wave vector related to the center-
of-mass velocity. The phase shifts for each partial wave were f4(6) = fg(0) + fu(6) (5)
calculated as

1 Im{$}>
a
n= mo{—arctar( 21, (4 and
) 27 \Rels)
where§’ are theS-matrix elements for the channa| calcu- f,(6) - f,(0)
lated as§=F " (R— ). foil0) = ‘9—2 —. (6)

A considerable confusion in applications of elastic scat-
tering data may arise due to the difference between the clas- . . .
sical and quantum-mechanical definitions of elastic scatte oh the fully ”“C'.ear'sym”.‘e”'c case consujered here, taking
ing and charge transfer for slow collisions involving identical "M@ ac<_:ount spin statistics _Of an unpolarized beam on an
nuclei such as is in H+H. The indistinguishability of iden- UnPolarized target, one obtaifs3-19
tical particles results in the inability to differentiate slow pro-
tons elastically scattered by H from the recoiling target pro-  doy;
tons produced by charge transfer. This phenomenon is go ~ silfa(6) = foi(m = O)[* + 5l (6) + fo(m = O),
manifested through interference of the wave functions for the 7)
elastic and charge transfer channels. At higher collision en-
ergies the overlap of the two channels vanishes, leading to
pronounced peaks in the differential cross sections for forwhereslzf1 and 52:%1. We use subscript “tot” for the cross
ward (elastio and backward(charge transfgrscattering. section in Eq.(7), rather than the usual “el,” thus stressing
Thus the elastic cross section defined quantum mechanicalize true meaning of the equation in the classically distin-
tends, at higher collision energies, to the total scatteringuishable particlgCDP) limit, at higher energies, i.e., an
cross sectiofi.e., the sum of classically distinguishable elas-incoherent combination of elastic scattering and charge
tic scattering and charge transfeAt these higher energies transfer.
one could calculate or measure the elastic cross section for Thus for the present symmetiisym) H*+H system with
scattering of the projectile separately from charge transfer ofermion nuclei, performing integration over scattering angles
target recoil. We have shown that this limit is reached foranalytically, the formulas obtained for the integral elastic
E>1 eV. However, to maintain a guantum-mechanicallycross section take the form

042711-2



ANALYSIS OF STRUCTURES IN THE CROSS PHYSICAL REVIEW A 70, 042711(2004

. . atoms formed through electron capture to the impacting
2 (2L + 1)(wgsir? 7P+ wisi? 1), (8)  peam of protons. The corresponding flux of protohs(r
L=x - 6)|?, formed by charge transfer in the H targptoducing
where the Coefﬁcientﬁ);—' for even(+) and odd(—) L are the same integral Cross sect)'(mould be deflected to angles
defined asv’=1/4, w}=3/4, andw,=3/4, w;=1/4,respec- nearm—0. The spin-exchange cross section thus tends to the
tively. ¢ ¢ charge transfer cross section in the CDP limit, while the elas-

If the incident flux of protons is polarizedor example of ~ UC Cross section in Eq(7) leads to the “total” differential
spin 1/2, and we are able to measure the spin of the protonS§'0SS Section. The energy at which this condition of distin-
reaching the detector, the protons of spin —1/2 originated irgwshabmty holds is well establishesee, e.g., Ref[16])

the unpolarized hydrogen target. Thus one defines the cro?gd we find that it occurs fd£>.1 ev. At lower energies the
) : . interference between the elastic and charge transfer channels
section for charge transfer involving protons and hydroge

toms of different nuclear spins. i i1 exchan in thiqeads to deviation between the two definitions of the elastic
atoms o erent nuclear spins, 1.€., spin €xchange. ross section if this separation is performed.

way we are able to distinguish the nuclei of the projectile an The 1so, and 2o, adiabatic electronic quasimolecular
of the target by their spin assuming a polarized incident,yes of H for a series of fixed separatiofsof the nuclei
beam; one defines the amplitude for spin exchdd§el as  can pe calculated with arbitrary accuracy owing to the fact
fsd0)=f(6), EQ.(6). The spin exchange obviously acquires {hat the one-electron, two-center problem is separable in pro-
the meaning of the charge transfer amplitude when CDP igate elliptic coordinate$17]. In the present work, we calcu-
applicable; therefore from here forward we will use the sub{ated the gerade and ungerade potentials and their derivatives
script “ct” for either charge transfer or spin exchange. Thewith nine-digit accuracy at #$0 points from R
spin exchange cross section is defined b§—15 =0.0002 to 50 a.u., thus reducing the error in interpolating
the potentials at the points required by the numerical solver.
dog _ l|fg(77_ 0) - f (- 0))2=|fo(m—- 0, (9) For larger distances, we used the asymptotic expansion for
daQ 4 the adiabatic potentials up to 11th ordés).

The radial equations were solved by the algorithm pro-
posed by Johnsor{19] for solution of the stationary
Schrodinger equation using the logarithmic derivatives for
each partial wave, wittR,,,=800 and withR,;,=0.01 a.u..

_Ax
Otot,sym= F

where the dependence a6 comes from the fact that the
detected flux is that of the recoiled target protons. Substitut
ing in the given amplitudes we find

doy 1 * ' - The step AR in R useq on the numerical mesh was
a0 i@ > (2L + Dexli(7? + 7)) Isin( 7 0.0001 a.u. for all energies. The convergence of the elastic
L=0 Smatrix elements in partial waves was established for each
2 energy by requiring that R&—S } < 1078 for at least 20 con-
- n)P.(cos6) (10) secutive partial wavegsee Eq(3)]. For example, the result-
ing value ofL,,,, was 69 at 10 eV but reached 3200 for
which yields 10 eV. '_I'he numer_ical parameters uiséd., the step _and ac-
curacy in calculations of the potentialR and R, in the
4 solver as well as the number of partial waves,,) have
Ot sym= 2 (2L + 1)sinz(77|9— 7). (11 been adopted after a series of tests. Their further improve-
L=0 ment introduces change in the eigliét lower energiesand

It is interesting to consider the behavior of these cross€Venthat higher energigssignificant digit in the cross sec-
sections at relatively high collision energies whéyg(6) are tions for elastic scattering and spin exchange in-H col-
sharply peaked in a narrow cone abai#0. As a conse- lisions, providing an overall accuracy to at least six signifi-
quence, the overlap df, () and fy ,(7-6) is minimal for

cant digits.
small # and they do not interfere. Then E@) can be written The cross sections have been computed for as many
in the classical limit as

points per energy decade as needed, depending on the oscil-
lating features of the cross sections and anticipated reso-
dog ) ) nances. Such a requirement led to 664 energies for the en-
o [fa(6)|° + [fex(m = )] (12)  ergy range considered. The calculation was performed using
a 2-GHz Xeon-CPU-based work station. The CPU time was
which is the total differential cross section for detecting pro-mostly influenced by the number of partial waves required,
tons at an anglé both by scattering of the beam of protons varying from on the order of 10 mifor the lowest energigs
on the target of H atoms and by capturing electrons from theo on the order of a dagfor the highest energigper energy
target atoms, assuming we have means of distinguishing thsoint.
scattered and charge-transfer fluxées example by spin, or It is important to note that the reported accuracy to six
by energy. In that case, the charge-transfer flux is in a smallsignificant digits is the numerical accuracy, obtained by care-
cone aroundd=m, while the elastic flux is peaked around ful control of the numerical parameters of the problem. The
0=0. physical accuracy, on the other hand, depends on the level of
Furthermore, in this classical limit, one can define sepaphysical phenomena included in the numerical model. For
rately “pure” elastic (x|f4(6)[*) and charge transfer example, to test the physical accuracy of our approach at
(| f(6)]?) cross sections. The latter represents the flux of Henergies above the threshold for inelastic procesabsut
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10F According to this approachlQ] the phase shifty has the
F A Hunter and Kuriyan [1] form
U Kirstic and Schultz [4]
——Present WKB 1-A
= =7+ 2¢+arcta 1T+A tan(g, + ¢o) |, (13
8 where we define
ER| ",
5 $2= f Va(R)dR, (14)
Ro
d(R) = 2u[E = Ver(R)], (15
2L =
[ R ol wl i Es (L +1/2)7?
w* 1t e o! 10" 10" 10? Vei(R) = V(R) + ToaR (16)
E (eV)
FIG. 1. Elastio(EL) and spin-exchang@CT) cross sections as a - } } . a.
function of center-of-mass collision energy, calculated as described %o 2 argl 2 rlaj 2(1 (@), 17)
in Sec. Il A.
and
10 eV) we included the rotational coupling with a third state, A=1/1+e2m (18)
2p7r, in the model, which is the first candidate to contribute
to the inelastic charge transfer (n=2). As a result, the Ry
charge transfer and elastic cross sections changed in the third I R
digit at 100 eV. The details of this calculation were pre- a=— [ v-qR)dR, (19)
sented in Ref[4]. The estimate of relativistic and nonadia- Ry

batic corrections, which are not included in the model andand R are turning points determined hy(R)=0 where]
that can play a role at the low-energy end of the range con- : -
sidered(10 eV and lowey is planned for the future work. =0,1,2. I we further defindy as the position of the top of
Figure 1 shows the present elagtifl) and charge trans- barrier whereveﬁ(l*?) has a maximum than we see that for
fer (CT, spin exchangecross sections for all five decades of £~ Ver(Rr), le:hRZ aLe the cr::_)fmplex zeros ofR). C')A ;'m'lﬁr
the energy range considered. Comparison was made with tf&Pression for the phase shift was given in R2@) but the
early calculations of Hunter and Kuriyd@] (HK) for ener- approximations used for aF@EHa) precluded calculations
gies 10°-10 eV, and recent calculations of Kistand of the poles of theS matrix. Using the definition of th&
Schultz[4] for 0.1-100 eV. The latter calculation was done Matrix, S=exp(i27,) and phase shift from Eq¢13) we obtain
with somewhat lesser numerical requirements, on a coard®€ expression for th& matrix
energy grid and does not show any deviation visible in the 1 +Ag 22240
figure from the present values. The HK calculation picked up S = SYVKBe“""Om.
some of the structures of the cross section, and their devia-
tion, reachir!g up to a few percent from th_e present values, From Eq.(20) we see that th& matrix has poles at com-
can be ascribed to a much coarser potential ¢8itlvalues  plex values ofE when the denominator in E20) becomes

for R<50 a.u), as well as to a significantly coarser numeri- zero. It can be easily shown that the equation defining the
cal grid and a smaller number of partial waves in calculatiomoles of theS matrix has the form

of the cross sections. Hodges and Brgy(HB) (not shown ,
in the figurg performed detailed calculations in the same b+ o+ ! In(1 +e2™) = w(n+ 1) (21)
energy range as Hunter and Kuriyan, reproducing most of the 4 2

resonant structures in Fig. 1, but using the same coarse po-

tential grid employed by Hunter and Kuriyan. We discuss the T?[hfmd rolo'f[; of tht? eq(.21) "} ?&?T?leﬁ plane \lNe
present results in more detail in Sec Il C. use the analylic continuation o 2/ 10 the complex

plane,

(20)

B. Resonances and&-matrix poles 1
M -+iz

In the present case the poles of ®matrix correspond to 1 )\
resonances associated with potential barriers formed by the argF(E - 'Z> 7o In 1\
attractive polarization and exchange potentials and the repul- F(‘ - |Z>
sive centrifugal potentials. In the WKB approximation the
matrix has no pole$20], therefore we use the comparison  The positions of the poles of tHematrix in the complex
equation techniqug21] to calculate the poles of tf#matrix.  E plane corresponding to various types of resonances are
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TABLE |. Below-barrier resonances.

PHYSICAL REVIEW A 70, 042711(2004

| ReE (eV) ImE (eV) | ReE (eV) ImE (eV)

4 0.000226 0.000012 25 0.080 0.00026
7 0.00145 0.000016 26 0.0713 &0’

10 0.00536 0.000072 27 0.103 0.0061
12 0.00549 3.x107 28 0.097 5.% 107

13 0.0144 2.410° 29 0.131 0.012

14 0.0059 2.x107° 30 0.127 0.000033
15 0.0188 0.00018 31 0.118 &nos

16 0.0081 1.%x107 32 0.162 0.00015
17 0.0249 0.000073 33 0.156 xa0°

18 0.0130 2.x 1010 34 0.202 0.00051
19 0.0336 0.000051 35 0.199 %30
20 0.0214 9.x 10710 36 0.247 0.0012

21 0.0454 0.000063 37 0.248 0.000036
22 0.0337 7.510°° 38 0.244 1.8107
23 0.0608 0.00012 39 0.303 0.000097
23 0.0146 1.x 10 40 0.302 5.x 1077
24 0.0503 7.%x10°8 41 0.364 0.00013

tabulated in Tables I-IV. Namely, we find three types ofthose with R€E,}>Eg the “above-barrier” resonances. In
resonances, below-barrier resonand@sble |, top-of- case of the below-barrier resonances the particles are con-
barrier resonanceglable Il), and above-barrier resonances fined by the potential barrier in a regidty<R<R;. In the
(Table IIl). For a choserL we assign to the top-of-barrier limit h— 0 the width vanishes exponentially and the motion
resonance that pole whose real part of energyEReEg, is  is described by classical bound state trajectories. The top-of-
closest to top of the barrieNg(L). Then the poles with barrier resonances are orbiting resonances and their widths
Re[E,} <Eg are assigned the names “below-barrier” andare proportional td. In the classical limit these resonances

TABLE Il. Top-of-barrier resonancedso).

| ReE (eV) ImE (eV) I ReE (eV) ImE (eV)
3 0.000218 0.00015 23 0.0792 0.0096
4 0.00638 0.00060 24 0.0815 0.0032
5 0.00101 0.00028 25 0.0996 0.012
6 0.00210 0.00098 26 0.103 0.0044
7 0.00389 0.0024 27 0.124 0.015
8 0.00414 0.00061 28 0.128 0.0062
9 0.00673 0.0019 29 0.152 0.018
10 0.00997 0.0043 30 0.157 0.0088
11 0.0103 0.0012 31 0.162 0.0025
12 0.0143 0.0036 32 0.191 0.0012
13 0.0202 0.0076 33 0.198 0.0042
14 0.0207 0.0029 34 0.231 0.016
15 0.0276 0.0073 35 0.240 0.0065
16 0.0282 0.0024 36 0.276 0.020
17 0.0369 0.0073 37 0.287 0.0092
18 0.0375 0.0021 38 0.275 0.0014
19 0.0483 0.0075 39 0.341 0.012
20 0.0492 0.0022 40 0.355 0.0030
21 0.0623 0.0083 41 0.401 0.013
22 0.0638 0.0025 42 0.420 0.0027
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TABLE lll. Above-barrier resonancedso).

| ReE (eV) ImE (eV) I ReE (eV) ImE (eV)
21 0.112 0.095 32 0.260 0.10
22 0.108 0.067 33 0.235 0.0042
23 0.132 0.095 34 0.293 0.095
24 0.125 0.064 35 0.292 0.0065
25 0.160 0.11 36 0.343 0.11
26 0.152 0.072 37 0.343 0.0073
27 0.192 0.12 38 0.342 0.0041
28 0.184 0.081 39 0.413 0.10
29 0.219 0.12 40 0.399 0.045
30 0.229 0.11 41 0.498 0.16
31 0.196 0.0034 42 0.499 0.12

are related to the motion of the particles along periodic un- Figure 3 shows the computed and fittedzs'vg near a

stable trajectories wittR(t)=R;. The width of the above-

below-barrier(BB) resonance aE,=1.45x 1072 eV with a

barrier resonances does not go to thas0 and these states width ['=3.2X107° eV for L=7 (see Table)l With a value
of 7,=0.4 the computed and fitted profiles agree very well.

have no classical analog.
A few poles of theS matrix for scattering on the

In this case the resonance displays a typical Fano profile

2po-ungerade potential are assigned to the top-of-barrieassociated with a stable classical orbit.
resonances. These are shown in Table IV.

where the line-shape parameters are definegka®ty, and
e=2(E,—E)/T. It is assumed thaE,, I', and 7, are slowly
varying functions ofE. Furthermore, in the present analysis
we assume thdE, andI'/2 are constants given by real and
imaginary parts of the positions of the polés, but recog-

sir? p=sir? 7,

C. Analysis

(q+e)?
1+g2’

(22)

nize that this approximation is often not applicable.

Figure 2 shows details of resonances found in the first two
decadeg104-1072 eV) of Fig. 1. The values of the orbital
angular momentunh for various resonant structures in Fig.
2 corresponding to the poles of ti&matrix in Tables I-IV
are shown, together with the type of the resonarjibetow-
barrier (BB), top-of-barrier(TB), above-barriefAB)]. The
in Fig. 2 is used for resonances of the
2po-ungerade potential. All others resonances are from the~ 31
1so-gerade potential, and these do not carry any descriptol
on Fig. 2 and all subsequent figures.

descriptor “u”

TABLE IV. 2po top-of-barrier and above-barrier resonances.

In contrast Fig. 4 shows the fit to a top-of-barrier reso-
nance ofu symmetry forL=3. In this case we know that
there are no stable classical orbits so the resonance is rela-

In the previous section we have correlated some structurévely broad,I'~E;/2 (Table IV). The corresponding fit to
with the poles of theS matrix. In the case of narrow reso- the Fano profile has);,=0.1. It is apparent that the position
nances with near Lorentzian line shapes the correspondenééthe peak agrees well the real partky, i.e., E;, however,
is good. In all cases it proves useful to examine individuatthe apparent width is much greater than Z&p}=I" and the
partial waves to check the fit to the Fano line-shape formulghapes do not agree. The agreement in position supports our
interpretation of this structure as an above the barrier reso-

nance, however, the approximations thgt and I' in the

Fano line-shape formula are constant is questionable. The

quantityE, computed in the previous section is defined to be
a constant, however, the relationship of this quantity to the
phase shift usually involves dynamical factors, i.e., functions
of E that are unknown. For this reason, the correlation of

10°T

[ 3(uwTB)
i 4(BB)

0ss Section (a.u.)

=

i
4(u.,TB)

7(TB)

1(BB)

| ReE (V) ImE(V) ReE(eV) ImE (eV) 10" 10° 1072
E (eV)
3 0.000148 0.000039 0.000282 0.00031
4 0.000497 0.00017 0.000727 0.00081 FIG. 2. Assignment of the resonances in Tables I-IV to the

structures in Fig. 1.
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1.0 y
, L=7
,"I Below-barrier resonance:
0.8} ]
Calculated values —~
=
“» o6 P} Fano line shape fit N2
= =
~ (8p=0.4) <) ‘ : ‘
g0 s ! \ ‘ : ! \
(}1’ 15(BB) 17(EB) 19(BB) 21(BB) 23(BB) 25(Bi3)
£ ‘ \ ‘ ‘ !
S FI1(TB)  12(TB) 1304 1506 1718 | 1920 ‘z],zz 2324
By LB B @B | ahy T
' ! ; [ |
[ ‘
| I i ! H
; | |
0.0 1 ; . . . [ fT‘BZ)‘
0.0012 0.0014 0.0016 0.0018
E (eV)
. . 2 -1
FIG. 3. Below-barrier(BB) shape resonance in the gerade 10 10
(1509) potential forL=7 (see Table)l The fit was made to the Fano E (eV)

line-shape formula of Eq22).
P 422 FIG. 5. Assignment of the resonances in Tables I-IV to the

some of the resonance poles and the structures of the crogguctures in Fig. 1.

section using the resonance formula is only semiquantitativ tom 0.229 eV, This is not a surprise having in mind that the

Figure 5 shows the assignments of the resonances from. N, .
Tables | and Il to the structures in the elastic and charge\—NIdth of the AB resonance fdr=30 in Table Il is about the

transfer cross sections in the 26 10°%-eV decade of colli- Sarjljﬁeasnzlitrsr(fvcerrggbnance structures discussed up to now
sion energies. Th|s_ region is rich in structures that emerge . o been at relatively low energies, below 0.1 eV, where
from the below-barrier and top-of-barrier resonances. Below-hey are fairly common, They occasio}\ally do 0(.:cur E;.t much
barrier resonances in Fig. 6 are mainly very narrow on the . . - o ;
scale of the collision energies 0.1-2 eV, shown in this 1‘ig—|:'i(~:]he8r Svrﬁ,?éﬂlessﬁoﬁogng ftgr -I_La_bfll'bgt]\';egn'"g%t;afr? dm
ure. We have been able to identify most of them with the 22 eV. In this re ionn'?here is_ a,narrow resénance at
widths that are at most four orders of magnitude smaller tha .364 eV which fitsga Fano orofile but with a oh

the relevant energies. Still, the majority of the structures in_‘27T/15 1I'he position and Wigth were taken frorl)”n a?f;le |
this figure are caused by the top-of-barri@B) and above- Lo . L )
barrier (AB) resonances, and we identify most of them. Again the fit confirms that this is a narrow Fano resonance.

: o . A broad peak at 0.398 eV is also seen in Fig. 8. This is
Since the gerade phase shiffis a component that domi- . .
nates the structure of the elastic cross section in(Bgas correlated with the top-of-barrier resonancdgt0.401 eV,

: I but, just as for the top-of-barrier resonance in Fig. 4, the
well as of charge-transfer one in Ed1), we show in Fig. 7 : : :
both 7, and Siﬁ(ng) for the partial wavel =30. All three width does not correlate with the correspondingig}. In

types of resonances, BB, TB, and AB, are present. The Tﬁgxg?fﬁég f:ﬁz ?arllt'?; fgggrﬁll:sltehehg\?vrg\?;:eﬁxSﬁg 'Sogi?r'
and AB are here of the window type. The positions of the BB pr ' ' P

and TB exactly follow the values from the tables, while thet'on of the structure still correlates well with R}%’}'

AB case is shifted in position by about 0.01 ¢ 0.217 10°
L 33(TB)
1.00 40(AB), 41(TB)
1L.=3 !
2pS, Top-of -barrier resonance —_ L
=1 |
0751 = | 31(AB)
~ 7 N Fano line profile fit 5 ' :
= =1
a Me=-0.1) 5 | 278B) . 29(BB) :
£ A © 30(BB) 320BB) 36(BB) G 41@B) . HAB)
. Calculated values 2 ; o ;3
o D4(AB) 42TB)
0.50 S ;
33(TB) ‘9‘37(‘TB;38<AB)
| ; ;
|
\,
) ] . 1 \
O'&?)()Ol 0.0002 0.0003 0.0004
E (V)
FIG. 4. Top-of-barrier resonance in the antibondi@gao,) po- E (eV)
tential forL=3 (Table 1V). The fit was made to the Fano line-shape
formula of Eq.(22). FIG. 6. Same as in Fig. 5.
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2 -1/2
3@ Tep=— 27322 (2L + 1) ‘ d—LZ cod27(Ly) + ml4],
3.0 : L=L
- / "0.217 (AB, Table IID) 0
2.5 (23)
B 4L
& 20 ~<0.157 (TB, Table I wherelL is the orbital angular momentum corresponding to
L5p : the stationary phase.
Lok It is then supposed that the reduced cross seaiioor
o5l " E=0.127 ¢V (BB, Table I) —0gpis a smooth function of energy. This smooth function is
1 sometimes evaluated by assuming an average value of
sir? n_=1/2 forvalues ofL less than some maximum value

Lmax This latter assumption is not necessary but it is neces-

sary to assume th&@ is smooth. In that case the true cross
sectiono=o0+0g, will show oscillations with an amplitude
and phase given by E@23).

To put the formula above on a more firm foundation for
the case of elastic scattering we evaluate the sum 6fzgin
over L by dividing the sum at.=L; where n_ is less than
/2 for L>L, and drops smoothly to zero with increasing

sin’(y)

0 N I LV A T T BRI B | Thus
05 0.5 025 035 045 055 065 .
E (eV) 4 & 1-cof2y) | | 47 ,
. . Q:FE(ZLJrl)(T +FE (2L + 1) sir? o,
FIG. 7. Below-barrier(BB), top-of-barrier (TB), and above- L=0 Lq

barrier (AB) shape resonances of the window type in the gerade Ly
potential forL=30 (Tables I-ll). The structures irfa) and (b) are - 6_ 4_772 2L +1) cog27) (24)
discussed in the text. K 2

) o . Normally, the sum over c¢2%,) is negligibly small due
The resonances identified in Sec. Il B do not explain all ofi, cancellation of positive and negative terms, but if there are
the features seen in the cross sections. Of particular intereghints of stationary phase the cancellation is incomplete and
are the oscillations in the higher energy region which occutnere will be some contribution from the second term in Eq.

in some cross sections but not in others. A long time agQ24) This contribution is evaluated by the method of station-
Berr?stelriZZ] pplnteq out that sums over partlgl elastic Crossary phase to obtain E@23) and an explicit expression far,
sections involving sifizp_and constituting the integral cross namely.

section may oscillate for some types of the potentiaj ihas

a maxima or minima wherelz_/dL vanishes. These are — 2m T _
called glory oscillations in the integral elastic cross section. Q= FL1(|-1+ 1+ 2 2 L+ Dsif g, (25
The contributions to the sum for regions wherg /dL=0 =Ly

are estimated using the method of stationary phHasel2.

! ek where it is understood that; is a function ofE. In general
The stationary phase contribution is found to be

the stationary phase evaluation will miss contributions owing
to incomplete cancellation at the end polrtL,. Because

1.0 i ‘ this is expected to vary slowly with energy we can assume

7 0:364eV that these slowly varying contributions are includedQn
oz ’ N Orbital angular momentum where the stationary ph&®
L=41 of n(L) for scattering on the sy potential is shown in Fig.
06 9(a), as well as the corresponding amplitudes of oscillations,
: BB

defined in Eq.(23) in terms of the second derivatives,
d?5/dL?, shown in Fig. ). Since the stationary phase ap-
proximation, being an asympthotic method, is well defined
only for large the second derivatives, the rising part of the
amplitude in Fig. 8a) above 10 eV of the collision energy is
not expected to be corredtdashed-line rectangle in Fig.
9(a)], having in mind small values af?7/dL? for these en-
0t '0'37- e IOil()l TR ergies. Thi§ also explains a small deviation of the SP oscil-
) - : TEevy ) ) ) lation amplitudes from the exact values at the higher energy
end of Fig. 10. This figure shows our result for the oscilla-
FIG. 8. The shape resonances for41. The sharp peak &  tions in the elastic cross section, induced by the glory effect.
=0.364 eV is below-barriefBB) resonance. The wider structure at It reproduce the oscillation@bove about 1 e)/and modu-
E=0.398 eV is the top-of-barrigiTB) resonancéTable ). late the cross section at lower energies, as shown in Fig. 10.

]’]()=>2TC/ 15
0.2 -
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ANALYSIS OF STRUCTURES IN THE CROSS

(@

SP amplitude

—_
)
T

L of SP

(b)

—_
[e]
AL

Second derivative at Lgp

d /i’

D
m

107F

10t 100 107 1w 1w’ 10 1

E (eV)

FIG. 9. (a) L and amplitude of Eq.23) at stationary phaséSP)
of 74(L), as a function oE; (b) The second derivative ofy(Lsp),
used for computing of the SP amplitude (&).

Agreement is achieved in the phase, frequency and ampl
tude, removing any doubt regarding the source of the oscil
lations. It is interesting to note that the ungerade phase shif

(L), also has a glory effect, i.e., stationary phasé.iBut

this appears for largé’s where 7,(L) is so small that any
oscillations disappear already at energies abové &9, as

also shown in Fig. 10.

PHYSICAL REVIEW A 70, 042711(2004

10°F

Calculated

Stationary phase

10°F

Elastic Cross Section (a.u.)

E V)

FIG. 10. Glory oscillations in the elastic cross section, repro-
duced by the stationary-phase formula of E2B).

gen in the ground state. The calculation was performed cov-
ering the range of the center-of-mass energie$-100’ eV,

on a dense mesh of the energy poitisore than 80§ to
resolve all structures that appear in the cross sections, at both
the lowest and highest energies of the considered energy
range. Calculating the poles of tamatrix, we were able to
tabulate and identify in the cross sections all narrow resonant
structures, originating from the below-barrier, above-barrier,
and sometimes from the top-of-barrier shape resonances. We
?Iso identify the wide structures at lower energies with often
Overlapping top-of-barrier and above-barrier shape reso-
nances. The structures in the elastic cross section at energies
below 1 eV are modulated by the stationary phase inLthe
dependence of the phase sligtory effec). The oscillations
continue into the energy range where the resonant structures

The absence of the stationary phase in the differencgre absent, appearing as the only structure in the cross sec-
ny(L) = ny(L) [see Eq(11)] explains the absence of the glory tion at higher energiegup to at least 100 eV

oscillations in the charge-transfer cross section.

[ll. CONCLUSIONS

We have performed a highly accurate at least at six
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