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Elastic scattering and spin exchange cross sections in H++H collisions are computed using accurate adia-
batic potential curves for the center-of-mass energy range 10−4,E,100 eV. Both cross sections show con-
siderable structure which necessitates computation on a fine energy grid to resolve them. We analyze the
structures using a comparison equation method to find the poles of the scattering matrix in the complex energy
plane. We show that many features of the cross sections can be correlated with these poles and tabulate the
positions of the most important poles. Finding stationary phases in the partial wave cross sections, we also
explain in all details the glory oscillations of the elastic cross section that extends below 100 eV down to the
lowest energies.
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I. INTRODUCTION

The elastic scattering and spin exchange cross sections for
proton impact on atomic hydrogen are important for applica-
tions such as the study of fusion and astrophysical plasmas.
For that reason, calculations have been published over the
years which usually employ the most accurate techniques
available at the time[1–6]. In the low-energy range, that is
for impact energies below the first excitation threshold near
10 eV, the cross sections show considerable structure which
makes a detailed physical analysis of the underlying com-
parison of different calculations problematical unless the en-
ergy grid is extremely fine and the results computed with
great accuracy. Previous calculations have tended toward this
direction, but still greater accuracy is needed. In this manu-
script we report more accurate calculations on a fine energy
grid for center-of-mass collision energiesE,100 eV. These
calculations are described in Sec. II A.

It is a particular goal to interpret the source of the struc-
tures seen in the computed cross sections given that some
structure is predicted for all ion-atom collisions in this en-
ergy range[7]. The H++H system is an ideal prototype to
study the origins of these ubiquitous structures. For that rea-
son we exploit the present high-energy-resolution calcula-
tions to identify generic features that may be present in most
ion-atom collisions at sufficiently low energy.

It is known that structures in cross sections are often re-
lated to analytic properties of the underlying scattering ma-
trix elements in the complex energy plane. In the case of
narrow, isolated resonances, it is also possible to use the
Fano line-shape theory[8] or the standard Breit-Wigner reso-
nance theory[9] to characterize the structure. Hodges and
Breig [3] identified some of the narrow features that showed
a Lorentzian line shape with shape resonances corresponding
to waves trapped in a combination of an attractive potential
and an angular momentum barrier. In the present case, use of
these standard theories for all structures is not appropriate
owing to the large apparent width of some of the features.

A better strategy is to relate structures to unique quanti-
ties, namely, the values of complex energies where theS

matrix has poles. Unfortunately, computing hundreds of par-
tial waves for complex values ofE presents formidable nu-
merical difficulties. Fortunately, accurate approximate for-
mulas[10] based upon the comparison equation method are
available that allow analytic continuation into the complex
energy plane so that positions of resonance poles can be
computed more tractably. In the work reported here, the po-
sitions and widths are calculated and correlated with the
structures seen in the cross sections. These identifications are
described in Sec. II B.

Not all of the resonances show up in the total cross sec-
tion. This happens because several poles correspond to win-
dow resonances that are best seen in the partial cross sections
for a given angular momentum. For that reason a selection of
partial waves is examined in more detail. The narrow reso-
nances are shown to fit the Fano line-shape formula, while
the broadest resonances do not. This analysis is presented in
Sec. II C.

Additional features beyond those related to resonances are
seen in the elastic scattering cross section, but not in the spin
exchange cross section. One of the most conspicuous of
these features is a regular oscillation above energies of the
order of 2 eV. This feature in analyzed in Sec. II C in terms
of the glory mechanism(see Refs.[11,12]). Our concluding
remarks are given in Sec. III.

Atomic system of units will be used throughout the text,
unless otherwise stated.

II. CALCULATION, RESULTS, AND DISCUSSION

A. Cross-section calculation

The radial wave functions which define the H++H scat-
tering amplitudes satisfy Schrödinger equations in uncoupled
partial waves of angular momentaL, and for most of the
energy range considereds10−4–10 eVd these are simple,
state-uncoupled second-order ordinary differential equations
of the form (see, for example, Refs.[4–6] and references
therein)
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F d2

dR2 −
LsL + 1d

R2 − 2mEasRd + 2mEGFa
sLdsRd = 0, s1d

whereEasRd is an adiabatic electronic potential as a function
of internuclear distanceR for either the 1ssg or 2psu state of
H++H, m is the system reduced mass, andFa

sLdsRd is the
nuclear wave function of the channela. Of course, each of
the gerade states may, in fact, be coupled with the excited
gerade states. These are here below the threshold for the
reaction, since the Hsn=2d state is 10.2 eV above the
ground, Hsn=1d, state. Inelastic transition to Hsn=2d,
through Coriolis coupling of the 2ps and 2pp molecular
states, becomes important above aboutE=50 eV, contribut-
ing up to 2% to the elastic and momentum-transfer cross
sections. This transition is taken into account in our calcula-
tion, as described earlier[4].

Elastic scattering takes place in each of the channels 1ssg
or 2psu and the total channel wave function has the
asymptotic form

uFasRW duR→` → expsikW ·RW d + fasud
expsikRd

R
, s2d

where fasud are the scattering amplitudes for the scattering
angleu, written in terms of theS-matrix elements as

fsud =
1

2ik
o
L=0

`

s2L + 1dsSL − 1dPLscosud, s3d

whereSL can be expressed in terms of the phase shiftshL,

SL=expsi2hLd andkW is the wave vector related to the center-
of-mass velocity. The phase shifts for each partial wave were
calculated as

hL
a = modX1

2
arctanS ImhSL

aj
RehSL

aj
D,2pC , s4d

whereSL
a are theS-matrix elements for the channela, calcu-

lated asSL
a=Fa

sLdsR→`d.
A considerable confusion in applications of elastic scat-

tering data may arise due to the difference between the clas-
sical and quantum-mechanical definitions of elastic scatter-
ing and charge transfer for slow collisions involving identical
nuclei such as is in H++H. The indistinguishability of iden-
tical particles results in the inability to differentiate slow pro-
tons elastically scattered by H from the recoiling target pro-
tons produced by charge transfer. This phenomenon is
manifested through interference of the wave functions for the
elastic and charge transfer channels. At higher collision en-
ergies the overlap of the two channels vanishes, leading to
pronounced peaks in the differential cross sections for for-
ward (elastic) and backward(charge transfer) scattering.
Thus the elastic cross section defined quantum mechanically
tends, at higher collision energies, to the total scattering
cross section(i.e., the sum of classically distinguishable elas-
tic scattering and charge transfer). At these higher energies
one could calculate or measure the elastic cross section for
scattering of the projectile separately from charge transfer or
target recoil. We have shown that this limit is reached for
E.1 eV. However, to maintain a quantum-mechanically

correct definition, consistent with conventions well estab-
lished in the literature[3,13] in the energy range considered
here, we treat the identical nuclei as indistinguishable, even
for E.1 eV, when the “elastic” cross-section transitions to
the total scattering cross section, containing the nonoverlap-
ping sum of direct and recoil channels.

In general, if the nuclei are identical and the collision
energy is low enough, there is no way to distinguish which
ion is elastically scattered and which ion results from charge
transfer from the target nuclei, unless we label the particles
by their spin. Thus our use of the term spin exchange to
describe charge transfer in this system. In a typical situation
of an unpolarized projectile beam and target we must ac-
count for the appropriate spin statistics, which yields elastic
cross sections that contain contributions from both channels
coherently. With the increase of collision energy these evolve
into the “total” scattering cross sections for the projectiles.

This may be formalized by first defining the relative

center-of-mass motion of the nuclei by the vectorRW =RW 1

−RW 2. The interchange of particles results in the change of the

sign RW →−RW , or equivalently, the change of scattering angle

u into p−u while RW is unchanged. A detector at angleu
would count both particles scattered atu and p−u. When
nuclei have the same charge but are distinguishable by other
means, the scattering amplitude for the direct elasticfdsud
and charge transferfctsud channels are commonly defined in
terms of scattering amplitudes on uncoupled gerade and un-
gerade ground states[14,15], i.e.,

fdsud =
fgsud + fusud

2
s5d

and

fctsud =
fgsud − fusud

2
. s6d

In the fully nuclear-symmetric case considered here, taking
into account spin statistics of an unpolarized beam on an
unpolarized target, one obtains[13–15]

dstot

dV
= s1ufdsud − fctsp − udu2 + s2ufdsud + fctsp − udu2,

s7d

wheres1= 3
4 and s2= 1

4. We use subscript “tot” for the cross
section in Eq.(7), rather than the usual “el,” thus stressing
the true meaning of the equation in the classically distin-
guishable particle(CDP) limit, at higher energies, i.e., an
incoherent combination of elastic scattering and charge
transfer.

Thus for the present symmetric(sym) H++H system with
fermion nuclei, performing integration over scattering angles
analytically, the formulas obtained for the integral elastic
cross section take the form
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stot,sym=
4p

k2 o
L=±

s2L + 1dsvg
±sin2 hl

g + vu
±sin2 hL

ud, s8d

where the coefficientsvi
± for even (1) and odd(2) L are

defined asvg
+=1/4,vu

+=3/4, andvg
−=3/4,vu

−=1/4, respec-
tively.

If the incident flux of protons is polarized(for example of
spin 1/2), and we are able to measure the spin of the protons
reaching the detector, the protons of spin −1/2 originated in
the unpolarized hydrogen target. Thus one defines the cross
section for charge transfer involving protons and hydrogen
atoms of different nuclear spins, i.e., spin exchange. In this
way we are able to distinguish the nuclei of the projectile and
of the target by their spin assuming a polarized incident
beam; one defines the amplitude for spin exchange[13,15] as
fsesud= fctsud, Eq. (6). The spin exchange obviously acquires
the meaning of the charge transfer amplitude when CDP is
applicable; therefore from here forward we will use the sub-
script “ct” for either charge transfer or spin exchange. The
spin exchange cross section is defined by[13–15]

dsct

dV
=

1

4
ufgsp − ud − fusp − udu2 ; ufexsp − udu2, s9d

where the dependence onp−u comes from the fact that the
detected flux is that of the recoiled target protons. Substitut-
ing in the given amplitudes we find

dsct

dV
=

1

k2Uo
L=0

`

s2L + 1dexpfishl
g + hL

udgsinshl
g

− hL
udPLscosudU2

s10d

which yields

sct,sym=
4p

k2 o
L=0

`

s2L + 1dsin2shl
g − hL

ud. s11d

It is interesting to consider the behavior of these cross
sections at relatively high collision energies wherefg,usud are
sharply peaked in a narrow cone aboutu=0. As a conse-
quence, the overlap offg,usud and fg,usp−ud is minimal for
smallu and they do not interfere. Then Eq.(7) can be written
in the classical limit as

dsel

dV
< ufdsudu2 + ufexsp − udu2 s12d

which is the total differential cross section for detecting pro-
tons at an angleu both by scattering of the beam of protons
on the target of H atoms and by capturing electrons from the
target atoms, assuming we have means of distinguishing the
scattered and charge-transfer fluxes(for example by spin, or
by energy). In that case, the charge-transfer flux is in a small
cone aroundu=p, while the elastic flux is peaked around
u=0.

Furthermore, in this classical limit, one can define sepa-
rately “pure” elastic s~ufdsudu2d and charge transfer
s~ufctsudu2d cross sections. The latter represents the flux of H

atoms formed through electron capture to the impacting
beam of protons. The corresponding flux of protonsufctsp
−udu2, formed by charge transfer in the H target(producing
the same integral cross section) would be deflected to angles
nearp−u. The spin-exchange cross section thus tends to the
charge transfer cross section in the CDP limit, while the elas-
tic cross section in Eq.(7) leads to the “total” differential
cross section. The energy at which this condition of distin-
guishability holds is well established(see, e.g., Ref.[16])
and we find that it occurs forE.1 eV. At lower energies the
interference between the elastic and charge transfer channels
leads to deviation between the two definitions of the elastic
cross section if this separation is performed.

The 1ssg and 2psu adiabatic electronic quasimolecular
curves of H2

+ for a series of fixed separationsR of the nuclei
can be calculated with arbitrary accuracy owing to the fact
that the one-electron, two-center problem is separable in pro-
late elliptic coordinates[17]. In the present work, we calcu-
lated the gerade and ungerade potentials and their derivatives
with nine-digit accuracy at 105 points from R
=0.0002 to 50 a.u., thus reducing the error in interpolating
the potentials at the points required by the numerical solver.
For larger distances, we used the asymptotic expansion for
the adiabatic potentials up to 11th order[18].

The radial equations were solved by the algorithm pro-
posed by Johnson[19] for solution of the stationary
Schrödinger equation using the logarithmic derivatives for
each partial wave, withRmax=800 and withRmin=0.01 a.u..
The step DR in R used on the numerical mesh was
0.0001 a.u. for all energies. The convergence of the elastic
S-matrix elements in partial waves was established for each
energy by requiring that Reh1−SLjø10−8 for at least 20 con-
secutive partial waves[see Eq.(3)]. For example, the result-
ing value of Lmax was 69 at 10 eV but reached 3200 for
10 eV. The numerical parameters used(i.e., the step and ac-
curacy in calculations of the potential,DR and Rmax in the
solver as well as the number of partial wavesLmax) have
been adopted after a series of tests. Their further improve-
ment introduces change in the eighth(at lower energies) and
seventh(at higher energies) significant digit in the cross sec-
tions for elastic scattering and spin exchange in H++H col-
lisions, providing an overall accuracy to at least six signifi-
cant digits.

The cross sections have been computed for as many
points per energy decade as needed, depending on the oscil-
lating features of the cross sections and anticipated reso-
nances. Such a requirement led to 664 energies for the en-
ergy range considered. The calculation was performed using
a 2-GHz Xeon-CPU-based work station. The CPU time was
mostly influenced by the number of partial waves required,
varying from on the order of 10 min(for the lowest energies)
to on the order of a day(for the highest energies) per energy
point.

It is important to note that the reported accuracy to six
significant digits is the numerical accuracy, obtained by care-
ful control of the numerical parameters of the problem. The
physical accuracy, on the other hand, depends on the level of
physical phenomena included in the numerical model. For
example, to test the physical accuracy of our approach at
energies above the threshold for inelastic processes(about
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10 eV) we included the rotational coupling with a third state,
2pp, in the model, which is the first candidate to contribute
to the inelastic charge transfer toHsn=2d. As a result, the
charge transfer and elastic cross sections changed in the third
digit at 100 eV. The details of this calculation were pre-
sented in Ref.[4]. The estimate of relativistic and nonadia-
batic corrections, which are not included in the model and
that can play a role at the low-energy end of the range con-
sidered(10−4 eV and lower) is planned for the future work.

Figure 1 shows the present elastic(EL) and charge trans-
fer (CT, spin exchange) cross sections for all five decades of
the energy range considered. Comparison was made with the
early calculations of Hunter and Kuriyan[2] (HK) for ener-
gies 10−4–10 eV, and recent calculations of Krstić and
Schultz[4] for 0.1–100 eV. The latter calculation was done
with somewhat lesser numerical requirements, on a coarse
energy grid and does not show any deviation visible in the
figure from the present values. The HK calculation picked up
some of the structures of the cross section, and their devia-
tion, reaching up to a few percent from the present values,
can be ascribed to a much coarser potential grid(67 values
for Rø50 a.u.), as well as to a significantly coarser numeri-
cal grid and a smaller number of partial waves in calculation
of the cross sections. Hodges and Breig[3] (HB) (not shown
in the figure) performed detailed calculations in the same
energy range as Hunter and Kuriyan, reproducing most of the
resonant structures in Fig. 1, but using the same coarse po-
tential grid employed by Hunter and Kuriyan. We discuss the
present results in more detail in Sec II C.

B. Resonances andS-matrix poles

In the present case the poles of theSmatrix correspond to
resonances associated with potential barriers formed by the
attractive polarization and exchange potentials and the repul-
sive centrifugal potentials. In the WKB approximation theS
matrix has no poles[20], therefore we use the comparison
equation technique[21] to calculate the poles of theSmatrix.

According to this approach[10] the phase shifthl has the
form

hL = hL
WKB + 2f0 + arctanF1 − A

1 + A
tansf2 + f0dG , s13d

where we define

f2 =E
R0

R1

ÎqsR8ddR8, s14d

qsRd = 2mfE − VeffsRdg, s15d

VeffsRd = VsRd +
sL + 1/2d2

2mR2 , s16d

f0 =
1

2
argGS1

2
+ iaD +

a

2
s1 − lnkald, s17d

and

A = 1/Î1 + e−2pa, s18d

a =
1

p
E
R1

R2

Î− qsR8ddR8, s19d

and Ri are turning points determined byqsRid=0 where i
=0, 1, 2. If we further defineRT as the position of the top of
barrier whereVeffsRd has a maximum than we see that for
E.VeffsRTd, R1=R2

* are the complex zeros ofqsRd. A similar
expression for the phase shift was given in Ref.[20] but the
approximations used for argGs 1

2 + iad precluded calculations
of the poles of theS matrix. Using the definition of theS
matrix,S=expsi2hLd and phase shift from Eq.(13) we obtain
the expression for theS matrix

SL = SL
WKBe4if0

1 + Ae−2if2−2if0

1 + Ae2if2+2if0
. s20d

From Eq.(20) we see that theS matrix has poles at com-
plex values ofE when the denominator in Eq.(20) becomes
zero. It can be easily shown that the equation defining the
poles of theS matrix has the form

f2 + f0 +
i

4
lns1 + e−2pad = pSn +

1

2
D . s21d

To find roots of the Eq.(21) in the complexE plane we
use the analytic continuation of argGs 1

2 + izd to the complex
plane,

argGS1

2
+ izD = −

i

2
ln

GS1

2
+ izD

GS1

2
− izD .

The positions of the poles of theS matrix in the complex
E plane corresponding to various types of resonances are

FIG. 1. Elastic(EL) and spin-exchange(CT) cross sections as a
function of center-of-mass collision energy, calculated as described
in Sec. II A.
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tabulated in Tables I–IV. Namely, we find three types of
resonances, below-barrier resonances(Table I), top-of-
barrier resonances(Table II), and above-barrier resonances
(Table III). For a chosenL we assign to the top-of-barrier
resonance that pole whose real part of energy, RehEpj=EB, is
closest to top of the barrier,VBsLd. Then the poles with
RehEpj,EB are assigned the names “below-barrier” and

those with RehEpj.EB the “above-barrier” resonances. In
case of the below-barrier resonances the particles are con-
fined by the potential barrier in a regionR0,R,R1. In the
limit h→0 the width vanishes exponentially and the motion
is described by classical bound state trajectories. The top-of-
barrier resonances are orbiting resonances and their widths
are proportional toh. In the classical limit these resonances

TABLE I. Below-barrier resonances.

l ReE (eV) Im E (eV) l ReE (eV) Im E (eV)

4 0.000226 0.000012 25 0.080 0.00026

7 0.00145 0.000016 26 0.0713 6.7310−7

10 0.00536 0.000072 27 0.103 0.0061

12 0.00549 3.0310−7 28 0.097 5.3310−7

13 0.0144 2.4310−6 29 0.131 0.012

14 0.0059 2.0310−9 30 0.127 0.000033

15 0.0188 0.00018 31 0.118 8.1310−8

16 0.0081 1.9310−7 32 0.162 0.00015

17 0.0249 0.000073 33 0.156 1.0310−6

18 0.0130 2.0310−10 34 0.202 0.00051

19 0.0336 0.000051 35 0.199 7.8310−6

20 0.0214 9.0310−10 36 0.247 0.0012

21 0.0454 0.000063 37 0.248 0.000036

22 0.0337 7.5310−9 38 0.244 1.8310−7

23 0.0608 0.00012 39 0.303 0.000097

23 0.0146 1.0310−14 40 0.302 5.0310−7

24 0.0503 7.2310−8 41 0.364 0.00013

TABLE II. Top-of-barrier resonancess1ssd.

l ReE (eV) Im E (eV) l ReE (eV) Im E (eV)

3 0.000218 0.00015 23 0.0792 0.0096

4 0.00638 0.00060 24 0.0815 0.0032

5 0.00101 0.00028 25 0.0996 0.012

6 0.00210 0.00098 26 0.103 0.0044

7 0.00389 0.0024 27 0.124 0.015

8 0.00414 0.00061 28 0.128 0.0062

9 0.00673 0.0019 29 0.152 0.018

10 0.00997 0.0043 30 0.157 0.0088

11 0.0103 0.0012 31 0.162 0.0025

12 0.0143 0.0036 32 0.191 0.0012

13 0.0202 0.0076 33 0.198 0.0042

14 0.0207 0.0029 34 0.231 0.016

15 0.0276 0.0073 35 0.240 0.0065

16 0.0282 0.0024 36 0.276 0.020

17 0.0369 0.0073 37 0.287 0.0092

18 0.0375 0.0021 38 0.275 0.0014

19 0.0483 0.0075 39 0.341 0.012

20 0.0492 0.0022 40 0.355 0.0030

21 0.0623 0.0083 41 0.401 0.013

22 0.0638 0.0025 42 0.420 0.0027
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are related to the motion of the particles along periodic un-
stable trajectories withRstd=RT. The width of the above-
barrier resonances does not go to 0 ash→0 and these states
have no classical analog.

A few poles of the S matrix for scattering on the
2ps-ungerade potential are assigned to the top-of-barrier
resonances. These are shown in Table IV.

C. Analysis

In the previous section we have correlated some structure
with the poles of theS matrix. In the case of narrow reso-
nances with near Lorentzian line shapes the correspondence
is good. In all cases it proves useful to examine individual
partial waves to check the fit to the Fano line-shape formula

sin2 h = sin2 h0
sq + «d2

1 + «2 , s22d

where the line-shape parameters are defined asq=coth0 and
«=2sEr −Ed /G. It is assumed thatEr, G, andh0 are slowly
varying functions ofE. Furthermore, in the present analysis
we assume thatEr andG /2 are constants given by real and
imaginary parts of the positions of the poles,Ep, but recog-
nize that this approximation is often not applicable.

Figure 2 shows details of resonances found in the first two
decadess10−4–10−2 eVd of Fig. 1. The values of the orbital
angular momentumL for various resonant structures in Fig.
2 corresponding to the poles of theS matrix in Tables I–IV
are shown, together with the type of the resonances[below-
barrier (BB), top-of-barrier(TB), above-barrier(AB)]. The
descriptor “u” in Fig. 2 is used for resonances of the
2ps-ungerade potential. All others resonances are from the
1ss-gerade potential, and these do not carry any descriptor
on Fig. 2 and all subsequent figures.

Figure 3 shows the computed and fitted sin2 hg near a
below-barrier(BB) resonance atEr =1.45310−3 eV with a
width G=3.2310−5 eV for L=7 (see Table I). With a value
of h0=0.4 the computed and fitted profiles agree very well.
In this case the resonance displays a typical Fano profile
associated with a stable classical orbit.

In contrast Fig. 4 shows the fit to a top-of-barrier reso-
nance ofu symmetry forL=3. In this case we know that
there are no stable classical orbits so the resonance is rela-
tively broad,G<Er /2 (Table IV). The corresponding fit to
the Fano profile hash0=0.1. It is apparent that the position
of the peak agrees well the real part ofEp, i.e., Er, however,
the apparent width is much greater than 2 ImhEpj=G and the
shapes do not agree. The agreement in position supports our
interpretation of this structure as an above the barrier reso-
nance, however, the approximations thath0 and G in the
Fano line-shape formula are constant is questionable. The
quantityEp computed in the previous section is defined to be
a constant, however, the relationship of this quantity to the
phase shift usually involves dynamical factors, i.e., functions
of E that are unknown. For this reason, the correlation of

TABLE III. Above-barrier resonancess1ssd.

l ReE (eV) Im E (eV) l ReE (eV) Im E (eV)

21 0.112 0.095 32 0.260 0.10

22 0.108 0.067 33 0.235 0.0042

23 0.132 0.095 34 0.293 0.095

24 0.125 0.064 35 0.292 0.0065

25 0.160 0.11 36 0.343 0.11

26 0.152 0.072 37 0.343 0.0073

27 0.192 0.12 38 0.342 0.0041

28 0.184 0.081 39 0.413 0.10

29 0.219 0.12 40 0.399 0.045

30 0.229 0.11 41 0.498 0.16

31 0.196 0.0034 42 0.499 0.12

TABLE IV. 2ps top-of-barrier and above-barrier resonances.

l ReE (eV) Im E (eV) ReE (eV) Im E (eV)

3 0.000148 0.000039 0.000282 0.00031

4 0.000497 0.00017 0.000727 0.00081 FIG. 2. Assignment of the resonances in Tables I–IV to the
structures in Fig. 1.
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some of the resonance poles and the structures of the cross
section using the resonance formula is only semiquantitative.

Figure 5 shows the assignments of the resonances from
Tables I and II to the structures in the elastic and charge-
transfer cross sections in the 10−2−10−1-eV decade of colli-
sion energies. This region is rich in structures that emerge
from the below-barrier and top-of-barrier resonances. Below-
barrier resonances in Fig. 6 are mainly very narrow on the
scale of the collision energies 0.1–2 eV, shown in this fig-
ure. We have been able to identify most of them with the
widths that are at most four orders of magnitude smaller than
the relevant energies. Still, the majority of the structures in
this figure are caused by the top-of-barrier(TB) and above-
barrier (AB) resonances, and we identify most of them.

Since the gerade phase shifthg is a component that domi-
nates the structure of the elastic cross section in Eq.(8) as
well as of charge-transfer one in Eq.(11), we show in Fig. 7
both hg and sin2shgd for the partial waveL=30. All three
types of resonances, BB, TB, and AB, are present. The TB
and AB are here of the window type. The positions of the BB
and TB exactly follow the values from the tables, while the
AB case is shifted in position by about 0.01 eV(to 0.217

from 0.229 eV). This is not a surprise having in mind that the
width of the AB resonance forL=30 in Table III is about the
same as its energy.

The narrow resonance structures discussed up to now
have been at relatively low energies, below 0.1 eV, where
they are fairly common. They occasionally do occur at much
higher energies, according to Table I. This is illustrated in
Fig. 8 which shows sin2 hg for L=41, between 0.35 and
0.42 eV. In this region there is a narrow resonance at
0.364 eV, which fits a Fano profile but with a phaseh0=
−2p /15. The position and width were taken from Table I.
Again the fit confirms that this is a narrow Fano resonance.

A broad peak at 0.398 eV is also seen in Fig. 8. This is
correlated with the top-of-barrier resonance etEr =0.401 eV,
but, just as for the top-of-barrier resonance in Fig. 4, the
width does not correlate with the corresponding ImhEpj. In
contrast to the earlier example, the computed width is nar-
rower than ImhEpj. It is remarkable, however, that the posi-
tion of the structure still correlates well with RehEpj.

FIG. 3. Below-barrier(BB) shape resonance in the gerade
s1ssgd potential forL=7 (see Table I). The fit was made to the Fano
line-shape formula of Eq.(22).

FIG. 4. Top-of-barrier resonance in the antibondings2psud po-
tential forL=3 (Table IV). The fit was made to the Fano line-shape
formula of Eq.(22).

FIG. 5. Assignment of the resonances in Tables I–IV to the
structures in Fig. 1.

FIG. 6. Same as in Fig. 5.
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The resonances identified in Sec. II B do not explain all of
the features seen in the cross sections. Of particular interest
are the oscillations in the higher energy region which occur
in some cross sections but not in others. A long time ago
Bernstein[22] pointed out that sums over partial elastic cross
sections involving sin2 hL and constituting the integral cross
section may oscillate for some types of the potential ifhL has
a maxima or minima wheredhL /dL vanishes. These are
called glory oscillations in the integral elastic cross section.
The contributions to the sum for regions wheredhL /dL=0
are estimated using the method of stationary phase[11,12].
The stationary phase contribution is found to be

ssp= − 2p3/2k2s2L0 + 1dUd2h

dL2U
L=L0

−1/2

cosf2hsL0d + p/4g,

s23d

whereL0 is the orbital angular momentum corresponding to
the stationary phase.

It is then supposed that the reduced cross sections̄=s
−ssp is a smooth function of energy. This smooth function is
sometimes evaluated by assuming an average value of
sin2 hL=1/2 for values ofL less than some maximum value
Lmax. This latter assumption is not necessary but it is neces-

sary to assume thatQ̄ is smooth. In that case the true cross
sections=s̄+ssp will show oscillations with an amplitude
and phase given by Eq.(23).

To put the formula above on a more firm foundation for
the case of elastic scattering we evaluate the sum of sin2 hL
over L by dividing the sum atL=L1 wherehL is less than
p /2 for L.L1 and drops smoothly to zero with increasingL.
Thus

Q =
4p

k2 o
L=0

L1

s2L + 1dS1 − coss2hLd
2

D +
4p

k2 o
L1

`

s2L + 1d sin2 hL

= Q̄ −
4p

k2 o
L=0

L1

s2L + 1d
coss2hLd

2
. s24d

Normally, the sum over coss2hLd is negligibly small due
to cancellation of positive and negative terms, but if there are
points of stationary phase the cancellation is incomplete and
there will be some contribution from the second term in Eq.
(24). This contribution is evaluated by the method of station-
ary phase to obtain Eq.(23) and an explicit expression fors̄,
namely,

Q̄ =
2p

k2 L1sL1 + 1d +
4p

k2 o
L=L1

`

s2L + 1dsin2 hL, s25d

where it is understood thatL1 is a function ofE. In general
the stationary phase evaluation will miss contributions owing
to incomplete cancellation at the end pointL=L1. Because
this is expected to vary slowly with energy we can assume

that these slowly varying contributions are included inQ̄.
Orbital angular momentum where the stationary phase(SP)
of hsLd for scattering on the 1ssg potential is shown in Fig.
9(a), as well as the corresponding amplitudes of oscillations,
defined in Eq. (23) in terms of the second derivatives,
d2h /dL2, shown in Fig. 9(b). Since the stationary phase ap-
proximation, being an asympthotic method, is well defined
only for large the second derivatives, the rising part of the
amplitude in Fig. 9(a) above 10 eV of the collision energy is
not expected to be correct[dashed-line rectangle in Fig.
9(a)], having in mind small values ofd2h /dL2 for these en-
ergies. This also explains a small deviation of the SP oscil-
lation amplitudes from the exact values at the higher energy
end of Fig. 10. This figure shows our result for the oscilla-
tions in the elastic cross section, induced by the glory effect.
It reproduce the oscillations(above about 1 eV) and modu-
late the cross section at lower energies, as shown in Fig. 10.

FIG. 7. Below-barrier(BB), top-of-barrier (TB), and above-
barrier (AB) shape resonances of the window type in the gerade
potential forL=30 (Tables I–III). The structures in(a) and (b) are
discussed in the text.

FIG. 8. The shape resonances forL=41. The sharp peak atE
=0.364 eV is below-barrier(BB) resonance. The wider structure at
E=0.398 eV is the top-of-barrier(TB) resonance(Table II).
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Agreement is achieved in the phase, frequency and ampli-
tude, removing any doubt regarding the source of the oscil-
lations. It is interesting to note that the ungerade phase shift,
husLd, also has a glory effect, i.e., stationary phase inL. But
this appears for largeL’s wherehusLd is so small that any
oscillations disappear already at energies above 10−2 eV, as
also shown in Fig. 10.

The absence of the stationary phase in the difference
hgsLd−husLd [see Eq.(11)] explains the absence of the glory
oscillations in the charge-transfer cross section.

III. CONCLUSIONS

We have performed a highly accurate(to at least at six
significant digits) calculation of the elastic and spin-
exchange cross sections in collisions of protons with hydro-

gen in the ground state. The calculation was performed cov-
ering the range of the center-of-mass energies 10−4–102 eV,
on a dense mesh of the energy points(more than 800), to
resolve all structures that appear in the cross sections, at both
the lowest and highest energies of the considered energy
range. Calculating the poles of theS matrix, we were able to
tabulate and identify in the cross sections all narrow resonant
structures, originating from the below-barrier, above-barrier,
and sometimes from the top-of-barrier shape resonances. We
also identify the wide structures at lower energies with often
overlapping top-of-barrier and above-barrier shape reso-
nances. The structures in the elastic cross section at energies
below 1 eV are modulated by the stationary phase in theL
dependence of the phase shift(glory effect). The oscillations
continue into the energy range where the resonant structures
are absent, appearing as the only structure in the cross sec-
tion at higher energies(up to at least 100 eV).
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