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The development of a practical method of accurately calculating the full scattering amplitude,without
making a partial-wave decomposition is continued. The method is developed in the context of electron-
hydrogen scattering, and here exchange is dealt with by consideringe-H scattering in the static exchange
approximation. The Schrödinger equation in this approximation can be simplified to a set of coupled integro-
differential equations. The equations are solved numerically for the full scattering wave function. The scatter-
ing amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can
be formally simplified, and then evaluated using the numerically determined wave function. The results are
essentially identical to converged partial-wave results.
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INTRODUCTION

The standard approach to accurate electron-atom scatter-
ing calculations involves an expansion of the total wave
function into partial waves[1]. This results in a set of
coupled radial equations for each angular momentum com-
ponent (partial wave). For elastic scattering, the resulting
phase shiftshl can be used to construct the total scattering
amplitude fksud. A drawback of this method is the need to
require more and more partial waves as the energy increases
to achieve convergence. We pursue here the alternative
method that does not employ a partial-wave analysis.

The method involves three steps:(i) the analytical reduc-
tion of the Schrödinger equation for the scattering problem to
a set of coupled two-dimensional partial differential equa-
tions; (ii ) the numerical solution of these equations using
finite element analysis to obtain the full scattering wave
function;(iii ) the evaluation of the integral expression for the
scattering amplitude using the numerical wave function

In a previous paper[2], the method was applied to
electron-hydrogen scattering in the static approximation(i.e.,
without exchange). The results were very accurate and stable
and the computational effort was independent of energy. In
this paper, we include the effects of exchange. This is a non-
trivial generalization, and it is an important step in the direc-
tion of a full treatment, which will eventually include the
additional correlation in the scattering problem. At long
range, this correlation reduces to polarization of the target.

DERIVATION OF THE EQUATIONS FOR e-H
SCATTERING IN THE STATIC-EXCHANGE

APPROXIMATION

In the static exchange approximation for electron scatter-
ing from the ground state of hydrogen, the full scattering
wave function is approximated by

Ck
±srW1,rW2d = ck

±srW1dR10sr2dY0
0su2,f2d

± ck
±srW2dR10sr1dY0

0su1,f1d, s1d

where +/− refers to the singlet and triplet states, respectively.
SubstitutingCk

±srW1,rW2d into the exact three-body Schrödinger
equation and projecting ontoR10sr1dY0

0su1,f1d, we obtain an
integro-differential equation forck

±srWd:

f− ¹2 + Vhsrd − k2gck
±srWd ±

2e−r

p
E e−r8ck

±srW8d
urW − rW 8 u

d3r8

± sk2 + 1d
e−r

p
E e−r8ck

±srW8dd3r8 = 0 s2d

subject to the boundary condition

ck
±sr → `d → eikr cosu + fk

±sud
eikr

r
. s3d

The potential in Eq.(2) is the Hartree potential

Vhsrd = − 2e−2rS1 +
1

r
D s4d

andk is the incident electron momentum(Rydberg units are
used throughout).

Note that the hydrogen ground stateR10srdY0
0su ,fd is a

solution to Eq.(2) for the triplet symmetry; henceck
−srWd is

not unique and any multiple of the ground state can be added
to the solution. Since we will solve the equations numeri-
cally, we can requireck

−srWd to be orthogonal to the hydrogen
ground state. Thus the second integral in Eq.(2) vanishes for
the triplet state and the solution of the modified equation is
now unique.

The first integral in Eq.(2) is undesirable from a compu-
tational point of view, because it involves a three-
dimensional integral which must be evaluated at each value
of rW. To eliminate this term, we define
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fk
±srWd =

1

p
E e−r8c±srW8d

urW − rW8u
d3r8 s5d

so that Eq.(2) can be rewritten as

f− ¹2 + Vhsrd − k2g ck
±srWd ± 2e−rfk

±srWd

+ sk2 + 1d
s1 ± 1d

2

e−r

p
E e−r8ck

±srW8dd3r8 = 0. s6d

To obtain a second partial differential equation involving the
two unknown functions, we operate onfk

±srWd with ¹2 and
use the identity¹2s1/urW−rW8 u d=−4pdsrW−rW8dto obtain

− ¹2fk
±srWd − 4e−rck

±srWd = 0. s7d

Equations(6) and (7) constitute the coupled equations for
ck

±srWdandfk
±srWd. The asymptotic boundary condition onfk

±srWd
(through order 1/r) is

fk
±sr → `d → ck

±

r
s8d

whereck
+=s1/pdee−r8ck

±srW8dd3r8 andck
−=0.

For this application, we use the fact that the functions are
azimuthally symmetric:ck

±srWd=ck
±sr ,ud and fk

±srWd=fk
±sr ,ud,

with m1=m2=0. Carrying out the integration overdf8 ex-
plicitly, Eqs. (6) and (7) reduce to

fT̂ + Vhsrd − k2gck
±sr,ud ± 2e−rfk

±sr,ud

+ s1 ± 1dsk2 + 1de−rE e−r8ck
±sr8,u8dr82dr8 sinu8 du8 = 0

s9d

and

T̂fk
±sr,ud − 4e−rck

±sr,ud = 0, s10d

where

T̂ = − F ]2

] r2 +
2

r

d

dr
+

1

r2S ]2

] u2 + cot u
]

] u
DG .

ANALYTICAL REDUCTION OF THE INTEGRAL
EXPRESSION FOR THE SCATTERING AMPLITUDE

An integral expression for the scattering amplitude[1]
applied to electron-hydrogen scattering is

fk
±sud = −

1

4p
EE e−ikW·rW1R10sr2dY0

0su2,f2d

3S−
2

r1
+

2

r12
DCk

±srW1,rW2dd3r1 d3r2. s11d

In the static exchange approximation,Ck
±srW1,rW2d is given in

Eq. (1) and

fk
±sud = −

1

4p
EE e−ikW·rW1R10sr2dY0

0su2,f2dS−
2

r1
+

2

r12
D

3ck
±srW1dR10sr2dY0

0su2,f2dd3r1d
3r2

7
1

4p
EE e−ikW·rW1R10sr2dY0

0su2,f2d

3S−
2

r1
+

2

r12
Dck

±srW2dR10sr1dY0
0su1,f1dd3r1d

3r2.

s12d

The first integral in Eq.(12) is identical in form to the scat-
tering amplitude obtained in the static approximation without
exchange. As described in Ref.[2], the integration over the
azimuthal anglef1 can be carried out analytically for states
with m1=m2=0:

E eikr1 sin u1 sin u cossf1−fd df1 = 2pJoskr1 sinu1 sinud.

s13d

The integration over the coordinates of the second electron
can then be carried out analytically.

To evaluate the second integral in Eq.(12), we use the
fact that the first term containing −2/r1 is independent ofu1.

Choosingẑ1= k̂, we carry out the integration over the coor-
dinates of the first electron:

1
Îp
E eikr cosu1S−

2

r1
De−r d3r1 = − 8Îp

1

sk2 + 1d
. s14d

The second term[in the second integral in Eq.(12)] contain-
ing 2/r12 can be simplified using the definition in Eq.(5),

E R10sr2dY0
0su2,f2d

2

r12
ck

±srW2dd3r2 = 2fk
±srW1d, s15d

and Eq.(13). Combining the results, we obtain

fk
±sud = −

1

2
E J0skr8 sinu8 sinude−ikr8 cosu8 cosuVhsr8d

3ck
±sr8,u8dr82 dr8 sinu8du87E J0skr8 sinu8 sinud

3e−ikr8 cosu8 cosue−r8fk
±sr8,u8dr82 dr8 sinu8 du8

+
4s1 ± 1d
k2 + 1

E e−r8ck
±sr8,u8dr82dr8 sinu8du8. s16d

Once the functionsck
±sr ,ud andfk

±sr ,ud are determined, the
remaining two-dimensional(2D) integration can be carried
out numerically.

There is a great advantage to using the integral formula
for the scattering amplitude rather than extracting it from the
value of the wave function on the boundary: the main con-
tribution to the integral in Eq.(16) is at small values ofr8.
The accuracy of the scattering amplitude obtained from the
integral formula depends on how well the wave function is
approximated in the interaction region where the wave func-
tion is not oscillating. Consequently, the scattering amplitude
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obtained in this way tends to be more stable.

NUMERICAL SOLUTION OF THE SCATTERING
EQUATIONS

Equations(9) and (10) were solved using 2D finite ele-
ment (FE) analysis[3,4]. The coordinate space defined by
0ø r øR and 0øuøp is discretized intoN small regions
called elements. In each elementn, the unknown functions
ck

±sr ,ud andfk
±sr ,ud are approximated locally with fifth de-

gree polynomials inr andu:

ck
±sr,udn = o

j=1

36

fck
±g j

nr j
nsr,ud, s17d

fk
±sr,udn = o

j=1

36

ffk
±g j

nr j
nsr,ud. s18d

The polynomialsr j
nsr ,ud are chosen in such a way that the

36 unknown expansion coefficientsfck
±g j

n and ffk
±g j

n are the
value of the function and its derivatives(] /]r, ] /]u, and
]2/]r ]u) at nine points in the element(the four corners, the
midpoint of each side, and the geometric center). We substi-
tute Eqs.(17) and(18) into Eqs.(9) and(10); projecting onto
the FE basis functions, we obtain a set of matrix equations
for each elementn:

o
j=1

36

kri
nuT̂ + Vh − k2ur j

nlfck
±g j

n ± 2o
j=1

36

kri
nue−rur j

nlffk
±g j

n

+ s1 ± 1dsk2 + 1dkri
nue−rl o

n8=1

N

o
j=1

36

ke−r8ur j
n8lfck

±g j
n8 = 0,

s19d

o
j=1

36

kri
nuT̂ur j

nlffk
±g j

n − 4o
j=1

36

kri
nue−rur j

nlfck
±g j

n = 0

i = 1,2, . . . ,36. s20d

The equations for theN elements are then “added” together
in such a way as to ensure continuity of the functions and
their derivatives across the element boundaries. Note that the
integral term in Eq.(9) introduces a “nonlocal” term into the
FE equations for singlet symmetry; this destroys the banded
nature of the final FE matrix equations. However, since con-
vergence is achieved for relatively small grids, this does not
pose a problem in terms of computational effort.

At r =R, we impose the asymptotic boundary conditions
given by Eqs.(3) and(8); fk

± (anddfk
± /du) at the grid points

wherer =R are left as unknowns.
The solution of the resultant equations yields the un-

known expansion coefficentsfck
±g j

n and ffk
±gi

n for all grid
points that are not on the boundary; in addition, we obtain
the value offk

± (and dfk
± /du) at the grid points wherer =R.

Using the FE basis functions, we can then reconstruct the
piecewise continuous analytical functionsck

±sr ,ud, fk
±sr ,ud,

and fk
±sud.

To evaluate the three integrals in Eq.(16), we carry out
the integration over each element using 32 point Gauss
quadrature in both coordinates, and sum the contribution
from theN elements. Atr ùR, all three integrals are essen-
tially zero because of the exponential term in each integral.

Extracting the scattering amplitude directly from the so-
lution of the FE equations generally requires a large value for
R, and an accurate representation of the wave function in the
asymptotic region. In contrast, using the FE representation of
the functionsc± andf± in the integral expression of Eq.(16)
yields accurate and stable results at surprisingly small values
of R.

RESULTS

The results for the singlet and triplet scattering amplitude
ufk

±u2are compared with fully converged partial wave results
in Figs. 1 and 2. For the partial-wave calculation, the number
of partial waves needed for convergence increased with in-
creasing energy, fromlmax=4 at k=0.4 to lmax=10 atk=5.0.
In contrast, the computational effort using this approach is
independent of energy.

All results reported in Figs. 1 and 2 were obtained using
only 100 elements; no attempt was made to optimize the
grid. The radial and angular ranges were both divided into
ten equal parts:Dr =R/10 andDu=p /10. Although elements
need not be uniform in size, this allowed for the most sys-
tematic study of convergence. The only “free parameter” was
the radial cutoffR, where the asymptotic boundary condi-
tions were imposed. As a rule of thumb, we use the condition
2p,kR,5p. The lower limit places the radial boundary
beyond one full radial oscillation of the wave function,
wherel=2p /k. The upper limit ensures that there are a suf-
ficient number of basis functions to approximate the oscilla-

FIG. 1. The scattering amplitude for the singlet state obtained
with this method is compared with fully converged partial-wave
results.
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tory behavior of the wave function in the asymptotic region
(i.e.,Dr øl /4 andRDu /pøl /4). For 0.4økø0.6 we used
R=20; for k=1, 2, and 5 we usedR=12, 7, and 3, respec-
tively.

The FE scattering amplitude is considered converged
when increasing the number of elements(while holding R
fixed) or increasingR (while holdingDr fixed) does not re-
sult in any appreciable changesø1%d in ufk

±sudu2 for 0øu
øp. Also, the value of the scattering amplitude obtained
directly from the solution of the FE equations should be in
reasonable agreement with the more accurate result obtained
by using the integral formula. Both criteria provided a reli-
able and consistent way to evaluate the accuracy of the re-
sults.

In Table I, we show a convergence study for the triplet
case atk=0.5, varying both the radial cutoffR and the num-
ber of elementsN. In Table II we show a similar study for the
singlet case atk=1.0. Even with a small number of elements,
the scattering amplitude is accurate to within a few percent.
These results are typical of the triplet and singlet states over
the range of energy studied.

CONCLUSIONS

We believe that the above results speak for themselves as
to the efficacy of the approach. The next steps are:(i) to
include correlation(with exchange) in the total wave func-
tion and(ii ) to include inelastic channels fork.0.866. Nei-
ther of these steps will be easy, but a preliminary analysis has
already been made on the inclusion of correlation.

The inclusion of correlation must be done in such a way
that we go well beyond the static exchange approximation,
so that the results are competitive with the most sophisticated
close-coupling andR-matrix calculations fore-H scattering.
At the same time, the final equations must be tractable from
a computational point of view.

The inclusion of inelastic channels will involve deriving
and simplifying integral expressions for theS-matrix ele-
ments and imposing more complicated boundary conditions
at r =R. As with all methods, the rigorous inclusion of ion-
ization at energies above the ionization threshold poses a
difficult challenge.

One of the attractive features of this method is that the FE
basis set was not designed to treat Coulomb potentialsper
se; the method should work equally well with angular-
dependent potentials or model potentials with more compli-
cated structure. Thus this approach may be useful in treating
electron scattering from more complicated targets(including
the alkalis and molecules.)

In conclusion, it is clear that this is only the second step
(Ref. [2] being the first) in the development of a general

FIG. 2. The scattering amplitude for the triplet state obtained
with this method is compared with fully converged partial-wave
results.

TABLE I. Convergence study of the scattering amplitude for the triplet state atk=0.5; R is the radial
cutoff andN is the number of elements. Results are compared with a partial-wave calculation using six partial
waves.

R N uf0.5
− s0du2 uf0.5

− sp/4du2 uf0.5
− sp/2du2 uf0.5

− s3p/4du2 uf0.5
− spdu2

8 434 2.90 2.78 3.18 4.28 4.87

8 636 2.87 2.74 3.14 4.23 4.83

8 838 2.87 2.74 3.14 4.23 4.83

10 636 2.92 2.76 3.14 4.27 4.89

10 838 2.92 2.76 3.14 4.27 4.89

10 10310 2.92 2.76 3.14 4.27 4.89

15 838 2.97 2.78 3.14 4.33 4.98

15 10310 2.98 2.78 3.14 4.33 4.98

15 12312 2.98 2.78 3.14 4.33 4.98

20 10310 2.98 2.77 3.14 4.35 5.02

20 12312 2.98 2.77 3.14 4.35 5.02

25 12312 2.98 2.77 3.14 4.35 5.02

Partial wave 2.99 2.78 3.14 4.35 5.02
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methodology for calculating the full scattering amplitude di-
rectly. The successful inclusion of correlation in electron-
hydrogen scattering will constitute the third important step.
These studies will hopefully act as a guide to the generaliza-
tion of these ideas and methods to deal with scattering(elas-
tic and inelastic) from many-electron targets. Such develop-
ments will obviously take time and require the work of many
investigators. It is clearly naive to expect such developments
to be immediately competitive with more mature(partial-
wave) methods, such as theR-matrix, which have developed

over many years and involved many man-years of work.
However, in time it is not unreasonable to think the technol-
ogy of directly calculating the full scattering amplitude may
become one of the standard approaches.
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TABLE II. Convergence study of the scattering amplitude for the singlet state atk=1.0; R is the radial
cutoff andN is the number of elements. Results are compared with a partial-wave calculation using nine
partial waves.

R N uf1.0
+ s0du2 uf1.0

+ sp/4du2 uf1.0
+ sp/2du2 uf1.0

+ s3p/4du2 uf1.0
+ spdu2

6 434 0.087 0.116 0.259 0.385 0.427

6 636 0.078 0.120 0.283 0.422 0.468

6 838 0.078 0.120 0.284 0.424 0.470

9 636 0.078 0.128 0.284 0.424 0.471

9 838 0.091 0.130 0.307 0.464 0.518

9 10310 0.091 0.130 0.306 0.463 0.516

12 838 0.104 0.134 0.299 0.448 0.500

12 10310 0.091 0.127 0.305 0.465 0.521

12 12312 0.091 0.127 0.305 0.466 0.522

15 12312 0.091 0.127 0.306 0.468 0.526

Partial wave 0.091 0.126 0.305 0.470 0.528
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