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Direct calculation of the scattering amplitude without partial-wave analysis.
. Inclusion of exchange
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The development of a practical method of accurately calculating the full scattering amplititdeut

making a partial-wave decomposition is continued. The method is developed in the context of electron-
hydrogen scattering, and here exchange is dealt with by consideridgscattering in the static exchange
approximation. The Schrddinger equation in this approximation can be simplified to a set of coupled integro-
differential equations. The equations are solved numerically for the full scattering wave function. The scatter-
ing amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can
be formally simplified, and then evaluated using the numerically determined wave function. The results are
essentially identical to converged partial-wave results.
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INTRODUCTION Wid(FLF2) = P Raolr2) YO 62, )
The standard approach to accurate electron-atom scatter- * Y (M) Ryo(r1) Yo( 01, 1), (1)

Ing c.alcu.latlons ||f1volves an expansion of the total WaV&yhere +/- refers to the singlet and triplet states, respectively.
funct:on Into lpartlal _wavc;,-s[l]. Tr:"S reslults in a set of Substituting® (1, ) into the exact three-body Schrodinger
coupled rad_la equations for each angular momentum .Coméquation and projecting onialo(rl)Yg(al,qbl), we obtain an
ponent (partial wave. For elastic scattering, the resulting . . . . i
phase shiftsy can be used to construct the total scattering'megro'd'fferentlal equation fog (F):
amplitudef,(6#). A drawback of this method is the need to 26" e—r’wt(r-n)
require more and more partial waves as the energy increases [~ V2 + Vy,(r) — 2]y (M) + f +d3r’
to achieve convergence. We pursue here the alternative =]
method that does not employ a partial-wave analysis. e ,

The method involves three steps; the analytical reduc- + (K + 1)—f e Y(F)d®r' =0 2
tion of the Schrédinger equation for the scattering problem to 7
a set of coupled two-dimensional partial differential equa-subject to the boundary condition

™

tions; (ii) the numerical solution of these equations using ok
finite element analysis to obtain the full scattering wave PE(r — ) — ek 0059+f'i(0)7_ (3)

function; (iii ) the evaluation of the integral expression for the
scattering amplitude using the numerical wave function

In a previous paper2], the method was applied to
electron-hydrogen scattering in the static approximagi@n, Vi(r) = — 29‘2’(1 N _) @)
without exchangg The results were very accurate and stable L r
and the computational effort was independent of energy. In ] o )
this paper, we include the effects of exchange. This is a nor@ndk is the incident electron momentu(®ydberg units are
trivial generalization, and it is an important step in the direc-used throughouit _
tion of a full treatment, which will eventually include the ~ Note that the hydrogen ground steey(r)Yo(6, ¢) is a
additional correlation in the scattering problem. At long Solution to Eq.(2) for the triplet symmetry; hence (r) is
range, this correlation reduces to polarization of the target. not unique and any multiple of the ground state can be added

to the solution. Since we will solve the equations numeri-

cally, we can require/ (r) to be orthogonal to the hydrogen

The potential in Eq(2) is the Hartree potential

DERIVATION OF THE EQUATIONS FOR eH ground state. Thus the second integral in &) vanishes for
SCATTERING IN THE STATIC-EXCHANGE the triplet state and the solution of the modified equation is
APPROXIMATION now unique.

The first integral in Eq(2) is undesirable from a compu-
In the static exchange approximation for electron scattertational point of view, because it involves a three-
ing from the ground state of hydrogen, the full scatteringdimensional integral which must be evaluated at each value
wave function is approximated by of r. To eliminate this term, we define
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¢k(*>-—f € gy (5)

F=r|
so that Eq(2) can be rewritten as

[= V2 + Vy(r) = K] gic(7) + 2e7" ¢ie(F)

(1 1 e‘r

+(K+1)—= e i)' =0. (6

To obtain a second partial differential equation involving the

two unknown functions, we operate a# () with V2 and
use the identityv?(1/|F—f" |)=-4m5(F—")to obtain

- V2¢ie(7) - 46 (7) = 0. 7

Equations(6) and (7) constitute the coupled equations for

Ye(Nand ¢ (). The asymptotic boundary condition (1)
(through order 1v) is

Bilr — o) — ¥ ®)

wherec;=(1/m) e yE(F)d*’ andc, =0
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fi(6) =~ _ff ik R(r) Y6, 4’2)(‘ —+ 3)

EREREP)
X Y (F)Ryo(2) YY(6a, o) dr 10Pr,

T 4if J e_i'z'FlRlo(VZ)Yg( 02 ¢2)
a

2 2
X (‘ —+ _> Yie(Fo)Ryg(r1) Y30y, 1)1 dr 5.

ry ri
(12

The first integral in Eq(12) is identical in form to the scat-
tering amplitude obtained in the static approximation without
exchange. As described in R¢2], the integration over the
azimuthal anglep, can be carried out analytically for states
with m;=m,=0:

f ghrasindysin o codd=) qp, = 273 (kry sin 6; sin 6).

(13

The integration over the coordinates of the second electron
can then be carried out analytically.
To evaluate the second integral in H42), we use the

For this appllcatlon we use the fact that the functions ardact that the first term containing —2/is independent o#b;.

azimuthally symmetricy (1) =i (r, 6) and ¢ () =i(r, 6),
with m;=m,=0. Carrying out the integration ovelp’ ex-
plicitly, Egs. (6) and(7) reduce to
[T+ Vi(r) = K2JyiE(r, 6) + 267 (1, 60)

+(1+ DK+ 1)e‘rf e E(r,0)r'%dr’ sing’ dg’' =0

9

and

Tei(r,0) - 47 yii(r,6) = 0,

(92 EE 1<§2 ote—)
ar2 rdr 502

ANALYTICAL REDUCTION OF THE INTEGRAL
EXPRESSION FOR THE SCATTERING AMPLITUDE

(10

where

—>
II

An integral expression for the scattering amplitudé
applied to electron-hydrogen scattering is

1 o
fi(6) =~ Eff e MR (1) YO( 0, )

2 2 I
X(_ —+ _)‘I]i(rl,rz)darl d3r2. (11)
re riz

In the static exchange approximatio#, (i, r>,) is given in
Eqg. (1) and

Choosing%lzk we carry out the integration over the coor-
dinates of the first electron:

1 2
? e|kr cosfy _ — e—r d3r1 - 8\ aT
N ry

1
(K2+1) (149

The second terrfin the second integral in E@12)] contain-
ing 2/r,, can be simplified using the definition in E¢p),

f Rlo(rz)YO(ezyﬁbz) lﬂ'(rz) *rp=2¢(F),  (15)
and Eq.(13). Combining the results, we obtain

1 ,
fi(6) = - Ef Jo(kr' sin @' sin g)e7kr’ co’ costy, (r7)

X ic(r',8)r'2dr’" sing'dg’ = f Jo(kr’ sing’ sin 6)

Xe—ikr’ cost’ cosae—r’(ﬁi(r/’ 0/)',/2 dr’ sing’ de’
4(1+ 1)
e

e YE(r', 0)r'2dr’ sing'de’.  (16)
Once the functiong(r, 6) and ¢ (r, 6) are determined, the
remaining two-dimensional2D) integration can be carried
out numerically.

There is a great advantage to using the integral formula
for the scattering amplitude rather than extracting it from the
value of the wave function on the boundary: the main con-
tribution to the integral in Eq(16) is at small values of’.

The accuracy of the scattering amplitude obtained from the
integral formula depends on how well the wave function is
approximated in the interaction region where the wave func-
tion is not oscillating. Consequently, the scattering amplitude
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obtained in this way tends to be more stable.

k=0.4

Partial wave
Finite element --------

NUMERICAL SOLUTION OF THE SCATTERING
EQUATIONS

Equations(9) and (10) were solved using 2D finite ele-
ment (FE) analysis[3,4]. The coordinate space defined by

O0=<r=R and 0= #=< is discretized intoN small regions AT k=05 ]

called elements. In each elememtthe unknown functions |t |?
%c(r,0) and ¢ (r, 6) are approximated locally with fifth de-
gree polynomials im and 6

3

36

Yier,0)"= 2 [yi])r, 6), (17)
=1
1 r -
- k=5.0 k=1.0
i(r,60)"= 2 [, 6). (18) i = .
= 0.00 0.79 157 236 314
0

The ponnomiaISp}‘(r,G) are chosen in such a way that the

36 unknown expansion Coeff|C|er’{t$'§]? and[d;i]? are the FIG. 1. The scattering amplitude for the singlet state obtained
value of the function and its derivativeg/dr, /96, and  ith this method is compared with fully converged partial-wave
#1dr 96) at nine points in the elemerithe four corners, the resuits.

midpoint of each side, and the geometric centéfe substi-

tute Eqs(17) and(18) into Egs.(9) and(10); projecting onto

the FE basis functions, we obtain a set of matrix equation§n
for each element:

To evaluate the three integrals in §46), we carry out
e integration over each element using 32 point Gauss
quadrature in both coordinates, and sum the contribution

36 A 36 from the N elements. Ar =R, all three integrals are essen-
2 oMT + Vi = KDL + 22 (e oD i ] tially zero because of the exponential term in each integral.
j=1 j=1 Extracting the scattering amplitude directly from the so-
N 36 lution of the FE equations generally requires a large value for
+ (1)K + 1)(plle™) >SS (e_r/|p?l>[¢i]?/ =0, R, and an accurate representation of the wave function _in the
n=1 =1 asymptotic region. In contrast, using the FE representation of

the functionsy* and ¢* in the integral expression of E(L6)
yields accurate and stable results at surprisingly small values
of R.

(19

36 36
2 (pTIpDI il - 42 (plle” oY =0
=1 =1 RESULTS

i=1,2,...,36. (20 ) ) ) )
The results for the singlet and triplet scattering amplitude

The equations for th&l elements are then “added” together&ﬁﬁare compared with fully converged partial wave results
in such a way as to ensure continuity of the functions andn Figs. 1 and 2. For the partial-wave calculation, the number
their derivatives across the element boundaries. Note that tl"tﬁ partia| waves needed for convergence increased with in-
integral term in Eq(9) introduces a “nonlocal” term into the  creasing energy, fror,.,=4 atk=0.4 tol ,.,=10 atk=5.0.
FE equations for singlet symmetry; this destroys the bandefh contrast, the computational effort using this approach is
nature of the final FE matrix equations. However, since conindependent of energy.
vergence is achieved for relatively small grids, this does not Al results reported in Figs. 1 and 2 were obtained using
pose a problem in terms of computational effort. only 100 elements; no attempt was made to optimize the

At r=R, we impose the asymptotic boundary conditionsgrid. The radial and angular ranges were both divided into
given by Eqs(3) and(8); f (anddfi/do) at the grid points  ten equal partsAr=R/10 andA #=/10. Although elements
wherer=R are left as unknowns. need not be uniform in size, this allowed for the most sys-

The solution of the resultant equations yields the untematic study of convergence. The only “free parameter” was
known expansion coefficenfs/i ]} and [¢]" for all grid  the radial cutoffR, where the asymptotic boundary condi-
points that are not on the boundary; in addition, we obtairtions were imposed. As a rule of thumb, we use the condition
the value offy (anddfi/d6) at the grid points where=R.  27<kR<5mx. The lower limit places the radial boundary
Using the FE basis functions, we can then reconstruct theeyond one full radial oscillation of the wave function,
piecewise continuous analytical functiog(r, 6), ¢(r,6),  wherex=2x/k. The upper limit ensures that there are a suf-
and fi(6). ficient number of basis functions to approximate the oscilla-
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In Table I, we show a convergence study for the triplet
. case ak=0.5, varying both the radial cutoR and the num-
Partial wave ..
6 [ Finite element -------- k=04 - ber of element#. In Table Il we show a similar study for the
singlet case dt=1.0. Even with a small number of elements,
the scattering amplitude is accurate to within a few percent.
These results are typical of the triplet and singlet states over
the range of energy studied.

CONCLUSIONS

We believe that the above results speak for themselves as
to the efficacy of the approach. The next steps éneto
include correlationwith exchanggin the total wave func-
tion and(ii) to include inelastic channels fé>0.866. Nei-
ther of these steps will be easy, but a preliminary analysis has
already been made on the inclusion of correlation.

, . The inclusion of correlation must be done in such a way
0.00 0.79 1.57 2.36 3.14 that we go well beyond the static exchange approximation,
9 so that the results are competitive with the most sophisticated

FIG. 2. The scattering amplitude for the triplet state obtaineddose'coummg and?—mqtrlx Calculgtlons foe-H scattering.
with this method is compared with fully converged partial-wave At the samg time, the fmal, equations must be tractable from
results. a computational point of view.

The inclusion of inelastic channels will involve deriving
tory behavior of the wave function in the asymptotic regionand simplifying integral expressions for tf&matrix ele-
(i.e.,Ar=\/4 andRA 6/ m<\/4). For 0.4<k=<0.6 we used ments and imposing more complicated boundary conditions
R=20; fork=1, 2, and 5 we useR=12, 7, and 3, respec- atr=R. As with all methods, the rigorous inclusion of ion-

tively. ization at energies above the ionization threshold poses a
The FE scattering amplitude is considered convergedifficult challenge.
when increasing the number of eleme¢hile holding R One of the attractive features of this method is that the FE

fixed) or increasingR (while holding Ar fixed) does not re-  basis set was not designed to treat Coulomb potenpets
sult in any appreciable chande=1%) in |fi(6)]> for 0O<¢# se the method should work equally well with angular-
<. Also, the value of the scattering amplitude obtaineddependent potentials or model potentials with more compli-
directly from the solution of the FE equations should be incated structure. Thus this approach may be useful in treating
reasonable agreement with the more accurate result obtainetectron scattering from more complicated targeisluding

by using the integral formula. Both criteria provided a reli- the alkalis and molecules.

able and consistent way to evaluate the accuracy of the re- In conclusion, it is clear that this is only the second step
sults. (Ref. [2] being the first in the development of a general

TABLE |. Convergence study of the scattering amplitude for the triplet state=8t5; R is the radial
cutoff andN is the number of elements. Results are compared with a partial-wave calculation using six partial

waves.
R N 650 fgda/alZ  Ifoda/2P  Ifod3a/a)2  |fggmI?
8 4X 4 2.90 2.78 3.18 4.28 4.87
8 6X6 2.87 2.74 3.14 4.23 4.83
8 8X 8 2.87 2.74 3.14 4.23 4.83
10 6X 6 2.92 2.76 3.14 4.27 4.89
10 8X 8 2.92 2.76 3.14 4.27 4.89
10 10X 10 2.92 2.76 3.14 4.27 4.89
15 8X 8 2.97 2.78 3.14 4.33 4.98
15 10X 10 2.98 2.78 3.14 4.33 4.98
15 12X 12 2.98 2.78 3.14 4.33 4.98
20 10X 10 2.98 2.77 3.14 4.35 5.02
20 12X 12 2.98 2.77 3.14 4.35 5.02
25 12X 12 2.98 2.77 3.14 4.35 5.02
Partial wave 2.99 2.78 3.14 4.35 5.02
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TABLE II. Convergence study of the scattering amplitude for the singlet state &10; R is the radial
cutoff andN is the number of elements. Results are compared with a partial-wave calculation using nine
partial waves.

R N RO Cy 2 T Oy ) T € Py ) N [T
6 4x 4 0.087 0.116 0.259 0.385 0.427
6 6X6 0.078 0.120 0.283 0.422 0.468
6 8x 8 0.078 0.120 0.284 0.424 0.470
9 6X 6 0.078 0.128 0.284 0.424 0.471
9 8x 8 0.091 0.130 0.307 0.464 0.518
9 10% 10 0.091 0.130 0.306 0.463 0.516
12 8x 8 0.104 0.134 0.299 0.448 0.500
12 10X 10 0.091 0.127 0.305 0.465 0.521
12 12x12 0.091 0.127 0.305 0.466 0.522
15 12x12 0.091 0.127 0.306 0.468 0.526
Partial wave 0.091 0.126 0.305 0.470 0.528

methodology for calculating the full scattering amplitude di-over many years and involved many man-years of work.
rectly. The successful inclusion of correlation in electron-However, in time it is not unreasonable to think the technol-
hydrogen scattering will constitute the third important step.ogy of directly calculating the full scattering amplitude may
These studies will hopefully act as a guide to the generalizabecome one of the standard approaches.

tion of these ideas and methods to deal with scattejetas-

tic and inelastit from many-electron targets. Such develop-

ments will obviously take time and require the work of many VII. ACKNOWLEDGMENT
investigators. It is clearly naive to expect such developments
to be immediately competitive with more matu¢partial- We thank Anand Bhatia for providing partial-wave results

wave) methods, such as tHematrix, which have developed for the static-exchange approximation.
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