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Atom-atom scattering of bosonic one-dimensional(1D) atoms has been modeled successfully using a zero-
range d-function potential, while that of bosonic 3D atoms has been modeled successfully using Fermi-
Huang’s regularizeds-wave pseudopotential. Here, we derive the eigenenergies of two spin-polarized 1D
fermions under external harmonic confinement interacting through a zero-range potential, which only acts on
odd-parity wave functions, analytically. We also present a divergent-free zero-range potential treatment of two
spin-polarized 3D fermions under harmonic confinement. Our pseudopotential treatments are verified through
numerical calculations for short-range model potentials.
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I. INTRODUCTION

Recently, atom-atom scattering has received renewed in-
terest since the properties of ultracold atomic(bosonic or
fermionic) gases depend predominantly on a single atom-
atom scattering parameter[1]. This is thes-wave scattering
lengthas for a three-dimensional(3D) Bose gas[2] (or for a
3D Fermi gas consisting of atoms with “spin-up” and “spin-
down”), and thep-wave scattering volumeVp [3,4] for a 3D
spin-polarized Fermi gas. For a 1D or quasi-1D gas, it is the
1D scattering lengtha1D [5,6], which characterizes the even-
parity and odd-parity spatial wave function applicable to
bosons and to spin-polarized fermions, respectively. In many
instances, atom-atom scattering processes can be conve-
niently modeled through a shape-independent pseudopoten-
tial [7,8], whose coupling strength is chosen such that it re-
produces the scattering properties of the full shape-
dependent 3D or 1D atom-atom potential.

Fermi-Huang’s regularized pseudopotential[9–11] sup-
ports a single bound state for positiveas and no bound state
for negativeas. It has been used frequently to describe 3D
s-wave scattering between two bosons or two fermions with
different generalized spin. Buschet al. [12], e.g., derive the
eigenenergies for two atoms under harmonic confinement in-
teracting through Fermi Huang’s pseudopotential analyti-
cally. Using an energy-dependent scattering lengthassEd,
their results can be applied successfully to situations where
as is large and positive, i.e., near a Feshbach resonance
[13–15]. Building on these results, Borcaet al. [16] use a
simple two-atom model to explain many aspects of an ex-
periment that produces molecules from a sea of cold atoms
using magnetic field ramps[17]. In addition to these two-
body applications, Fermi-Huang’s 3Ds-wave pseudopoten-
tial plays a key role in developing(effective) many-body
theories.

This paper determines the eigenspectrum of two spin-
polarized 3D fermions interacting through a regularized
p-wave zero-range potential, parametrized through asingle
parameter, i.e., thep-wave scattering volumeVp, under har-
monic confinement analytically. Since wave functions with

relative angular momentuml greater than zero have vanish-
ing amplitude atr =0 (wherer denotes the distance between
the two atoms), our zero-rangep-wave potential contains
derivative operators. Furthermore, it contains, following
ideas suggested by Huang and Yang in 1957[11], a so-called
regularization operator, which eliminates divergencies atr
=0 that would arise otherwise. We show that our pseudopo-
tential imposes a boundary condition on the wave function at
r =0 (see also Ref.[18]); this boundary condition serves as
an alternative representation of thep-wave pseudopotential.
Earlier studies, in contrast, impose a boundary condition at
finite r, corresponding to afinite-rangepseudopotential with
two parameters[19,20]. The validity of our pseudopotential
is demonstrated by comparing the eigenenergies determined
analytically for two particles under harmonic confinement
with those determined numerically for shape-dependent
atom-atom potentials.

Due to significant advancements in trapping and cooling,
to date cold atomic gases cannot only be trapped in 3D ge-
ometries but also in quasi-2D and quasi-1D geometries
[21–23]. In the quasi-1D regime, the transverse motion is
“frozen out” so that the behaviors of atomic gases are domi-
nated by the longitudinal motion. Quasi-1D gases can hence
often be treated within a 1D model, where the atoms are
restricted to a line. To model 1D atom-atom interactions, for
which the spatial wave function haseven parity, d-function
contact interactions have been used successfully. In contrast
to the 3Ds-wave delta-function potential, which requires a
regularization, the 1Dd-function pseudopotential is nondi-
vergent[24]. To treat spin-polarized 1D fermions, a pseudo-
potential that acts on spatial wave functions withodd parity
is needed. Here, we use such a pseudopotential to determine
the eigenenergies of two spin-polarized 1D fermions under
harmonic confinement analytically. Comparison with
eigenenergies determined numerically for shape-dependent
1D atom-atom potentials illustrates the applicability of our
1D pseudopotential. Our results confirm the Fermi-Bose du-
ality [25–29] in 1D for two atoms under harmonic confine-
ment.
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II. TWO INTERACTING 1D PARTICLES
UNDER HARMONIC CONFINEMENT

Consider two 1D atoms with massm and coordinatesz1
andz2, respectively, under external harmonic confinement,

Vtrapsz1,z2d =
1

2
mvz

2sz1
2 + z2

2d, s1d

wherevz denotes the angular frequency. After separating the
center of mass and the relative motion, the Schrödinger
equation for the relative degree of freedomz, wherez=z2
−z1, reads

H1Dc1Dszd = E1Dc1Dszd, s2d

where

H1D = −
"2

2m

d2

dz2 + Vszd +
1

2
mvz

2z2. s3d

Here, Vszd denotes the 1D atom-atom interaction potential,
andm the reduced mass,m=m/2.

Section II A reviews the pseudopotential treatment of two
1D particles with even-parity eigenstates, i.e., two bosons or
two fermions with opposite spin, under harmonic confine-
ment. Section II B determines the relative eigenenergiesE1D

−

for two spin-polarized 1D fermions interacting through a
momentum-dependent zero-range potential under harmonic
confinement analytically. Section II C benchmarks our treat-
ment of the momentum-dependent zero-range potential by
comparing with numerical results obtained for a short-range
model potential.

A. Review of pseudopotential treatment: Even parity

The relative eigenenergiesE1D
+ corresponding to states

with even parity(in the following referred to as even-parity
eigenenergies) of two 1D particles interacting through the
zero-range pseudopotentialVpseudo

+ szd, where

Vpseudo
+ szd = "vzg1D

+ ds1dszd, s4d

have been determined by Buschet al. [12]:

g1D
+

az
= −

2GS−
E1D

+

2"vz
+

3

4
D

GS−
E1D

+

2"vz
+

1

4
D . s5d

In Eq. (4), ds1dszd denotes the usual 1D delta function. The
transcendental equation(5) allows the coupling strengthg1D

+

for a given energyE1D
+ to be determined readily. Vice versa,

for a given g1D
+ , the even-parity eigenenergiesE1D

+ can be
determined semianalytically. Figure 1(a) shows the resulting
eigenenergiesE1D

+ of two 1D bosons or two 1D fermions
with opposite spin as a function of the coupling strengthg1D

+ .
As expected, for vanishing interaction strengthsg1D

+ =0d, the
relative energiesE1D

+ coincide with the harmonic oscillator
eigenenergiesEn

osc with even parity,En
osc= s2n+ 1

2
d"vz, where

n=0,1, . . . .
For uE1D

+ u→` (and correspondingly negativeg1D
+ ), Eq. (5)

reduces to lowest order to

E1D
+ = −

"2

2msa1D
+ d2 , s6d

which coincides with the exact binding energy of the pseudo-
potential Vpseudo

+ szd without confining potential. In Eq.(6),
a1D

+ denotes the 1D even-parity scattering length,

a1D
+ = lim

k→0
−

tanfd1D
+ skdg
k

, s7d

which is related to the 1D coupling constantg1D
+ through

a1D
+ = −

1

g1D
+ . s8d

In Eq. (7), k denotes the relative 1D wave vector,k
=Î2mEsc/", and Esc the 1D scattering energy. The phase
shift d1D

+ is obtained by matching the free-space scattering
solution for positivez to sinskz+d1D

+ d. The dashed line in Fig.
1(a) shows the binding energy of the even-parity pseudopo-
tential without confinement, Eq.(6), while the dash-dotted
line shows the expansion of Eq.(5) to next higher order.

FIG. 1. Solid lines in panel(a) show the relative even-parity
energies E1D

+ [Eq. (5)] calculated using the pseudopotential
Vpseudo

+ szd as a function ofg1D
+ . Solid lines in panel(b) show the

relative odd-parity energiesE1D
− [Eq. (25)] calculated using the

pseudopotentialVpseudo
− szd as a function ofg1D

− . Horizontal solid
lines indicate the harmonic oscillator eigenenergies[with even par-
ity in panel(a), and with odd parity in panel(b)]. Horizontal dotted
lines indicate the asymptotic value of the eigenenergiesE1D

+ and
E1D

− for g1D
+ → ±` andg1D

− → ±`, respectively. Dashed lines show
the binding energiesE1D

+ , Eq. (6), in panel(a) andE1D
− , Eq. (26), in

panel(b) of the pseudopotentialsVpseudo
+ szd andVpseudo

− szd, respec-
tively, without confinement. Dash-dotted lines show the expansion
of Eq. (5) [panel (a)] and Eq.(25) [panel (b)] including the next
order term.
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In addition to the 1D eigenenergiesE1D
+ , the eigenfunc-

tions c1D
+ szd can be determined analytically, resulting in the

logarithmic derivative

3 dc1D
+ szd
dz

c1D
+ szd

4
z→0+

=
g1D

+

az
2 . s9d

This boundary condition is an alternative representation of
the even-parity pseudopotentialVpseudo

+ szd.

B. Analytical pseudopotential treatment: Odd parity

Following the derivation of the even-parity eigenenergies
by Buschet al. [12], we now derive an analogous expression
for the odd-parity eigenenergiesE1D

− using the zero-range
pseudopotentialVpseudo

− szd,

Vpseudo
− szd = "vzg1D

−
←d

dz
ds1dszd

d→

dz
. s10d

This pseudopotential leads to discontinuous eigenfunctions
with continuous derivatives atz=0. We show that the loga-
rithmic derivative ofc1D

− szd is well-behaved forz→0+. In
Eq. (10), the first derivative acts to the left and the second to
the right,

E
−`

`

f*szdVpseudo
− szdxszddz= "vzg1D

− df*s0d
dz

dxs0d
dz

,

s11d

with the short-hand notation

dxs0d
dz

= Fdxszd
dz

G
z=0

. s12d

SinceVpseudo
− szd acts only on wave functions with odd parity

(and not on those with even parity), we refer toVpseudo
− szd as

odd-parity pseudopotential; however,Vpseudo
− szd itself has

even parity. Similar pseudopotentials have recently also been
used by others[28–30].

To start with, we expand thediscontinuousodd-parity
eigenfunctionc1D

− szd in continuous1D odd-parity harmonic
oscillator eigenfunctionsfnszd,

c1D
− szd = o

n=0

`

cnfnszd, s13d

where thecn denote expansion coefficients, and

fnszd =Î 2

Ln
s1/2ds0dÎp az

z

az
expS−

z2

2az
2DLn

s1/2dS z2

az
2D ,

s14d

where az=Î" / smvzd. In Eq. (14), the Ln
s1/2dsz2/az

2d denote
associated Laguerre polynomials and thefnszd are normal-
ized to one,

E
−`

`

ufnszdu2dz= 1. s15d

The corresponding odd-parity harmonic oscillator eigenener-
gies are

En
osc= S2n +

3

2
D"vz, s16d

where n=0,1, . . . . Inserting expansion(13) into Eq. (2),
multiplying from the left withfn8

* szd, and integrating overz,
results in

cn8sEn8
osc− E1D

− d + g1D
− "vz

dfn8
* s0d

dz F d

dz
So

n=0

`

cnfnszdDG
z→0+

= 0. s17d

The coefficientscn8 are hence of the form

cn8 = A

dfn8
* s0d

dz

En8
osc− E1D

− , s18d

where the constantA is independent ofn8. Inserting this
expression for thecn into Eq. (17) leads to

3 d

dz1o
n=0

`
dfn

*s0d
dz

fnszd

En
osc− E1D

− 24
z→0+

= −
1

g1D
− "vz

. s19d

If we define a noninteger quantum numbern through

E1D
− = S2n +

3

2
D"vz, s20d

and use expression(14) for thefnszd, Eq. (19) can be rewrit-
ten as

1
Îp
F d

dzHzexpS−
z2

2az
2Do

n=0

`
Ln

s1/2dsz2/az
2d

n − n
JG

z→0+

= −
az

3

g1D
− ,

s21d

where thez→0+ limit is well-behaved. Equation(21) can be
evaluated using the identity

o
n=0

`
Ln

s1/2dsz2/az
2d

n − n
= Gs− ndUS− n,

3

2
,
z2

az
2D , s22d

and the known smallz behavior of the hypergeometric func-
tion Us−n , 3

2 ,z2/az
2d [31],

−
1

p
US− n,

3

2
,
z2

az
2D → −

1

Gs− ndGs 1
2dS z

az
D−1

+
1

Gs− n − 1
2dGs 3

2d + Oszd. s23d

Using Eqs.(22) and (23) in Eq. (21), evaluating the deriva-
tive with respect toz, and then taking thez→0+ limit, results
in
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−
az

3

g1D
− = −

Îp

Gs 3
2d

Gs− nd
Gs− n − 1

2d . s24d

Replacing the noninteger quantum numbern [see Eq.(20)]
by E1D

− /2"vz−3/4, weobtain the transcendental equation

g1D
−

az
3 =

GS−
E1D

−

2"vz
+

1

4
D

2GS−
E1D

−

2"vz
+

3

4
D , s25d

which allows the 1D odd-parity eigenenergiesE1D
− to be de-

termined for a given interaction strengthg1D
− .

Solid lines in Fig. 1(b) show the 1D odd-parity eigenen-
ergiesE1D

− , Eq. (25), as a function ofg1D
− . For g1D

− =0, the
eigenenergiesE1D

− coincide with the odd-parity harmonic os-
cillator eigenenergiesEn

osc, Eq. (16); they increase for posi-
tive g1D

− (“repulsive interactions”), and decrease for negative
g1D

− (“attractive interactions”).
Expansion of Eq.(25) to lowest order for large and nega-

tive eigenenergy(implying positiveg1D
− ), uE1D

− u→`, results
in

E1D
− = −

"2

2msa1D
− d2 , s26d

where the 1D scattering lengtha1D
− is defined analogously to

a1D
+ [with the superscript “1” in Eq. (7) replaced by the

superscript “−”]. The 1D scattering lengtha1D
− is related to

the 1D coupling strengthg1D
− through

g1D
− = a1D

− az
2. s27d

The energy given by Eq.(26) coincides with the binding
energy of the 1D pseudopotentialVpseudo

− szd without the con-
fining potential. A dashed line in Fig. 1(b) showsE1D

− , Eq.
(26), while a dash-dotted line shows the expansion of Eq.
(25) including the next order term.

In addition to the eigenenergiesE1D
− , we calculate the

eigenfunctionsc1D
− ,

c1D
− szd ~

Gs− nd
Îaz

z

az
expS−

z2

2az
2DUS− n,

3

2
,
z2

az
2D . s28d

Following steps similar to those outlined above, the logarith-
mic derivative atz→0+ reduces to

3 dc1D
− szd
dz

c1D
− szd

4
z→0+

= −
az

2

g1D
− . s29d

Equation(29) is an alternative representation of the 1D odd-
parity pseudopotentialVpseudo

− szd [28–30].
The even-parity eigenenergiesE1D

+ [Eq. (5)] and the odd-
parity eigenenergiesE1D

− [Eq. (25)], as well as the logarith-
mic derivatives[Eqs. (9) and (29)] are identical if the cou-
pling constants ofVpseudo

+ szd and Vpseudo
− szd are chosen as

follows:

g1D
− = −

az
4

g1D
+ . s30d

This implies that even-parity energiesE1D
+ can be obtained

by solving the 1D Schrödinger equation, Eq.(2), for H1D
given by Eq.(3) with Vszd=Vpseudo

− szd [and vice versa, odd-
parity energiesE1D

− can be obtained by solving the 1D
Schrödinger equation withVszd=Vpseudo

+ szd]. Our analytical
treatment of two 1D particles under external confinement
thus confirms the Fermi-Bose duality for two 1D particles
under harmonic confinement[25–29].

C. Comparison with shape-dependent 1D atom-atom potential

To benchmark the applicability of the odd-parity pseudo-
potentialVpseudo

− szd to two 1D atoms under harmonic confine-
ment, we solve the 1D Schrödinger equation, Eq.(2), for the
Hamiltonian given by Eq.(3) numerically for the shape-
dependent Morse potentialVmorseszd,

Vmorseszd = de−asz−z0dfe−asz−z0d − 2g. s31d

Our numerical calculations are performed for a fixed range
parameterz0, z0=11.65 a.u., and fora=0.35 a.u.; these pa-
rameters roughly approximate the 3D Rb2 triplet potential
[32]. The angular trapping frequencyvz is fixed at
10−9 a.u.s2pnz=vzd, and the atom massm at that of the87Rb
atom, implying an oscillator lengthaz of 112.5 a.u., and
hence a fairly tightly trapped atom pair. To investigate po-
tentials with different 1D scattering properties, we choose
depth parametersd for which the 1D Morse potential sup-
ports between zero and two 1D odd-parity bound states.
Solid lines in Fig. 2 show the resulting 1D odd-parity
eigenenergiesE1D

− obtained numerically as a function ofd.
The corresponding eigenstates have “gas-like character,” that
is, these states would correspond to continuum states if the
confining potential was absent.

To compare the odd-parity eigenenergies obtained nu-
merically for the Morse potentialVmorseszd with those ob-

FIG. 2. Relative odd-parity eigenenergiesE1D
− for two particles

under 1D harmonic confinement as a function of the well depthd.
Solid lines show the eigenenergies obtained by solving the 1D
Schrödinger equation, Eq.(2), for the Hamiltonian given in Eq.(3)
numerically using a short-range model potential, Eq.(31), for a
series of well depthsd. Symbols show the eigenenergies obtained
for the pseudopotentialVpseudo

− szd, taking the energy dependence of
the 1D coupling constantg1D

− into account,g1D
− =g1D

− sEscd (see text).
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tained for the odd-parity pseudopotentialVpseudo
− szd, we fol-

low Refs. [14,15]. We first perform scattering calculations
for the 1D Morse potential(no confinement) as a function of
the relative scattering energyEsc for various depthsd, which
provide, for a givend, the energy-dependent 1D scattering
length a1D

− sEscd, wherea1D
− sEscd=−tan(d1D

− skd) /k. Using the
relation between the 1D scattering lengtha1D

− and the 1D
coupling strengthg1D

− , Eq. (27), we then solve the transcen-
dental equation(25) self-consistently forE1D

− .
Diamonds in Fig. 2 show the resulting odd-parity

eigenenergiesE1D
− for two 1D particles under harmonic con-

finement interacting through the odd-parity energy-
dependent pseudopotentialVpseudo

− szd with g1D
− =g1D

− sEscd. Ex-
cellent agreement between these eigenenergies and those
obtained for the Morse potential(solid lines) is visible for all
well depthsd. We emphasize that this agreement depends
crucially on the usage ofenergy-dependent1D coupling con-
stants. In summary, Fig. 2 illustrates that the odd-parity
pseudopotentialVpseudo

− szd provides a good description of the
eigenstates of two spin-polarized 1D fermions under har-
monic confinement for all interaction strengths, including
g1D

− → ±`.

III. TWO INTERACTING 3D PARTICLES
UNDER HARMONIC CONFINEMENT

Consider two 3D particles with massm and coordinatesrW1
and rW2, respectively, confined by the potentialVtrapsrW1,rW2d,

VtrapsrW1,rW2d =
1

2
mvho

2 srW1
2 + rW2

2d, s32d

wherevho denotes the angular trapping frequency of the har-
monic 3D confinement. The corresponding Schrödinger
equation decouples into a center of mass part, whose solution
can be readily written down, and into a relative part,

H3D = H3D
osc+ VsrWd. s33d

Here, rW denotes the relative coordinate vectorsrW=rW2−rW1d,
VsrWd the atom-atom interaction potential, andH3D

osc the 3D
harmonic oscillator Hamiltonian,

H3D
osc= −

"2

2m
¹W rW

2 +
1

2
mvho

2 rW2. s34d

The corresponding Schrödinger equation for the relative co-
ordinate reads

H3Dc3DsrWd = E3Dc3DsrWd. s35d

Section III A briefly reviews Fermi Huang’s regularized
s-wave pseudopotential, while Sec. III B solves Eq.(35) for
a regularizedp-wave zero-range potential analytically. To il-
lustrate the applicability of thisp-wave pseudopotential, Sec.
III C compares the resulting relative eigenenergiesE3D for
two particles under harmonic confinement with those ob-
tained numerically for a shape-dependent short-range model
potential.

A. Review of 3D pseudopotential treatment:s-wave

Using Fermi-Huang’s regularizeds-wave sl =0d pseudo-
potentialVpseudo

l=0 srWd [9,11],

Vpseudo
l=0 srWd =

2p"2

m
asd

s3dsrWd
]

] r
r , s36d

where ds3dsrWd denotes the radial component of the 3D
d-function,

ds3dsrWd =
1

4pr2ds1dsrd, s37d

and as the 3D s-wave scattering length, Buschet al. [12]
derive a transcendental equation for the relative 3D eigenen-
ergiesE3D,

as

aho
=

GS−
E3D

2"vho
+

1

4
D

2GS−
E3D

2"vho
+

3

4
D . s38d

Here, aho denotes the oscillator length,aho=Î" / smvhod.
Solid lines in Fig. 3(a) show thes-wave energiesE3D as a
function of as. For large and negativeE3D (and hence posi-
tive as), an expansion of Eq.(38) to lowest order results in

E3D = −
"2

2msasd2 , s39d

which corresponds to the binding energy ofVpseudo
l=0 srWd with-

out the confining potential. A dashed line in Fig. 1 shows the
energy given by Eq.(39), while a dash-dotted line shows the
expansion of Eq.(38) including the next higher order term.

Since onlys-wave wave functions have a nonvanishing
amplitude atr =0, Fermi-Huang’s regularized pseudopoten-
tial leads exclusively tos-wave scattering(no other partial
waves are scattered). Equation(38) hence applies to two ul-
tracold bosons under external confinement, for which higher
even partial waves, such asd- or g-waves, are negligible.

Recall that the irregular solution withl =0 diverges asr−1.
The so-called regularization operators] /]rdr of the pseudo-
potentialVpseudo

s srWd, Eq. (36), cures this divergence. The so-
lutions c3DsrWd of two particles under external confinement
obey the boundary condition

3 ]

] r
frc3DsrWdg

rc3DsrWd
4

r→0

= −
1

as
. s40d

This boundary condition is an alternative representation of
Vpseudo

l=0 srWd.

B. Analytical 3D pseudopotential treatment:p-wave

The importance of angle-dependentp-wave interactions
has recently been demonstrated experimentally for two po-
tassium atoms in the vicinity of a magnetic field-dependent
p-wave Feshbach resonance[33]. Here, we use ap-wave
pseudopotential to modelisotropic atom-atom interactions;
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treatment of anisotropic interactions is beyond the scope of
this paper.

We use the followingp-wave pseudopotentialVpseudo
l=1 srWd,

Vpseudo
l=1 srWd = g1¹Q rWd

s3dsrWd¹W rW
1

2

]2

] r2r2, s41d

where the coupling strengthg1 “summarizes” the scattering
properties of the original shape-dependent atom-atom inter-
action potential[34,35],

g1 =
6p"2

m
Vp. s42d

Here,Vp denotes thep-wave scattering volume[4],

Vp = lim
k→0

−
tanfdpskdg

k3 , s43d

dp the p-wave phase shift, andk the relative 3D collision
wave vector. Similarly to the 1D odd-parity pseudopotential

Vpseudo
− szd, the first gradient¹W rW with respect to the relative

vector rW acts to the left, while the second one acts to the
right,

E f*srWdVpseudo
l=1 srWdxsrWdd3rW = g1E f¹W rWf

*srWdgds3dsrWd

3F¹W rWH1

2

]2

] r2fr2xsrWdgJGd3rW.

s44d

Just as thes-wave pseudopotentialVpseudo
l=0 srWd does not couple

to partial waves withl Þ0, the p-wave pseudopotential
Vpseudo

l=1 srWd does not couple to partial waves withl Þ1 [36].

Pseudopotentials of the formg1¹Q rWd
s3dsrWd¹W rW have been used

by a number of researchers before[34–37]; discrepancies
regarding the proper value of the coefficientg1, however,
exist (see, e.g., Ref.[36]). Here, we introduce the regulariza-
tion operator1

2s]2/]r2dr2 [Eq. (41)], which eliminates diver-
gencies that would arise otherwise from the irregularp-wave
solution(which diverges asr−2). A similar regularization op-
erator has been proposed by Huang and Yang in 1957[11];
they, however, use it in conjunction with a coupling param-
eterg1 different from that given by Eq.(42). By comparing
with numerical results for a shape-dependent model poten-
tial, we show that the pseudopotentialVpseudo

l=1 srWd describes
the scattering behaviors of two spin-aligned 3D fermions
properly (see Sec. III C).

To determine the relative eigenenergiesE3D of two spin-
polarized 3D fermions under harmonic confinement analyti-
cally, we expand the 3D wave functionc3DsrWd for fixed an-
gular momentum,l =1, in continuousharmonic oscillator
eigen functionsfnlml

srWd,

c3DsrWd = o
nml

cnml
fnlml

srWd, s45d

where thecnml
denote expansion coefficients. Thefnlml

srWd
depend on the principal quantum numbern, the angular mo-
mentum quantum numberl, and the projection quantum
numberml,

H3D
oscfnlml

srWd = Enl
oscfnlml

srWd s46d

and

Enl
osc= S2n + l +

3

2
D"vho, s47d

where n=0,1, . . ., l =0,1, . . .,n−1, and ml =0,±1,. . .,±l. The
fnlml

srWd can be written in spherical coordinatessr ,q ,wd,

fnlml
srWd = Î4pRnlsrdYlml

sq,wd, s48d

where theYlml
sq ,wd denote spherical harmonics and the

Rnlsrd are given by

Rnlsrd =Î 2l

s2l + 1d!!Îp3Ln
sl+1/2ds0daho

3

3S r

aho
Dl

expS−
r2

2aho
2 DLn

sl+1/2dS r2

aho
2 D , s49d

with

FIG. 3. Solid lines in panel(a) show the relatives-wave ener-
giesE3D [Eq. (38)] calculated using the pseudopotentialVpseudo

l=0 srWd
as a function of the scattering lengthas. Solid lines in panel(b)
show the relativep-wave energiesE3D [Eq. (65)] calculated using
the pseudopotentialVpseudo

l=1 srWd as a function of the scattering volume
Vp. Horizontal solid lines indicate the harmonic oscillator eigenen-
ergies[for l =0 in panel(a), and for l =1 in panel(b)]. Horizontal
dotted lines indicate the asymptotic eigenenergiesE3D [for as

→ ±` in panel (a), and for Vp→ ±` in panel (b)]. Dashed lines
show the binding energies, Eq.(39) in panel (a) and Eq.(66) in
panel(b), of the pseudopotentialsVpseudo

l=0 srWd andVpseudo
l=1 srWd, respec-

tively, without confinement. Dash-dotted lines show the expansion
of Eq. (38) [panel(a)] and Eq.(65) [panel(b)] including the next
order term.
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s2l + 1d!! = 1 3 3 3 ¯ 3 s2l + 1d. s50d

The normalizations ofRnlsrd andYlml
sq ,wd are chosen as

E
0

2p E
0

p

uYlml
sq,wdu2 sin q dq dw = 1 s51d

and

E
0

`

uRnlsrdu2r2dr =
1

4p
. s52d

If we plug expansion(45) into the 3D Schrödinger equa-
tion, Eq. (35), for the Hamiltonian given by Eq.(33) with
VsrWd=Vpseudo

l=1 srWd, multiply from the left with fn8lml8
* srWd [with

l =1], and integrate overrW, we obtain an expression for the
coefficientscn8ml8

,

cn8ml8
sEn8l

osc− E3Dd

=− g1f¹W rWRn8l
* s0dg ·F¹W rWH1

2

]2

] r2Sr2o
n=0

`

cn8ml8
RnlsrdDJG

r→0

,

s53d

where

¹W rWRnl
* s0d = f¹W rWRnl

* srdgr=0. s54d

In deriving Eq.(53), we use

¹W rWfRnlsrdYlml
sq,wdg = f¹W rWRnlsrdgYlml

sq,wd + Rnlsrd

3f¹W rWYlml
sq,wdg, s55d

where the second term on the right-hand side goes to zero in

the r →0 limit. Since the gradients¹W rW in Eq. (53) act on
arguments that depend solely onr, we can replace them by
êrs] /]rd (whereêr denotes the unit vector in ther-direction),

cn8ml8
sEn8l

osc− E3Dd

= − g1

] Rn8l
* s0d

] r F1

2

]3

] r3Sr2o
n=0

`

cn8ml8
RnlsrdDG

r→0

.

s56d

Equation(56) implies that the coefficientscn8ml8
are of the

form

cn8ml8
= A

] Rn8l
* s0d

] r

En8l
osc− E3D

, s57d

whereA is a constant independent ofn8. Plugging Eq.(57)
into Eq. (56) results in an implicit expression for the 3D
energiesE3D,

31

2

]3

] r31r2o
n=0

`
] Rnl

* s0d
] r

Rnlsrd

Enl
osc− E3D

24
r→0

= −
1

g1
. s58d

To simplify the infinite sum overn, we use expression(49)
for theRnlsrd, and introduce a noninteger quantum numbern,

E3D = S2n + l +
3

2
D"vho. s59d

For l =1, we obtain

1

3Îp3F1

2

]3

] r3HexpS−
r2

2aho
2 Dr3o

n=0

`
Ln

s3/2dsr2/aho
2 d

n − n
JG

r→0

= −
"vho aho

5

g1
. s60d

Using the identity

o
n=0

`
Ln

s3/2dsr2/aho
2 d

n − n
= Gs− ndUS− n,

5

2
,

r2

aho
2 D , s61d

the infinite sum in Eq.(60) can be rewritten,

Gs− nd
3Îp3 F1

2

]3

] r3HexpS−
r2

2aho
Dr3 US− n,

5

2
,

r2

aho
2 DJG

r→0

=

−
"vho aho

5

g1
, s62d

where ther →0 limit is, as discussed above, due to the regu-
larization operator ofVpseudo

l=1 srWd well behaved. Expression
(62) can be evaluated using the known smallr behavior of
the hypergeometric functionUs−n , 5

2 ,r2/aho
2 d [31],

1

p
Gs− ndUS− n,

5

2
,

r2

aho
2 D → − S r

aho
D−3 1

Gs− 1
2d

− S r

aho
D−1s2n + 3d

Gs− 1
2d

+
Gs− nd

Gs− n − 3
2dGs 5

2d + Osrd.

s63d

If we insert expansion(63) into Eq.(62), evaluate the deriva-
tives, and take ther →0 limit, we find

−
"vho aho

5

g1
=

1
Îp

Gs− nd
Gs− n − 3

2dGs 5
2d . s64d

Using Eqs.(42) and(59), we obtain our final expression for
the relative eigenenergiesE3D for l =1,

Vp

aho
3 = −

GS−
E3D

2"vho
−

1

4
D

8GS−
E3D

2"vho
+

5

4
D . s65d

Solid lines in Fig. 3(b) show the relative 3D eigenenergies
E3D, Eq.(65), for two spin-polarized fermions under external
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harmonic confinement interacting through the zero-range
pseudopotentialVpseudo

l=1 srWd as a function of the 3D scattering
volume Vp. For vanishing coupling strengthg1 (or equiva-
lently, for Vp=0), E3D coincides with thel =1 harmonic os-
cillator eigenenergy. AsVp increases[decreases], E3D in-
creases[decreases].

Expansion of Eq.(65) for a large and negative eigenen-
ergy (and hence negativeVp), uE3Du→`, results in

E3D = −
"2

2msVpd2/3, s66d

which agrees with the binding energy ofVpseudo
l=1 srWd without

the confinement potential. A dashed line in Fig. 3(b) shows
this binding energy, while a dash-dotted line shows the ex-
pansion of Eq.(65) including the next higher order. Com-
pared to the eigenenergy of the system without confinement,
Eq. (66), the lowest eigenenergy given by Eq.(65) is down-
shifted. This downshift is somewhat counterintuitive, and
contrary to thes-wave case.

In addition to the eigenergiesE3D of two atoms withl
=1 under harmonic confinement, we determine the corre-
sponding eigenfunctionsc3DsrWd,

c3DsrWd ~
Gs− nd
sahod3/2

r

aho
expS−

r2

2aho
2 DUS− n,

5

2
,

r2

aho
2 D , s67d

which lead to the well-behaved boundary condition

3 ]3

] r3F1

2
r2c3DsrWdG

r2c3DsrWd
4

r→0

= −
1

Vp
. s68d

This boundary condition is an alternative representation of
the pseudopotentialVpseudo

l=1 srWd, and depends on only one pa-
rameter, that is, the scattering volumeVp. This is in contrast
to earlier work[19,20], which treated a boundary condition
similar to Eq.(68) but evaluated the left hand side at a finite
value of r, i.e., atr =re. The boundary condition containing
the finite parameterre cannot be mapped to a zero-range
pseudopotential. References[38–40] discuss alternative deri-
vations and representations of boundary condition(68).

C. Comparison with shape-dependent 3D atom-atom
potential

To benchmark ourp-wave pseudopotential treatment of
two spin-polarized 3D fermions under harmonic confine-
ment, we solve the 3D Schrödinger equation, Eq.(35), for
the Hamiltonian given by Eq.(33) numerically for the shape-
dependent Morse potentialVmorsesrd, Eq.(31) with z replaced
by r and z0 replaced byr0. As in Sec. II C, our numerical
calculations are performed forr0=11.65 a.u.,a=0.35 a.u.,
vho=10−9 a.u.s2pnho=vhod, and m=ms87Rbd. The well
depthd is chosen such that the 3D Morse potential supports
between zero and twol =1 bound states. Solid lines in Fig. 4
show the resulting 3D eigenenergiesE3D with l =1 obtained
numerically as a function of the depthd.

To compare thel =1 eigenenergies obtained numerically
for the Morse potentialVmorsesrd with those obtained for the

p-wave pseudopotentialVpseudo
l=1 srWd, we follow the procedure

outlined in Sec. II C, that is, we first determine the energy-
dependent free-space scattering volumeVpsEscd, VpsEscd
=−tanfdpskdg /k3, for the 3D Morse potential(no confine-
ment) as a function of the relative scattering energyEsc for
various well depthsd. We then solve the transcendental
equation(65) self-consistently forE3D. Diamonds in Fig. 4
show the resultingl =1 eigenenergiesE3D for two 3D par-
ticles under harmonic confinement interacting through thel
=1 energy-dependent pseudopotentialVpseudo

l=1 srWd with Vp

=VpsEscd. Excellent agreement between these eigenenergies
and those obtained for the Morse potential(solid lines) is
visible for all well depthsd. We emphasize that this agree-
ment depends crucially on the usage ofenergy-dependent3D
scattering volumes. Figure 4 illustrates that thep-wave
pseudopotentialVpseudo

l=1 srWd describesp-wave scattering pro-
cesses properly.

IV. SUMMARY

We determined the eigenspectrum for two 1D particles
under harmonic confinement interacting through a
momentum-dependent zero-range potential. This pseudopo-
tential acts only on states with odd-parity, and is hence ap-
plicable to the scattering between two spin-polarized 1D fer-
mions. We showed that a basis set expansion in continuous
functions can be used to determine the eigenenergies and
discontinuous eigenfunctions of two 1D particles under har-
monic confinement interacting through the odd-parity
pseudopotentialVpseudo

− szd. Our divergence-free treatment
confirms the Fermi-Bose duality in 1D for two particles.

We also determined an implicit expression for the
eigenenergiesE3D, Eq. (65), and eigenfunctionsc3DsrWd, Eq.
(67), of two spin-polarized 3D fermions under harmonic con-
finement interacting through a momentum-dependent zero-
range potential. Similar to studies of two atoms withl =0
[13–16], our analytical expressions might be useful in under-

FIG. 4. Relative 3D eigenenergiesE3D with l =1 for two spin-
polarized fermions under 3D harmonic confinement as a function of
the well depthd. Solid lines show the eigenenergies obtained by
solving the 3D Schrödinger equation, Eq.(35), for the Hamiltonian
given in Eq.(33) numerically for a short-range model potential, Eq.
(31) with z replaced byr andz0 replaced byr0, for a series of well
depthsd. Symbols show the eigenenergies obtained for the pseudo-
potentialVpseudo

l=1 srWd, taking the energy dependence of the 3D scat-
tering volumeVp into account,Vp=VpsEscd (see text).
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standing the behavior of two confined spin-aligned fermions,
including physics near Feshbach resonances. Thep-wave
pseudopotential used in our study contains derivative opera-
tors as well as a regularization operator; the former is needed
to construct a true zero-range potential(since l =1 solutions
go to zero asr approaches zero, see above) while the latter is
needed to eliminate divergencies of the irregularp-wave so-
lution (which diverges asr−2). We showed that our zero-
range potentialVpseudo

l=1 srWd imposes a boundary condition at
r =0, Eq. (68), which depends on a single atomic physics
parameter, that is, the scattering volumeVp. This boundary
condition is an alternative representation ofVpseudo

l=1 srWd.
Similarly to Fermi-Huang’s regularizeds-wave pseudopo-

tential, thep-wave pseudopotential used here might find ap-

plications in developing effective many-body theories for ul-
tracold spin-polarized Fermi gases. Such theories will have
to carefully investigate how to implement renormalization
procedures needed in numerical calculations.

Note added. After submission of this paper we became
aware of a related study by Stocket al. [41], which derives
Eq. (65) starting with a pseudopotential expressed as the
limit of a d-shell.
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