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Atom-atom scattering of bosonic one-dimensiofidD) atoms has been modeled successfully using a zero-
range é-function potential, while that of bosonic 3D atoms has been modeled successfully using Fermi-
Huang’s regularizeds-wave pseudopotential. Here, we derive the eigenenergies of two spin-polarized 1D
fermions under external harmonic confinement interacting through a zero-range potential, which only acts on
odd-parity wave functions, analytically. We also present a divergent-free zero-range potential treatment of two
spin-polarized 3D fermions under harmonic confinement. Our pseudopotential treatments are verified through
numerical calculations for short-range model potentials.
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I. INTRODUCTION relative angular momentuingreater than zero have vanish-

Recently, atom-atom scattering has received renewed {9 amplitude ar=0 (wherer denotes the distance between
terest since the properties of ultracold atortimsonic or the two atomy our zero-rangep-wave potential contains
fermionic) gases depend predominantly on a single atomderivative operators. Furthermore, it contains, following
atom scattering parametgt]. This is thes-wave scattering ideas suggested by Huang and Yang in 1pHl, a so-called
lengtha, for a three-dimensionaBD) Bose gag?2] (or for a  regularization operator, which eliminates divergencies at
3D Fermi gas consisting of atoms with “spin-up” and “spin- =0 that would arise otherwise. We show that our pseudopo-
down”), and thep-wave scattering volumg,, [3,4] fora 3D  tential imposes a boundary condition on the wave function at
spin-polarized Fermi gas. For a 1D or quasi-1D gas, it is the=0 (see also Ref[18]); this boundary condition serves as
1D scattering lengtlay 5 [5,6], which characterizes the even- an alternative representation of tpevave pseudopotential.
parity and odd-parity spatial wave function applicable toEarlier studies, in contrast, impose a boundary condition at
bosons and to spin-polarized fermions, respectively. In manfinite r, corresponding to &nite-rangepseudopotential with
instances, atom-atom scattering processes can be conugro parameter§19,2Q. The validity of our pseudopotential
niently modeled through a shape-independent pseudopoteis- demonstrated by comparing the eigenenergies determined
tial [7,8], whose coupling strength is chosen such that it re-analytically for two particles under harmonic confinement
produces the scattering properties of the full shapewith those determined numerically for shape-dependent
dependent 3D or 1D atom-atom potential. atom-atom potentials.

Fermi-Huang's regularized pseudopotentj@-11 sup- Due to significant advancements in trapping and cooling,
ports a single bound state for positimgand no bound state to date cold atomic gases cannot only be trapped in 3D ge-
for negativeas. It has been used frequently to describe 3Dometries but also in quasi-2D and quasi-1D geometries
s-wave scattering between two bosons or two fermions witf21-23. In the quasi-1D regime, the transverse motion is
different generalized spin. Busdt al. [12], e.g., derive the “frozen out” so that the behaviors of atomic gases are domi-
eigenenergies for two atoms under harmonic confinement imated by the longitudinal motion. Quasi-1D gases can hence
teracting through Fermi Huang's pseudopotential analyti-often be treated within a 1D model, where the atoms are
cally. Using an energy-dependent scattering lengdlk), restricted to a line. To model 1D atom-atom interactions, for
their results can be applied successfully to situations wherahich the spatial wave function haven parity é-function
a, is large and positive, i.e., near a Feshbach resonanagntact interactions have been used successfully. In contrast
[13-15. Building on these results, Boraat al. [16] use a to the 3Ds-wave delta-function potential, which requires a
simple two-atom model to explain many aspects of an exregularization, the 1D5-function pseudopotential is nondi-
periment that produces molecules from a sea of cold atomegergent[24]. To treat spin-polarized 1D fermions, a pseudo-
using magnetic field rampglL7]. In addition to these two- potential that acts on spatial wave functions watd parity
body applications, Fermi-Huang's 3®wave pseudopoten- is needed. Here, we use such a pseudopotential to determine
tial plays a key role in developingeffective many-body the eigenenergies of two spin-polarized 1D fermions under
theories. harmonic confinement analytically. Comparison with

This paper determines the eigenspectrum of two spineigenenergies determined numerically for shape-dependent
polarized 3D fermions interacting through a regularizedlD atom-atom potentials illustrates the applicability of our
p-wave zero-range potential, parametrized througsingle 1D pseudopotential. Our results confirm the Fermi-Bose du-
parameter i.e., thep-wave scattering volum¥,, under har-  ality [25-29 in 1D for two atoms under harmonic confine-
monic confinement analytically. Since wave functions withment.
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IIl. TWO INTERACTING 1D PARTICLES 10
UNDER HARMONIC CONFINEMENT ET 8
. . . 6E
Consider two 1D atoms with mass and coordinateg; \E 4k
andz,, respectively, under external harmonic confinement, 3] 5 i
By
1 w0
Viap(z1,2) = Sme3(Z + Z), (1) 5 _o
& —4 .
wherew, denotes the angular frequency. After separating the 10 =5 0 5 10
center of mass and the relative motion, the Schrddinger . +
equation for the relative degree of freed@nwherez=z, coupling strength g, /a.
-z, reads . 10 E— '
: o — '
H 7)=E z 2 Ty 3
10¥10(2) = E1piip(2), (2 S 6 =
where o AF — 3
ﬁZ 2 1 > 2F E
HlDI—Z—E+V(Z)+§,U,w§ZZ. (3) %ﬂ Orf odd
M c :z F parity
Here, V(2) denotes the 1D atom-atom interaction potential, © 10 5 0 5 10
and u the reduced masg,=m/2. N a g 3
Section Il A reviews the pseudopotential treatment of two coupling strength g7, /(az)

1D particles with even-parity eigenstates, i.e., two bosons or o , ) ,
two fermions with opposite spin, under harmonic confine- FIC_;. 1.+SoI|d lines in pane(a) show_the relative even-parity
ment. Section Il B determines the relative eigenenerfigs :a/r:ergles Eip [qu' S cﬁlcugtig l_usnng the pzeu?]opotintlal
for two spin-polarized 1D fermions interacting through a pselﬂd‘gz) as a function Of.ng_' olid lines in panelb) s ow the
momentum-dependent zero-range potential under harmonlrcelat've odd-parity energieg,, [Ed. (29)] calculated using the
pSeudopotentiaVq,¢§2) as a function ofg,p. Horizontal solid

confinement analytically. Section Il C benchmarks our treat'Iines indicate the harmonic oscillator eigenenerdieish even par-

ment of the momentum-dependent zero-range potential b, iy nanel(a), and with odd parity in paneb)]. Horizontal dotted
comparing with numerical results obtained for a short-rang&as indicate the asymptotic value of the eigenenergigs and

model potential. Ejp for gjp— % andg;,— +, respectively. Dashed lines show

the binding energieg;p, Eq.(6), in panel(a) andEjp, Eq.(26), in

panel(b) of the pseudopotentialc.,4§2) andV,c.,462), respec-
The relative eigenenergie;, corresponding to states tively, without confinement. Dash-dotted lines show the expansion

with even parity(in the following referred to as even-parity of Eq. (5) [panel(a)] and Eq.(25) [panel(b)] including the next

eigenenergiosof two 1D particles interacting through the order term.

zero-range pseudopotentid]..,q§2), where

V' ) = holpd (@), @ Eb:—amg;ﬁ, ©)
1D

A. Review of pseudopotential treatment: Even parity

have been determined by Busehal. [12]:
£t 3> which coincides with the exact binding energy of the pseudo-
_ Eip

. 2r< += .
ng Zﬁwz 4

potential V¢ 462 Without confining potential. In Eq¢6),
2io___ Y %z T (5) a;p denotes the 1D even-parity scattering length,
a, r( Elb | 1) 5
B 1 ta k
2hw, 4 aip=lim _tartaip) liD( )], (7)
In Eq. (4), 8Y(2) denotes the usual 1D delta function. The 0

transcendental equati@b) allows the coupling strength;;  which is related to the 1D coupling constagjt, through
for a given energyE;, to be determined readily. Vice versa,

for a givengjp, the even-parity eigenenergi€s, can be f_ 1 8
determined semianalytically. Figurgal shows the resulting dp= o5 (8

eigenenergie€;, of two 1D bosons or two 1D fermions
with opposite spin as a function of the coupling strergjth In Eq. (7), k denotes the relative 1D wave vectdk,

As expected, for vanishing interaction strengtfi,=0), the = =y2uE./#, and Eq, the 1D scattering energy. The phase
relative energie€;, coincide with the harmonic oscillator shift &}, is obtained by matching the free-space scattering
eigenenergieE°* with even parityE%*°=(2n+3)hw,, where  solution for positivez to sin(kz+ 8)). The dashed line in Fig.

n=0,1,.... 1(a) shows the binding energy of the even-parity pseudopo-
For |[Ejp| — = (and correspondingly negatigg,), Eq.(5)  tential without confinement, Eq6), while the dash-dotted
reduces to lowest order to line shows the expansion of E¢p) to next higher order.
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In addition to the 1D eigenenergi&s,, the eigenfunc-
tions ;(2) can be determined analytically, resulting in the
logarithmic derivative

d'ﬂo(z)

dz QID
_% | _Si 9
o@D oo & ©

This boundary condition is an alternative representation ofvhere n=0,1,...

the even-parity pseudopotentidl.e,4{2).

B. Analytical pseudopotential treatment: Odd parity

Following the derivation of the even-parity eigenenergies Cn(Eqr -
by Buschet al.[12], we now derive an analogous expression

for the odd-parity eigenenergids,; using the zero-range
pseudopotentiaV/pge,,4§2),

_ d d-
V;seudtgz) = ﬁwzngE 51)(2)5 . (10

This pseudopotential leads to discontinuous eigenfunctions

with continuous derivatives a=0. We show that the loga-
rithmic derivative ofy;(2) is well-behaved foz—0*. In
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fc |pn(2)[?dz=1. (15

The corresponding odd-parity harmonic oscillator eigenener-
gies are

3
EpC= (Zn + §>hwz’ (16)
. Inserting expansior(13) into Eg. (2),
multiplying from the left with¢,,(z), and integrating ovez,
results in

Eip) + ngﬁde¢;’z( 2 [ dz(%cnmz)) } i
=0. (17
The coefficientg,,, are hence of the form
deb,, (0)
S OSCO'_ZE_ , (19)
n’ 1D

where the constanf is independent of'. Inserting this

Eg. (10), the first derivative acts to the left and the second toexpression for the, into Eq.(17) leads to

the right,

de (0) dx(0)
dz dz '’

j & DV ¥(D02= hiogio

(11)
with the short-hand notation
dx(0) _ [dx(z)] 12
dz dz |0

SinceVq,442) acts only on wave functions with odd parity
(and not on those with even parnifywe refer toV.,442) as

odd-parity pseudopotential; howevevy., q(2) itself has

even parity. Similar pseudopotentials have recently also been

used by other$28-3Q.

To start with, we expand theiscontinuousodd-parity
eigenfunctiony;p(2) in continuouslD odd-parity harmonic
oscillator eigenfunctiong,(z2),

Yip(2) = 2 Cuhn(2), (13)
n=0

where thec, denote expansion coefficients, and

N (112
(2= L(llz)(O)\W azaz p( )L <2>

(14)

where a,=\%/(uw,). In Eq. (14), the L"?(22/a2) denote
associated Laguerre polynomials and thd€z) are normal-
ized to one,

_ 440

als R | 3
dz\ 1= Egsc_ Eo /|, o B Jiphe, (19
If we define a noninteger quantum numbethrough
_ 3
Elp= (2v+ 5>ﬁwz, (20

and use expressidii4) for the ¢,(2), Eq.(19) can be rewrit-

ten as
i[d sen- 2,3 21212 ] __a
dz a§ n=0 n-v 7.0* gID'
(21)

where thez— 0* limit is well-behaved. Equatiof21) can be
evaluated using the identity

o Lgl/Z)(ZZ/ag) ~ ( § i)
E n-v _F(_V)U _V:Z!ag ’

n=0
and the known smalt behavior of the hypergeometric func-

(22)

tion U(-v,3,22/a2) [31],
_EU(_ 3 f) _;(EV
=\ "2a) " ror()\a
1
+ —F—=+0(2). (23
r(-v-3)r@3)

Using Egs.(22) and(23) in Eq. (21), evaluating the deriva-
tive with respect t@, and then taking the— 0" limit, results
in
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Vm I'(-v)
e
r;)r-v-3)
Replacing the noninteger quantum numbejsee Eq.(20)]
by E;p/2hw,—3/4, weobtain the transcendental equation

F(_ E_]_'D + 1‘)
N 2h 4
g%):# (25)

ZI‘(_ i + g’)
2how, 4

&

= = (24)
(T5)

which allows the 1D odd-parity eigenenergieg, to be de-
termined for a given interaction strengif,.

Solid lines in Fig. 1b) show the 1D odd-parity eigenen-
ergieskE; 5, EQ. (25), as a function ofg,. For g;5,=0, the
eigenenergieg; ; coincide with the odd-parity harmonic os-
cillator eigenenergie&>>, Eq. (16); they increase for posi-
tive g;p (“repulsive interactions); and decrease for negative
0,p (“attractive interactions’

Expansion of Eq(25) to lowest order for large and nega-
tive eigenenergyimplying positive g;p), |E;p| — , results
in

fLZ
Ep=—-"T"—=. (26)
P 2u(ayp)?
where the 1D scattering leng#j, is defined analogously to
a;p [with the superscript +” in Eq. (7) replaced by the
superscript “~]. The 1D scattering length; is related to
the 1D coupling strength;; through

(27)

The energy given by Eq26) coincides with the binding
energy of the 1D pseudopotentidf..462) Without the con-
fining potential. A dashed line in Fig.(d) showsE;,, Eq.

- -2
O1p = 1p&;-
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FIG. 2. Relative odd-parity eigenenergigg, for two particles
under 1D harmonic confinement as a function of the well depth
Solid lines show the eigenenergies obtained by solving the 1D
Schrédinger equation, ER), for the Hamiltonian given in Eq.3)
numerically using a short-range model potential, E2fl), for a
series of well depthsl. Symbols show the eigenenergies obtained
for the pseudopotentialgseudgz), taking the energy dependence of
the 1D coupling constamyf;; into accountg; ,=0;(Eso (See text

4
p=——. 30

9o 9ip 30
This implies that even-parity energi€, can be obtained
by solving the 1D Schrédinger equation, H®), for Hqp
given by Eq.(3) with V(2)=V ,4f2) [and vice versa, odd-
parity energiesE;, can be obtained by solving the 1D
Schrodinger equation with(2)=V;,4§2)]. Our analytical
treatment of two 1D particles under external confinement
thus confirms the Fermi-Bose duality for two 1D particles
under harmonic confinemef25-29.

C. Comparison with shape-dependent 1D atom-atom potential

To benchmark the applicability of the odd-parity pseudo-
potentialV,qe,,4§2) to two 1D atoms under harmonic confine-

(26), while a dash-dotted line shows the expansion of Edment, we solve the 1D Schrédinger equation, &y, for the

(25) including the next order term.
In addition to the eigenenergids;,, we calculate the

eigenfunctions/;p,
I'-») z Z 37
’ —exp(— 2—a§>U<— V§¥> (28)

p(2) o« —=—
\az a'Z

Following steps similar to those outlined above, the logarith

mic derivative atz— 0" reduces to

d¥1p(2)
dz a2
=—=—. 29
U102 |0+ Yip 29

Equation(29) is an alternative representation of the 1D odd-

parity pseudopotential,e,,462) [28—30.

The even-parity eigenenergi&s,, [Eq. (5)] and the odd-
parity eigenenergieg;, [Eq. (25)], as well as the logarith-
mic derivatives[Egs. (9) and (29)] are identical if the cou-
pling constants olVj..462) and V,¢.,462) are chosen as
follows:

Hamiltonian given by Eq(3) numerically for the shape-
dependent Morse potentigll,orsd2),

Vinorsd2) = de @@ 2)[g @) — 2], (32)

Our numerical calculations are performed for a fixed range
parameterz,, z,=11.65 a.u., and for=0.35 a.u.; these pa-
rameters roughly approximate the 3D Ripiplet potential

[32]. The angular trapping frequency, is fixed at
100 a.u.(2mv,=w,), and the atom mags at that of thé’’Rb
atom, implying an oscillator lengtla, of 112.5 a.u., and
hence a fairly tightly trapped atom pair. To investigate po-
tentials with different 1D scattering properties, we choose
depth parameterd for which the 1D Morse potential sup-
ports between zero and two 1D odd-parity bound states.
Solid lines in Fig. 2 show the resulting 1D odd-parity
eigenenergie&; ;, obtained numerically as a function df
The corresponding eigenstates have “gas-like character,” that
is, these states would correspond to continuum states if the
confining potential was absent.

To compare the odd-parity eigenenergies obtained nu-
merically for the Morse potentidV/,,o<{2z) with those ob-
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tained for the odd-parity pseudopotenﬁﬁaseudgz), we fol- A. Review of 3D pseudopotential treatments-wave
low Refs.[14,15. We first perforr_n scattering caICl_JIations Using Fermi-Huang’s regularizestwave (1=0) pseudo-
for the 1D Morse potentiaino confinementas a function of i 21\ /1=0
: : _ _ potentialV, .o,q41) [9,11],

the relative scattering enerdss. for various depthsl, which P
provide, for a givend, the energy-dependent 1D scattering =0
length a; 5(Es), Wherea;(Es)=—tan(6;p(k))/k. Using the Vpseuddl) =
relation between the 1D scattering lengil and the 1D )
coupling strengtty;p, Eq.(27), we then solve the transcen- Where 8%(f) denotes the radial component of the 3D
dental equatiori25) self-consistently foE; . o-function,

Diamonds in Fig. 2 show the resulting odd-parity 1
eigenenergie&,, for two 1D particles under harmonic con- (N =—=5"), (37)
finement interacting through the odd-parity energy- Amr

dependent pseudopotentigfse, 462 With g1p=01p(Eso). EX- and a, the 3D swave scattering length, Busadt al. [12]

cellent agreement between these eigenenergies and thaggrive a transcendental equation for the relative 3D eigenen-
obtained for the Morse potentigdolid lineg is visible for all  grgjesE,p,

well depthsd. We emphasize that this agreement depends

2
2 60 o, (36)
M ar

crucially on the usage afnergy-dependerdD coupling con- _ Egp + 1
stants. In summary, Fig. 2 illustrates that the odd-parity as 2hw,, 4
pseudopotentiaV/,., 4{2) provides a good description of the P £ 3 (38)
eigenstates of two spin-polarized 1D fermions under har- ° 2 (—i+—>
monic confinement for all interaction strengths, including 2hon, 4
Oip— . Here, a,, denotes the oscillator lengtha,,=+7/(pwho).
Solid lines in Fig. 8a) show thes-wave energiesk;p as a
IIl. TWO INTERACTING 3D PARTICLES function of as. For large and negativE;p (and hence posi-
UNDER HARMONIC CONFINEMENT tive ag), an expansion of Eq:38) to lowest order results in
Consider two 3D particles with massand coordinates; Eae = — h? (39)
andr,, respectively, confined by the potenté},,(ry,r>), 7 2ua)?’
1 which corresponds to the binding energy\df2, 44r) with-
Virap(F1,2) = E,uwﬁo(r?+ F3), (32)  out the confining potential. A dashed line in Fig. 1 shows the

energy given by Eq.39), while a dash-dotted line shows the
expansion of Eq(38) including the next higher order term.
Since onlys-wave wave functions have a nonvanishing
plitude atr=0, Fermi-Huang’s regularized pseudopoten-
tial leads exclusively tes-wave scatteringno other partial
waves are scattergdeEquation(38) hence applies to two ul-

wherewy,, denotes the angular trapping frequency of the har
monic 3D confinement. The corresponding Schrodinger
equation decouples into a center of mass part, whose soluti
can be readily written down, and into a relative part,

Hap = IS+ V(7). (33) tracold bosons under external confinement, for which higher
even partial waves, such ds or g-waves, are negligible.
Here, I denotes the relative coordinate vecl@=r,-r,), Recall that the irregulay solution willx 0 diverges as™.
V(f) the atom-atom interaction potential, aksc the 3D The sq-called regularization operat(@f&r?r of the pseudo-
harmonic oscillator Hamiltonian, potentialVpse,qéF), EQ. (36), cures this divergence. The so-

lutions ¢5p(F) of two particles under external confinement

2. 1 obey the boundary condition
HgE'= = -V + Juopd™ (34
2u 2 9
E[T%D(D] 1
The corresponding Schrodinger equation for the relative co- - =— = (40)
ordinate reads s f—o s
This boundary condition is an alternative representation of
Haptap() = Eapiiap(r). (39 VED L

Section Il A briefly reviews Fermi Huang's regularized
s-wave pseudopotential, while Sec. Ill B solves E8p) for
a regularizedp-wave zero-range potential analytically. To il-
lustrate the applicability of thip-wave pseudopotential, Sec.  The importance of angle-dependgmivave interactions
[l C compares the resulting relative eigenenerdiag for  has recently been demonstrated experimentally for two po-
two particles under harmonic confinement with those ob+assium atoms in the vicinity of a magnetic field-dependent
tained numerically for a shape-dependent short-range modetwave Feshbach resonan{&3]. Here, we use g-wave
potential. pseudopotential to modeésotropic atom-atom interactions;

B. Analytical 3D pseudopotential treatment: p-wave
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g 12 — I *(P\I=L 37 V- 3)
£ 8F - E ¢ (NVpseudd XN =gy | [Veg (N]S(F)
SO —f— i

3 4 — (12 o e
= of 1 x| V; 2ar2[r x(D) ] |d°F.
> oF ;

20 (44)

o —2F
% -4 Just as the-wave pseudopotentiML,:S‘)eud((F) does not couple

-10 -5 0 5 10 to partial waves withl#0, the p-wave pseudopotential
scattering length as/ane v';sgudgr*) does not couple to partial waves with-1 [36].

o 10 : = ' Pseudopotentials of the foriy V-6 (F)V; hav_e been u§ed
& 8¢ Jr_ - by a number of researchers befdi@—37; discrepancies
= — E regarding the proper value of the coefficiamt however,
\g 4F Jﬁ 3 exist(see, e.g., Ref36]). Here, we introduce the regulariza-
B oF ] tion operator;(¢?/r2)r? [Eq. (41)], which eliminates diver-
3 0k <] gencies that would arise otherwise from the irregptavave
5 —2 _““““*‘\ ] solution(which diverges as™). A similar regularization op-
g —4f PV . . ® erator has been proposed by Huang and Yang in J57
¢ -1.0 -05 0.0 05 1.0 they, however, use it in conjunction with a coupling param-

eterg, different from that given by Eqi42). By comparing
with numerical results for a shape-dependent model poten-

FIG. 3. Solid lines in panela) show the relatives-wave ener- tial, we ShQW that th.e pseUdOpOIemMIfS?Ud&F) descnbe_s
giesEsp [Eq. (38)] calculated using the pseudopotent\ié’g%udﬁ) the scattering behaviors of two spin-aligned 3D fermions
as a function of the scattering length. Solid lines in panefby  Properly(see Sec. Il §.

scattering volume Vp/(ano)?

show the relativgp-wave energie€;p [Eq. (65)] calculated using To determine the relative eigenen(.argh'ea% _Of two spin- _
the pseUdOpOtemiNIp:sjéud((F) as a function of the scattering volume Polarized 3D fermions under harmonic confinement analyti-

V.. Horizontal solid lines indicate the harmonic oscillator eigenen-cally, we expand the 3D wave functiofyp(r) for fixed an-
ergies[for 1=0 in panel(a), and forl=1 in panel(b)]. Horizontal ~ gular momentum,|=1, in continuousharmonic oscillator
dotted lines indicate the asymptotic eigenenerdigg [for a;,  eigen functions(j)n|n1|(F),

— =z in panel(a), and forV,— £ in panel(b)]. Dashed lines

show the binding energies, E(B9) in panel(a) and Eq.(66) in irap(F) :2 C“"\‘i’n'"\(ﬂ' (45)
panel(b), of the pseudopotentialg? 67 and Vit 47, respec- nm

tively, without confinement. Dash-dotted lines show the expansion . .

of Eq. (38) [panel(a)] and Eq.(65) [panel(b)] including the next where thecnml denote expansion coefficients. Trd(mml(ﬂ
order term. depend on the principal quantum numipethe angular mo-

mentum quantum number, and the projection quantum

treatment of anisotropic interactions is beyond the scope O@umberm,,

this paper. osc 7) = gose p 16
We use the followingp-wave pseudopotentialict 47, 30 @nim (1) = Enl"nim (1) (46)
- L1 P and
Viseudd?) = 01V 8OV =512, (41 ;
Epic= (Zn +1+ §>hwho, (47)

where the coupling strengtly, “summarizes” the scattering

properties of the original shape-dependent atom-atom inte(yere n=0,1,...,1=0,1,...n-1, andm=0,1,...,.4. The

action potential 34,39, bnim (F) can be written in spherical coordinatesd, ),
67>

9= m VP' (42) ¢n|m|(F) = V’477Rnl(r)YIm|("91 (P)v (48)
Here,V,, denotes thep-wave scattering volumg], where theY,(%,¢) denote spherical harmonics and the
tar{ 5,(K] R,(r) are given by
al
Vp = lim - —5—=, (43) 2
k—0
Rﬂ'(r):\/ [3) (1+1/2 3
8, the p-wave phase shift, anl the relative 3D collision @+ DL (008,
wave vector. Similarly to the 1D odd-parity pseudopotential r\! r2 r2
i ient- wi i x(—) exp - — LY =), (49
Vpseuad2), the first gradientV: with respect to the relative an 2a2,) " VA

vector I acts to the left, while the second one acts to the
right, with
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@I+ D=1 X3 X -+ X (21 +1). (50

The normalizations oR,(r) and Y,y (¢, ¢) are chosen as

2w (7
J f Yim (9, @)|?sin 9 d9¥ de=1 (51)
0 0

and

* 1
f |Ry(n)|?r?dr = — (52)
0 477
If we plug expansior{45) into the 3D Schrddinger equa-
tion, Eq (35), for the Hamiltonian given by Eq.33) with
V(N =V r), multiply from the left with¢ , () [with

pseudg n’Im/
I=1], and integrate ovef, we obtain an expression for the
coefficientscn,mlr,

osc
Cn’ml’(Enq - E3D)

1 o
:_gl[V Rnrl(o)] [ {5(9_2< 22 Cn/ m’R I(r)>}:| )
n=0 r—0

(53)
where
ViRy(0) = [VAR (N r=o- (54)
In deriving Eq.(53), we use
VAR Yim (8, 0)] = [VeRy(1)]Yigy (9, @) + Ruy()
X[V Y (8, 0)], (55)

where the second term on the right-hand side goes to zero
the r—0 limit. Since the gradient¥; in Eq. (53) act on
arguments that depend solely onwe can replace them by
&.(a/ar) (whereg, denotes the unit vector in thedirection),

Cn’ml’ (Egrsf_ EBD)
~ IR (0] 1 & 5
=—0 ar [20,”_ ( nEOCn m’RnI(r)>]r_>0-
(56)

Equation(56) implies that the coefficientsn,mlr are of the
form

IR.,(0)
ar

Cn/ml’ = AM )
n

(57)

whereA is a constant independent of. Plugging Eq.(57)
into Eq. (56) results in an implicit expression for the 3D
energiesEsp,
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J Rm(O)

Ru(r)

oo

r’

n=0

P (58)
20r° R = A S 1

To simplify the infinite sum oven, we use expressio(9)
for theR,(r), and introduce a noninteger quantum numher

Esp= (2v+ |+ g>ﬁwho. (59
For =1, we obtain
1 [1 7 {exp<_ r_2>r3§ L<n3’2><r2/aﬁo>}]
33| 2013 2a2.) o n-v o
- % (60)

Using the identity
* /
Li"2(r?la,) _
n-v

5 r2
I'(- v)U(— v,E,ah—zo), (61)

n=0

the infinite sum in Eq(60) can be rewritten,

r<-y){1a3{ p( r2)3 ( 5r2>}]
exp — r° u vy =
3\r 29r3 2ap, 28-ho r—0
5
~ Rtn B, (62
01

where the — 0 limit is, as discussed above, due to the regu-
larization operator Ofvpseudl(t?) well behaved. Expression
(62) can be evaluated using the known snrabbehavior of
the hypergeometric functiod (-

S.r2lap,) [31],

12

5r r\e o1
v~ T
_(L)—l(zw 3)
ano/ T(-3)

I'(-v)

T

—F(— v)U(— v,

in

+0(r).

(63)

If we insert expansio63) into Eq.(62), evaluate the deriva-
tives, and take the— 0 limit, we find

ﬁwho a-ho I'(-v)
o wF( -1
Using Eqs.(42) and(59), we obtain our final expression for
the relative eigenenergidsy for 1=1,
)
4

E
r(— B _
Zﬁwho
§> |
4

__Es
Zﬁwho

Solid lines in Fig. 8b) show the relative 3D eigenenergies

Esp, EQ.(65), for two spin-polarized fermions under external

(64)

(65)
+
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harmonic confinement interacting through the zero-range
pseudopotentiaﬂ/i):studgf) as a function of the 3D scattering
volume V,,. For vanishing coupling strengtty (or equiva-
lently, for V,=0), Ezp coincides with thd =1 harmonic os-
cillator eigenenergy. As/, increases[decreasds Egp in-
creasegdecreaseds

Expansion of Eq(65) for a large and negative eigenen-

|

energy Esp/hvne
MW A OO 2D

ergy (and hence negativé,), |Esp|— >, results in b Y , ,
52 0 500 100015002000
Esp=- 2u(Vp) P (66) potential depth d/huvy,
which agrees with the binding energy vﬁsleudgr*) without FIG. 4. Relative 3D eigenenergi&sy with [=1 for two spin-

the confinement potential. A dashed line in Figb)3shows polarized fermions under 3D harmonic confinement as a function of
this binding energy, while a dash-dotted line shows the exthe well depthd. Solid lines show the eigenenergies obtained by
pansion of Eq(65) including the next higher order. Com- s_olvmg the 3D Schro'dl_nger equation, E§5), for the Hamllto_nlan
pared to the eigenenergy of the system without confinemengiven in Eq.(33) numerically for a short-range model potential, Eqg.

Eq. (66), the lowest eigenenergy given by E5) is down- (’3»1) with z replaced by andzol replaced pyo, for.a series of well
shifted. This downshift is somewhat counterintuitive, anddePthsd- Symbols show the eigenenergies obtained for the pseudo-
contrary to thes-wave case. potential Vg4, taking the energy dependence of the 3D scat-

In addition to the eigenergieB;y of two atoms withl tering volumeV, into accountVp=Vp(Eso (see text
=1 under harmonic confinement, we determine the corre- N

sponding eigenfunctiongsy(i), p-wave pseudopotential'ljzseudgf), we follow the procedure
outlined in Sec. Il C, that is, we first determine the energy-

F(=») r r? 5 r2 dependent free-space scattering VoluMg(Esy), Vj(Esd
il S _ _, 2 » VplEs
Vanl) (ah0)3’2ahoeXp< 2aﬁ0> ( V’2’aﬁo . (67 =—tar{ 5,(k)]/k3, for the 3D Morse potentia(no confine-

menY as a function of the relative scattering enefgy for

which lead to the well-behaved boundary condition various well depthsd. We then solve the transcendental
Bl equation(65) self-consistently fotEzp. Diamonds in Fig. 4
I3 Elelfao(ﬂ 1 show the resulting=1 eigenenergieg;y for two 3D par-

== (68) ticles under harmonic confinement interacting throughlthe
r23p(F) \/ =1 -depend AL i
r—0 p energy-dependent pseudopotent\érfseud((r*) with 'V,

This boundary condition is an alternative representation of Ve(Esd. Excellent agreement between these eigenenergies
the pseudopotentialffstudgr”), and depends on only one pa- and those obtained for the Morse poteniisblid lines is
rameter, that is, the scattering volurdg This is in contrast visible for all well depthsd. We emphasize that this agree-
to earlier work[19,20, which treated a boundary condition MeNt depends crucially on the usagesatrgy-depende®D
similar to Eq.(68) but evaluated the left hand side at a finite SCaterng vol_urr1|:els. Figure 4 illustrates that thewave
value ofr, i.e., atr=r,. The boundary condition containing PSeudopotential/,c,44f) describesp-wave scattering pro-
the finite parameter, cannotbe mapped to a zero-range C€SSes properly.
pseudopotential. Referencg&8—-4(Q discuss alternative deri-
vations and representations of boundary conditiés). V. SUMMARY

We determined the eigenspectrum for two 1D particles
under harmonic confinement interacting through a
momentum-dependent zero-range potential. This pseudopo-

To benchmark oup-wave pseudopotential treatment of tential acts only on states with odd-parity, and is hence ap-
two spin-polarized 3D fermions under harmonic confine-plicable to the scattering between two spin-polarized 1D fer-
ment, we solve the 3D Schrodinger equation, B%), for  mions. We showed that a basis set expansion in continuous
the Hamiltonian given by Eq33) numerically for the shape- functions can be used to determine the eigenenergies and
dependent Morse potentid},.s{r), Eq.(31) with zreplaced discontinuous eigenfunctions of two 1D particles under har-
by r and z, replaced byr,. As in Sec. Il C, our numerical monic confinement interacting through the odd-parity
calculations are performed fap=11.65 a.u.,«=0.35 a.u., pseudopotentialVye, 462). Our divergence-free treatment
ho=107° a.u.(2mrhe=why), and m=m(®’Rb). The well confirms the Fermi-Bose duality in 1D for two particles.
depthd is chosen such that the 3D Morse potential supports We also determined an implicit expression for the
between zero and twa=1 bound states. Solid lines in Fig. 4 eigenenergie€;p, Eq. (65), and eigenfunctiongsp(r), Eq.
show the resulting 3D eigenenergigg, with |=1 obtained (67), of two spin-polarized 3D fermions under harmonic con-
numerically as a function of the depth finement interacting through a momentum-dependent zero-

To compare thd=1 eigenenergies obtained numerically range potential. Similar to studies of two atoms withO
for the Morse potentiaV/,s{r) with those obtained for the [13-16, our analytical expressions might be useful in under-

C. Comparison with shape-dependent 3D atom-atom
potential

042709-8
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standing the behavior of two confined spin-aligned fermionsplications in developing effective many-body theories for ul-

including physics near Feshbach resonances. ffwave tracold spin-polarized Fermi gases. Such theories will have

pseudopotential used in our study contains derivative operae carefully investigate how to implement renormalization

tors as well as a regularization operator; the former is needeprocedures needed in numerical calculations.

to construct a true zero-range potenfigihcel=1 solutions Note addedAfter submission of this paper we became

go to zero as approaches zero, see abpwile the latteris  aware of a related study by Stoek al. [41], which derives

needed to eliminate divergencies of the irregylawvave so- Eq. (65) starting with a pseudopotential expressed as the

lution (which diverges as~?). We showed that our zero- limit of a s-shell.

range potential\/'p:.sleud r) imposes a boundary condition at

r=0, Eq.(68), which depends on a single atomic physics

parameter, that is, the scattering voluMg This boundary

condition is an alternative representation\léfeudgr*). This work was supported by the NSF under Grant No.
Similarly to Fermi-Huang's regularizeslwave pseudopo- PHY-0331529. Discussions with Dimitri Fedorov, Marvin

tential, thep-wave pseudopotential used here might find ap-Girardeau, and Brian Granger are gratefully acknowledged.
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