PHYSICAL REVIEW A 70, 042704(2004)

Integral representation of the Coulomb Green function derived from the Sturmian expansion
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We recast the Sturmian expansion of the one-particle Coulomb Green function as an integral which, through
an appropriate choice of contour, is applicable anywhere on the Riemann energy sexelceliing the
neighborhood of the negative real axis on the physical energy sheet, a region to which the series representation
is ideally suiteg. As a numerical test we have used this integral representation, in conjunction with a two-
particle convolution of one-particle Coulomb Green functions, to calculate the cross sections for both partial
and complete breakup of the negative hydrogen ion by one-photon absorption.
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[. INTRODUCTION negative real axis on the physical energy sheet, a region to
which the series representation is ideally suitethe pri-
Consider a smoothly varying potenti&i(r) which van-  mary distinction of our integral representation is that it per-
ishes at asymptotically large distances and does not changains to the Green function itself, and therefore it can be used
sign over the allowed range of the distarrceThe “Stur- to evaluate matrix elements on any basis, including a
mian” functions are bound-state solutions of the Schrédinge€Coulomb-Sturmian basis. Its accuracy can be regulated by
equation for a potentiak,V(r) whose overall strength pa- varying the number of quadrature points. As a numerical test
rameteri, is variable while the energy€ is fixedto be real we have used it to perform a desktop calculation of the cross
and negative. This is a Sturm-Louiville eigenvalue problem;sections for both partial and complete breakup of the nega-
the eigenvalue ia,,. The eigenvalue spectrum is discrete, yettive hydrogen ion by one-photon absorption. In common
the eigenfunctions span a vector space of square-integrabléth Pappet al. we employ a two-particle convolution of
functions. Furthermore, the Green function for the actual poone-particle Coulomb Green functions.
tential V(r), at the energy¢, is diagonal on the Sturmian
basis, and hence can be represented by a series whose di
crete indexn runs over the eigenvalue spectrum. Let g(&) denote a one-particle resolvent, which has the
The “Coulomb-Sturmian” functions, popularized by Ro- partial-wave expansion

tenberg[1], have the merit that they can be expressed in @
closed form. Furthermore, they exhibit the cusp-behavior at ., » LG @l o
the origin which is a characteristic of the singularity of the (gl >:|E Vi) =5 Yim(7"). @)
Coulomb potential. Hence a Coulomb-Sturmian basis is well "
suited to the description of few-body atomic systems, at leasthe wave numbek is a two-valued function of the enerdgy
over finite distancef?]. However, despite its simplicity, the —
Coulomb-Sturmian series representation of the Coulomb k=\2uélt, (2

Green function is of limited use; it is defined on the negativeand we distinguish its two branches by a cut along the posi-
real energy axis, where it is indeed useful, but it does not;,e energy axis; this is the “unitarity” cut, the line along

converge on the positive real energy axis. Various method§hich the spectral decomposition gf(€) is singular. The
havg_ been employed for analytically continuing the series tophysical” branch ofg(r,r';€) =(r|g(&)|r’) has as its do-
positive energies—see, e.g., Re1[§,4]—k_)ut sometimes .main the “physical” energy sheet<Oarg£) <2, and it is
high-precision arithmetic is needed to avoid a serious loss I ounded as and/orr’ increase Consequently, (f|®) and
accuracy. However, Pafdp] observed that matrix elements . 7 .

of the Coulomb Green function on a Coulomb-Sturmian ba<"|'¥) are two well-behaved functions ofwhich vanish at

sis satisfy a very useful three-term recurrence relation whicl@st as fast as*™! at the origin and faster than dat infinity,

can be analytically continued to all energies without signifi-the matrix element®|g,(€)|¥) formally exists for all values
cant roundoff error. Papp and Co||aborat([ﬁ7] have used of £ on the phySical Sheet, save for bound-state pOleS which
this recurrence relation, together with a two-particle convo-Occur on the negative real axis. The “unphysical” branch of
lution of one-particle Coulomb Green functions, to numeri-9i(r,r";€) has as its domain the “unphysical” energy sheet
cally solve to high accuracy the Faddeev-Merkuriev integrat-27<arg&) <0, and it is unbounded as and/orr’ in-
equations for several three-body atomic processes. crease. Neverthelesgp|g,(€)|¥) can be defined on the un-

In the present paper we reexpress the series representatiphysical sheet by analytic continuation from the physical
of the Coulomb Green function as an integral, again in diagsheet.
onal form. After making an appropriate choice of contour
this integral representation is applicable over the entire Rie-
mann energy surfacéexcluding the neighborhood of the  The Coulomb-Sturmian functiorf?,](r) are

Ié._THE ONE-PARTICLE COULOMB GREEN FUNCTION

A. Series representation
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©) and
normalized here as (

f dr[S§(N 1= 1. (4)
0

The Coulomb-Sturmian eigenvalue ig,=—ink/Z, which
multiplies the attractive Coulomb potentiaZe?/r, where

(Z_ I) + e2i02
R o

=2k f dr r2+2gresikng 2L (k) LML (2kr),
0

Z>0. The radial Green function has the series representation (10
(8] with the angled defined by
nka, ) o k+ik
&) =— . 5 0==_
g(r,r’;6)= 2£n%1<z+inkao SHNSY(r7) (5) e?l= P (1)

Each'terrr) of this series has its own bou_nd—stgte pole at gr, equivalently,

pure imaginary value of the wave number, ile@y;=iZ/n, or,

equivalently, at a real negative value of the energy, €e., tané=k/x. (12
=-7%¢%/(2n%ay), on the physical sheet. The ordinal number "

this is in one-one correspondence with the eigenvajudf ~ €xample,

£ is real and negativi, is real; otherwise,, is complex. In )
order to analytically continue the series representation of 11(z.6) = 4(1 + 1 +iz tan 6)cos’ 6. (13)

gi(r.r’;€) to the entire Riemann energy surface we mLIStHowever, the direct evaluation df;'n)(z,e) is tedious and

allow the or(_:hnal number to become pomplex, .., W& MUSH one to numerical roundoff error whems 1. It is preferable
replace the integem by a complex variable, and we must 0)
to evaluated '(z, 6) by recurrence.

transform the sum ovar to an integral over.
As a first step towards this goal we express the Laguerre

polynomial as a confluent hypergeometric function, i.e., B. Recurrence relation
(21 + 1) 1 L2+ (- 2ikr) We digress briefly to derive a suitable recurrence relation
‘ ) for the IfL)(z, 0). We start with a standard recurrence relation
== Do 1Fa(l +1-2,20+ 2, - Zkr). (6)  for the Laguerre polynomials,

Writing (n+m)! asI'(z+m+1) we obtain a generalization of o+l oI+ 241 oy 241
the Coulomb-Sturmian function which is analytican XLin-i-1(X) = 2mL’“ 100) = M+ Dlin509 = (M= DL ().

. (14)
e—lw/Zk ) . )
STOERY z(z—(_ 2ikn) L2 (- 2kneM, (7)) we use this for(2kr)L2* L l(2Kr) in Eq. (10), which for m

Daisa =|+2 allows us to expresén(z 0) as a linear combination
where we used (z+1+1)/T'(z=1)=(z=1)z.1, With (z-D)z12  of integrals 3 (z, 6) and 3" a(2,6) whose integrands have
Pochhammer symbol, a polynomial of degrde 2 in z one less pOV\r/ner of,

Since we are interested in matrix elementsggf) on a
space of square-integrable functions it is expedient to choosa(z,6) = 2mJ"(z,6) - (m+1)3"1(z,6) - (m-1)3V,.(z, ),
a basis composed of real Sturmian functi@&j&r) where« (15)
is a real positive number. Using the Sturmian expansion of
g(r,r';€), i.e., Eq.(5), together with Eqs(3) and (7), we  where
obtain the following series representation of the matrix ele-

ment(S<|g/(6)|S%,), wherem, m'=1+1: ((Z— I)2|+1ef‘92)‘]§]|q)(z, 0
(k2+K2)I 1
@5y =-ic B 4 sip 204 -
(SHl9(EIS5 == 1Comy 8¢ ( : Ef dr r2*ieleihn 24 (= 2ikr) LAY (2«r).

X E (I’l—|)2|+le4in (16)

n=1+1

( O(n, 01 0(n, 0)) °

n—i(Z/kag)

®) The integraIJ(r:f(z,H) has the merit that it can be expressed
directly in terms of a single Gauss-hypergeometric function

where [9],
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e2i(m—|—l)(i(z_|)m+I )
(m=1-1!(z-
XF(l+1-zl+1-m;1-z-me“%. (17

Iz o)=(- 1)“"-'-1(

I)2I+1
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For the purpose of deriving a recurrence relation for the

(0]
J.(z,0) we employ the property10]
Fl+1-zl+1-m;1-z-m,u)

_(+m) ! (z-
T2+ (z-

I)2I+l

Fl+1-zl+1-m;21+2,1-u)

I)mH

(18)

which allows us to re-expresléi])(z,e) in terms of another

Gauss-hypergeometric function, only one of whose argu

ments depends on the variable integer

IN@zo)=(- WH( <§2 —(rlw—l 11;9!“(; T)!lﬂ )
xK(z,1 -e749), 49
where
KVDZu =F(l+1-zl+1-m;2 +2,u). (20

Now we use one of the standard recurrence relatjehor
a Gauss-hypergeometric function, i.e., foe1+2,

(I +m+ DK (zu) =[2m+ (z- mu]KY(zu) + (1 + 1 -m)
X (1 —u)Km_l(z,u) (21)

with K(”l(z u=1 and K|('+)2(z,u):1—(| +1-2)u/(21+2).
Thereby we arrive at the recurrence relation

(m-1)JY.1(z,6) = - 2(mcos X+ iz sin 26)30)(z, 6)

- (m+1)3\)4(z,0), (22

which can be started using
Hhz 0= (23
JV(z,6) = - 2(1 + 1)cos 29 - 2iz sin 26. (24)

We infer from Eqs.(19) and (20) that JfT'])(z, ) is a polyno-
mial in z of degree(m-1-1), and hence, using Eq15),
I(')(z 0) is a polynomial inz of degree(m-1).

To gain some insight into the behaworlﬁf(z #) whenm
is large we expand 21, (-2ikr) in a series of Bessel func-
tions[11]; this allows us to perform the integration oweon
the right hand side of Eq16), to yield the series

I3 (z,60) = sed*? ge1B -0 A (2)(~ tar? 6)2Yni(z,6),
n=0

(25

where
YD (2,6) = (- ™ UL2 10— iz tan ), (26)
Y 1m(2 6) = Y]in(2,6) = Y] a(2,6), (27)

Yoz, 6) = You(z.0), (29)
and
Ao(2) =1, (29)
A(2) =0, (30)
A2)=1+1, (31)
N+ DA1(2) = (n+ 2+ DA_1(2) - 22A,(2). (32

If m—1-1 is much larger than both unity andztané| the
first term of the series on the right-hand side of E2H)
gives an order-of-magnitude estlmateJﬁf(z 0) and using
the asymptotic form ofL%(u) for n>|u| and yn[u|>1 we
find that

m=1-1 >|+1/4
—4djztan@

IW(z,6) ~

1ym sed*? ¢ (

v=4imztan@

x g220 cos<2\'— 4ilm-1-1)ztan 6+ 727) .

(33

Consequently, ifm>1+1, the polynom|aIsJ<')(z 0, and
thereforel' (z ), oscillate rapidly az is varied over the
region m|cot6|>|z| If, in addition, iz tan 6 is complex, the
amplitude of oscillation grows exponentially agn in-
creases.

C. Integral representation

To analytically continue matrix elements gf€) onto the
unphysical sheet we use a variant of the Sommerfeld-Watson
transform to rewrite the series representatiorg¢f) as an
integral. We start by introducing the weight function

1 7TeIi7TZ
WD) = (2_711)( sin ’7TZ> '

where the sign of the exponent & ™ is minus if
larg&)| < and plus if m<|arg(€)| < 2; the negative real
energy axis of the physical sheet, along which(&yg =, is
excluded, but this exclusion is of no practical concern since
the series representation is ideally suited to energies on this
line. The weight functiorw(z) has poles at integer values of

z, each with residuél/27i). Therefore if€ is any point on

the physical sheet, excluding the real axis, we can use the
Cauchy theorem to replace the sum by an integral over a
closed contou; which (see Fig. 1 wraps around the seg-
ment Réz) > of the realz-axis and which excludes the pole
ati(Z/kag); we have

+|7TZ ZkEb
alr.r'&) = 25(2m>f Z<smwz><z+izkao>

><$.(r>$|<r ). (35)

This integral representation can be analytically continued

(34)
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FIG. 1. The Sturmian expansion of the Coulomb Green can be FlG'_Z' It ¢ lies on _either eglge of _the unit_arity cut the path of
transformed from a sum to an integral over a complex variable !ntegratloncl can Ipe dlsFor.te.d ”?to a.Ilnéz Wh.'Ch runs dpwn the
The path of integration(;, wraps around the segment ®e> | of Lma_gm_arklz axis, with an infinitesimal indentation to the right of the
the real axis; it encloses simple poles at integer values, | unitarity” pole.
+2,--- of z but excludes the pole &tZ/ka).

change; it is a single-valued function &t However, the

onto the unphysical sheet by an appropriate distortion of th&ontribution erl[" the unitarity pole changes sign. To verify

contour of integration, as described below. that (Sijlgi(€)|S,,,) does behave as stated whers moved
Combining Eqs(35), (7), and(10) yields an integral rep- from the upper to the Iowe_r eo_lge of the unitarity cut, note

resentation of the matrix e|emer?1§{1‘||g|(8)|$;(,|>; if mm  that we must change the sign in the exponenw@); note

=|+1 we have further that Eqs(12),(15), and (22)—«24) imply 6 changes
sign whilell('fl(z, ) is invariant under a simultaneous change
i ik \_ _i~() [ M8\ 1+1 in the signs ofz andk. Introducingé=(Z/kay), with £ real
<Sm|g|(5)|Sm,|> IC”"”(SKhZ)( 4 sirf 26) and positive, we havéwvhere P denotes principal value
+imz . i ix
dez(Sein Z)(z—l)2,+l (Smlg(Exi0)Syp
. . .
G = P(Shla(E) ISy F im2* i
(19 01" (2 0) 20+2
xe“'“(m—fn : (36) = X |(iE+1)[?
Z+zikay Exag) \ k2 +K?
Since the poles of 1/sinatz=-1,---,| are eliminated by e 0
the factor(z—1),., in the integrand on the right-hand side of X?w'm(lf, Oy (i€,6). (37)
Eq. (36) we can extend the contodj so that it wraps around
the entire positive real axis, not just the segmentzRel. |t s straightforward to deduce from the imaginary part of

Furthermore, since/(2)e"” decays exponentially at asymp- this expression the familiar rate for photoionization of
totically large z we can open up the contour, provided it atomic hydrogen from its ground state. The discontinuity in
crosses neither the real aisn which the poles ov(2) lie]  ¢,(&) at two points on opposite sides of the cut, but on the
nor the pole at(Z/kay). Suppose that is real and positive same sheet, arises from the unitarity pole of the integral rep-
and lies on the upper edge of the unitarity cut on the physicalesentation. This discontinuity accounts for the loss of flux in
sheet; thusk is real and positive and the “unitarity” pole at a scattering process, and leads to the optical theorem, an
i(Z/kap) lies on the positive imaginarg axis. We can open expression of the unitarity of the scattering operator.

up C, into an infinite semicircle whose baSgruns along the Now we allow€ to lie anywhere on the Riemann energy
imaginaryz axis, except for an infintesimal indentation to the surface, on either sheet, excluding the negative real axis. We
right of the unitarity pole; see Fig. 2. The integral over thechoose the contouf; so that the integral on the right-hand
semicircular arc at infinity, in the right half of theplane,  side of Eq.(36) is suited to numerical integration. Thus we
vanishegrecall thatw(z)e**? decays exponentially al. The  deform the contour into two straight linez=x,+ipx and z
integral along the imaginagyaxis is the principal-value con- =x,+igx, where x, is a real constant in the interval 0
tribution. From Eqgs.(12),(15), and (22<(24) we see that <=x,<I+1, e_g_,x0:|+%, where x is real and runs from
whenz is pure imaginary]fi)l(z,e), and therefordl('jl(z,a), 0 to o, and where

are realk andk are both regl Thus, settinggz=ix wherex is

real, and noting thatix—1),.,=(-1)ix|(ix+1),]2, which is p=1/(46), (38)
purely imaginary, the principal-value integral is real. On the
other hand, the contribution ¥8//g,(£)|Sy,) from the uni- q= T 127 ¥ 46). (39)

tarity pole is pure imaginary. If we mow&to the lower edge
of the unitarity cut on the physical energy sh&dbtecomes Note that p—« as k—0 and gq—» as k—ow. The
real and negative. The principal-value integral does not-dependent sign is determined as follows: It is minus if
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larg&)| < r, (40) larg(&)| > r, (41)

in which case Rg&)<0, Regp)<0, but Réq)>0. As &
moves onto the second sheet the contour crosses the unitarity
in which case R&) >0, Rep)>0, but R¢q) <O0; itis plus  pole, and the contribution of this pole must be included.
if Selecting the contour just described, we arrive at

0

<Snl:||g|(€)|gr§/|> == |C:.:.|)mm8—r;(— 4 S”-? 26 |+1f
0

. (1) i " ;
N (%o +igx — |)2|+1< I (X0 +1GX, )1 (X0 + i0X, 0))eix0/q:| |

“fripe |)2I+l( 10)(x0+ ipX, 6)1 (%o + ipX, 0)) o
Xe 1 — g™ 2m(px-ixg) X = (ixg + Zlkay)/p ¢

. 42
1 —ef2macixo x = (ixo + Z/kag)/q 52
[
where the upper sign of the exponents 5P and =[Wy, — W1 ,Go(E)W, o] W, ,Gy(E).
er2m(@xo) gpplies if|arg(£)| <, and the lower sign applies (46)

if |arg&)|> 7 (so the exponentials decrease in magnitude
with increasingx). In general, the unitarity pole lies off the The merit of Eq.(46) is that[W;,—W,;,Gy(E)W,,]| is a sym-
real x axis, atx=ixq+(Z/ska) wheres=p if Re(p)>0 ors  metric operator, a property that is useful in reducing the ef-
=q if Re(g)>0. In any case it is expedient to subtract thisfort of taking the inverse. I¥V,, is positive or negative defi-

pole using nite (as is the Coulomb potentja|W;,—W;,Go(E)W;,] is
positive or negative definite on the negative real energy axis
* o e(x) e f(x) - f(w)] B below the bound-state poles &,(E). Along this segment
fo dx X — W :fo dx—————— +f(we"Ey(-w), [Wyo—W,,Go(E)W,,] has a Cholesky decompositidd 3],

i.e., it can be expressed as the product of a lower triangular
(43) matrix and its transpose. The Cholesky decomposition can be

analytically continued to other regions of the complEx
where E;(z) is the exponential integral. Sincé+isx  plane, in particular to either edge of the unitarity cut. This
—I)2,+1I£]'1)(xo+isx, 0)If1'1),(x0+isx, 0) is a polynomial inx of de-  Yields a further reduction in the effort of taking the inverse.
greem+m' +1, the integrand which results upon removal of L€t 9(1;€) andg(2;£) be the one-particle resolvents for
the unitarity pole is, aside from the term[1/-et2m(sxx0] g  particles 1 and 2 when these particles move on their own in
polynomial inx of degreem+m’ weighted bye™, and the the presence of the center of forghe nucleus Introducing
resulting integral can be conveniently evaluated using Gauss- < E (a7)
Laguerre quadrature. However, recall thatnit>1+1 the 0 ’
functionlf]'q)(x0+isx,0) oscillates rapidly ag varies, possibly the physical branch oBy(E) can be expressed as the stan-
(if 6 is compley with very large amplitude, so the presencedard convolution integraf12], as yet unsymmetrized with
of the nonpolynomial factor 11 -e27(*0] might under-  respect to particle exchange,
mine the accuracy of Gauss-Laguerre quadrature.

i
N

1
Gg)(E+iO):;f de
ar
I1l. THE CONVOLUTION OF TWO ONE-PARTICLE C3
GREEN FUNCTIONS xgV(1;6,+i0 - €)g"(2:6,+i0+8&),
Consider a system of two particles, 1 and 2 say, moving (48)
under the influence of both their mutual interactMh, and .
a fixed center of force. LeE be the total energy of the two WhereCs runs along real axis frome to — and where the
partides;E is rea|' but may be positive or negative_GB(E) SUperSC”pt | |ndlcat[es that the branch is the phyS|caI one.
is the resolvent for the motion in the absencaAgh, the full  The contourCs runs just beneath the cut and the bound-state

two-particle resolvent is poles of g(1;£,+i0-¢), and just above the cut and the
bound-state poles aj"(2;£,+i0+&); see Fig. 3. The inte-
G(E) = Go(E) + Gy(E)W,,G(E) (44)  9rand of the convolution integral has branch point§and

=&y If the center of force is attractive and Coulombic the
integrand also has bound-state poles which accumuldig at
=[1 - W;,Go(E) ] 1Gy(E) (45) and -&,, in which case the branch points are essential singu-
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Suppose hereafter that particles 1 and 2 are identical, and
let us (ant)symmetrizeGy(E) with respect to particle ex-

E.io E<0 change. The symmetrized integrand is ever, iand so we
2 ) can reduce the range of integration[@y«]. If E is positive
pooonorre x x 10 x Re & we have(taking into account that the contour sweeps over
A o 0 0 e the unitarity cut$
-E_;
2 10 GU(E> 0+i0)
Ee? . .
=-—== f dfg"(1;6 - Ecte g (2,60 + Ecte?)
Imé& E>0 21

0

e g0 £9"(L;E0+ Eote)g" (2,60 - Egte?)], (49)

< ¢ < 01
° € 0 o ey . . .

J where the superscript Il indicates that the branch is the un-
-io physical one. IfE is negative we havéaking into account
that the contour sweeps over the poles

N - __GY(E<0
FIG. 3. The path of integration of the convolution integral is the

whole real€ axis, frome to —e. The bound-state poles which are
associated to the thresholds%ﬁ and —%E are shown schematically = -
as crosses and open circles, respectively. The zigzag lines are the 2
unitarity branch cuts.

0

oe?

J dfg"(L;80 - Ecte)g"(2;E0 + Ectel?)

0

. . . +g(1;&+ Ete gV (2;60 - Ete)) ]+ R(E),  (50)
larities. However, by rotating the contour about the origin
through an anglep in the range-=/2,7/2] we can avoid -0
these singularities. Thus we st &xte/? wheret runs from ¢ '

© to —o. If E is negative¢ is positive, and the contour whereR(E) is the sum of the residues of those bound-state
remains on the physical sheet but sweeps past those polgsles crossed by the contour, i.e.,

further than|&y| from threshold; while ifE is positive ¢ is
negative, and the contour sweeps over the unitarity cuts and R(E) = 1 E g"(1;E+i0 ~ E00)|2:E0(2:End
moves onto the unphysical sheet. See Fig. 4. 26, =5
E<0 £]1:E0(L;Endg" (2,E +10 ~ Eng), (51)
1 / wherelj; &y is an eigenket of the one-particle Hamiltonian
2 w h; for particlej (1 or 2) with bound-state energ§g.
9 g We can expresé-}g)(EHO) in a common form, which is
NI E applicable to both positive and negatikeand involves only
é 2 the physical branches of the one-particle resolvents. To this
4 end we observe that the discontinuity gf'(j; &) between
two points on opposite edges of the unitarity cut is

\%%%j" D(j;€) = - 2imé(E~ hy) (52)
1 1
-—E —E
2 2 . . . .
e o c\ 0 _/ ==2imp(j;E)i;EXI: €l (53
! wherelj;£) is an eigenket oh; with continuum-state energy
G, & and wherep(j;€) is the density-of-states factor; & is

degenerate, summation over eigenstates with the same en-
ergy eigenvalue is to be understood. Therefore the analytic

FIG. 4. The path of integration of the convolution integral is ﬁontinuation ofg(j:€) from the physical to the unphysical

rotated about the origin. For clarity we have also rotated the branc . .
cuts along with the contour; the rotated cuts differ from the “uni- sheet can be carried out by means of the relation

tarity” cuts. The rptation is counterclockwi$es_>0) if E_<O and g™(:6=g"(j;:&) +D(j;&), (54)
clockwise (¢<0) if E>0. The counterclockwise rotation sweeps

over those bound-state poles which are further thii from the ~ WhereD(j;£) is the analytic continuation of the discontinu-
pertinent threshold. The clockwise rotation sweeps over the unitaity onto the unphysical sheet. Incidentally, from this relation
ity cuts. and the asymptotic expansigwith arg(€) # 0]
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G:o=13 (5) (55

eal\e

we can evaluate rather eastyf'(€) for large values of.
Combining Eqs(49), (50), and(54) we have, forE positive
or negative,
GY(E +i0)
|E|e'? [ 0 . _
=-——| difg"(1;E - Ente?)g"(2;E, + Ete'?)
+9(1;8 + Eté?) g (2;6, - Egte )]
+O(-E)R(E) + O(E)A(E), E¢p< 0, (56)

where®(x) is the Heaviside step function and where
Ed? 0 : .
A(E)=- oy dtfg"(1;Ey - Et€?)D(2;E, + Egte?)
u
0

+D(1;E+ Ete gV (2:60 - Ete))]. (57)

If E>0(¢<0) the argumentSy+E&ote®(t>0) of D(1;&,
+E&te?) lies on the unphysical sheet.
The rotated straight-line integration contdalyr penetrates

deep into the region afcompleX unphysical energies. This

has the disadvantage that the anglacquires a relatively

PHYSICAL REVIEW A 70, 042704(2004)

L

FIG. 5. Half of the energy plane is mapped onto the digk
<1. The integration contou€s runs fromu=1 to u=-1, and
avoids the high-lying bound-state poles which accumulate below
u=0. This illustration is folE > 0; if E<O0 the integration contour is
in the lower half of the disk.

convolution integral has a cuspat—1 and branch points at
u=0 andu=c. The contourCs (see Fig. % in the u plane
commences ai=1 and terminates at=-1; it remains close

to the realu axis except in the region of the origin where it
circumvents the branch point a0 and also the high-lying
bound-state poles which accumulate to the left of this branch
point. The lower-lying bound-state poles are isolated near
singularities of the form

1 _ 1+u
Eo—Ete€? = Epy  (E= Engu— Eng

(63)

large imaginary part along some segment of the contour

(where|k| ~ ) so the polynomialﬂ])(xoﬂsx, 6), with s=p or

g, oscillates with a very large amplitude, resulting in signifi-
cant roundoff error whenm>I|+1. Rather than use a
straight-line contour it is more helpful to use a contour which
remains close to the real energy axis except near the singu-
larities. This can be most conveniently accomplished by in-

voking the conformal transformation

I Sl i (59
T 1+td?’
which maps half of the energy plane onto the disks 1.
Since
1-u) _
t:< )e"‘/’, (59)
1+u
we have
. Eu
Eo—Ete?=——, 60
0~ ¢col€ 1+u (60)
- E
Eo+ Efe?=——, 61
0 0 1+u ( )
and
Ed? [ E (T du
- ez — S (62
A J, 27 ), (1+u)

Noting that g(Eg+Ete?) has branch points ati=c (t
=-e7?) and u=-1 (t=o), while g(,~&pte’®) has branch
points atu=0 (t=e'%) andu=-1 (t=«), the integrand of the

which can be subtracted using

-1+0 l 1
f du =
Uy (E-Epdu=Epg E=Epg

X(i77+|n

IV. NUMERICAL APPLICATION

We have tested the method outlined above by applying it
to the problem of one-photon absorption by.NVe treated
the nucleus as an infinitely massive and stationary center of
force. Our basis was composed of symmetrized products of
real one-particle Sturmian functions.

The interparticle interaction is the pure repulsive Cou-
lomb potential W,,=€?/r,, where r,, is the interparticle
separation. Care must be taken to avoid accumulating round-
off error when evaluating matrix elements ofrl/ We
eliminated significant roundoff error by constructing the ma-
trix elements of 1¢4, from those of the inverse square of the
Coulomb repulsion, i.er,fz:rf+r§—2r1r2 cosb,, where 0,
is the angle between the electron coordinateandr,. The
evaluation of the matriXM which represents?, is a rela-
tively simple task. Since,, is real, symmetric, positive defi-
nite, invariant under the parity operation, and scale invariant,
so is bothM and its square root. Furthermore, the rows and
columns ofM can be labelled so tha¥l is tightly banded
(e.g., block diagonal or block tridiagonatith respect to the
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TABLE I. Nonvariational estimates of the ground-state energy ofrthtomic units(1 a.u.=2 Ry for different basis sizes. The rows and
columns are labelled by the maximum values of the ordinal and angular momentum quantum nombetsandl, of the real Sturmian
functionsS;j(r) employed in the basis. In composing this table we tagkl.1 a.u. A more accurate valig4] for the ground-state energy
of H™ is —0.527 751 02 a.u.

3 5 7 9 11
5 -0.53012 -0.52974 -0.52971 -0.52971 -0.52970
10 -0.52972 -0.52912 -0.52903 -0.52902 -0.52902
15 -0.52951 -0.52877 -0.52863 -0.52860 -0.52860
20 -0.52943 -0.52862 -0.52844 -0.52839 -0.52838
25 -0.52940 -0.52855 -0.52833 -0.52827 -0.52826
30 -0.52939 -0.52851 -0.52827 -0.52820 -0.52817
orbital angular momentum quantum numbers of the particles; r=-2 |m<(I)|VT|\If>_ (66)

this yields a substantial reduction in the effort required to
diagonalizeM. OnceM has been reduced to diagonal form it Let I',, be the rate for the system to undergo a transition to
is trivial to find its square root and inverse. However, sincethe open(subchannela. We expresd’, in a form which
M is real, symmetric, and positive definite, its square rootequires only the response Kdft) as input. To this end we
and inverse can be found without resorting to diagonalizationntroduce the operatoP;, which, fori=1,2, projects onto
[13]. Instead we can express as the Cholesky decomposi- the subspace in which a particular electron, itte has the
tion LL! whereL is a lower triangular matrix which can be energy range and other single-particle quantum numbers
expressed without great effort as the singular-value deconspecified by the index. As shown elsewherfl5], by first
p()siti()n|__:)_(DYt whereX andY are orthogonal matrices and expressing the rate in terms of the flux through the surface of
D is diagonal; it follows[13] that M~*2=XD~1X". a hypersphere of asymptotically large radius we deduce that
While our values of the matrix elements ofrl4 are not
plagued by roundoff error they do suffer from truncation
error due to the truncation of the basis. As a consequence our
estimate of the ground-state energy of id not variational,
i.e., its error is of first rather than second order in the error ofn the first of the two terms on the right-hand side of E&Y)
the ground-state wave functioriNor does the minimum the perturbatiorV acts in a spatial region whose linear di-
principle apply, i.e., our estimate is not bounded from be-mensions are of the order of the initial bound-state radius.
low.) Hence the convergence towards the exact ground-statehis term describes the direct excitation W#yof the system
energy, with increasing basis size, is rather slow, as indicate (subjchannele; it does not take into account the possibil-
in Table I. We see from this table that the convergence withty that the system is directly excited By to (subchannels
increasing angular momentum quantum number is modemwther thane, after which—and perhaps over distances far
ately rapid, as is the convergence with increasing ordinalarger than the initial bound-state radius—the system mi-
number for smaller angular momentum quantum numbersgrates to(subchannela under the influence of the correla-
but the convergence with increasing ordinal number is verytion interaction=2,(1-P;,)W,,P;,. It is the second of the
slow for larger angular momentum quantum numbers. Thewo terms on the right-hand side of E¢7) which takes
‘exact” value [14] of the ground-state energy is into account this indirect excitation of the system to
—-0.527 751 0.2 a.u.. The error in our estimate of the ground(Su@channem_
state energy diminishes only slowly, from 0.4% in the upper The rate for single-electron escape Fgingie== 4=bdl o
left corner of the table to 0.08% in the lower right corner of where the sum is over one-electron bound states. The rate for
the table. Nevertheless, in our calculations of the photoabdouble-electron escape Ioupie=> g=cl '« Where the sum is
sorption cross section, reported on below, our estimate of thgver one-electron continuum states in the energy region 0
ground-state energy was sufficiently accurate that it was nok £ <E/2. Alternatively, we can express the rate for double-
the principal source of error; and, besides, our expression faslectron escape aBgouie=] ~Tsingis the degree to which
the photoabsorption cross section is not variational either. these two different expressions fdty,,e have the same
If |@) represents the initial ground state of the $ystem  value is an indication of the accuracy of the calculations. Our
the response to one-photon absorption, mediated by an exalculations were done in the velocity gauge. We took the
ternal perturbatiorV in the entrance channel, is representedmaximum ordinal number of the Sturmian functions to be
by 25, and the maximum angular momentum quantum number
to be 7, at all photon energies. We choasehe wave num-
|¥) = G(E)V|®D), (65) ber of the basis, to be 0.5 a.u. at photon energies below
25 eV, 0.7 a.u. in the range 23-29 eV, and 0.9 a.u. above
where E is the total energyground-state plus photon en- 29 eV. In Fig. 6 we show results for the ratio of the cross
ergy). The inclusive rate for photoabsorption is sections for double- and single-electron escape over a range

2

T,==21m > {(DVIP|¥) +(¥|Wy,P, [¥)}. (67)
i=1
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104 V. SUMMARY

Starting from an expansion in Sturmian functions we de-
rived an integral representation of the Coulomb Green func-
tion which, through an appropriate choice of the path of in-
6 tegration, can be used at any point on the Riemann energy
surface(excluding the negative axis on the physical sheet
We applied it, in conjunction with a two-particle convolution
of one-particle Green functions, to the problem of partial and
complete breakup of Hby one-photon absorption. Our
24 method does not demand enormous computer resources; our
: application was accomodated on a single-proce@antium
0 4, 1.7 GH2 desktop machine with 1.25 Gb of internal

memory. We choose Has the system to study since the
0 15 20 25 3 3B 40 45 50 correlation between the two electrons is strongest in this sys-
tem, and poses more of a challenge than does helium or other
Photon Energy [eV) helium-like ions. While we presented results only at positive
) ) ) energieqi.e., above the threshold for complete breakwe

FIG. 6. The ratio of cross sections for double- and single-cpocyeq that the method is also useful at negative energies,
electron escape from™Hy one-photon absorption. The solid curve where there are resonances. The partial resol@(&) has
corresponds to the results of Kheifets and Bfag]. The solid )
circles are the present results. no resonance poles; the resonance pples of the full resolvent

G(E) arise from the Coulomb repulsiow,,, as zeroes of
, W~ W;,Go(E)W, ,—recall Eq.(46). However,Gy(E) does
of photon energies above the threshold fc_)r double escape. We,\ /o poles at negative energies: they arise from one-particle
show both our results and those of Kheifets and BIE§|. ~ ponq states, and some of them are “picked out” by the
The results of Kheifets and Bray agree well with the earliere, yterciockwise rotation of the contour of the convolution

results (not shown of Meyer, Greene, and Esrjl7] and integral—recall Fig. 4 and Eq$50) and (5).
Edah, Foumouo, and Piray#8]. The agreement with our

results is also reasonable, especially in view of the simplicity
of our expressions for the single- and double-escape rates,
which require no direct input on the asymptotic boundary The author gratefully acknowledges support from the
conditions. NSF, under Grant No. PHY-0245290.
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