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We recast the Sturmian expansion of the one-particle Coulomb Green function as an integral which, through
an appropriate choice of contour, is applicable anywhere on the Riemann energy surface(excluding the
neighborhood of the negative real axis on the physical energy sheet, a region to which the series representation
is ideally suited). As a numerical test we have used this integral representation, in conjunction with a two-
particle convolution of one-particle Coulomb Green functions, to calculate the cross sections for both partial
and complete breakup of the negative hydrogen ion by one-photon absorption.
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I. INTRODUCTION

Consider a smoothly varying potentialVsrd which van-
ishes at asymptotically large distances and does not change
sign over the allowed range of the distancer. The “Stur-
mian” functions are bound-state solutions of the Schrödinger
equation for a potentiallnVsrd whose overall strength pa-
rameterln is variable while the energyE is fixed to be real
and negative. This is a Sturm-Louiville eigenvalue problem;
the eigenvalue isln. The eigenvalue spectrum is discrete, yet
the eigenfunctions span a vector space of square-integrable
functions. Furthermore, the Green function for the actual po-
tential Vsrd, at the energyE, is diagonal on the Sturmian
basis, and hence can be represented by a series whose dis-
crete indexn runs over the eigenvalue spectrum.

The “Coulomb-Sturmian” functions, popularized by Ro-
tenberg[1], have the merit that they can be expressed in
closed form. Furthermore, they exhibit the cusp-behavior at
the origin which is a characteristic of the singularity of the
Coulomb potential. Hence a Coulomb-Sturmian basis is well
suited to the description of few-body atomic systems, at least
over finite distances[2]. However, despite its simplicity, the
Coulomb-Sturmian series representation of the Coulomb
Green function is of limited use; it is defined on the negative
real energy axis, where it is indeed useful, but it does not
converge on the positive real energy axis. Various methods
have been employed for analytically continuing the series to
positive energies—see, e.g., Refs.[3,4]—but sometimes
high-precision arithmetic is needed to avoid a serious loss in
accuracy. However, Papp[5] observed that matrix elements
of the Coulomb Green function on a Coulomb-Sturmian ba-
sis satisfy a very useful three-term recurrence relation which
can be analytically continued to all energies without signifi-
cant roundoff error. Papp and collaborators[6,7] have used
this recurrence relation, together with a two-particle convo-
lution of one-particle Coulomb Green functions, to numeri-
cally solve to high accuracy the Faddeev-Merkuriev integral
equations for several three-body atomic processes.

In the present paper we reexpress the series representation
of the Coulomb Green function as an integral, again in diag-
onal form. After making an appropriate choice of contour
this integral representation is applicable over the entire Rie-
mann energy surface(excluding the neighborhood of the

negative real axis on the physical energy sheet, a region to
which the series representation is ideally suited). The pri-
mary distinction of our integral representation is that it per-
tains to the Green function itself, and therefore it can be used
to evaluate matrix elements on any basis, including a
Coulomb-Sturmian basis. Its accuracy can be regulated by
varying the number of quadrature points. As a numerical test
we have used it to perform a desktop calculation of the cross
sections for both partial and complete breakup of the nega-
tive hydrogen ion by one-photon absorption. In common
with Pappet al. we employ a two-particle convolution of
one-particle Coulomb Green functions.

II. THE ONE-PARTICLE COULOMB GREEN FUNCTION

Let gsEd denote a one-particle resolvent, which has the
partial-wave expansion

krWugsEdurW8l = o
lm

Ylm
* sr̂ d

kr uglsEdur8l
rr 8

Ylmsr̂ 8d. s1d

The wave numberk is a two-valued function of the energyE,

k = Î2mE/", s2d

and we distinguish its two branches by a cut along the posi-
tive energy axis; this is the “unitarity” cut, the line along
which the spectral decomposition ofglsEd is singular. The
“physical” branch ofglsr ,r8 ;Ed;kr uglsEdur8l has as its do-
main the “physical” energy sheet 0,argsEd,2p, and it is
bounded asr and/orr8 increase. Consequently, ifkr uFl and
kr uCl are two well-behaved functions ofr which vanish at
least as fast asr l+1 at the origin and faster than 1/r at infinity,
the matrix elementkFuglsEduCl formally exists for all values
of E on the physical sheet, save for bound-state poles which
occur on the negative real axis. The “unphysical” branch of
glsr ,r8 ;Ed has as its domain the “unphysical” energy sheet
−2p,argsEd,0, and it is unbounded asr and/or r8 in-
crease. Nevertheless,kFuglsEduCl can be defined on the un-
physical sheet by analytic continuation from the physical
sheet.

A. Series representation

The Coulomb-Sturmian functionsSnl
k srd are
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Snl
k srd =Îe−ip/2ksn − l − 1d!

nfsn + ld ! g
s− 2ikrdl+1Ln−l−1

2l+1 s− 2ikrdeikr

s3d

normalized here as

E
0

`

drfSnl
k srdg2 = 1. s4d

The Coulomb-Sturmian eigenvalue isln=−ink/Z, which
multiplies the attractive Coulomb potential −Ze2/ r, where
Z.0. The radial Green function has the series representation
[8]

glsr,r8;Ed =
i

2E o
n=l+1

` S nka0

Z + inka0
DSnl

k srdSnl
k sr8d. s5d

Each term of this series has its own bound-state pole at a
pure imaginary value of the wave number, i.e.,ka0= iZ /n, or,
equivalently, at a real negative value of the energy, i.e.,E
=−Z2e2/ s2n2a0d, on the physical sheet. The ordinal number
(number of nodes) of the eigenfunctionSnl

k srd is n− l −1, and
this is in one-one correspondence with the eigenvalueln. If
E is real and negativeln is real; otherwiseln is complex. In
order to analytically continue the series representation of
glsr ,r8 ;Ed to the entire Riemann energy surface we must
allow the ordinal number to become complex, i.e., we must
replace the integern by a complex variablez, and we must
transform the sum overn to an integral overz.

As a first step towards this goal we express the Laguerre
polynomial as a confluent hypergeometric function, i.e.,

s2l + 1d ! Lz−l−1
2l+1 s− 2ikrd

= sz− ld2l+1 1F1sl + 1 −z,2l + 2;− 2ikrd. s6d

Writing sn+md! as Gsz+m+1d we obtain a generalization of
the Coulomb-Sturmian function which is analytic inz,

Szl
k srd =Î e−ip/2k

zsz− ld2l+1
s− 2ikrdl+1Lz−l−1

2l+1 s− 2ikrdeikr , s7d

where we usedGsz+ l +1d /Gsz− ld=sz− ld2l+1, with sz− ld2l+1 a
Pochhammer symbol, a polynomial of degree 2l +1 in z.

Since we are interested in matrix elements ofglsEd on a
space of square-integrable functions it is expedient to choose
a basis composed of real Sturmian functionsSnl

iksrd wherek
is a real positive number. Using the Sturmian expansion of
glsr ,r8 ;Ed, i.e., Eq.(5), together with Eqs.(3) and (7), we
obtain the following series representation of the matrix ele-
ment kSml

ik uglsEduSm8l
ik l, wherem, m8ù l +1:

kSml
ik uglsEduSm8l

ik l = − iCmm8
sld tanu

8E s− 4 sin2 2udl+1

3 o
n=l+1

`

sn − ld2l+1e
4inuS Im

sldsn,udIm8
sld sn,ud

n − isZ/ka0d
D ,

s8d

where

Cmm8
sld =Îsm− l − 1d ! sm8 − l − 1d!

mm8sm+ ld ! sm8 + ld!
s9d

and

S sz− ld2l+1e
2iuz

sk2 + k2dl+1 DIm
sldsz,ud

; 2kE
0

`

dr r2l+2es−k+ikdrLz−l−1
2l+1 s− 2ikrdLm−l−1

2l+1 s2krd,

s10d

with the angleu defined by

e2iu =
k + ik

k − ik
s11d

or, equivalently,

tanu = k/k. s12d

The integralsIm
sldsz,ud can be evaluated in closed form; for

example,

I l+1
sld sz,ud = 4sl + 1 + iz tanudcos2 u. s13d

However, the direct evaluation ofIm
sldsz,ud is tedious and

prone to numerical roundoff error whenm@ l. It is preferable
to evaluateIm

sldsz,ud by recurrence.

B. Recurrence relation

We digress briefly to derive a suitable recurrence relation
for the Im

sldsz,ud. We start with a standard recurrence relation
for the Laguerre polynomials,

xLm−l−1
2l+1 sxd = 2mLm−l−1

2l+1 sxd − sm+ ldLm−l−2
2l+1 sxd − sm− ldLm−l

2l+1sxd.

s14d

We use this fors2krdLm−l−1
2l+1 s2krd in Eq. (10), which for m

ù l +2 allows us to expressIm
sldsz,ud as a linear combination

of integralsJm
sldsz,ud and Jm±1

sld sz,ud whose integrands have
one less power ofr,

Im
sldsz,ud = 2mJm

sldsz,ud − sm+ ldJm−1
sld sz,ud − sm− ldJm+1

sld sz,ud,

s15d

where

S sz− ld2l+1e
2iuz

sk2 + k2dl+1 DJm
sldsz,ud

; E
0

`

dr r2l+1es−k+ikdrLz−l−1
2l+1 s− 2ikrdLm−l−1

2l+1 s2krd.

s16d

The integralJm
sldsz,ud has the merit that it can be expressed

directly in terms of a single Gauss-hypergeometric function
[9],
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Jm
sldsz,ud = s− 1dm−l−1S e2ism−l−1dusz− ldm+l

sm− l − 1d ! sz− ld2l+1
D

3Fsl + 1 −z,l + 1 −m;1 − z− m,e−4iud. s17d

For the purpose of deriving a recurrence relation for the
Jm

sldsz,ud we employ the property[10]

Fsl + 1 −z,l + 1 −m;1 − z− m,ud

=
sl + md ! sz− ld2l+1

s2l + 1d ! sz− ldm+l
Fsl + 1 −z,l + 1 −m;2l + 2,1 −ud

s18d

which allows us to re-expressJm
sldsz,ud in terms of another

Gauss-hypergeometric function, only one of whose argu-
ments depends on the variable integerm,

Jm
sldsz,ud = s− 1dm−l−1S e2ism−l−1dusl + md!

sm− l − 1d ! s2l + 1d! D
3Km

sldsz,1 −e−4iud, s19d

where

Km
sldsz,ud ; Fsl + 1 −z,l + 1 −m;2l + 2,ud. s20d

Now we use one of the standard recurrence relations[9] for
a Gauss-hypergeometric function, i.e., formù l +2,

sl + m+ 1dKm+1
sld sz,ud = f2m+ sz− mdugKm

sldsz,ud + sl + 1 −md

3s1 − udKm−1
sld sz,ud s21d

with Kl+1
sld sz,ud=1 and Kl+2

sld sz,ud=1−sl +1−zdu/ s2l +2d.
Thereby we arrive at the recurrence relation

sm− ldJm+1
sld sz,ud = − 2smcos 2u + iz sin 2udJm

sldsz,ud

− sm+ ldJm−1
sld sz,ud, s22d

which can be started using

Jl+1
sld sz,ud = 1, s23d

Jl+2
sld sz,ud = − 2sl + 1dcos 2u − 2iz sin 2u. s24d

We infer from Eqs.(19) and (20) that Jm
sldsz,ud is a polyno-

mial in z of degreesm− l −1d, and hence, using Eq.(15),
Im

sldsz,ud is a polynomial inz of degreesm− ld.
To gain some insight into the behavior ofJm

sldsz,ud whenm
is large we expandLz−l−1

2l+1 s−2ikrd in a series of Bessel func-
tions [11]; this allows us to perform the integration overr on
the right hand side of Eq.(16), to yield the series

Jm
sldsz,ud = sec2l+2 ue2izstan u−udo

n=0

`

Anszds− tan2 udn/2Ynm
nl sz,ud,

s25d

where

Y0m
nl sz,ud = s− 1dm−l−1Lm−l−1

2l+1+ns− 4iz tanud, s26d

Yj+1,m
nl sz,ud = Yj ,m

nl sz,ud − Yj ,m−1
nl sz,ud, s27d

Yj0
nlsz,ud = Y00

nl sz,ud, s28d

and

A0szd = 1, s29d

A1szd = 0, s30d

A2szd = l + 1, s31d

sn + 1dAn+1szd = sn + 2l + 1dAn−1szd − 2zAn−2szd. s32d

If m− l −1 is much larger than both unity andu4z tanuu the
first term of the series on the right-hand side of Eq.(25)
gives an order-of-magnitude estimate ofJm

sldsz,ud, and using
the asymptotic form ofLn

asud for n@ uuu and Înuuu@1 we
find that

Jm
sldsz,ud , s− 1dm sec2l+2 u

Î− 4ipz tanu
S m− l − 1

− 4iz tanu
Dl+1/4

3e−2izu cosS2Î− 4ism− l − 1dz tanu +
p

4
D .

s33d

Consequently, ifm@ l +1, the polynomialsJm
sldsz,ud, and

thereforeIm
sldsz,ud, oscillate rapidly asz is varied over the

region mucotuu* uzu. If, in addition, iz tanu is complex, the
amplitude of oscillation grows exponentially asÎm in-
creases.

C. Integral representation

To analytically continue matrix elements ofglsEd onto the
unphysical sheet we use a variant of the Sommerfeld-Watson
transform to rewrite the series representation ofglsEd as an
integral. We start by introducing the weight function

wszd = S 1

2pi
DSpe7ipz

sinpz
D , s34d

where the sign of the exponent ofe7ipz is minus if
uargsEdu,p and plus ifp, uargsEduø2p; the negative real
energy axis of the physical sheet, along which argsEd=p, is
excluded, but this exclusion is of no practical concern since
the series representation is ideally suited to energies on this
line. The weight functionwszd has poles at integer values of
z, each with residues1/2pid. Therefore ifE is any point on
the physical sheet, excluding the real axis, we can use the
Cauchy theorem to replace the sum by an integral over a
closed contourC1 which (see Fig. 1) wraps around the seg-
ment Reszd. l of the realz-axis and which excludes the pole
at isZ/ka0d; we have

glsr,r8;Ed =
i

2ES 1

2pi
DE

C1

dzSpe7ipz

sinpz
DS zka0

Z + izka0
D

3Szl
k srdSzl

k sr8d. s35d

This integral representation can be analytically continued
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onto the unphysical sheet by an appropriate distortion of the
contour of integration, as described below.

Combining Eqs.(35), (7), and(10) yields an integral rep-
resentation of the matrix elementskSml

ik ugls«duSm8l
ik l; if m,m8

ù l +1 we have

kSml
ik uglsEduSm8l

ik l = − iCmm8
sld S ma0

8k"2Ds− 4 sin2 2udl+1

3E
C1

dzS e7ipz

sinpz
Dsz− ld2l+1

3e4iuzS Im
sldsz,udIm8

sld sz,ud

Z + zika0
D . s36d

Since the poles of 1/sinz at z=−l ,¯ , l are eliminated by
the factorsz− ld2l+1 in the integrand on the right-hand side of
Eq. (36) we can extend the contourC1 so that it wraps around
the entire positive real axis, not just the segment Reszd. l.
Furthermore, sincewszde4iuz decays exponentially at asymp-
totically large z we can open up the contour, provided it
crosses neither the real axis[on which the poles ofwszd lie]
nor the pole atisZ/ka0d. Suppose that« is real and positive
and lies on the upper edge of the unitarity cut on the physical
sheet; thusk is real and positive and the “unitarity” pole at
isZ/ka0d lies on the positive imaginaryz axis. We can open
upC1 into an infinite semicircle whose baseC2 runs along the
imaginaryz axis, except for an infintesimal indentation to the
right of the unitarity pole; see Fig. 2. The integral over the
semicircular arc at infinity, in the right half of thez plane,
vanishes[recall thatwszde4iuz decays exponentially atz]. The
integral along the imaginaryz axis is the principal-value con-
tribution. From Eqs.(12),(15), and (22)–(24) we see that
when z is pure imaginaryJl+1

sld sz,ud, and thereforeI l+1
sld sz,ud,

are realk andk are both real). Thus, settingz= ix wherex is
real, and noting thatsix− ld2l+1=s−1dlixusix+ ldlu2, which is
purely imaginary, the principal-value integral is real. On the
other hand, the contribution tokSml

ik uglsEduSm8l
ik l from the uni-

tarity pole is pure imaginary. If we moveE to the lower edge
of the unitarity cut on the physical energy sheetk becomes
real and negative. The principal-value integral does not

change; it is a single-valued function ofE. However, the
contribution from the unitarity pole changes sign. To verify
that kSml

ik uglsEduSm8l
ik l does behave as stated whenE is moved

from the upper to the lower edge of the unitarity cut, note
that we must change the sign in the exponent ofwszd; note
further that Eqs.(12),(15), and (22)–(24) imply u changes
sign whileI l+1

sld sz,ud is invariant under a simultaneous change
in the signs ofz andk. Introducingj;sZ/ka0d, with E real
and positive, we have(where P denotes principal value)

kSml
ik uglsE ± i0duSm8l

ik l

= PkSml
ik uglsEduSm8l

ik l 7 ip24l+1Cmm8
sld

3S Z

Eka0
DS kk

k2 + k2D2l+2

usij + ldlu2

3
e−4uj

1 − e72pj Im
sldsij,udIm8

sld sij,ud. s37d

It is straightforward to deduce from the imaginary part of
this expression the familiar rate for photoionization of
atomic hydrogen from its ground state. The discontinuity in
glsEd at two points on opposite sides of the cut, but on the
same sheet, arises from the unitarity pole of the integral rep-
resentation. This discontinuity accounts for the loss of flux in
a scattering process, and leads to the optical theorem, an
expression of the unitarity of the scattering operator.

Now we allowE to lie anywhere on the Riemann energy
surface, on either sheet, excluding the negative real axis. We
choose the contourC1 so that the integral on the right-hand
side of Eq.(36) is suited to numerical integration. Thus we
deform the contour into two straight lines,z=x0+ ipx and z
=x0+ iqx, where x0 is a real constant in the interval 0
øx0, l +1, e.g., x0= l + 1

2, where x is real and runs from
0 to `, and where

p = 1/s4ud, s38d

q = 7 1/s2p 7 4ud. s39d

Note that p→` as k→0 and q→` as k→`. The
q-dependent sign is determined as follows: It is minus if

FIG. 1. The Sturmian expansion of the Coulomb Green can be
transformed from a sum to an integral over a complex variablez.
The path of integration,C1, wraps around the segment Reszd. l of
the real axis; it encloses simple poles at integer valuesl +1, l
+2,¯ of z but excludes the pole atisZ/ka0d.

FIG. 2. If « lies on either edge of the unitarity cut the path of
integrationC1 can be distorted into a lineC2 which runs down the
imaginaryz axis, with an infinitesimal indentation to the right of the
“unitarity” pole.
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uargsEdu , p, s40d

in which case Reskd.0, Respd.0, but Resqd,0; it is plus
if

uargsEdu . p, s41d

in which case Reskd,0, Respd,0, but Resqd.0. As E
moves onto the second sheet the contour crosses the unitarity
pole, and the contribution of this pole must be included.

Selecting the contour just described, we arrive at

kSml
ik uglsEduSm8l

ik l = − iCmm8
sld tanu

8E s− 4 sin2 2udl+1E
0

`

dx e−xF sx0 + ipx − ld2l+1

1 − e72pspx−ix0d S Im
sldsx0 + ipx,udIm8

sld sx0 + ipx,ud

x − six0 + Z/ka0d/p
Deix0/p

+
sx0 + iqx − ld2l+1

1 − e±2psqx−ix0d S Im
sldsx0 + iqx,udIm8

sld sx0 + iqx,ud

x − six0 + Z/ka0d/q
Deix0/qG , s42d

where the upper sign of the exponents ofe72pspx−ix0d and
e±2psqx−ix0d applies if uargsEdu,p, and the lower sign applies
if uargsEdu.p (so the exponentials decrease in magnitude
with increasingx). In general, the unitarity pole lies off the
real x axis, atx= ix0+sZ/ska0d wheres=p if Respd.0 or s
=q if Resqd.0. In any case it is expedient to subtract this
pole using

E
0

`

dx
e−xfsxd
x − w

=E
0

`

dx
e−xffsxd − fswdg

x − w
+ fswde−wE1s− wd,

s43d

where E1szd is the exponential integral. Sincesx0+ isx
− ld2l+1Im

sldsx0+ isx,udI
m8
sld sx0+ isx,ud is a polynomial inx of de-

greem+m8+1, the integrand which results upon removal of
the unitarity pole is, aside from the term 1/f1−e±2pssx−ix0dg, a
polynomial in x of degreem+m8 weighted bye−x, and the
resulting integral can be conveniently evaluated using Gauss-
Laguerre quadrature. However, recall that ifm@ l +1 the
function Im

sldsx0+ isx,ud oscillates rapidly asx varies, possibly
(if u is complex) with very large amplitude, so the presence
of the nonpolynomial factor 1/f1−e±2pssx−ix0dg might under-
mine the accuracy of Gauss-Laguerre quadrature.

III. THE CONVOLUTION OF TWO ONE-PARTICLE
GREEN FUNCTIONS

Consider a system of two particles, 1 and 2 say, moving
under the influence of both their mutual interactionW12 and
a fixed center of force. LetE be the total energy of the two
particles;E is real, but may be positive or negative. IfG0sEd
is the resolvent for the motion in the absence ofW12, the full
two-particle resolvent is

GsEd = G0sEd + G0sEdW12GsEd s44d

=f1 − W12G0sEdg−1G0sEd s45d

=fW12 − W12G0sEdW12g−1W12G0sEd.

s46d

The merit of Eq.(46) is thatfW12−W12G0sEdW12g is a sym-
metric operator, a property that is useful in reducing the ef-
fort of taking the inverse. IfW12 is positive or negative defi-
nite (as is the Coulomb potential) fW12−W12G0sEdW12g is
positive or negative definite on the negative real energy axis
below the bound-state poles ofG0sEd. Along this segment
fW12−W12G0sEdW12g has a Cholesky decomposition[13],
i.e., it can be expressed as the product of a lower triangular
matrix and its transpose. The Cholesky decomposition can be
analytically continued to other regions of the complexE
plane, in particular to either edge of the unitarity cut. This
yields a further reduction in the effort of taking the inverse.

Let gs1;Ed and gs2;Ed be the one-particle resolvents for
particles 1 and 2 when these particles move on their own in
the presence of the center of force(the nucleus). Introducing

E0 ; 1
2E, s47d

the physical branch ofG0sEd can be expressed as the stan-
dard convolution integral[12], as yet unsymmetrized with
respect to particle exchange,

G0
sIdsE + i0d =

1

2pi
E
C3

dE

3gsIds1;E0 + i0 −EdgsIds2;E0 + i0 +Ed,

s48d

whereC3 runs along real axis from̀ to −` and where the
superscript I indicates that the branch is the physical one.
The contourC3 runs just beneath the cut and the bound-state
poles of gsIds1;E0+ i0−Ed, and just above the cut and the
bound-state poles ofgsIds2;E0+ i0+Ed; see Fig. 3. The inte-
grand of the convolution integral has branch points atE0 and
−E0. If the center of force is attractive and Coulombic the
integrand also has bound-state poles which accumulate atE0
and −E0, in which case the branch points are essential singu-
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larities. However, by rotating the contour about the origin
through an anglef in the rangef−p /2 ,p /2g we can avoid
these singularities. Thus we setE=E0te

if wheret runs from
` to −`. If E is negativef is positive, and the contour
remains on the physical sheet but sweeps past those poles
further thanuE0u from threshold; while ifE is positivef is
negative, and the contour sweeps over the unitarity cuts and
moves onto the unphysical sheet. See Fig. 4.

Suppose hereafter that particles 1 and 2 are identical, and
let us (anti)symmetrizeG0sEd with respect to particle ex-
change. The symmetrized integrand is even int, and so we
can reduce the range of integration tof0,`g. If E is positive
we have(taking into account that the contour sweeps over
the unitarity cuts)

G0
sIdsE . 0 + i0d

= −
E0e

if

2pi
E
0

`

dtfgsIds1;E0 − E0te
ifdgsII ds2;E0 + E0te

ifd

± gsII ds1;E0 + E0te
ifdgsIds2;E0 − E0te

ifdg, s49d

f , 0,

where the superscript II indicates that the branch is the un-
physical one. IfE is negative we have(taking into account
that the contour sweeps over the poles)

G0
sIdsE , 0d

=
E0e

if

2pi
E
0

`

dtfgsIds1;E0 − E0te
ifdgsIds2;E0 + E0te

ifd

± gsIds1;E0 + E0te
ifdgsIds2;E0 − E0te

ifdg + RsEd, s50d

f . 0,

whereRsEd is the sum of the residues of those bound-state
poles crossed by the contour, i.e.,

RsEd =
1

2 o
Ebd,E0

gsIds1;E + i0 −Ebddu2;Ebdlk2;Ebdu

± u1;Ebdlk1;EbdugsIds2;E + i0 −Ebdd, s51d

whereu j ;Ebdl is an eigenket of the one-particle Hamiltonian
hj for particle j (1 or 2) with bound-state energyEbd.

We can expressG0
sIdsE+ i0d in a common form, which is

applicable to both positive and negativeE and involves only
the physical branches of the one-particle resolvents. To this
end we observe that the discontinuity ingsIds j ;Ed between
two points on opposite edges of the unitarity cut is

Ds j ;Ed = − 2ipdsE − hjd s52d

=− 2iprs j ;Edu j ;Elk j ;Eu, s53d

whereu j ;El is an eigenket ofhj with continuum-state energy
E and wherers j ;Ed is the density-of-states factor; ifE is
degenerate, summation over eigenstates with the same en-
ergy eigenvalue is to be understood. Therefore the analytic
continuation ofgs j ;Ed from the physical to the unphysical
sheet can be carried out by means of the relation

gsII ds j ;Ed = gsIds j ;Ed + Ds j ;Ed, s54d

whereDs j ;Ed is the analytic continuation of the discontinu-
ity onto the unphysical sheet. Incidentally, from this relation
and the asymptotic expansion[with argsEdÞ0]

FIG. 4. The path of integration of the convolution integral is
rotated about the origin. For clarity we have also rotated the branch
cuts along with the contour; the rotated cuts differ from the “uni-
tarity” cuts. The rotation is counterclockwisesf.0d if E,0 and
clockwise sf,0d if E.0. The counterclockwise rotation sweeps
over those bound-state poles which are further than1

2uEu from the
pertinent threshold. The clockwise rotation sweeps over the unitar-
ity cuts.

FIG. 3. The path of integration of the convolution integral is the
whole realE axis, from` to −`. The bound-state poles which are
associated to the thresholds at1

2E and −1
2E are shown schematically

as crosses and open circles, respectively. The zigzag lines are the
unitarity branch cuts.

ROBIN SHAKESHAFT PHYSICAL REVIEW A70, 042704(2004)

042704-6



gsIds j ;Ed =
1

Eo
n=0

` Shj

E Dn

s55d

we can evaluate rather easilygsII dsEd for large values ofE.
Combining Eqs.(49), (50), and(54) we have, forE positive
or negative,

G0
sIdsE + i0d

= −
uEueif

4pi
E

0

`

dtfgsIds1;E0 − E0te
ifdgsIds2;E0 + E0te

ifd

± gsIds1;E0 + E0te
ifdgsIds2;E0 − E0te

ifdg

+ Qs− EdRsEd + QsEdDsEd, Ef , 0, s56d

whereQsxd is the Heaviside step function and where

DsEd = −
Eeif

4pi
E
0

`

dtfgsIds1;E0 − E0te
ifdDs2;E0 + E0te

ifd

± Ds1;E0 + E0te
ifdgsIds2;E0 − E0te

ifdg. s57d

If E.0sf,0d the argumentE0+E0te
ifst.0d of Ds1;E0

+E0te
ifd lies on the unphysical sheet.

The rotated straight-line integration contourC4 penetrates
deep into the region of(complex) unphysical energies. This
has the disadvantage that the angleu acquires a relatively
large imaginary part along some segment of the contour
(whereuku,k) so the polynomialIm

sldsx0+ isx,ud, with s=p or
q, oscillates with a very large amplitude, resulting in signifi-
cant roundoff error whenm@ l +1. Rather than use a
straight-line contour it is more helpful to use a contour which
remains close to the real energy axis except near the singu-
larities. This can be most conveniently accomplished by in-
voking the conformal transformation

u =
1 − teif

1 + teif , s58d

which maps half of the energy plane onto the diskuuuø1.
Since

t = S1 − u

1 + u
De−if, s59d

we have

E0 − E0te
if =

Eu

1 + u
, s60d

E0 + E0te
if =

E

1 + u
, s61d

and

−
Eeif

4pi
E

0

`

dt¯ =
E

2pi
E

1

−1 du

s1 + ud2 ¯ . s62d

Noting that gsE0+E0te
ifd has branch points atu=` st

=−e−ifd and u=−1 st=`d, while gsE0−E0te
ifd has branch

points atu=0 st=e−ifd andu=−1 st=`d, the integrand of the

convolution integral has a cusp atu=−1 and branch points at
u=0 andu=`. The contourC5 (see Fig. 5) in the u plane
commences atu=1 and terminates atu=−1; it remains close
to the realu axis except in the region of the origin where it
circumvents the branch point atu=0 and also the high-lying
bound-state poles which accumulate to the left of this branch
point. The lower-lying bound-state poles are isolated near
singularities of the form

1

E0 − E0te
if − Ebd

=
1 + u

sE − Ebddu − Ebd
s63d

which can be subtracted using

E
u1

−1+i0

du
1

sE − Ebddu − Ebd
=

1

E − Ebd

3Sip + ln
E

sE − Ebddu1 − Ebd
D .

s64d

IV. NUMERICAL APPLICATION

We have tested the method outlined above by applying it
to the problem of one-photon absorption by H−. We treated
the nucleus as an infinitely massive and stationary center of
force. Our basis was composed of symmetrized products of
real one-particle Sturmian functions.

The interparticle interaction is the pure repulsive Cou-
lomb potential W12=e2/ r12 where r12 is the interparticle
separation. Care must be taken to avoid accumulating round-
off error when evaluating matrix elements of 1/r12. We
eliminated significant roundoff error by constructing the ma-
trix elements of 1/r12 from those of the inverse square of the
Coulomb repulsion, i.e.,r12

2 =r1
2+r2

2−2r1r2 cosu12 whereu12
is the angle between the electron coordinatesrW1 and rW2. The
evaluation of the matrixMI which representsr12

2 is a rela-
tively simple task. Sincer12 is real, symmetric, positive defi-
nite, invariant under the parity operation, and scale invariant,
so is bothMI and its square root. Furthermore, the rows and
columns ofMI can be labelled so thatMI is tightly banded
(e.g., block diagonal or block tridiagonal) with respect to the

FIG. 5. Half of the energy plane is mapped onto the diskuuu
ø1. The integration contourC5 runs from u=1 to u=−1, and
avoids the high-lying bound-state poles which accumulate below
u=0. This illustration is forE.0; if E,0 the integration contour is
in the lower half of the disk.
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orbital angular momentum quantum numbers of the particles;
this yields a substantial reduction in the effort required to
diagonalizeMI . OnceMI has been reduced to diagonal form it
is trivial to find its square root and inverse. However, since
MI is real, symmetric, and positive definite, its square root
and inverse can be found without resorting to diagonalization
[13]. Instead we can expressMI as the Cholesky decomposi-
tion LILI t whereLI is a lower triangular matrix which can be
expressed without great effort as the singular-value decom-
positionLI =XI DI YI t whereXI andYI are orthogonal matrices and
DI is diagonal; it follows[13] that MI −1/2=XI DI −1XI t.

While our values of the matrix elements of 1/r12 are not
plagued by roundoff error they do suffer from truncation
error due to the truncation of the basis. As a consequence our
estimate of the ground-state energy of H− is not variational,
i.e., its error is of first rather than second order in the error of
the ground-state wave function.(Nor does the minimum
principle apply, i.e., our estimate is not bounded from be-
low.) Hence the convergence towards the exact ground-state
energy, with increasing basis size, is rather slow, as indicated
in Table I. We see from this table that the convergence with
increasing angular momentum quantum number is moder-
ately rapid, as is the convergence with increasing ordinal
number for smaller angular momentum quantum numbers;
but the convergence with increasing ordinal number is very
slow for larger angular momentum quantum numbers. The
“exact” value [14] of the ground-state energy is
−0.527 751 0.2 a.u.. The error in our estimate of the ground-
state energy diminishes only slowly, from 0.4% in the upper
left corner of the table to 0.08% in the lower right corner of
the table. Nevertheless, in our calculations of the photoab-
sorption cross section, reported on below, our estimate of the
ground-state energy was sufficiently accurate that it was not
the principal source of error; and, besides, our expression for
the photoabsorption cross section is not variational either.

If uFl represents the initial ground state of the H− system
the response to one-photon absorption, mediated by an ex-
ternal perturbationV in the entrance channel, is represented
by

uCl = GsEdVuFl, s65d

where E is the total energy(ground-state plus photon en-
ergy). The inclusive rate for photoabsorption is

G = − 2 ImkFuV†uCl. s66d

Let Ga be the rate for the system to undergo a transition to
the open(sub)channela. We expressGa in a form which
requires only the response ketuCl as input. To this end we
introduce the operatorPia which, for i =1,2, projects onto
the subspace in which a particular electron, theith, has the
energy range and other single-particle quantum numbers
specified by the indexa. As shown elsewhere[15], by first
expressing the rate in terms of the flux through the surface of
a hypersphere of asymptotically large radius we deduce that

Ga = − 2 Imo
i=1

2

hkFuV†PiauCl + kCuW12PiauClj. s67d

In the first of the two terms on the right-hand side of Eq.(67)
the perturbationV acts in a spatial region whose linear di-
mensions are of the order of the initial bound-state radius.
This term describes the direct excitation byV of the system
to (sub)channela; it does not take into account the possibil-
ity that the system is directly excited byV to (sub)channels
other thana, after which—and perhaps over distances far
larger than the initial bound-state radius—the system mi-
grates to(sub)channela under the influence of the correla-
tion interactionoi=1

2 s1−PiadW12Pia. It is the second of the
two terms on the right-hand side of Eq.(67) which takes
into account this indirect excitation of the system to
(sub)channela.

The rate for single-electron escape isGsingle=oa=bdGa

where the sum is over one-electron bound states. The rate for
double-electron escape isGdouble=oa=ctGa where the sum is
over one-electron continuum states in the energy region 0
øE,E/2. Alternatively, we can express the rate for double-
electron escape asGdouble=G−Gsingle; the degree to which
these two different expressions forGdouble have the same
value is an indication of the accuracy of the calculations. Our
calculations were done in the velocity gauge. We took the
maximum ordinal number of the Sturmian functions to be
25, and the maximum angular momentum quantum number
to be 7, at all photon energies. We choosek, the wave num-
ber of the basis, to be 0.5 a.u. at photon energies below
25 eV, 0.7 a.u. in the range 23–29 eV, and 0.9 a.u. above
29 eV. In Fig. 6 we show results for the ratio of the cross
sections for double- and single-electron escape over a range

TABLE I. Nonvariational estimates of the ground-state energy of H− in atomic unitss1 a.u.=2 Ryd for different basis sizes. The rows and
columns are labelled by the maximum values of the ordinal and angular momentum quantum numbers,n− l −1 andl, of the real Sturmian
functionsSnl

iksrd employed in the basis. In composing this table we tookk=1.1 a.u. A more accurate value[14] for the ground-state energy
of H− is −0.527 751 02 a.u.

3 5 7 9 11

5 −0.53012 −0.52974 −0.52971 −0.52971 −0.52970

10 −0.52972 −0.52912 −0.52903 −0.52902 −0.52902

15 −0.52951 −0.52877 −0.52863 −0.52860 −0.52860

20 −0.52943 −0.52862 −0.52844 −0.52839 −0.52838

25 −0.52940 −0.52855 −0.52833 −0.52827 −0.52826

30 −0.52939 −0.52851 −0.52827 −0.52820 −0.52817
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of photon energies above the threshold for double escape. We
show both our results and those of Kheifets and Bray[16].
The results of Kheifets and Bray agree well with the earlier
results (not shown) of Meyer, Greene, and Esry[17] and
Edah, Foumouo, and Piraux[18]. The agreement with our
results is also reasonable, especially in view of the simplicity
of our expressions for the single- and double-escape rates,
which require no direct input on the asymptotic boundary
conditions.

V. SUMMARY

Starting from an expansion in Sturmian functions we de-
rived an integral representation of the Coulomb Green func-
tion which, through an appropriate choice of the path of in-
tegration, can be used at any point on the Riemann energy
surface(excluding the negative axis on the physical sheet).
We applied it, in conjunction with a two-particle convolution
of one-particle Green functions, to the problem of partial and
complete breakup of H− by one-photon absorption. Our
method does not demand enormous computer resources; our
application was accomodated on a single-processor(Pentium
4, 1.7 GHz) desktop machine with 1.25 Gb of internal
memory. We choose H− as the system to study since the
correlation between the two electrons is strongest in this sys-
tem, and poses more of a challenge than does helium or other
helium-like ions. While we presented results only at positive
energies(i.e., above the threshold for complete breakup) we
checked that the method is also useful at negative energies,
where there are resonances. The partial resolventG0sEd has
no resonance poles; the resonance poles of the full resolvent
GsEd arise from the Coulomb repulsionW12, as zeroes of
W12−W12G0sEdW12—recall Eq. (46). However,G0sEd does
have poles at negative energies; they arise from one-particle
bound states, and some of them are “picked out” by the
counterclockwise rotation of the contour of the convolution
integral—recall Fig. 4 and Eqs.(50) and (51).
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