
Coulombic and radiative decay rates of the resonances of the exotic molecular ionsppm, ppp,
ddm, ddp, and dtm

Senem Kilic,1,2 Jean-Philippe Karr,1,2 and Laurent Hilico1,2,*
1Laboratoire Kastler Brossel, Université Pierre et Marie Curie T12, Case 74, 4 place Jussieu, 75252 Paris, France

2Département de Physique et Modélisation, Université d’Evry Val d’Essonne, Boulevard F. Mitterrand, 91025 Evry cedex, France
(Received 31 March 2004; revised manuscript received 13 July 2004; published 22 October 2004)

The bound levels and the resonances(energy and width of the excited levels) of ppm-like exotic molecules
for J=0 total angular momentum have been computed with an accuracy in the 10−11 a.u. range, by numerical
diagonalization of the complex rotated Hamiltonian in a variational sturmian basis set. For the resonances
below theN=2 dissociation threshold, the x-ray spontaneous emission spectrum is computed from the wave
functions. The radiative decay rate of the first resonance ofppm is found to be 0.0713 ps−1, close to half that
of a pms2pd atom, as expected in a simple Born-Oppenheimer picture of a resonance.
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I. INTRODUCTION

Recently, spectroscopy experiments on exotic atoms such
aspm [1] have been performed at the Paul Scherrer Institute
(PSI). The exotic atoms are produced by sending muons in a
dense molecular hydrogen target. They are produced in very
excited statessN<14d and then rapidly decay down to the
ground 1s state or the metastable 2s state. Of particular in-
terest is the metastable 2s state from which the 2s-2p muonic
Lamb shift could be measured[2]. Such an experiment is
only feasible if thepms2sd population is large enough. Re-
cently, evidence for the production ofpms2sd states has been
obtained and interpreted[1,3] as follows.

The 2s states have most probably been observed indi-
rectly through a quenching mecanism that involves theppm
resonances(excited states below theN=2 dissociation
threshold). It results in the formation of high kinetic energy
s<900 eVd pms1sd atoms. Indeed, resonant collision be-
tweenpms2sd atoms andH2 leads to the formation ofppm
excited muonic molecules. The Coulomb decay of those
resonances lying<1800 eV above theN=1 dissociation
threshold may producepms1sd atoms with a kinetic energy in
the 900 eV range, corresponding to the narrow high energy
component observed on the kinetic energy distribution of
pms1sd atoms in the PSI experiment.

In addition to the direct Coulomb decay channelppm*
→pms1sd+p, the excited states of the muonic molecules can
dissociate through the radiative channelppm* →pm+p+g.
In that case, most of the energy is taken by the photon so the
pm atom and the proton only acquire a small kinetic energy.
For ppm molecules, the Coulomb decay channel is much
faster than the radiative one, the branching ratio to the Cou-
lomb channel being more than 97%[4]. This explains why
the quenching mecanism described above can be observed
on the kinetic energy distribution of thepms1sd atoms. In the
case whereH2 is substitued byD2, the dms2sd quenching
mecanism involves excitedddm molecules. The Coulomb

decay rate of theddm resonances is slower than that ofppm
by two orders of magnitude whereas the radiative decay rates
are comparable. As a consequence, the branching ratio to the
Coulomb decay channel decreases to a few percent, as was
first noticed by Lindroth[4]. As a consequence, only a small
amount of high kinetic energydm atoms is expected, as was
verified experimentally.

Pionic hydrogen spectroscopy experiments are also con-
ducted at PSI[5,6] to determine the strong interaction shift
and absorption width of thepps1sd level from the sNpd
→ s1sd lines, N=2, 3 or 4. Thosepp atoms are produced
from higly excited atoms through an atomic cascade during
which ppp resonances can be populated. The knowledge of
the spectral properties of those resonances is important to
know if they can affect the measuredpp line position and
shape. Indeed, radiative decay from appp resonance bound
by a few eV below theppsNd dissociation limit may shift
down the x-ray line position. In other respects, Coulomb
decay ofppp resonances is one of the efficient processes
leading to high kinetic energypp atoms that contributes to
Doppler broadening of thepp lines [6–8]. Of course, the
Coulomb and radiative rates of theppp resonances have to
be compared to the nuclear absorption rate.

In Sec. II, we present the full three-body calculation of the
1Se and1,3Po bound levels and1Se resonance complex ener-
gies for theppm, ddm, ppp, ddp, and dtm molecular ions
below theN=2 dissociation limit. The knowledge of thedtm
resonances energies and widths is useful for the evaluation of
their impact in the muon catalyzed fusion cycle[9]. Both the
resonance energies and widths obtained from the imaginary
part of the complex energy are given. The accuracy of our
results is improved by several orders of magnitude as com-
pared to previously published ones. We also discuss the
structure of the spectrum of resonances and of the wave
functions, and show that although the muon to proton(or
deuteron) mass ratio is less than 10, the real part of the
energy of the resonances is consistent with a simple Born-
Oppenheimer(BO) picture. Of course, the widths of the
resonances are zero in the standard BO approximation, hence
the nonzero widths we obtained are a direct measure of the
breaking of the BO approximation.*Electronic address: hilico@spectro.jussieu.fr
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In Sec. III, we present the calculation of the x-ray emis-
sion spectrum of the1Se resonances and obtain their radiative
decay rates as well as the branching ratios between the Cou-
lomb and radiative decay channels.

II. BOUND AND RESONANT STATES

A. Structure of the wave functions

The energy levels and the corresponding wave functions
of the Schrödinger three body problem are labeled by the
quantum numberssJ,MJd related to the total angular mo-
mentum and by their discrete symmetries, the parityP and
the exchange of the two nucleiP12. In [10], we have pre-
sented in detail the structure of theJ=0 andJ=1 wave func-
tions, and the Schrödinger equation they obey. In this sec-
tion, we recall the essential points of this formalism in the
case of homonuclear ions and apply them to the exotic mo-
lecular ions. We will use atomic units related to the lightest
particle, the muon or the pion.M /m is the ratio of the
nucleus to the light particle mass.a0 is the muonic or pionic
Bohr radius.

The centered Jacobi coordinatesR andr depicted in Fig.
1 represent the relative position of the two nuclei and that of
their center of mass with respect to the lightest particle. The
quantitiesP andp are the conjugate momenta, so the Hamil-
tonian writes

H =
q2

4pe0a0
Fp2

2
+

M

m
SP2 +

p2

4
D −

1

iR/2 − r i

−
1

iR/2 + r i
+

1

R
G . s1d

To represent the dimensionless quantitiesR andr , we use the
three Euler anglessu ,C ,fd and two sets of radial coordi-
nates(see Fig. 1 in Ref.[11]). The first one issR,r ,zd where
z is the projection of r on the direction ofR and r
=Îr2−z2. The second one is the perimetric coordinate set
[12] defined from the three interparticle distances by

x = r1 + r2 − R,

y = r1 − r2 + R,

z= − r1 + r2 + R.

For the 1,3Se sJ=0, MJ=0, P=1, P12= ±1d states, the
angular part of the wave function is isotropicsD0 0

0

=1/Î8p2d, so we write the wave function as

CJ=0,MJ=0sR,r d =
1

Î8p2
Fsx,y,zd. s2d

The radial functionF verifies Fsx,z,yd= ±Fsx,y,zd for
symmetric or antisymmetric statessP12= ±1d. The1Po states
sJ=1, P=−1, P12=1d and the3Po statessP12=−1d can be
factored out using two orthogonal angular functions and only
one radial functionFMJ

sx,y,zd as

CJ=1,MJsR,r d = DMJ0
1* su,c,fdFSz +

1

2
RDFMJ

sx,y,zd

± Sz −
1

2
RDFMJ
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+

DMJ−1
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Î2

3rfFMJ
sx,y,zd ± FMJ

sx,z,ydg,

where theDMJT
J functions are the matrix elements of the

rotation operator mutiplied by a factorÎs2J+1d /8p2. The
effective Schrödinger equation satisfied by the radial func-
tions F (for the 1,3Se states) andFMJ

(for the 1,3Po states) is
a generalized eigenvalue problem for the energyE that takes
the form

AuFl = EBuFl. s3d

B. Numerical implementation

1. The bound states

The linear problem(3) is solved for the bound states of
the molecular ions by expanding the wave function on the
Sturmian basis set defined by

unx
a,ny

b,nz
bl = unx

al ^ uny
bl ^ unz

bl, s4d

whereunu
al represents the function

Fnsaud = kuunal = s− 1dnÎaLn
s0dsaude−au/2, s5d

and whereLn
s0d is a Laguerre polynomial.n is a non-negative

integer,a−1 is the length scale in thex direction,b−1 in they
and z directions. The matrices representing the operatorsA
andB are real and symmetric sparse banded matrices, where
all matrix elements are known in analytic form[10]. The
generalized eigenvalue problem(3) is then solved using the
Lanczos algorithm that gives the eigenvalues in the energy
range of interest as well as the corresponding eigenvectors.
Because of the numerical truncation of the basis(nxøNxmax
andnx+ny+nzøNbase), the length scalesa−1 andb−1 become
variational parameters. They are optimized to stabilize the
eigenenergies. Table I presents theJ=0 and J=1 bound
states ofppm, ddm, ppp and ddp as well as those ofdtm.
For the symmetric molecular ions, the mass ratiosmp/mm

=8.88024408 andmd/mm=17.75167454 are those given by
the 1999 CODATA[13]. The proton(and deuteron) to pion
mass ratios are obtained from[15] and are mp/mp

=6.7225821,md/mp=13.4384920. The muonic atomic en-

FIG. 1. The radial coordinatessR,r ,zd in the three body
plane.
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ergy unit is 5626.450561 eV, and the pionic one is
7432.301093 eV. For thedtm calculations, we have used the
mass ratios of the 1986 CODATA[14] mm /me=206.768262,
md/me=3670.483014 andmt /me=5496.92158. Because of
the slighlty different muon mass, the muonic atomic energy
unit is 5626.450461 eV in the case ofdtm.

In the case ofddm anddtm, we obtain twoPo levels, the
excited onesv=1d being very sligtly bound by 1.97 eV or
0.66 eV. We have searched that level forddp by varying the
basis size as well asa and b. Even though the muon and
pion mass only differ by 25%, we can conclude that most
probably thev=1 3Po level of ddp does not exist, and thus
that we have obtained all theSe and Po bound levels of the
molecular ions.

In Table II, we compare the1Se and 3Po bound states of
ppm computed using our method in FORTRAN double pre-
cision to the results given by Bailey and Frolov[16] at the
10−19 a.u. accuracy level. The results are in perfect agree-
ment. In the case ofdtm, our results compare well with those
given by other groups[16–19].

2. The resonances

In the frame of the Born-Oppenheimer approximation, the
bound levels of the molecular ions are supported by the first
1ssg electronic energy curve. Figure 2 shows the BO curves
converging to the successiveN=1, 2 and 3 dissociation
thresholds of the molecular ion. They are labelled using the
usual molecular terms and we have indicated the exact sym-
metries of theSe and Po resonances they support. In the
lowest order BO approximation, the various electronic en-
ergy curves are not coupled and the resonances appear as
bound levels. In our calculations, the three body dynamics
are fully taken into account, i.e., all the couplings between
BO curves are considered. Those couplings turn the discrete
excited states into resonances of finite lifetime.

From the numerical point of vue, the resonances sup-
ported by an excited electronic state of the molecular ion are
embedded in the continua of the lower electronic states. They
can be separated by using the complex dilation method[20].
It consists in multiplying the radial coordinates, and thus the

TABLE I. Bound states energies of the exotic molecular ions in
(muonic or pionic) atomic units and corresponding binding energies
in eV. v is the vibrational quantum number. The dissociation limits
are obtained from the mass ratios byEdisssNd=−s1/2N2df1/s1
+M /mdg. See text for the values of the relevant mass ratios.

v Energy(a.u.) Binding energy(eV)

ppm
1Se 0 −0.494 386 817 912 253.150 075
3Po 0 −0.468 458 433 545 107.265 302

−0.449 393 962 745 diss. lim. N=1

ddm
1Se 0 −0.531 111 133 962 325.070 540

1 −0.479 706 378 902 35.844 227
3Po 0 −0.513 623 954 981 226.679 792

1 −0.473 686 732 637 1.974 985

−0.473 335 714 685 diss. lim. N=1

ppp
1Se 0 −0.474 927 514 376 294.859 440
3Po 0 −0.446 049 252 053 80.227 499

−0.435 254 815 873 diss. lim. N=1

ddp
1Se 0 −0.518 153 620 861 392.301 199

1 −0.467 493 120 397 15.777 106
3Po 0 −0.497 298 725 502 237.301 338

−0.465 370 344 873 diss. lim. N=1

dtm

Se 0 −0.538 594 975 061 319.136 818

1 −0.488 065 357 852 34.834 430

Po 0 −0.523 191 456 316 232.469 683

1 −0.481 991 529 974 0.660 338

−0.481 874 166 748 tm diss. lim. N=1

TABLE II. Comparison of thev=0 resonance ofppm given by
Bailey and Frolov. For those calculations, we have usedmp/mm

=8.880 244 401 338 54.

Energy(a.u.)

1Se −0.494 386 820 248 934 791 1 [19]

−0.494 386 820 248 92 This work
3Po −0.468 458 436 303 384 803 [19]

−0.468 458 436 303 38 This work

FIG. 2. Born-Oppenheimer electronic energy curves below the
N=2 andN=3 thresholds. The binding curves are plotted with solid
lines. They are labeled by the usual molecular quantum numbers.
We also indicate the exact symmetries of the1,3Se and 1,3Po reso-
nances they support. The 3ddg curve only supports states of total
angular momentum greater than 2.
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perimetric coordinates byeiu. The complex dilation method
is straightforward to implement from the bound state calcu-
lation since it simply consists in turning the inverse length
scalesa and b into ae−iu and be−iu in the definition of the
basis functions(5). The matricesA and B become non-
Hermitian complex symmetric sparse banded matrices. Nu-
merically, we observe the well known properties of the com-
plex dilation method. The bound levels are unchanged, being
the real eigenvalues of the problem. The continuous spec-
trum is rotated out in the complex plane by an angle 2u
around the consecutive thresholds. Provided the rotation
angle is large enough to uncover the resonances, they appear

as stationary complex eigenvalues of the Schrödinger equa-
tion. The real and imaginary parts give the energyEr and
Coulomb widthGCoul of the resonances, i.e.,

Eres= Er −
i

2
GCoul. s6d

Tables III and IV present theSe complex energies ofppm,
ddm, ppp, ddp, anddtm, in atomic units and also in eV. The
convergence of the complex energies is obtained for rather
large domains in the variational space. ForNbase=92 and
Nxmax

=20, the1Se basis for homonuclear ions contains 37234

TABLE III. 1Se resonances ofppm, ddm, anddtm under theN=2 threshold. The real and imaginary parts of the complex energies are in
muonic atomic units. The corresponding binding energies and Coulomb width are in eV and meV.GC andGg are the Coulombic and radiative
decay rates.Yg=Gg / sGc+Ggd is the branching ratio between the two decay channels. The resonances below theN=2 (respectivelyN=3)
threshold that are labeled by a vibrational numberv are supported by the 3dsg (respectively 5gsg) BO curves. Numbers in brackets denote
powers of 10.

v ResEd (a.u.) Eb (eV) ImsEd (a.u.) "Gc/2 Gc Gg Yg

ppm (meV) spsd−1 spsd−1

0 −0.146 404 680 88 191.615 470 1.513f−7g 0.851 2.587 0.0713 0.027

1 −0.128 885 489 08 93.044 604 2.625f−7g 1.477 4.487 0.0609 0.013

2 −0.118 028 794 48 31.959 948 2.062f−7g 1.160 3.526 0.0569 0.016

3 −0.113 949 703 23 9.009 143 6.157f−8g 0.346 1.053 0.0571 0.051

4 −0.112 844 246 53 2.789 346 1.943f−8g 0.109 0.332 0.056 0.144

5 −0.112 504 563 6 0.878 137 6.15f−9g 0.035 0.105

−0.112 348 490 69 dissociation limitN=2

ddm smeVd spsd−1 spsd−1

0 −0.157 099 321 63 218.111 567 3.411f−10g 1.919 0.0058 0.0804 0.932

1 −0.142 377 329 00 135.279 003 1.031f−9g 5.801 0.0176 0.0708 0.801

2 −0.131 302 505 83 72.967 058 1.630f−9g 9.171 0.0279 0.0648 0.699

3 −0.124 003 892 20 31.901 769 1.453f−9g 8.175 0.0248 0.0621 0.714

4 −0.120 576 317 12 12.616 688 6.674f−10g 3.755 0.0114 0.0619 0.844

5 −0.119 277 925 05 5.311 349 2.914f−10g 1.640 0.0050

6 −0.118 738 317 42 2.275 273 1.27f−10g 0.715 0.0022

7 −0.118 508 324 99 0.981 232 5.5f−11g 0.309 0.0009

−0.118 333 928 67 dissociation limitN=2

dtm smeVd spsd−1 spsd−1

0 −0.159 194 524 79 217.889 825 1.742f−10g 0.98 0.0030 0.0731 0.96

1 −0.145 303 272 20 139.731 381 4.217f−10g 2.373 0.0072 0.0729 0.91

2 −0.134 531 308 61 79.123 461 5.798f−10g 3.262 0.0099 0.0638 0.87

3 −0.126 977 943 64 36.624 828 5.053f−10g 2.843 0.0086 0.0630 0.88

4 −0.123 573 012 24 17.467 150 1.421f−10g 0.800 0.0024 0.0601 0.96

5 −0.122 499 264 57 11.425 762 5.879f−11g 0.331 0.0010

6 −0.121 758 063 06 7.255 428 1.43f−10g 0.805 0.0024

7 −0.121 104 831 12 3.580 051 5f−11g 0.281 0.0009

−0.120 468 541 69 tm dissociation limit,N=2

(meV) spsd−1

0 −0.119 224 582 64 5.011 219 1.123f−4g 632 1920

1 −0.118 748 636 2.333 3 5.593f−5g 315 956

2 −0.118 53 1.1 3f−5g 169 513

−0.118 333 928 88 dm dissociation limit,N=2
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vectors. The domain is bounded by 0.5øaø1.3, 0.3øb
ø1.5, the higher excited states being obtained near the lower
bound of the domain. The rotation angle is of the order of
0.2. All the results presented here are well converged and
have been rounded at the 10−11 a.u. level, improving the ac-

curacy of the previously published results by several orders
of magnitude[3,4,8,21,22]. In the case ofdtm, our resonance
energies are in agreement with those given by Hara[21].
Tolstikhin [23] and Mil’nikov [24] have recently published
J=0 resonance complex energies ofdtm below the n=2

TABLE IV. The same as Table III but forppp andddp, under theN=2, 3 and 4 dissociation thresholds. Numbers in brackets denote
powers of 10.

v ResEd (a.u.) Eb (eV) ImsEd (a.u.) "Gc/2 Gc Gg Yg

ppp (meV) spsd−1 spsd−1

0 −0.140 590 327 83 236.173 436 1.993f−7g 1.481 4.501 0.0879 0.019
1 −0.122 288 143 62 100.146 093 2.588f−7g 1.923 5.845 0.0745 0.013
2 −0.112 395 810 61 26.623 295 1.285f−7g 0.955 2.902 0.0716 0.024
3 −0.109 723 714 44 6.763 472 3.077f−8g 0.229 0.695
4 −0.109 058 741 50 1.821 193 8.266f−9g 0.061 0.187

−0.108 813 703 97 dissociation limitN=2
0 −0.064 343 477 84 118.781 785 8.249f−7g 6.131 18.63
1 −0.057 884 439 37 70.776 266 1.402f−6g 10.42 31.66
2 −0.053 193 463 30 35.911 519 1.363f−6g 10.13 30.78
3 −0.050 529 763 27 16.114 099 7.422f−7g 5.516 16.76
4 −0.049 372 872 61 7.515 739 3.72f−7g 2.765 8.40

−0.049 099 229 97 5.481 945 1.121f−6g 8.332 25.32
−0.048 361 646 21 dissociation limitN=3

0 −0.036 370 450 93 68.132 089 2.601f−6g 19.33 58.74
1 −0.033 476 493 39 46.623 326 5.210f−6g 38.72 117.7

−0.031 427 31.39 3.28f−6g 24.4 74.1
−0.031 139 889 80 29.256 984 6.227f−6g 46.28 140.6
−0.029 484 517 12 16.953 756 5.267f−6g 39.15 118.9
−0.027 203 425 99 dissociation limitN=4

ddp smeVd spsd−1 spsd−1

0 −0.153 380 951 59 275.280 283 6.679f−9g 49.64 0.1508 0.1023 0.404
1 −0.137 442 615 99 156.821 774 1.299f−8g 96.546 0.2933 0.0887 0.232
2 −0.126 156 476 60 72.939 788 1.374f−8g 102.12 0.3103 0.0812 0.207
3 −0.119 853 579 63 26.094 760 7.291f−9g 54.189 0.1647 0.0795 0.326
4 −0.117 619 574 60 9.490 962 2.597f−9g 19.302 0.0586
5 −0.116 826 878 60 3.599 407 9.91f−10g 7.365 0.0224
6 −0.116 528 288 78 1.380 197 3.81f−10g 2.832 0.0086

−0.116 342 586 22 dissociation limitN=2
(meV) spsd−1

0 −0.069 812 728 24 134.561 158 5.112f−8g 0.380 1.154
1 −0.064 423 052 48 94.503 465 1.375f−7g 1.022 3.105
2 −0.060 015 896 48 61.748 155 2.173f−7g 1.615 4.907
3 −0.056 643 259 48 36.681 701 2.388f−7g 1.775 5.393
4 −0.054 448 729 54 20.371 294 1.757f−7g 1.306 3.968
5 −0.053 253 062 55 11.484 737 1.069f−7g 0.795 2.414
6 −0.052 590 753 3 6.562 255 6.514f−8g 0.484 1.471
7 −0.052 215 555 4 3.773 671 3.85f−8g 0.286 0.869
8 −0.052 000 617 5 2.176 188 2.26f−8g 0.168 0.510

−0.051 707 816 10 dissociation limitN=3
0 −0.039 318 541 03 76.053 953 8.916f−8g 0.663 2.014
1 −0.036 955 341 63 58.489 943 2.145f−7g 1.594 4.843

−0.034 901 809 23 43.227 472 3.222f−7g 2.395 7.276
−0.034 056 722 42 36.946 533 3.476f−7g 2.583 7.850
−0.033 174 920 41 30.392 715 3.789f−7g 2.816 8.557
−0.029 085 646 55 dissociation limitN=4
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threshold, pointing out large discrepancies on the width of
the resonances as compared to previous results. The present
work confirms, with an improved accuracy, the resonance
widths they obtained(the quantities to be compared are
2ImsEd from Table III and the width denoted 109G in
[23–25]).

3. Structure of the resonance spectrum

The structure of the resonance spectrum we have obtained
can be qualitatively understood in the frame of the Born-
Oppenheimer approximation, even though the proton to
muon (or pion) mass ratio is not much greater than one.
More precisely, we now show that the structure of the reso-
nance spectrum is consistent with the simple picture where a
resonance level below theN dissociation threshold appears
as apm atom of principal quantum numberN polarized by
the field of the second nucleus. In that case, the long range
behavior of the BO curves is given by −A/R2, assuming the
static atomic dipoleA is not zero. The spectral properties of
this kind of potential are discussed in[26,27] and one can
show that ifgø

1
2 there is no bound state and that otherwise

the binding energies follow an exponential decay law given
by

Ev
b = E0

be−2pv/Îg2−1/4 = E0
be−dv, s7d

where g2=2MA, M being the reduced mass of the two
nuclei in units of the light particle. The same exponential law
also stands for the widths[28,29]. If A=0, the electronic
energy curve varies as 1/R4 for largeR, and there is only a
finite number of levels. Table V gives the long range prop-
erties of the binding BO curves and compares thed factor
defined by Eq.(7) in the case ofppm with thed values fitted
from theppm resonance positions given in Table III.

The binding energies of the1Se resonances below theN
=2 dissociation limit given in Table III forppm andddm are
plotted in Fig. 3. They decrease exponentially with the vibra-
tional quantum numberv as expected in the BO model. In-

deed, those1Se resonances are supported by the 3dsg BO
curve that has a static dipoleA=3. Fitting the curves of Fig.
3 for vù3, we obtain the decay factors 1.196 forppm and
0.851 forddm, in good agreement with the values 1.223 and
0.863 predicted from Eq.(7).

The couplings with the continua result in a finite lifetime
related to the width of the resonances given by the complex
dilation method. When the proton is replaced by a deuteron
in the molecular ions, the physical situation gets much closer
to the BO approximation. As a consequence, the width of the
1Se resonances below theN=2 threshold dramatically de-
creases by 2 or 3 orders of magnitude as can be seen in
Tables III and IV. One can notice that the lifetime of the
muons2.2 msd and of the charged pions26 nsd correspond to
widths of respectively 3310−14 and 1.7310−12 a.u., smaller
than the Coulomb widths we have obtained.

In the case ofdtm, each dissociation limit is splitted in
two parts, the lower corresponding to atm atom and the
higher to adm atom. The resonances lying between the two
dissociation limits have very large widths of the order of
1 eV. For such a level, the binding energy to the upper limit
and the kinetic energy above the lower limit are of the same
order of magnitude. As a consequence, this wave function
has a large overlap with the continuum states, resulting in a
strong coupling and thus a large width.

In the simple BO picture of a resonance level, the elec-
tronic part of the wave function of a resonance below the
N=2 threshold(i.e., the dependance onr ) must be that of a
pmsN=2d atom in the(quasi) homogeneous electric field of
the proton, that is the antisymmetric combination of the
2sM=0 and 2pM=0 hydrogenic orbitals around one nucleus,
symmetrized with respect to the two nuclei. We denote it

jsr d = fwassr 1d + wassr 2dg/Î2, s8d

where

wassr id = fw2,0,0sr id − w2,1,0sr idg/Î2. s9d

The rotated wave function of a resonance,uCv
0,0suSdl, is a

square integrable function. For an isolated resonance close to
the real axis, it is related to the unrotated wave function by

TABLE V. List of the binding Born-Oppenheimer energy curves
converging to the dissociation limitN. A is the static atomic dipole.
d is defined by Eq.(7) and is evaluated in the case of1Se ppm
resonances. The theoretical values ofd compare well with the nu-
merical ones fitted from the binding energies of Table III.

N A d Fitted d

1 1ssg 0

2ppu 0

2 2ppu 0

3dsg 3 1.223 1.196

4fsu 3 1.223

3 3ddg 0

4fpu 9/2 0.997

4dsg 0

5gpg 9/2 0.997

5gsg 9 0.704 0.674

6hsu 9 0.704

FIG. 3. Binding energies of the resonances ofppm (triangles)
and ddm (squares) below the N=2 dissociation limit versus the
vibrational quantum numberv. The logarithmic vertical scale shows
the exponential decrease of the binding energies withv.
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uCv
0,0l = Rs− uSduCv

0,0suSdl, s10d

whereRsud is the complex rotation operator. The electronic
probability density is given by Refkr uCv

0,0suSdl2g. In Fig. 4,
the comparison of the wave function of thev=0 resonance of
ppm below theN=2 threshold with the predicted wave func-
tion ujsr du2 confirms that a resonance state can be seen as a
pm atom polarized by the field of the second nucleus.

III. RADIATIVE DECAY RATES

A. The decay rate

The1Se resonance levels can decay via spontaneous emis-
sion since they are coupled to the1Po continua by the photon
field. This decay channel has three componentsMJ=0
→MJ=0, ±1. For a symmetric molecule and in the dipole
approximation, the coupling operator is

d = qa0s1 + edr , s11d

wheree=1/s1+2M /md. The standard components ofr write

rMJ
= DMJ0

1* su,c,fdz +
DMJ−1

1* su,c,fd − DMJ1
1* su,c,fd

Î2
r.

s12d

From the Fermi golden rule, and summing over all the direc-
tions of the emitted photons, we obtain the decay rate per
unit photon energy(or x-ray spectrum) for the component
0→MJ:

dGMJ

ds"vd
=

q2

4p«0

4

3
s1 + ed2s"vd3

"4c3 a0
2ukC1,MJsEdurMJ

uCv
0,0lu2,

s13d

where"v is the photon energy and whereuC1,MJsEdl is the
1Po continuum state of energyE=Es−"v, normalized per
unit energy. From the Wigner Eckart theorem, the quantity
kC1,MJurMJ

uCv
0,0l does not depend onMJ. Consequently, the

total radiative decay rateGg of the 1Se resonant state writes

Gg = 3E
0

`

dG0

ds"vd
ds"vd. s14d

B. The calculation

The numerical calculation of the square modulus of the
matrix element involved in the x-ray spectrum(13) follows
the method outlined by Recsigno and McKoy[30]. In that
expression, the resonance wave functionuCv

0,0l is related to
the numerical complex rotated wave functionuCv

0,0suSdl by
Eq. (10). It is obtained using optimized variational param-
etersaS, bS, anduS. uC1,0sEdl is a continuum level. It has a
long range oscillatory behavior completely different from
that of the quasibound resonant state. Using the complex
rotation method, it appears as a complex continuum eigen-
function of the 1Po Schrödinger equation. Because of the
numerical truncation of the basis, it is well converged for
optimized variational parametersaP, bP, and uP different
from those of the resonant level.

Expanding the square modulus involved in Eq.(13), we
introduce the projection operator onto the1Po subspace of
energyE. It can be expressed with the Green function of the
rotated Hamiltonian[31] as

uC1,MJsEdlkC1,MJsEdu =
1

2ip
SRs− uPd

1

HsuPd − E
RsuPd

− RsuPd
1

Hs− uPd − E
Rs− uPdD .

s15d

Inserting Eqs.(10) and(15) into Eq. (13), and using the fact
that the two terms are complex conjugate, we obtain

FIG. 4. (a) Contour plot in thesz ,rd plane of the electronic part
of the ppm v=0 resonance below theN=2 threshold.(b) Contour
plot of the approximate electronic wave functionuju2 (see text). z
andr are defined in Fig. 1.
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dG0

ds"vd
=

4

3
s1 + ed2s"vd3

"4c3 a0
3F−

1

p
Im„QvvsEd…G , s16d

where Qvv sEd is the dimensionless two-photon transition
matrix element we have introduced in[11]. Using the rela-
tion RsudrzRs−ud=eiurz, we obtain

Qvvszd =
q2

4p«0a0
kCv

0,0suSduRsuS− uPd

3rze
iuP

1

z− HPsuPd
eiuPrzRsuP − uSduCv

0,0suSdl.

s17d

The expressionkCv
0,0suSdu means that we only have to trans-

poseuCv
0,0suSdl, without complex conjugation.

C. Numerical calculation

The numerical calculation of the complex matrix element
Qvv is very similar to what we have explained in[11]. We
only give details on the additional step, applying the com-
plex rotation operator on the resonance wave function. From
the numerical point of view, the resonance eigenvectors and
the 1Po Hamiltonian are expanded on two Sturmian bases,
defined in Eq. (4), with different variational parameters
saS,bSd andsaP,bPd. We thus have to perform a basis trans-
formation which is simply a dilation by a factoraP/aS in the
x direction andbP/bS in the y andz directions. The dilation
operator is

DxsaP/aSdDysbP/bSdDzsbP/bSd, s18d

whereDu is the dilation operator in theu direction given by

Dusdd = eln d „us]/]ud+1/2…. s19d

The complex rotation operatorRsud in nothing but a dilation
by a factoreiu. Consequently, the basis transformation and
the complex rotation can be taken into account into Eq.(17)
substituting the complex rotation operatorRsuP−uSd by the
complex dilation:

DxSaPeiuP

aSe
iuS
DDySbPeiuP

bSe
iuS
DDzSbPeiuP

bSe
iuS
D . s20d

The numerical implementation of this operator is straigthfor-
ward since the matrix elements ofDu on the basis functions
(5) are known as

knuDusegdun8l = s− 1dnScosh
g

2
D−sn+n8+1dSsinh

g

2
Dn+n8

3F1− n;− n8;1;−
1

sinh2 g

2
2 , s21d

where the hypergeometric functionFsa;b;c;zd is a polyno-
mial of degree minsn,n8d [32].

D. Results and discussion

We have computed the x-ray spectrum for the first1Se

resonances of the different molecular ions below the disso-

ciation limit N=2. They are plotted in Fig. 5 for the case of
ppm and ddm versus the photon energy. The high energy
threshold is determined by the resonance position above the
N=1 dissociation limit. The shape of the x-ray spectrum is
given by Franck-Condon factors that reveal the nodal struc-
ture of the wave functions. For low energy photons, the x-ray
spectra vanishes because of small Franck-Condon factors
and because of thev3 factor in Eq.(13).

The radiative decay rates defined by Eq.(14) are obtained
by numerical integration of the x-ray spectrum over the pho-
ton frequency. The results are given in column 8 of Tables III
and IV, with an accuracy 10 times better than those recently
published by Lindroth and co-workers[4]. The first compari-
son of our results to those of Ref.[4] has pointed out a
missing mass ratio of about 4 in those results. Our radiative
decay rates are now in excellent agreement with the cor-
rected results of Lindroth given in the Erratum[4]. This
make us confident on those results.

In Sec. II B 3, we have shown that the electronic part of
the wave function of a resonance below theN=2 threshold is
very close to that of the antisymmetric combination of the 2s
and 2p hydrogenic orbitals. In that picture, the resonance
radiative decay rate should be close to half that of the 2p
level of the atom built with one nucleus(proton or deuteron)
and the exotic particle(m or p). It is given byG2p=s28/38d
3sm̃e10/"6c3d wherem̃ is the reduced mass of the light par-
ticle. One can observe that the radiative widths of the reso-

FIG. 5. 1Se x-ray spectrum of(a) the v=0 resonances of the
symmetric molecular ions and of(b) the v=0, 1, and 2 resonances
of ddm below theN=2 dissociation limit. The x-ray spectra are
given by 3fdG0/ds"vdg; see Eq.(14). The photon energies corre-
sponding to the maxima of the spectra ofddm are, in eV,(1760),
(1855,1789) and (1920,1890,1809) for v=0, 1 and 2. The corre-
sponding values for ddp are (2290), (2427,2332) and
(2515,2474,2359).
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nances of the molecular ions below theN=2 threshold we
have obtained hardly depend on the vibrational quantum
numberv. Table VI shows that they compare well with the
expected valueG2p/2. From the Coulomb and the radiative
decay ratesGC and Gg, we have computed the branching
ratio to the radiative decay channelYg=Gg / sGC+Ggd.

In the case ofppm, this ratio is of the order of a few
percent because the Coulomb decay is much faster than the
radiative one. In the case ofddm or dtm, the situation is
reversed and the radiative branching ratio is can be as large
as 93% for thev=0 1Se resonance ofddm. The mean branch-
ing ratio to the Coulomb channel is 20% inddm and 96% in
ppm; this result is compatible with the observations of the
PSI experiments where the high kinetic energy component is
about 4 times smaller fordm than forpm. The formation of
ddm* excited molecules during collisions betweendms2sd
atoms andD2 should be observable through its x-ray emis-
sion spectrum, depicted in Fig. 5. In the caption, we give the
photon energies corresponding to the maxima of the emis-
sion spectra of the resonances ofddm as well as the corre-
sponding ones forddp.

The Coulomb and radiative decay rates of the pionic mol-
ecules have to be compared to the absorption rate of the pion
by the nucleus. An upper bound of the absorption rateGabsof
a resonance below theN dissociation threshold is given by
the absorption rate of thesNsd state of pionic hydrogen. The
measured absorption width of thepps1sd anddps1sd states
are 865 and 1020 meV[5,6], corresponding to decay rates of
1314 and 1550 ps−1. Since it is proportional to thes state
probability density at the origin, it decreases as 1/N3 for
excited states. Consequently, the absorption rates of the reso-
nances below theN=2, 3, and 4 threshold are expected to be
of the order of 164, 50, and 20 ps−1 in the case ofppp, and
194, 57, and 24 ps−1 in the case ofddp.

For the resonances ofppp below theN=2 dissociation
limit, the nuclear absorption rate is much larger than the

Coulomb decay rate. Below theN=3 threshold, the two de-
cay rates are comparable, and the Coulomb decay rate be-
comes the leading one below theN=4 threshold. The radia-
tive decay rate that decreases withN remains negligible. As a
consequence, high kinetic energypp atoms can be produced
by the side path mecanism introduced by Froelich[9] from
the resonances below theN=3, 4 or higher thresholds. In the
case ofddp, the dominant decay channel remains nuclear
absorption for all the1Se resonances given here.

IV. CONCLUSION

In this paper, we have presented the calculation of the
bound levels and of the1Se resonances of muonic or pionic
hydrogen molecular ions. The results are obtained by diago-
nalising the three body Hamiltonian in a complex Sturmian
basis. The resonance energies and widths are given with an
accuracy in the 10−11 a.u. range, improving the accuracy of
previously published results. The Coulomb decay rate
strongly depends on the nucleus to muon(or pion) mass ratio
M /m; for the first J=0 resonance ofppm, this quantity is
divided by 444 if the proton is substituted by a deuteron.

We have computed the1Se spontaneous emission x-ray
spectra and obtained the radiative decay rates of the reso-
nances of the molecular ions. The radiative decay rate only
slightly depends on the mass ratioM /m. As a consequence,
for the first J=0 resonances, the main decay channel is the
Coulomb one in the case ofppm, whereas it is the radiative
one in the case ofddm. This result is consistent with the
recent experimental observations.

In the case ofppp, nuclear absorption is the main decay
channel for the1Se resonances below theN=2 dissociation
treshold, whereas Coulomb decay becomes comparable or
larger for resonances below higher thresholds. In the case of
ddp, the Coulomb as well as the radiative decay rate remains
much smaller than the nuclear absorption one.
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