PHYSICAL REVIEW A 70, 042506(2004)
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The bound levels and the resonan¢@sergy and width of the excited levelsf ppu-like exotic molecules
for J=0 total angular momentum have been computed with an accuracy in theal0. range, by numerical
diagonalization of the complex rotated Hamiltonian in a variational sturmian basis set. For the resonances
below theN=2 dissociation threshold, the x-ray spontaneous emission spectrum is computed from the wave
functions. The radiative decay rate of the first resonanqgeppfis found to be 0.0713 p$, close to half that
of a pu(2p) atom, as expected in a simple Born-Oppenheimer picture of a resonance.
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I. INTRODUCTION decay rate of theldu resonances is slower than thatpyu
by two orders of magnitude whereas the radiative decay rates

Recently, spectroscopy experiments on exotic atoms sucére comparable. As a consequence, the branching ratio to the
aspu [1] have been performed at the Paul Scherrer Instituté€oulomb decay channel decreases to a few percent, as was
(PSI). The exotic atoms are produced by sending muons in &rst noticed by Lindrott{4]. As a consequence, only a small
dense molecular hydrogen target. They are produced in vergmount of high kinetic energgiw atoms is expected, as was
excited stategN=14) and then rapidly decay down to the Verified experimentally. .
ground & state or the metastables 8tate. Of particular in- Pionic hydrogen spectroscopy experiments are also con-
terest is the metastabls &tate from which the 22p muonic ~ ducted at PS[5,6] to determine the strong interaction shift
Lamb shift could be measureg@]. Such an experiment is and absorption width of them(1s) level from the (Np)
only feasible if thepu(2s) population is large enough. Re- —(19) lines, N=2, 3 or 4. Thosepm atoms are produced
cently, evidence for the production pf.(2s) states has been from higly excited atoms through an atomic cascade during
obtained and interpreted,,3] as follows. which ppw resonances can be populated. The_ kn_owledge of

The 2 states have most probably been observed indithe sp_ectral properties of those resonances is important to
rectly through a quenching mecanism that involvesgpg ~ know if they can affect the measurgur line position and
resonances(excited states below th&=2 dissociation Shape. Indeed, radiative decay fronpaer resonance bound
threshold. It results in the formation of high kinetic energy by & few eV below thepmr(N) dissociation limit may shift
(=900 e\) pu(ls) atoms. Indeed, resonant collision be- down the x-ray line positi_on. In other respgcts, Coulomb
tweenpu(2s) atoms andH, leads to the formation oppg decgy ofppa;r resonances is one of the eff|c:|ent. processes
excited muonic molecules. The Coulomb decay of thosé®ading to high kinetic energps atoms that contributes to
resonances lying=1800 eV above theN=1 dissociation Doppler broadening of thew lines [6-§]. Of course, the
threshold may produgeu(1s) atoms with a kinetic energy in Coulomb and radiative rates of trpsp7_r resonances have to
the 900 eV range, corresponding to the narrow high energ§® compared to the nuclear absorption rate.

component observed on the kinetic energy distribution of, Sem SdeféFl)l(; ‘t’)"e pr(;aTentlthe fléllsghree-body calculaltion of the
pu(15) atoms in the PSI experiment. an ound levels andS® resonance complex ener-

In addition to the direct Coulomb decay chanpeiu* gies for theppy, ddu, ppr, ddm, anddtu molecular ions

— pu(1s) +p, the excited states of the muonic molecules carpelow theN=2 d|s§OC|at|((j)n “(;Tt]rl;{ _The k?olv\flledt%e of trrh'“t f
dissociate through the radiative chanp@* — pu+p+7y. resonances energies and widths is useful for the evaluation o

In that case, most of the energy is taken by the photon so thtge'r impact in the muon catalyzed fusion cy{%. Both the

pu atom and the proton only acquire a small kinetic energy‘resonance energies and widths obtained from the imaginary

For ppu molecules, the Coulomb decay channel is muchpart of _the_z complex energy are given. The accuracy of our
faster than the radiative one, the branching ratio to the Cour—es’UItS IS |mpr9ved by seyeral orders of magnltudg as com-
lomb channel being more than 97p4]. This explains why pared to previously published ones. We also discuss the
the quenching mecanism described above can be observégucfwre of the spectrum of resonances and of the wave
on the kinetic energy distribution of thgu(1s) atoms. In the unctions, and show that although the muon to progon

: ; : deuteron mass ratio is less than 10, the real part of the
case V\_/herq—lz IS SUbSt'tPed byD2, the du(2s) quenching energy of the resonances is consistent with a simple Born-
mecanism involves exciteddu molecules. The Coulomb

OppenheimerBO) picture. Of course, the widths of the
resonances are zero in the standard BO approximation, hence
the nonzero widths we obtained are a direct measure of the
*Electronic address: hilico@spectro.jussieu.fr breaking of the BO approximation.
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872
=

The radial function® verifies ®(x,z,y)=+®d(x,y,z) for

symmetric or antisymmetric statéB;,= +1). TheP° states

(J=1, II1=-1, P;,=1) and the®P° states(P;,=-1) can be

factored out using two orthogonal angular functions and only
FIG. 1. The radial coordinate$R,p,) in the three body ©One radial fU”C'[iOI”FMJ (x,y,2) as

plane.

PIOMSOR 1) = %q)(x,y,z). (2

- . 1
] . \If‘]_LMJ(R!r):,D?\.AJO(01¢!¢)|i<§+ ER)FMJ(Xayaz)
In Sec. Ill, we present the calculation of the x-ray emis-
sion spectrum of th&S® resonances and obtain their radiative 1
decay rates as well as the branching ratios between the Cou- (£ SRIFm,(xzy)

lomb and radiative decay channels. " "
, Diaa(619) - Dii(6.4:9)

=

II. BOUND AND RESONANT STATES V2

A. Structure of the wave functions Xp[FMJ(X,y,Z) + FMJ(X,Z,y)],

The energy levels and the corresponding wave functiongnere thep?, . functions are the matrix elements of the
of the Schrodinger three body problem are labeled by therotation o ereitor mutiplied by a factaf(2J+1)/872. The
guantum number$J,M;) related to the total angular mo- P P y ar R

Y . ffective Schrodinger equation satisfied by the radial func-
mentum and by their discrete symmetries, the pdritand € 13 1300 .
the exchange of the two nucl@l,. In [10], we have pre- UoNs® (for the S’ stateg andFy, (for the °P° state is
sented in detail the structure of the0 andJ=1 wave func- & 9eneralized eigenvalue problem for the enegghat takes

tions, and the Schrodinger equation they obey. In this sedn€ form
tion, we recall the essential points of this formalism in the Al®) = EB|®). (3)
case of homonuclear ions and apply them to the exotic mo-
lecular ions. We will use atomic units related to the lightest
particle, the muon or the piorM/m is the ratio of the
nucleus to the light particle masg, is the muonic or pionic
Bohr radius. 1. The bound states
The centered Jacobi coordinal®sandr depicted in Fig.

B. Numerical implementation

The linear problem3) is solved for the bound states of

1 represent the relative position of the two nuclei and that the molecular ions by expanding the wave function on the
their center of mass with respect to the lightest particle. Th%turmian basis set defined by

quantitiesP andp are the conjugate momenta, so the Hamil-

tonian writes ne.né.nf) =) ® nf) ® |nf), (4)
@ [p_z . M( 2, p_Z) o1 where|n$) represents the function
Ame@l 2 m 4) |Ri2-r] B (al) = (U™ = (= DM AL O( )2
n(au) =(un®) = (- D™eal, (au)e™=, (5)
1 1
- m + E] . (1) and WhereL;O) is a Laguerre polynomiah is a non-negative

integer,a” ! is the length scale in thedirection, 31 in they

To represent the dimensionless quantieandr, we use the ~andz directions. The matrices representing the operafors
three Euler angle$d, ¥, ¢) and two sets of radial coordi- andB are real and symmetric sparse banded matrices, where
nates(see Fig. 1 in Ref[11]). The first one igR, p,¢) where ~ all matrix elements are known in analytic forfd0]. The

{ is the projection ofr on the direction ofR and p generalized eigenvalue problef) is then solved using the
=\r?=2. The second one is the perimetric coordinate set-aNCZ0S algorithm that gives the eigenvalues in the energy

[12] defined from the three interparticle distances by range of interest as W(_all as the cprresponding Qigenvectors.
Because of the numerical truncation of the bdgiss< N, o
X=r;+r;-R, andn,+n,+n,=<Np,s9, the length scales™ and 3™ become
variational parameters. They are optimized to stabilize the
y=r;—r,+R, eigenenergies. Table | presents the0 and J=1 bound
states ofppu, ddu, ppm andddm as well as those ofitu.
Z=—r1,+1,+R. For the symmetric molecular ions, the mass ratiggm,

13 =8.88024408 andny/m,=17.75167454 are those given by
For the °S’ (J=0, M;=0, TI=1, P;,=+1) states, the the 1999 CODATA[13]. The proton(and deuteronto pion
angular part of the wave function is isotropitDg, mass ratios are obtained fronfil5] and are my/m,
=1/\872), so we write the wave function as =6.7225821,my/m=13.4384920. The muonic atomic en-
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TABLE Il. Comparison of thev=0 resonance gbpu given by

(muonic or pionig atomic units and corresponding binding energiesBailey and Frolov. For those calculations, we have usgdm,
in eV. v is the vibrational quantum number. The dissociation limits =8.880 244 401 338 54.
are obtained from the mass ratios MBgdN)=—(1/2N?)[1/(1

+M/m)]. See text for the values of the relevant mass ratios. Energy(a.u)
v Energy(a.u) Binding energy(eV) 1 -0.494 386 820 248 934 791 1 [19]
—0.494 386 820 248 92 This work
. ppu 3p°  _0.468 458 436 303 384 803 [19]
§ 0 -0.494 386 817 912 253.150 075 _0.468 458 436 303 38 This work
3po 0 -0.468 458 433 545 107.265 302
—0.449 393 962 745 diss. lim. N=1
2. The resonances
ddu ] ] ]
lce 0 -0.531 111 133 962 325.070 540 In the frame of the Born-Oppenhe|mer approximation, the
bound levels of the molecular ions are supported by the first
1 -0.479 706 378 902 35.844 227 . .
3po0 0 -0.513 623 954 981 926,679 792 1soy, ele_ctromc energy curve. Figure 2 shows the BQ curves
converging to the successiid=1, 2 and 3 dissociation
1 -0.473 686 732 637 1.974 985 thresholds of the molecular ion. They are labelled using the
—0.473 335 714 685 diss. lim. N=1 usual molecular terms and we have indicated the exact sym-
metries of theS® and P° resonances they support. In the
1 0 -0474 927 5557;76 204,859 440 lowest order BO approximation, the various electronic en-
e : ‘ ergy curves are not coupledl and the resonances appear as
P 0 -0.446 049 252 053 80.227 499 pound levels. In our calculations, the three body dynamics
-0.435 254 815 873 diss. lim. N=1 are fully taken into account, i.e., all the couplings between
BO curves are considered. Those couplings turn the discrete
N ddm excited states into resonances of finite lifetime.
S 0 -0.518 153 620 861 392.301 199 From the numerical point of vue, the resonances sup-
1 -0.467 493 120 397 15.777 106 ported by an excited electronic state of the molecular ion are
3pe 0 -0.497 298 725 502 237.301 338 embedded in the continua of the lower electronic states. They
-0.465 370 344 873 diss. lim. N=1 can be separated by using the complex dilation mef26¢
it It consists in multiplying the radial coordinates, and thus the
y
Sy 0 -0.538 594 975 061 319.136 818 0.02
1 -0.488 065 357 852 34.834 430 003 [
po 0 -0.523 191 456 316 232.469 683 = 3
1 -0.481 991 529 974 0.660 338 5 00T
~0.481 874 166 748 tu diss. lim. N=1 N=3 500
% 0.06
ergy unit is 5626.450561 eV, and the pionic one is 007}
7432.301093 eV. For thétu calculations, we have used the 008
mass ratios of the 1986 CODATA4] m,/m,=206.768262, '
my/m,=3670.483014 andn,/m,=5496.92158. Because of o
the slighlty different muon mass, the muonic atomic energy
unit is 5626.450461 eV in the case difu. o1
In the case ofldu anddtu, we obtain twoP° levels, the 3 02|
excited one(v=1) being very sligtly bound by 1.97 eV or N=1,2 T .0sf
0.66 eV. We have searched that level flokr by varying the g oT
basis size as well as and 8. Even though the muon and g 41 ]
pion mass only differ by 25%, we can conclude that most 05 ‘V T
probably thev=1 3P° level of dd= does not exist, and thus ok e S ]
that we have obtained all tH&* and P° bound levels of the o0 5 10 15 20 25 30

. internuclear distance R (a.u.)
molecular ions.

In Table II, we compare theS® and °P° bound states of FIG. 2. Born-Oppenheimer electronic energy curves below the
ppu computed using our method in FORTRAN double pre-N=2 andN=3 thresholds. The binding curves are plotted with solid
cision to the results given by Bailey and Frolfi6] at the lines. They are labeled by the usual molecular quantum numbers.
10 a.u. accuracy level. The results are in perfect agreewe also indicate the exact symmetries of #s® and »3P° reso-
ment. In the case aftu, our results compare well with those nances they support. Thalg, curve only supports states of total
given by other group$§l6-19. angular momentum greater than 2.
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TABLE Ill. 1S®resonances gbpu, ddu, anddtu under theN=2 threshold. The real and imaginary parts of the complex energies are in
muonic atomic units. The corresponding binding energies and Coulomb width are in eV anbigeeM!I’, are the Coulombic and radiative
decay ratesY ,=I',/(I';+I",) is the branching ratio between the two decay channels. The resonances belw2fieespectivelyN=3)
threshold that are labeled by a vibrational numbere supported by thedd, (respectively §oy) BO curves. Numbers in brackets denote
powers of 10.

Re(E) (a.u) E, (eV) Im(E) (a.u) hl'e/2 I'e r Y

v y y
ppu (meV) (S (p9™*
0 —0.146 404 680 88 191.615 470 1.543] 0.851 2.587 0.0713 0.027
1 -0.128 885 489 08 93.044 604 2.623] 1.477 4.487 0.0609 0.013
2 -0.118 028 794 48 31.959 948 2.062] 1.160 3.526 0.0569 0.016
3 -0.113949 703 23 9.009 143 6.158] 0.346 1.053 0.0571 0.051
4 -0.112 844 246 53 2.789 346 1.948] 0.109 0.332 0.056 0.144
5 -0.112 504 563 6 0.878 137 6[13] 0.035 0.105
—-0.112 348 490 69 dissociation limit=2
ddu (neVv) (P9t (B
0 -0.157 099 321 63 218.111 567 3.4410] 1.919 0.0058 0.0804 0.932
1 -0.142 377 329 00 135.279 003 1.039] 5.801 0.0176 0.0708 0.801
2 —-0.131 302 505 83 72.967 058 1.630] 9.171 0.0279 0.0648 0.699
3 -0.124 003 892 20 31.901 769 1.459] 8.175 0.0248 0.0621 0.714
4 -0.120576 317 12 12.616 688 6.6740] 3.755 0.0114 0.0619 0.844
5 —-0.119 277 925 05 5.311 349 2.9340] 1.640 0.0050
6 -0.118 738317 42 2.275 273 1[2170] 0.715 0.0022
7 —-0.118508 324 99 0.981 232 pA1] 0.309 0.0009
-0.118 333928 67 dissociation limi=2
dtu (neVv) (S (S
0 -0.159194 52479 217.889 825 1.7420] 0.98 0.0030 0.0731 0.96
1 -0.145 303 272 20 139.731 381 4.9470] 2.373 0.0072 0.0729 0.91
2 -0.134 531 308 61 79.123 461 5.79&0] 3.262 0.0099 0.0638 0.87
3 -0.126 977 943 64 36.624 828 5.0530] 2.843 0.0086 0.0630 0.88
4 -0.123573012 24 17.467 150 1.4210] 0.800 0.0024 0.0601 0.96
5 -0.122 499 264 57 11.425 762 5.8791] 0.331 0.0010
6 -0.121 758 063 06 7.255 428 1[430] 0.805 0.0024
7 -0.121 10483112 3.580 051 [-8L1] 0.281 0.0009
-0.120 468 541 69 tu dissociation limit,N=2
(meV) (po™?
0 -0.119 224 582 64 5.011 219 1.123] 632 1920
1 -0.118 748 636 2.3333 5.5993%] 315 956
2 -0.11853 1.1 B-5] 169 513
-0.118 333928 88 du dissociation limit,N=2

perimetric coordinates bg?. The complex dilation method as stationary complex eigenvalues of the Schradinger equa-
is straightforward to implement from the bound state calcution. The real and imaginary parts give the enekjyand
lation since it simply consists in turning the inverse lengthCoulomb widthI'¢,, of the resonances, i.e.,

scalesa and B into ae™? and Be'? in the definition of the
basis functions(5). The matricesA and B become non-
Hermitian complex symmetric sparse banded matrices. Nu-
merically, we observe the well known properties of the com-
plex dilation method. The bound levels are unchanged, beingables Il and IV present th& complex energies oppg,

the real eigenvalues of the problem. The continuous speddu, ppm, ddm, anddtu, in atomic units and also in eV. The
trum is rotated out in the complex plane by an angte 2 convergence of the complex energies is obtained for rather
around the consecutive thresholds. Provided the rotatiolarge domains in the variational space. Rdy,sc—92 and
angle is large enough to uncover the resonances, they appedy =20, the'S® basis for homonuclear ions contains 37234

i
Eres: Er - EFCOUI- (6)
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TABLE IV. The same as Table Ill but foppm anddd, under theN=2, 3 and 4 dissociation thresholds. Numbers in brackets denote
powers of 10.

v Re(E) (a.u) E, (eV) Im(E) (a.u) A2 I'; r, Y,
ppm (meV) (P9~ (P9~
0 -0.140590 327 83 236.173 436 1.993] 1.481 4501 0.0879 0.019
1 -0.122 288 143 62 100.146 093 2.588] 1.923 5.845 0.0745 0.013
2 -0.112 39581061 26.623 295 1.283] 0.955 2.902 0.0716 0.024
3 -0.109723714 44 6.763 472 3.078] 0.229 0.695
4 -0.109 058 741 50 1.821 193 8.266] 0.061 0.187
-0.108 813 703 97 dissociation limi=2
0 —-0.064 343 477 84 118.781 785 8.949] 6.131 18.63
1 —-0.057 884 439 37 70.776 266 1.46e8] 10.42 31.66
2 -0.053 193463 30 35.911 519 1.368] 10.13 30.78
3 -0.050529 763 27 16.114 099 7.422] 5.516 16.76
4 -0.049 37287261 7.515 739 3[#7] 2.765 8.40
—-0.049 099 229 97 5.481 945 1.126] 8.332 25.32
-0.048 361 646 21 dissociation limi=3
0 —-0.036 370 450 93 68.132 089 2.606)] 19.33 58.74
1 -0.033 476 493 39 46.623 326 5.246] 38.72 117.7
-0.031 427 31.39 3.286] 24.4 74.1
—-0.031 139 889 80 29.256 984 6.228] 46.28 140.6
-0.029484 517 12 16.953 756 5.268] 39.15 118.9
-0.027 203 42599 dissociation limi=4
ddm (nev) (p9~* (P9~
0 -0.153 380951 59 275.280 283 6.679] 49.64 0.1508 0.1023 0.404
1 -0.137 442 61599 156.821 774 1.p98] 96.546 0.2933 0.0887 0.232
2 -0.126 156 476 60 72.939 788 1.378] 102.12 0.3103 0.0812 0.207
3 -0.119 853579 63 26.094 760 7.299] 54.189 0.1647 0.0795 0.326
4 -0.117 619574 60 9.490 962 2.%99] 19.302 0.0586
5 -0.116 826 878 60 3.599 407 9[910] 7.365 0.0224
6 -0.116 528 288 78 1.380 197 3[(810] 2.832 0.0086
-0.116 342 586 22 dissociation limi=2
(meV) (p9™?
0 -0.069 812 728 24 134.561 158 5.148] 0.380 1.154
1 —-0.064 423 052 48 94.503 465 1.3%5] 1.022 3.105
2 —-0.060 015 896 48 61.748 155 2.173] 1.615 4.907
3 —-0.056 643 259 48 36.681 701 2.383] 1.775 5.393
4 —-0.054 448 729 54 20.371 294 1.757] 1.306 3.968
5 -0.053 253 062 55 11.484 737 1.069] 0.795 2.414
6 —-0.052 590 753 3 6.562 255 6.518] 0.484 1.471
7 -0.052 215555 4 3.773 671 3[8%8] 0.286 0.869
8 -0.052 000617 5 2.176 188 2[26)] 0.168 0.510
-0.051707 816 10 dissociation limi{=3
0 -0.039318 541 03 76.053 953 8.918] 0.663 2.014
1 —-0.036 955 341 63 58.489 943 2.143] 1.594 4.843
-0.034 901 809 23 43.227 472 3.227] 2.395 7.276
—-0.034 056 722 42 36.946 533 3.474] 2.583 7.850
-0.033174 92041 30.392 715 3.789] 2.816 8.557
—-0.029 085 646 55 dissociation limi=4

vectors. The domain is bounded by &x=<1.3, 0.3<p curacy of the previously published results by several orders
=< 1.5, the higher excited states being obtained near the lowef magnitudg3,4,8,21,22. In the case ofltu, our resonance
bound of the domain. The rotation angle is of the order ofenergies are in agreement with those given by HaH.

0.2. All the results presented here are well converged andlolstikhin [23] and Mil'nikov [24] have recently published
have been rounded at the™1ba.u. level, improving the ac- J=0 resonance complex energies difu below the n=2
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TABLE V. List of the binding Born-Oppenheimer energy curves 10"
converging to the dissociation limiN. A is the static atomic dipole. 4
S is defined by Eq(7) and is evaluated in the case 18 ppu 3 . ®ddp
resonances. The theoretical valueséafompare well with the nu- 8 g2 L . A
merical ones fitted from the binding energies of Table IlI. 3 s e
@
c N
N A 5 Fitted & §> S ™
S 10° : .
1 150'g 0 o \‘A\ .
2pm, 0 ’ b
2 2pm, 0 o N
0 2 4 6 8
3dag 3 1.223 1.196 Vibrational quantum number
Af o, 3 1.223
3 3ddy 0 FIG. 3. Binding energies of the resonancespgjx (triangles

afm, 9/2 0.997 and ddu (squarey below the N=2 dissociation limit versus the
vibrational quantum number. The logarithmic vertical scale shows

4d 0

59;:2 9/2 0.997 the exponential decrease of the binding energies with

5goy 9 0.704 0.674

6hor, 9 0.704 deed, thosé'S® resonances are supported by thar 3 BO

curve that has a static dipoke=3. Fitting the curves of Fig.
3 for v=3, we obtain the decay factors 1.196 fopu and

- . . . .851 forddu, in good agreement with the values 1.223 and
threshold, pointing out large discrepancies on the width o r‘1§63 predicted from Eq7).

the resonances as compared to previous results. The prese The couplings with the continua result in a finite lifetime

x%rtisciﬂg;mzbg;ma;%elzmci)l:g\rﬁgeicfgrzce:y,cghrﬁpgzoolnz?g%lat.ed to the width of the resonances given by the complex
2Im(E) from Table Il and the width denoted 90 in qnauon method. .When the pro'ton is replaced by a deuteron
in the molecular ions, the physical situation gets much closer
[23-23). to the BO approximation. As a consequence, the width of the
3. Structure of the resonance spectrum 1s® resonances below thid=2 threshold dramatically de-
. creases by 2 or 3 orders of magnitude as can be seen in
The structure of the resonance spectrum we have obtain bles Il and IV. One can notice that the lifetime of the

can be q.ualltatlvely u'nderstood in the frame of the Bom'muon(z.z,us) and of the charged piof26 ng correspond to
Oppenheimer approximation, even though the proton t?/vidths of respectively % 1014 and 1.7< 102 a.u.. smaller
muon (or pion) mass ratio is not much greater than one. b y ) e

More precisely, we now show that the structure of the resoEhan the Coulomb widths we_have_ o_btam_eql. . . .
In the case ofdtu, each dissociation limit is splitted in

nance spectrum is consistent with the simple picture where B0 parts. the lower corresponding tota atom and the
resonance level below the dissociation threshold appears highgr o :a du atom. The resgnancegs lyi r?g between the two
as apu atom of principal quantum numb&t polarized by . o L ;

: issociation limits have very large widths of the order of
the field of the second nucleus. In that cgse, the long rang eV For such a level. the b)i/ndingg energy to the upper limit
behavior of the BO curves is given byA*R¢, assuming the ! S ' 2
static atomic dipoléA is not zero. The spectral properties of and the kmetlc.energy above the lower I|m|t.are of the same

order of magnitude. As a consequence, this wave function

this kind of potential are discussed [26,27 and one can ) , O
show that ify=< % there is no bound state and that othervvisehaS a large Qverlap with the continuum states, resulting in a
Y=2 strong coupling and thus a large width.

the binding energies follow an exponential decay law given In the simple BO picture of a resonance level, the elec-

by tronic part of the wave function of a resonance below the
Eb— Ebe_zm,/\fm: Ebe-dv %) N=2 threshold(i.e., the dependance an must be that of a
v 0 o= pu(N=2) atom in the(quas) homogeneous electric field of
where ¥=2MA, M being the reduced mass of the two the proton, that is the antisymmetric combination of the
nuclei in units of the light particle. The same exponential law2sy,-o and Z-o hydrogenic orbitals around one nucleus,
also stands for the widthf28,29. If A=0, the electronic symmetrized with respect to the two nuclei. We denote it
energy curve varies as R7 for largeR, and there is only a —
finite number of levels. Table V gives the long range prop- &) =[pasrd) + eadr2) V2, (8)
erties of the binding BO curves and compares &hactor
defined by Eq(7) in the case oppu with the § values fitted
from the ppu resonance positions given in Table IlI. )= ) — V2
The binding energies of thts® resonances below the Padli) = [@2,0d11) ~ @2,1,dr)IN2. 9
=2 dissociation limit given in Table Il foppw andddw are  The rotated wave function of a resonant#X%6y), is a
plotted in Fig. 3. They decrease exponentially with the vibra-square integrable function. For an isolated resonance close to
tional quantum numbes as expected in the BO model. In- the real axis, it is related to the unrotated wave function by

where
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Div,-1(6.4,6) = Diy 10,4, ¢)

— l*
1ol (a) | rMJ_DMJO(01¢1¢)§+ \2 p
T (12
8 \ ) %0 -
__§a From the Fermi golden rule, and summing over all the direc-
P % tions of the emitted photons, we obtain the decay rate per
%0, nit photon energyor x-r trum for th mponent
unit photon energyo ay spectrum for the compone
4\0. OH MJ:
__\O,
[ dl'y q 4 (hw)®
2F J — —(1+ 2 2 \I,l,MJ E)lr \1,0, 2'
\[W d(ﬁw) 47T803( 6) 733 a0|< ( )| MJ| U(M
% 2 (13
' ' ' ' ' wherefiw is the photon energy and whepgMi(E)) is the
\0 (b) 1p° continuum state of energf=E;—%w, normalized per
10\. e ] unit energy. From the Wigner Eckart theorem, the quantity
T, (WMiry, [WD%) does not depend oM. Consequently, the
8'_\0 ' total radiative decay ratE, of the 1$® resonant state writes

[

[ dry
ry_3f LR (14)
0

B. The calculation

o 3 2,
3‘ 1 The numerical calculation of the square modulus of the
4 matrix element involved in the x-ray spectrum3) follows
the method outlined by Recsigno and McK@0]. In that
FIG. 4. (a) Contour plot in the(Z, p) plane of the electronic part  expression, the resonance wave functj'rmﬁ’% is related to
of the ppu v=0 resonance below thg=2 threshold(b) Contour  the numerical complex rotated wave functiph®®(6g)) by
plot of the approximate electronic wave functigff (see text £ Eq. (10). It is obtained using optimized variational param-
andp are defined in Fig. 1. etersag, B, andfs, |[¥LE)) is a continuum level. It has a
long range oscillatory behavior completely different from
W20 = R(- 69)[¥(69)), (100  that of the quasibound resonant state. Using the complex

. ) . rotation method, it appears as a complex continuum eigen-
whereR(6) is the complex rotation operator. The electronic ¢ ntion of the LP° Schrodinger equation. Because of the

probability density is given by R& |¥;%(69)°]. In Fig. 4, numerical truncation of the basis, it is well converged for

the comparison of the wave function of the 0 resonance of  gptimized variational parametergs, Bp, and 6p different

ppu below theN=2 threshold with the predicted wave func- from those of the resonant level.

tion |£(r)|? confirms that a resonance state can be seen as a Expanding the square modulus involved in E&3), we

pu atom polarized by the field of the second nucleus. introduce the projection operator onto the° subspace of
energyE. It can be expressed with the Green function of the
rotated Hamiltoniarj31] as

]
=

=)
N
IS
[+
®
-

Ill. RADIATIVE DECAY RATES

A The decay rate WM E)LM(E) = i(R(— o) R(p)
The S resonance levels can decay via spontaneous emis- 2im H(6p) - E
sion since they are coupled to the° continua by the photon 1
field. This decay channel has three componekts=0 - R(Hp)mR(— 9p)>-
—M;=0, 1. For a symmetric molecule and in the dipole P
approximation, the coupling operator is (15)
d=qay(l+er, (11)

Inserting Eqs(10) and(15) into Eqg.(13), and using the fact
wheree=1/(1+2M/m). The standard componentsrofvrite  that the two terms are complex conjugate, we obtain
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dr, 4 (fiw)? { 1 ] '
=—(1+e? 3 -=1 E)| (16 @

Gy =31+ aE |~ IMQu(E) | (16 o at

where Q,, (E) is the dimensionless two-photon transition

matrix element we have introduced [ihil]. Using the rela-

tion R(A)r,R(-6)=¢€"’r,, we obtain

g

upp 24

q2

4’778030

X-ray spectrum (ps - keV™")
2 .

Qu(2)= (WIA69|R(6s~ 0p)

A 15 2 25
é%r R(0p - 69)[WO(69)). _photon energy (keV)

2 ®) pndd

xr,gfr

z-Hp(6p)

v=2

(17)

The expressiomllfg'o(asﬂ means that we only have to trans- L5 ¢

pose|¥29(4y)), without complex conjugation.

C. Numerical calculation

X-ray spectrum

The numerical calculation of the complex matrix element 05 L
Q,, is very similar to what we have explained fihl]. We
only give details on the additional step, applying the com- 0 . .
plex rotation operator on the resonance wave function. From L6 17 1.8 L9
the numerical point of view, the resonance eigenvectors and photon energy (keV)
the 'P° Hamiltonian are expanded on two Sturmian bases,
defined in Eq.(4), with different variational parameters symmetric molecular ions and db) thev=0, 1, and 2 resonances
(as"BS? and((.xp,,.Bp)..We thus.halve to perform a baS'S trans- ¢ ddu below theN=2 dissociation limit. The x-ray spectra are
formation which is simply a dilation by a factaip/asinthe  given by 3dry/d(hw)]; see Eq.14). The photon energies corre-
x direction andBp/ Bs in they andz directions. The dilation  sponding to the maxima of the spectradfy are, in eV,(1760),
operator Is (1855,1789 and (1920,1890,18009for v=0, 1 and 2. The corre-

sponding values for ddw are (2290, (2427,2332 and
DX(aP/aS)Dy(BP/BS)DZ(BP/BS)! (18) (2515,2474,2350

FIG. 5. ' x-ray spectrum ofa) the v=0 resonances of the

whereD,, is the dilation operator in the direction given by
Dy(8) = N o Udn+1/2) (19) ciation limit N=2. They are plotted in Fig. 5 for the case of
ppr and ddu versus the photon energy. The high energy
The complex rotation operat®(6) in nothing but a dilation threshold is determined by the resonance position above the
by a factore?. Consequently, the basis transformation andN=1 dissociation limit. The shape of the x-ray spectrum is
the complex rotation can be taken into account into@d)  given by Franck-Condon factors that reveal the nodal struc-
substituting the complex rotation operaf(d.— 65 by the ture of the wave functions. For low energy photons, the x-ray

complex dilation: spectra vanishes because of small Franck-Condon factors
i i it and because of the® factor in Eq.(13).
D (ape ) (ﬁp? )D (BP : ) ) (20) The radiative decay rates defined by Ety) are obtained
\age?s) 7\ Be?s) "2\ peel®s by numerical integration of the x-ray spectrum over the pho-

The numerical implementation of this operator is straigthfor-ton freque:ncy. The results are given in column 8 of Tables Il
ward since the matrix elements Bf, on the basis functions and .IV' with an accuracy 10 times better tha_n those rec_ently
(5) are known as published by Lindroth and co-workef4]. The f|r§t compari-
son of our results to those of Ref4] has pointed out a
n+n’ missing mass ratio of about 4 in those results. Our radiative
) decay rates are now in excellent agreement with the cor-
rected results of Lindroth given in the Erratupd]. This
SEl —penr1— 1 (21) make us confident on those results. _
' oyl In Sec. Il B 3, we have shown that the electronic part of
sint? 5 the wave function of a resonance below Me?2 threshold is
very close to that of the antisymmetric combination of tse 2
where the hypergeometric functidf(a;b;c;z) is a polyno- and 2 hydrogenic orbitals. In that picture, the resonance

—(n+n’+1)
(n|Dy(eMIn’) = (- 1)“<cosh%) <sinh%/

mial of degree mitn,n’) [32]. radiative decay rate should be close to half that of the 2
_ _ level of the atom built with one nucleyproton or deuteron
D. Results and discussion and the exotic particléu or ). It is given byT',,=(28/39)

We have computed the x-ray spectrum for the fiiSt  x(Me'%#%3) wherem is the reduced mass of the light par-
resonances of the different molecular ions below the disscticle. One can observe that the radiative widths of the reso-
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TABLE VI. Comparison of the decay rate of the=0 'S*reso-  Coulomb decay rate. Below tHé¢=3 threshold, the two de-
nance of the molecular ions with half the decay rate of thdeRel cay rates are comparable, and the Coulomb decay rate be-

of the corresponding atom. comes the leading one below ths=4 threshold. The radia-
_ tive decay rate that decreases whtlemains negligible. As a
ion T, (psh atom [pp/2 (psh consequence, high kinetic energy atoms can be produced

by the side path mecanism introduced by Froeli@hfrom

PP 0.0713 Pr 0.0582 the resonances below tine=3, 4 or higher thresholds. In the
ddg. 0.0504 du 0.0613 case ofddm, the dominant decay channel remains nuclear
ppm 0.0879 pm 0.0745 absorption for all thé'S® resonances given here.

ddm 0.1023 dm 0.0797

dtu 0.0731 (973 0.0624 IV. CONCLUSION

) In this paper, we have presented the calculation of the
nances of the molecular ions below the=2 threshold we  pound levels and of th&s® resonances of muonic or pionic
have obtained hardly depend on the vibrational quantunyqrogen molecular ions. The results are obtained by diago-
numberv. Table VI shows that they compare well with the 3iing the three body Hamiltonian in a complex Sturmian
gégzc'[ergtggl“%gézl; Fr\cl)vr(r; Lh;ﬁ,é:?;lélr?]m.?t:ﬁhtgeb::gmxe basis. The resonance energies and widths are given with an
ratio 3,[’0 the racdiative é’ecay chann\él;le /(Te+T.) 9 accuracy in the _1T}1 a.u. range, improving the accuracy of

In the case ofppu, this ratio is of tﬁe ocrderyc;f a few previously published results. The Coulpmb decay_ rate
percent because the Coulomb decay is much faster than t trlomnglfi/)rdfﬁg?g:&[?i;&ﬂgﬁ?orggznrt’;ﬁ? g:;?;?citr;t;g

radiative one. In the_case afoj. or dt’“’.th.e situation s divided by 444 if the proton is substituted by a deuteron.
reversed and the radiative branching ratio is can be as large L
We have computed th&® spontaneous emission x-ray

as 93% for the =0 ’S" resonance afidu. The mean branch- spectra and obtained the radiative decay rates of the reso-
ing ratio to the Coulomb channel is 20%didw and 96% in P . cay
nances of the molecular ions. The radiative decay rate only

ppu; this result is compatible with the observations of the_Slightly depends on the mass ralb/m. As a consequence,

PSI experiments where the high kinetic energy component 5 . . )

. : or the firstJ=0 resonances, the main decay channel is the
about 4 times smaller fau than forp/.L. The formation of Coulomb one in the case @fpu, whereas it isythe radiative
ddu* excited molecules during collisions betweelp(2s) one in the case ofldu. This résult is consistent with the
atoms andD, should be observable through its x-ray emis- recent experimental observations

sion spectrum, depicted in Fig. 5. In the caption, we give the In the case opp, nuclear absorption is the main decay

p_hoton energies corresponding to the maxima of the CMIShannel for the'S® resonances below thd=2 dissociation
sion spectra of the resonancesdafu as well as the corre-

sponding ones fodd treshold, whereas Coulomb decay becomes comparable or
P 9 - larger for resonances below higher thresholds. In the case of

ecJIZ: r?;\gotg]tt));r(;gnr*nade;?:(\j/?odti%agt)rggr}Sti(gr;[r::tgIg?lt(r:]énoil(;ddw’ the Coulomb as well as the radiative decay rate remains
P P PI9%uch smaller than the nuclear absorption one.

by the nucleus. An upper bound of the absorption Fatg of
a resonance below thé dissociation threshold is given by
the absorption rate of théNs) state of pionic hydrogen. The
measured absorption width of ther(1s) and dw(1s) states The authors wish to thank D. Delande and B. Grémaud
are 865 and 1020 me}b, 6], corresponding to decay rates of for fruitful discussions and also for providing us the Lanczos
1314 and 1550 ps. Since it is proportional to the state  diagonalization code. The authors also thank E. Lindroth and
probability density at the origin, it decreases adNifor  J. Wallenius, as well as V. Korobov, D. Taqqu, F. Kottmann,
excited states. Consequently, the absorption rates of the resB- Indelicato, and T. Jensen for stimulating discussions. We
nances below thdl=2, 3, and 4 threshold are expected to beare grateful to IDRIS, which has provided us with many
of the order of 164, 50, and 20 Psin the case oppm, and  hours of computation on large memory computer facilities.
194, 57, and 24 ps in the case ofid. Laboratoire Kastler Brossel de I'Université Pierre et Marie
For the resonances qfpw below theN=2 dissociation Curie et de 'Ecole Normale Supérieure is UMR 8552 du
limit, the nuclear absorption rate is much larger than theCNRS.
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