PHYSICAL REVIEW A 70, 042503(2004)

Functional derivative of the universal density functional in Fock space
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Within the framework of zero-temperature Fock-space density-functional thieéry), we prove that the
Gateaux functional derivative of the universal density functioﬁﬁh[p]/ap(rﬂp:po, at ground-state densities
with arbitrary normalizationg(po(r))=ne R,) and an electron-electron interaction strengthis uniquely
defined, but is discontinuous when the number of electropscomes an integer, thus providing a mathemati-
cally rigorous confirmation for the “derivative discontinuity” initially discovered by Perééwal. [Phys. Rev.

Lett. 49, 1691(1982]. However, the functional derivative of the exchange-correlation functional is continuous
with respect to the number of electrons in Fock space; i.e., there is no “derivative discontinuity” for the
exchange-correlation functional at an integer electron number. For a ground-state ﬂg;hsmy)f an external
potentialv(r), we show thaﬁF)‘[p]/5p(r)|p:p8,;=,ugM—v(r), where the constantg,, is given by the following
chain of dependencegij(r)—[v]— E§™(n)— udy=E§ (K)/ dKliepn. Here[v] is the class of the external
potentialv(r) up to a real constant, ane,, is the chemical potential defined according to statistical mechan-
ics. At an integer electron numbaét, we find that there is no freedom of adding an arbitrary constant to the
value of the chemical potentiadg'M, whose exact value is generally not the popular preference of the negative
of Mulliken’s electronegativity, %(I +A), wherel andA are the first ionization potential and the first electron
affinity, respectively. In addition, for any external potential converging to the same constant at infinity in all
directions, we resolve thath:—I. Finally, the equalityuper=pugy, is rigorously derived via an alternative
route, whereuper is the Lagrangian multiplier used to constrain the normalization of the density in the
traditional DFT approach.
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|. INTRODUCTION Flp]+ (w(r)p(r) + uoer (p(r)) = N], (1)

The functional derivative of the universal density func-
tional F[p] plays an important role in density-functional Where(f(r)) is a shorthand integration notation of a function
theory (DFT) [1-55. f(r) over the entire space of, [f(r)dr. It is tacitly assumed
On the one hand, mathematical theorems of the existendéat the functional derivative
of this functional derivative at ensemhlerepresentable den-
sities of wave functions in aN-particle Hilbert spac]ewere
proved by Englisch and Englisdi0], by Lieb[11], by van SFlp] 2)
Leeuwen([12], and by Lindgren and Salomons¢h3]. An op(r)
important technical feature in their approaches is the fixed

number of electrong7-13, although the normalization of gyists for the expanded variational domain, while referring to
the density during the variation can vl0-13. Thereis an  ho apove-mentioned theorems for a fixed number of elec-
e_pr|C|t method for keeping the normal!zatlon of the densityrons in Hilbert spacé10-13.
fixed [7,14), but it has not been extensively used in DFT. If the Lagarange multiplier method is used, the universal
On the other hand, the traditional method of imposing theyensity functional should be defined for densities with an
normalization is a subtle or{@,13. During the variation of 5 pitrary normalization, corresponding to wave functions in
the density-functional energy expression, the normalizatiofygc space, where the above-mentioned theorems of Hilbert
of the densityp(r) is allowed to vary, with an additional g5506 are not directly applicable. Thus, the traditional justi-
!_agranglan multiplier term to acc_ount for_the const_ramt t0 a%ication of the Euler-Lagrange equation in DFT is logically
integer electron numbeX at the final stationary point: inconsistent, because the forms and properties of the various
density functionals might be different in Fock and Hilbert
spaces.
* Corresponding author. Electronic address: yawang@chem.ubc.ca There are several motivating examples beyond the justifi-
Hereafter for conveniencéfilbert spacewill be used to signify ~ cation of the Euler-Lagrange equation. A variable normaliza-
any formulation built upon wave functions of a fixed number of tion of the density reflects a physical situation with a variable
particles, whileFock spacewill be utilized to describe other for- number of electrons. In the DFT literature, there are several
malisms constructed from wave functions of a varied number ofresults related to the notion of functional derivatives that are
particles. Technically speaking, the fermionic Fock sp#gds a  of questionable validity, from a mathematical point of view:
fermionic Hilbert space made from the direct sum of antisymme-the “exchange-correlation derivative discontinuifit6—34,
trized tensor productd/N of the single-particle Hilbert spaces the so-called “Janak’s theoremi31-37, the set of homoge-
[56]: F1=&7_oHN, with HN=AH®N for the antisymmetrizeA. neity relations “proved” by Parr and Li{41,43, and the
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value of the chemical potentidgl,12-17,42—4B Concerns cally all but a finite number of the coefficienfs,} are zero.
were raised in all of the three cases, but the analysis wal addition,
perplexed due to the unknown nature of the functional de-
rivative in Fock spacé¢l3,37,41.

Particularly, the so-called “exchange-correlation deriva- "
tive discontinuity” has drawn quite considerable attention re- 9_
cently [16—30. In the past, there was an earlier attempt to > |Cp| =1
construct a discontinuous functional by Levy and co-workers
[16]. Later, an alternative nonvariational approach became
popular, in which one would try to directly incorporate the
assumed discontinuous behavior into the exchange-In the following, density matrices are used instead of wave
correlation potential. The major proponents of this later apfunctions to account for possible degeneradie$,11,12.
proach are Tozer and co-workef25], Casida and co- The kinetic, electron-electron repulsion, and nuclear-electron
workers[26], and Baerends and co-worke7]. Although  attraction operators faX electrons are
these types of exchange-correlation potential often have em-
pirical parameters, they are of paramount importance in
time-dependent DFT, response property, and NMR shielding N N
constant calculations and in obtaining the exchange- ~ 1 2 i a
correlation potential from the densif25-30d. The works by T=- 52 v > ' (5
Tozer and otherg25-3Q further suggest that theeal
exchange-correlation density energy functionals should be
designed such that their approximate exchange-correlation
potentials should average between the electron-deficient and

(4)

p=1

electron-abundant limits, in accordance with the vapgcial A N 1
value of the chemical potential as being the negative of Mul- Vee= S (6)
liken’s electronegativity [7,15-17,36,48,57,98 Unfortu- ==

nately, there are already at least six different values for the
chemical potential within the present DFT framework
[7,12-17,42—-4B Moreover, the backbone of the “exchange- gnd
correlation derivative discontinuity” argumenii$6-3Q re-
lies heavily on the exact value of the chemical potential.
Naturally, one would like to ask the following questions:
Which one is the exact value for the chemical potential? A N
Does the exact value for the chemical potential differ from ne= 2 v(ry), (7
the one commonly employed in the theory of the “exchange-
correlation derivative discontinuity[16—30? What are the
consequences if they are indeed distinct?

We set up our goal to resolve all of these issues in thigespectively. For generality, we will allow the electron-
paper. In the following sections, we will adopt the finite- ejectron interaction to be of an arbitrary strenythetween 0

temperature generalization of DF4] to fractional electron anq 1, and we will only consider those total electronic
numbers[18-23,38-41Q) and based on this, we will extend yamiitonians

the results of Englisch and Englisdi0], Lieb [11], van

Leeuwen[12], and Lindgren and Salomonsb3] from Hil-

bert space to Fock space. In the end, our arguments will

unambiguously provide a comprehensive, coherent, and con- HOA = T4+ \Vout VU, (8)
sistent understanding of the functional derivative in Fock ee e

space, the value of the chemical potential, and the functional

derivative discontinuity.
which have eigenvalues bounded from below.

Il. TRADITIONAL HILBERT-SPACE DFT The universal density function&[ py] with an electron-
The spinless ensemble density matrix foelectrons i§  electron interaction strength is defined by Levy’s con-
strained search methd8,6,11,12 as

6N: > 2Cp|\Pp(r1‘Tlv---erUN)><‘Pp(r:,lo-11---url,\IO-N)|y

o1,...,0N P=1
&) Flpnl= inf FByI= inf T (T+\Ve)Dy], (9

where{W(ryoq,...,ryoy)} are normalizecdN-electron wave Dn—pn Pn—en
functions with electron at positionr; with spin ¢; and typi-

?The Dirac notation will be used wherever possible, unless otherwhere the universal density-matrix functiorf@t[Dy] with
wise noted. an electron-electron interaction strengths defined as
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FADy] = Tr (T + AV, Dy ]

o N
1
= 2 |Cp|2 - 52 <‘I’p(r101,---,"N‘TN)|Vi2|‘I’p(r1‘T1, ---,VNUN)>
p=1 i=1

1
“pr(l’lo'l, ...,rNO'N)> . (10)
Iri=rjl

N N
+ )\2 E <q,p(r1011 erO-N)

i=1 j>i
The expression
Dy — pu (11)

under the sign of infimization in Eq9) means that the search in the density matrif)gs’s constrained to those yielding a
given densitypp(r):

o0 N
pn(r) = Tr[ﬁN(r)DN] => |col?\ Wp(rioq, ..., Inow) > 8r-r) Wo(roq,....Tnow) /, (12)
p:]_ i=1
[
wherepy(r) is the N-particle density operatoEiN:léW(r -r;). Refs.[10-13,59 and will not go into a detailed consideration
Finally, the DFT variational principle gives the ground- of the possible analytical subtleties involved, except to say
state energy for a given external potenugt): the following.
For the density(r), we will assume that it belongs to the
Esn = min{Fpn] + Vad pul} = Fpsd + Vad pind., Banach spac@’=£3N L* and, of course, it should be non-
PN negative. More precisely, we require that the density belongs

(13) o J={p(r)|p(r)=0,p(r) € L1, and V \p(r) e £}, which is
a convex subset QP [11,12: JC ). For the external poten-
where the nuclear-electron attraction energy density functial v(r), we will assume that it belongs to the dual space of
tional is Y, which again is a Banach spagé= £32+ £, This means
that any external potential could always be partitioned into
Vidpnd = w(r)pn(r)), (14 two parts:v(r)=vs(r) +v.(r), where the first part belongs to
£32 and the second part belongs4d. £° is a Banach space
andp§\(r) is the ground-state density, which determines thewith a norm |[f[l,=(|f(r)|?)**<<=. Here, £~ is the Banach
ground-state density matri%2 through Eq.(9). As shown space of bounded functions, with the norrf]..
by Lieb [11] and van Leeuwefl2], one can write theame =ess suff(r)| <, where the essential supremum is the
universal density functional in Eq9) alternatively as the smallest upper bound df(r)| almost everywher¢60]. In

Legendre transform functionfl,2,11,12 particular, ground-state densities of some external potentials
in )" are everywhere positive due to the unique continuation
F ond = sSugESN - Ved onl} (15)  theorem[11,61.
v
where the supremum will become a maximum for a ground- I1l. ZERO-TEMPERATURE FOCK-SPACE DFT

state densitygn(r):
In the case of a fractional number of electrdasay, n

FALpsa] = Filpind = ma{ Egn — Vad psnd} e[N,N+1)—we take the zero-temperature limit of Mer-
u min’s finite-temperature DFT4,17] and define the universal
= BN - VO U] (16)  density functional ds

Obviously, Eq(16) is a simple restatement of the DFT varia-
tional principle shown in Eq(13), and the maximum of Eq.
(16) !S also}\ Ca"e)\d as .the Hohenberg-KoliHK) densn_y_ negative integers, while lowercase italic Roman charaggegs,n
functional,Fyy [ pgn], defined only for ground-state densities andm will be employed to freely denote either fractions or inte-
[1,11,13. gers. In additionn and N have the generic relationship:e [N, N

In Refs.[10-13,59, the analytical properties of the den- +1), unless otherwise noted.
sity and the external potential used in DFT are carefully *The equivalency between these two definitions will be proved in
evaluated. We will assume the same analytical behavior as ithe lemma in Sec. V.

3Throughout this entire paper, uppercase italic Roman characters
(e.g., N and M) will be used exclusively to represent any non-
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FPlod=  inf {(N+1-n)F Byl +(n-N)FP[Dy.dl}
(N+1-n)Dp+(n=N)Dpn+1—pn
= inf {(N+1=n)Fpp] + (n= N)F [ pysal}, 17

(N+1-n)pn+(n=N) o+ 1=pn
where DN_) PN DN+1_) PN+1s and

=(N+1-n)Dy+(n=N)Dysy — (N+1=n)py+ (= N)ppss = pp, (19)

respectively. DFT” interchangeably for any of the above-mentioned three
In general, one should defi@[p,] in Fock spaceF; [56] formulations.
with all possible linear combinations of density matrices In the following, we prove two Hohenberg-Kohn-like

{Dn|N e A} built from antisymmetric wave functions in fer- theorems within zero-temperature Fock-space DFT.

mionic Hilbert spaces of an arbitrary integral number of par- ~ Theorem 1For a fixed arbitrary electron-electron interac-
ticles{HN|N e N}. However, using the same arguments pre-tion strength, there is a mapping between an ensemble
sented by Parr and Yar{@], one can readily show that the v-representable densngg (r) and its external potential:
infimum of convex sums of all possible Hilbert-space univer-

sal density functional$F* py]|N € A} [similar to the right-

hand sideRHS) of Eq. (17)] will only single out the linear pon(r) = (N+L=n)pgy + (N = N)pgne = [v], (19
combinations of those density matrices constructed from

wave functions in the two adjacent Hilbert spaded and ~ Where[v] is the class of the external potentiglr) up to a

HN*1for ne [N,N+1). In the end, the definition df*[p,]in  real constant{u(r)|u(r)=v(r)+C, andC e R}. Moreover,
Eqg.(17) is fully equivalent to the more general grand canoni-this mapping is continuous with respect to the electron num-
cal ensemble formulation[5-7,17,18 and the zero- bern.

temperature limit of Mermin’s finite-temperature DFT  Proof. First of all, the variational principle in Hilbert
[4,17,18. Hence, we use “zero-temperature Fock-spacepace foN and(N+1) electrons dictates

min {N+1-nP D]+ (n- N)F”[I5N+1]}+V”JP’6
Dyi=(N+1-n)Dy+(n-N)Dpys 1~

={(N+ 1 =)D+ (n- N)FPDYN, 11} + VEd pih] = B, (20)

where the minimal energEgzﬁ is achieved at an ensemble  The next steg49] is to take either of the occupied com-

v-representable  density matri>d§“‘—(N+1—n)15”"‘+(n ponents ong Q—say, theN-electron componean ﬁ,—and

~N)DY2,,, such that bottDg} and DY), are ground-state MVert the Schrodinger equatidn,

density matrices of some external potentiai) with N and N (_A|_+ A e)lﬁ“
(N+1) electrons, respectively. The corresponding ensemble > o) —EYN=- -~ " Te@ 70N (22
v- representable density is denoted b&n—(N+1 n)p i=1 Dny

+
Iu(tinonl:)g nd\‘?heTQr?e? Cogfﬁnnoit Z? :r?ylg\t:/]srr ;sltir\r,]\,?)tg{g :gnthen equatéN—1) of the independent variables to some con-
gy 9 y stants, but such that the potentlal at these values is

tradict the minimality ofDy% for N electrons and ng N+t nonsingular—sayr,=r (i= .,N-1)—and denote the
for (N+1) electrons. Equation20) defines the mapping of one remaining independent variable rasry. The left-hand
the given ensemble-representable densitygy(r) t0 its  side(LHS) of Eq. (22) becomegu(r) +C|C e R}, thus yield-
ground-state density matriiag'};: ing the mapping

N Ao SOne can also take theccupied (N+1)-electron component
U, v, .
Pon(r) = Do’y. (21) Dg el Dgﬁ and reach the same conclusion.
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DU s [v]. (23) guantum mechanics as shown in EZ0). A very important
on advantage of the Levy’s constrained search definition of the
The combination of mappings in Eg&1) and(23) con-  universal density functional in E¢l7) is that it is valid even
structs the mapping in Theorem 1. Further, the continuity off the density is not ensemble-representable. The varia-
Eqg. (19 in electron numben can be confirmed from the tional principle in this case is
explicit construction, Eqg20) and(22), of the two constitu-

ent mappings in Eqg21) and (23). m Egn = (N+1-mEGN + (= N)EgNay

~ CommentThe canonical representative of the clas§udf = min{F pn] + V2 d pnl}- (28)
is simply v(r)-uv(«), where the arbitrary additive constant, Pn

v()=liminf,__|v(r)], is removed, and the continuous map- Hence, Theorem 2 naturally follows. n

ping becomes unique:
pg’,}r;(r) —{v(N)}ean=v(r) —v(e) € [v].

It is clear that adopting the canonical representafimMe)} ..,

has the similar effect as employing the usual zero-value con- N the following, consider the ground-state enefgy) as
vention foru(r) at infinity, v(s)=0. m 2 function of the electron number and den&tg'(n)=E§)

Theorem 1 guarantees that the clés$ of the external to emphasize the functional dependence on electron number

potential can be recovered from the Fock-space ensembl&
v-representable densib&ﬁ(r), one can then use its ground-
state energ)Eg"ﬁ to alternatively define the Fock-space uni-
versal density functional in Eq17) as the fully equivalent

Legendre transform functional in analogy with the traditional wAEg**(n ) + wBES’*(nB) = E‘{)‘*(n), (29)

Hilbert-space DFT1,2,11,12 approach,

(24) IV. CONVEXITY OF THE GROUND-STATE ENERGY
IN FOCK SPACE

Convexity assumptiosuppose that for every fixed exter-
nal potentialu(r), the energyEg'”(n) is a convex function
with respect to the number of electrofg11,5Q:

for any non-negativew,, wg,Na,Ng, and n, such thatwp
A — U\ v ’ ’ ’ y )
Flon) = SEF{EO,n - Vne[pn]}’ (25) +wg=1 andn=wNp+ wghg. [ |
Definition. Define lower and upper derivatives BE(n):
where the supremum will become a maximum for a ground-

state densityjh(r): EgM(n+ &) - EgM(n)

DYM(n) = lim : (30)
Flobal = Fiwlpbn] = max{Esy - Vad pilt e
! and
:EU,X_VU pv,)\ . (26)
0,n nd-: 0-,n DU')\ . Ez(;),)\(n+ §) _ Eg,)\(n) a1
Theorem 2. The variational nature of (Fjc[pgh u(n) —§Lr2+ P ; (3
+Vidpgnl) is
' respectively. For convex functiori§9,62—-64,
Fiklpon] + Vodpoal = Eon = Fiiloonl + Vad ooal, X .
(27) D{"*(n) < D{"(n), (32
where the variation is within the set of ensemble'Vnere the equality means the differentiabilityrat =

FESRNTH WA _ ; ~
v-representable densitiegy,(r) is the ground-state density V. GATEAUX FUNCTIONAL DERIVATIVE OF THE

of an external );\)otentlal(r) that does npt nece§sarlly belopg UNIVERSAL DENSITY EUNCTIONAL IN FOCK SPACE

to [v] and atpy(r) the energy expression achieves the mini-

mum. Lemma. E[p,] is a convex functional in the following
Proof. It is almost obvious that the definition in E@6)is  sense. For any non-negative weightg, oy, s, and o

equivalent to the Levy's constrained search definition in Eqsuch that wy,+w,=ws+tw=1 and for any densities

(17) restricted to ensemble-representable densities. Theo- py(r), pq(r), ps(r), p(r), and py(r) such that wypy(r)

rem 2 is a direct consequence of the variational principle ofr wqpq(r)=weps(r)+ wypy(r)=pn(r),

pr}\[Pp] + quA[Pq] = F)\[pn] = inf {wsF}\[ps] + th)\[pt]}- (33

ogpstwp=pn

The densitiespy(r), pq(r), ps(r),pi(r), and p,(r) are normalized to some numbers betwé¢rmand (N+1)—i.e., {p,q,s,t,n
=wpPp+ o= wsS+ot} € [N,N+1).
Proof. Using the first definition oF*[p,] in Eq. (17), one has
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FAlpal = inf {(N+1-n)F[Dy] + (n - NF Dy} (34)

D =(N+1-n)Dp+(n- N)DN+1~>pn

and the LHS of Eq(33) is

wpF\pp] + 0gF N pg] = wp_ inf {(N+1-p)PD, ]+ (p - NFAD, pasl)
D =(N+1 P)Dp nH(p- N) pN+17"Pp
+ g Cinf {(N +1-q)FNDgn] + (q- N)F”[ﬁq,mﬂ}
Dg=(N+1-0)Dg n*+(A-N)Dg n+1—Pg
_ inf {(N+1-n)P[By] + (n- NP [Dyeal}, (35)

D=(N+1-n)Dy+(n-N)Dyy1—pn

{Dp= wp D +Lquq Dp—>pp,Dq—>pq}

where, in the last step, one writes definition of F\[p,] in Eq. (17) and following Lieb’s and van
- . . Leeuwen’s argumentd 1,12, one can readily prove the full
PwpDpm + qwgDgm = NDy, (36)  equivalency between the definitions Bf[p,] via Levy's

whereM is eitherN or N+1. The inequality of Eq(33) is constrained search in E¢L7) and the Legendre transforma-

due to the additional constraints in the curly brackets of EqU©n in EQ-(29). u
(35). Theorem 3.Take an ensemble-representable density

v\

On the other hand, if these additional constraints are re2o; A(r). SupposedEg™(k)/ dk|y=, exists. Then,F[p] has a
leased, Eq(35) becomes a search for the infimum through Unique continuous tangential functional gt(r) given by
the entire space of different partitions of the same density via JELNK)

ool { ° —v(r>]pn<r> @3
k=n

{wsps(r)+wtpt(r)zpn(r)|Pn(r)Ewppp(r)"'wqpq(r)}- As a re-

sult, the first definition oF p,,] in Eq. (17) will be identical gk

to the infimum of the LHS of Eq(33), which establishes the je L wAlp] is the unique linear functional such that the in-

equality of Eq.(33). In other words, the equivalency between

the two definitions oM p,] in Eq. (17) is a special case of

Eq. (33). u FAloml = FAlogial = LA lom = pin (39)
CommentLieb, Valone, and van Leeuwen have discussed '

the convexity of the universal density functional in Hilbert holds true for an arbitrary densipy,(r) with a normalization

space[6,11,13. We not only extend their results to an arbi- {pm(r))=m.

trary number of electrons, but also show the full equivalency Proof. Egn is assumed to be convex in the convexity as-

between the two definitions &[p,] in Eq. (17), which is  sumption and it is now assumed to be differentiabl&=a;

nontrivial in its own right. Furthermore, using the secondthen,

equallty,

JEG™(K)
ak k=n

JEY "(k)

ESNm) - E3M(n) = (m-n) = (pm(r) = P5A(D)) (39)

k=n

for any m and an arbitrary density,(r) with (p,(r))=m. ExpandingEg’”(m) and Eg'”(n), one further rewrites the above as

ESMK
(FLoin] + Ved o) — (FLaT + Vadia]) = onl) — pa0) ;k( ) (40)
k=n
At the same time, for an arbitrary densiiy,(r) with {p,(r))=m,
FNpml + Vad pml = FNpgml + Vad o], (41)

due to the DFT variational principle. Substituting E41) into the LHS of Eq(40) and moving the nuclear-electron attraction
energy density functionals to the RHS, one has
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JESMk
P lpud - L] = (onlr) - ip(0) Z0 Y ‘k_ (Ved ol - Vid s3]
Egt(k
= (pnlD) - PEAD) T ( N mlonn - 530, (42
k=n
The existence Of_pg,ﬁ[p] is proved by combining the two terms of the RHS of E4R) into one:
EgM (K
FAlpm] = FMogpl = <[ a;_k() - v(r)}[pm(r) —pé',ﬁ(r)]> Logalom = ponl. (43)
k=n

which is in the continuous bilinear forgf(r)o(r)) for f(r)

e ) andg(r) € ), based on the Riesz’s representation theo-

rem[59,62.
The uniqueness df SA[pn] has the following origin via

reductio ad absurdumWithout losing generality, let us sup-

pose that for the sampgyh(r) there is another continuous
linear tangential functional via the Riesz’s representation

theorem[59,62:

FNosa] = FrLoba] < = (Vadpin] = Vad pal) = ([Cn) = u() I pia(r) = pa(n) ]).

The appearance oE’(n) on the RHS of Eq(46) stems

from the possible additive constant in the external potential

u(r): one can add or subtract a constantu@) without
changing the inequality in Eq45). Clearly, Eq.(46) is in
contradiction with Eq(43) for m=n. So we know that(r)

e[v].
Since the external potentialr) is determined by the den-
sity py; ¢7(r) only up to a constant—say—one then has

ES"N () = Ppba] + Ved pbpl +n X y=EGN () +n X ,
(47

SO

EGNm) - E57A ()
m-n

E5™(m) - E5*(n)
ty
m-n

(48)

Further, taking the limitm— n on both sides, one has

IEFNK)
Ik

JEGNK)

+y. 49
K Y (49)

k=n

k=n

Hence, in the final expression the constartancels ott

LLpm— pyh] = ([C2M ) = u(m) ][ p(r) = o520 ), (44)

whereu(r) € V", u(r) ¢[v], and bothC?*n) andu(r) func-
tlonally depend orpg, \(r). Given the ground-state density

Po. n(r) of u(r), from the variational principle, we have
Frogn] + Vad poal < FMobn] + Vadpbnl - (45)

or

(46)

JES T (K)
TP

U\
g= B,

—[o(r) + k|

(50)

which means that x[p] is uniquely determined by the den-
sity pgn(r). [

Comment.SimiIarIy to the Hilbert-space casgl0-13,
here too it can be proved that under the assumption of Theo-
rem 3, the tangential functionalpn[p] exists if and only if
the densityp,(r) is ensemble-representable. |

Corollary 1. Under the assumptions of Theorem 3, the
Gateaux functional derivative or the integral kernel of the
Gateaux functional differential dFM p,] at p,(r)= pg (r) is
given by

SFMp]
op(r)

Proof. The convexity ofF\p] in Fock space has been
proved in the lemma. Since in Hilbert spae¥ py] is lower
semicontinuou$10-12, F\[p,] defined through linear com-
binations of F\[py] and FN py.4] in Eq. (17) will also be
lower semicontinuougbeing proved as corollary la in the
Appendi®. For lower semicontinuous convex functionals, it

A=A

K =v(r).

k=n

(51)

®Consequently, it is meaningful to adopt the canonical representdS known that the integral kernel of the tangential functional
tive {v(r)}can for v(r) hereafter. If necessary, we will drop the sub- differential [see Eq(37)] and the integral kernel of the Ga-

script{car} for notational simplicity.

teaux functional differential coincide whenever one of them
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exists and is uniquél2,63. B Pl = Plegal = (€M)~ o0]Lon() - pia(0)])
Comment. For a fractional electron number ' '

ne N, JESNK)/ oK|i=, exists and takes unique values for (53)
between any two adjacent integ¢is17,57: holds if and only if
DYM(n) < CMn) < DM (n). (54)
L dBEYMK | JDPMN)==1 ine(N-1N), Proof. From Eq.(32) and the facE3*(k) is nondifferen-
Msm= en |DMN)=-A :ne (NN+1), tiable atk=n, we obtain a strict inequality between the lower
52 and upper derivatives:
DY*(n) < DYM(n). (55)

First consider a variation of the density lowering the num-

wherel andA are the first ionization potential and the first o, ¢ electrons fromm to m:

electron affinity, respectively. In statistical mechanjé$§],

JESM(K)/ ok|in is called the chemical potential,,. | {om(M) = pyp(N) =m-n<0. (56)
vz‘heorgm 4.Assume everything from Theorem 3 but grom the definition of the lower derivative’™ in Eq. (30)

E5" (k) being nondifferentiable at the poiken, with alower  gnq the convexity assumption f&; (n), it follows that

derivative DV*(n) and an upper derivativ®!;*(n). In this N N N

case, the tangential functional B[ p,] at the density(r) Eo™(m) -~ Eg™(n) = (m—n)D{"(n). (57)

is not uniquely defined, with an intrinsic arbitrariness speci-Hence, using the same reasoning that leads from(@y.to

fied below: Eq. (43), one has
|
Flpml = FAlogn] = = (0 (N pm(r) = pa(0 ]) + (m=nmDP(n). (58)
For the case ofm=n, one can similarly derive
{pr(r) = pip(N) =m=-n=0, (59)
EZMNm) — E5M(n) = (m-n)D{M(n), (60)
and
Flpml = Flpgn] = = (0N pm(r) = pa(0 ]) + (M= DY (). (61)
[
Equations(58) and (61) indicate thatif Dﬁ”‘(n)szv*(n) Geometrically, Eq(54) describes any tangential line be-
<DY\n), Eq. (53) will be true for arbitrary values ofn. low the energyE3™(m) curve, while Eq.(62) signifies the

Secondtheonly if part, if any other values o€v(n) are  portion of the energyEy™(m) curve below a straight line
chosen, Eq(53) will be violated as shown below. For ex- passing through the poirﬁg'”(n) with a slope ofC’*(n). B

ample, we takef:”v*(n)<Dﬁ'”(n). Due to the convexity as- Corollary 2. Under the assumptions of Theorem 4, the
sumption forE3*(n), Gateaux functional derivative df[p,] at p,(r)=pgA(r) is
not uniquely defined, with an intrinsic arbitrariness specified
ES™Nm) - ESMNn) N below:
? > CY (n) (62)
_ SEA
Flpl =C"Nn) - o(r), (64)
and Sp(r) o=l

. . . N .
F}‘[pgjm _ Fx[pé‘ﬁ] < <[Cv,)\(n) _ v(r)][pgi”(r) _ p&ﬁ(r)]) with a range of possible choices @f*(n) characterized by

m

(63) D (n) < C¥M(n) < DYM\(n). (65)
are true forn>m>m,, wherem,_ is the lower bound om Proof. The same as of Corollary 1. u
satisfying Eq.(62). Clearly, Eq.(63) contradicts Eq(53). CommentFor any integer electron numbb¥[7,17,57,
Likewise, we can obtain the same contradiction if UNND — | — — A — MU
CvNn)>D{Mn), for my>m>n, where my is the upper DLy = =1 <=A=Dy"(N). (66)
bound ofm satisfying Eq.(62). For later convenienceG'M(N) can be rewritten as
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N N J Egvk(k) suggested by Perdest al. [17], whose idea goes back to the
C"*(N) = ugy = ok | (67)  earlier work by Gyftopoulos and Hatsopoulgs7] (see also
k=N Ref.[7], p. 795. The idea is calculating the functional deriva-
of course, with the intrinsic arbitrariness tive after first promoting the system to some finite low tem-
=, =-A (69) perature and subsequently taking the zero-temperaturé:limit
|
Theorem 5. For an arbitrary electron numben SFN p] ) SFp]
(either fractional or integral SFp]/ 5p(r)| .=, is classwise () | o = ILITTL o) | _on [ (69)
continuous ~ with ~ respect  to n: SFMpl/ Ip(r)| =y PPonJ reg PronJ B
and 51:)‘[p]/5p(r)|p:pg,>ﬁ belong to the same class
[-v(n)]. ' The result is suggested to be well behaved and expressed as
. an average of the following two well-defined functional de-
Proof. Corollanies 1 and 2 prove Theorem 5. u rivatives. From Eqs30), (31), and(52), the lower and upper
V1. “TEMPERATURE REGULARIZATION” functional derivatives of F)‘[p] can be introduced as
OF THE FUNCTIONAL DERIVATIVE [7,17,51

AT AN INTEGER NUMBER OF ELECTRONS

In view of the above nonuniqueness, one could be "Hereafter, we will use the inverse temperatgre(ksT) "%, where
tempted to apply a “temperature regularization” of the typeks is the Boltzmann constant.

w : = |i w — MUA _ — 1 _

dp(r) p:pgza_g'ﬂno]_ Sp(r) p:pg,ﬁ%‘DL (N) —v(r)==1-0v(r) (70)
and

m v = i m — U _ — A _

3p(r) ,,:pgzm'glﬂ dp(r) P=PS;&+§_DU (N)—v(r)=-A-uv(), (71)

respectively. The “thermally regularized” functional derivative is stated tpLize
{ 5\ (o] } _1 ( Flol|t o]
P:PB’}Q reg 2\ dp(r) P=roN ap(r)

u
op(r) P:PBZQ) : (72)

This approach to uniquely define the functional derivativeshow that any value within the intervétl,—A], not only
at an integer number of electrons is based on the belief thal%u +A), can be reached as a value of the chemical potential
in the zero-temperature limit the chemical potefifidefined iy the zero-temperature limit.
as a derivative of the energy with respect to the electron por our analysis we will use the same three-state model
numbers at a constant entrop§5], would be well defined — ¢qnsigered beforg7,17,57. In this model system, there are
and equal to the negative of Mulliken’s electronegativity i req families of states that are likely to be occupied: a neu-
[57.58: tral atom withN electrons, energy leve{&,}, and degenera-
cies{g,}; its positive ion with(N-1) electrons, energy levels
. 1+A {Ej+}, corresponding ionization potentiafs} from E,, and
H=mX=" 5 (73) degeneraciefg]}; and its negative ion witkiN+1) electrons,
energy levels{E;}, corresponding electron affinitiefA;}
from Eq, and degeneracidg;}. In Ref. [7], only the ground
states are considered; here, we include excited states as well
for generality. With this in mind, the average number of elec-
8For simplicity of the derivation in this section, the subscript andtrons is easily derived from the grand canonical partition
superscript of the notation for the chemical potential are dropped.function of the system:

In contrast, we will show below the ambiguous nature of
this “temperature regularization.” More precisely, we will
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Ei gi_eB(Ai"'M) —_ E] gj+e_ (|j+M)
> GEPEE) LS grefhite 4 2]_ grePliw '

Instead of assuming that the average number of electrons and the chemical potential stay fixed while the temperature
changed7,17,57, we adopt a more general and physically more plausible assumption that the average number of electrons

N(B) as a function of the temperature can vary but will approddh the zero-temperature limit:
Ei gi_eB[AiH—L(ﬁ)] _ Ei gj+e—;3[|j+ﬂ(ﬁ)]

limN(B) = lim | N+ —— — — =N, (79)
B—o B—o Ekgke .3< K O) + Ei gi eﬁ[ i P«(B)] + EJ gJ e B[J M(ﬁ)]

N(B,u) =N+ (74)

where the chemical potential(8) naturally becomes a function of temperature it§6B]. As a result, the desire to have a
fixed number of electrons at an extremely low temperafdr&7,57,

N(B) =N, (76)

is indeed just a special case of our generalization.
In general, the chemical potentia(3) can vary as a function of the temperat{&]. To every temperature dependence of
the chemical potentigl(B), there is a corresponding temperature dependence of the average electron number given by the
insertion of this functional formu(B) into the RHS of Eq(74). We are interested in those functional formsudf3) that satisfy
Eq. (75).
Case AAny choice of a functiorican be an arbitrary constarior the chemical potential within the rangel ,-A) satisfies
Eq. (75) since

- Ei greflATuB] Ej g;e—ﬁnjm(ﬁ)] . .
o | 2, 9B+ 3 grefAndle X greAlin(A] -

To derive the above result, note that <u(B)<-AA “lsus-A, (80)
+u(B) <0, andl +u(B)>0 by assumption and, at the same
time, A;<Ap=A andl;>I,=I, due to the order of the energy

levels; henceA +u(B) <0 andl;+u(B)>0. are acceptable, provided that E(f5) is simultaneously
Case B.For the case ofu=-I at the zero-temperature obeyed. Equatiof80) is consistent with Eq:68). Hence, the
limit, the two functional formsu(8)=-1+In"'8 and w(B)=  “temperature regularization7,17,57 does not remove the
-1+p7Y2 provide two possible solutions. One can easilyintrinsic arbitrariness for the chemical potential at an integer
verify that Eq.(75) and electron numbeN.
To further illustrate our arguments succinctly, we have
;L”LM(B)=-| (78 exhibited in Fig. 1 five cases of different temperature-

dependent chemical potentialg(8) and their pertinent

are concurrently satisfied for both functional forms consid-temperature-dependent average electron numbggs ),
ered here. In fact, there are infinite solutions of this kind.for a model system with=1.0 hartreeA=0.1 hartree, and
Any temperature dependence of the typ€3)=-1+|v(B)|, N=5. Figure 1 clearly shows that the average electron num-
where »(B) has the limiting properties ligy..»(B8)  bers in these cases with very different functional behaviors
=lim_.[Bv(B)]"*=0, provides a possible solution fai(8) ~ for u(B) all go to the same fixed number in the zero-

with —I in the zero-temperature limit. temperature limit, namely, Iimwﬁ(ﬁ,ﬂ):N, but with var-
Case CSimilarly to Case B, any temperature dependencged zero-temperature-limit values for the chemical potential
of the chemical potential of the type(8)=—A-|(B)| will  between +and -A: ~I<lim_.u(B)<-A.
result in
é[nw“(ﬁ) =-A (79) VII. FOCK-SPACE KOHN-SHAM METHOD

AND “DERIVATIVE DISCONTINUITY”

when Eq.(75) is also satisfied.
In conclusion, any values betweern and -A for the For consistency of the notation, let us recall the idea of
chemical potential, the Kohn-ShantKS) system[3,7-9,12,17,2p At the nonin-
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FIG. 1. Comparison of five different temperature-dependent average electron niMiBers, corresponding to different temperature-
dependent chemical potentigl§s), as functions of the inverse temperatytefor a model system witth=1.0, A=0.1, andN=5, respec-
tively. All values are in atomic units. The dotted line is fo¢8)=-0.2 and the degeneracy paramefexsd,.dy}={1,1, L. The solid line
is for w(B)=-1+B"Y?and{gy,gy,95}={3,2, 3. The dot-dashed line is for(8) =—-A-In"13 and{gy, 95,95} ={3,2, 3. The short-dashed line
is for w(B)=—(1+A)/2+(8InB)"* and{go,dy, 95} ={3,2,3. The long-dashed line is fqu(B)=-(1+A)/2 and{gy,dy.95}={3,2,3.

teracting limit (\=0), the original external potent?@l(r) is Case 1.In the following first considen e (N-1,N).
replaced with an effective potentia@?[poyn](r) in a way to Our previous discussion in E¢70) was for an arbitrary
keep the ground-state density identical to the one in the fullyelectron-electron interaction strengthbetween 0 and 1, so
interacting limit—namely, the functional derivatives for the two limiting cases)of 1
B KS._ and\=0 are

P (1) = pget () = po n(r), (81)
where the common densipg (r) is denoted by simply omit- SF[p] = EPELN) — E2MYN - 1) = o(r)
ting the A dependence. Also denote[p,]=F*p,] and 8p(r) | =, -0 0 vir
Td pn]=F*p,], because in the KS limit the universal den- on
sity functional from Eq(9) reduces to a pure kinetic form. ==1-v(r) (83

The first thing to note is that the specialization to the
noninteracting case of the convexity property in E83) and
becomes

prS[pp] + quipq] = Td pl, (82 oTdp]

using the same assumption f@p, wq, pp(r), pg(r), and py(r) dp(r)
as in the lemma. It is a property against which any approxi-
mations toTd p,] shall be tested.

KS, _ KS, _
— Eléeﬁy)\—o(N) — E‘éeﬁ)“o(N -1)- Ugf?[PO,n](r)
P=Pon

= e}~ veitl Ponl(r), (84)

- o pKEA=0 1y M _n

*The general KS scheme is not limited to Coulombic external VNere the last equality 1S due By (M) =226 (for
potentials only[12]. The soundness of the KS scheme has beerposmve integeM), af?‘?'{fi} are the_KS orbital gnerg|es:
firmly established by van Leeuwen recerith2]. In this section, we Recall the KS partition of the universal density functional
will mainly concentrate on those external potentials that converge t63,7-9,12,17,2p
the same arbitrary constant at infinity in all directions, which of

course, will produce asymptotically exponential-decaying densities 1/ pa(D)pn(r’)
for bound ground stateig3,66,67. For later convenience, we will Exdon] = Flpn] - Tdpnl - > W , (89
label the set of these “good” external potentials/aand the set of

their corresponding asymptotically exponential-decaying ground-
state densities @b. from which one arrives at
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SEdp]
op(r)

_ SFlp]
p=pon 0P

_Ueff[pon](l’)—v(r) Jpon( )

where we associate}(r) by a grouping of the following

terms[3,7-9,12,17,2p

oKL po](1) = (1) - f ol )dr. (89

vpdr) =

Equation(87) should be interpreted as an actual equality of
two previously defined terms rather than as a definition of

ved(r). Naturally, for exponentially decayingy (),

jim [ 2o g 2o, (89)
e ) |r=r1|

On the one hand, fox=1, one has

pon=pon = (N=Mpy "+ (N=N+D)pg-1,  (90)

with the asymptotic I|m|l{43 66,67

lim po,, = I|mp0 ~ |ImpU)‘ Lo g2 (91)

r—o

On the other hand, fox=0, one also has

KS, _
Pon=pLEi™ 0= (N = )l "0+ (n = N+ 1)y

(92
with the asymptotic limif43,66,67

_ N (o)
||mp0n— ||mp0 ff)‘ =0 Ueff)‘ =0 ~ @ 2r\2[vy () fN]’

r—oo

~ I|mp

(93
where the usual zero-valieanonical convention for(r) at
infinity,

limo(r) =v() =0, (94)

r—oo

is used and, consequently,

Vel ponl(®) = V). (95)

From the above considerations and after equating the two li

forms of the asymptotic limit opy,, One gets

I =03 () - ey. (96)
From Eqgs.(84) and(87), we finally arrive at
ST
% -+ UeS[Po nl(ee) = Ueff[pO nl(r)

—1 = {v&Tponl (N} can (97)

and

p:po’n

PHYSICAL REVIEW A 70, 042503(2004)

oTd p] pon(r’)

o sh Do~ 86

op(r) Ir=r'| (89
—en—l=vi(r)—ey—1, (87)

6EXC[p]
op(r)

Case 2.Similarly for me (N,N+1), one will get

fﬂll, (99

= UQc(r) - UQC(OC) = {UQc(r)}can' (98

P=Pon

A=p() =

61: = —
5PE‘:)] p=po,m: El())')‘"l(N - Egy)\_l(N) -v(r)
==A-u(r), (100)
5;%] = BTN + 1)~ EON) — ol po 1)
= N1 Ugf?[Po,m](f)
=-A+ USf?[pO,m](w) - ves[po ml(r)
= A= {vk5lpoml(N}ean (101)
and
3p(r) = o5a(r) = () = {o(N}ear (102)

P=Pom
The striking observation of Eqg98) and(102) is that for
an arbitraryn, in general,
5Exc[p]
op(r)
in contradiction to existing practic§7—9,13. Moreover,

from EQs.(83), (97), (98), (100), (101), and(102), one can
clearly identify the following limits at — oo:

# vyd(r),
P=Pon

(103

- SF[p] 1) | B
M S ppon T Op(T) ol o
SF(p] oTdp]
- = — =-A, (10
r—o 5p(r) P=pom 5P(r) ( 5)
and
. SE.dp] o OE,dp] —
rlm op(r) _flm Sp(r) P=P0,m_0, 109

which are true for any values ofie (N-1,N) and m

e (N,N+1).
In order to understand the “derivative discontinuity” of
Flond, Td pnl, andEyd py] at an integer electron numbat;
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let us use lower and upper functional derivatives of thesg112)

functionals, defined in close analogy to E¢80) and (71),
and take their difference &:

SF[p] |- SF[p] |V
2Pl - =B =A-1, 10
5p(l’) P=PoN §p(r) P=Po,N 1o
([ sTdp] |- &Tdpl |V )
I - =A-1, (108
rm( 5p(l’) P=PoN 5p(l’) P=PoN ( )
and
. 5E><C[P] - 5EXC[P] v )
lim [ 2P =0. (109
fm( op(r) P=PoN dp(r) P=PoN ( !

PHYSICAL REVIEW A 70, 042503(2004)

indicate that XO[p]/cSp(r)|p =on and
5Exo[p]/6p(r)|}j:p coincide with the canonical representa-
tive of the clasgv,.(r)]. More importantly, according to the
standard continuity requirement, EQL12) further ratifies
that the functional derivative of the exchange-correlation
functional is continuous with respect to electron nummber
Fock space:

5Exc[P] - 5E><({P] - - 5EXC[P] v
() Npmpoyy  OPO) Lpmpr () Lz
={o3(")}can (113

This result will have a profound consequence in resolving
the value of the chemical potential at an integer electron

Clearly, the asymptotic limits of both the lower and uppernumber(discussed in the next sectjon

functional derivatives of the exchange-correlation functional
due to Eg.

confirm the lack of “derivative discontinuity,”
(106). Additionally, at then— N andm— N limits,

“m {Ueff[po N+§](r)}can {UeS[PO N](r)}can7 (110
due to the Hohenberg-Kohn-like theorem in Fock sp@ee
Theorem 1 and its commeﬁf) As a result, Eqs(108) and
(109) are true globally, not only at the asymptotic limit:

sTdp] |- 5Tdp] |
_ o] =A-1| , 111
() pmpgy (D) L pmpy o
oE,d p] - SExdp] ;
e (% | =0. 112
5p(l’) P=PoN 5p(r) P=PoN ( )

More interestingly, Eqs(83) and (100) clearly reconfirm
Theorem 5. In the same way, Eq®7), (101), and (111)
suggest thasTd p]/ dp(r)|5_,, ooy @Nd sTdpll sp(r)|, oon D€

long to the same clais—veﬁ[po NJ(ND]; Egs.(98), (102), and

It should be noticed that Eq$107)—(113) are universal
statements for general external potentialsVin(including
Coulombic potentialswith bound ground states, simple be-
cause of Theorem 1 and Corollary 1. Equatigh87) and
(111)—(113) are our main results regarding the “derivative
discontinuity.” Once again to emphasize, we find that the
exchange-correlation functional does not exhibit a “deriva-
tive discontinuity.”

VIIl. VALUE OF THE CHEMICAL POTENTIAL

Due to the intrinsic arbitrariness in E@8), the value of
the chemical potential at an integer electron number is in-
deed a thorny subje¢?,12-17,42—4B In the present litera-
ture, there are at least six different values fady,
[7,12-17,42—-4B

The first value is the mean total electronic energy
[13,42,46

v BN
Msm N

(114

1%n earlier account of this continuity for integer electron num- This value ofu§,, might be inferred from observing the iden-

bers appeared in Refb4].

tity in Hilbert space:

<\I’(I’10'1, ...,rN(TN)||:|U’>\|’\I,(r1(Tl, o rNO-N)> - EU’)\(N [(‘lf(l’ltrl, ,rNO'N)|\I’(rlO'1, ..-,rNUN)> - l]
v )\ v )\
= F\[Dy] + Vidon] - ( [{on(r)) = NI = FMpn] + Vod on - ( [{pn(r)) = NI, (115
[
whereW(rio4,...,ryoy) IS any normalized\-electron anti- Flpl+ Vedpl - moerl{p(r)) = N]. (116)

symmetric wave function with densifpy(r) and density ma-

trix I5N. The LHS and the central expression of EHL5) are

A closer scrutiny shows that the variational domain of the

the variation functionals employed in the conventional waveRHS of Eq. (115 includesinfimal normalized wave func-

function and density matrix approach&s]. Subtly, the cen-

tral expression of Eq115) looks similar, but notidentical

tions [through py(r)], while the variational domains of the
LHS and central expression of E(L15 only include any

to the RHS of Eq(115), which is a special case of the one arbitrary normalized wave functions and density matrices

used in density-functional theofy,47|:

[with py(r)], respectively. Or in other words, in general,
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FDW=Flpyl= inf POy, (117 “l=psu=-A (123

Dyn—
o N ) Although Eq.(123) covers Eqs(119), (121), and (122, a
which is a restatement of E(9). Hence, Eq(114) is gener-  considerable difference still exists between EGL9) and
ally incorrect[55] and this understanding is a generalization(122). Except forN=1, Eq.(114) does not satisfy Eq123).

of the arguments by G4ll4]. Furthermore, setting=0 i Thjs offers another evidence faf,, # ES*(N)/N in general.
Eq. (114), one will get the erroneous first-degree homogene-  Tne |ast one is zerfl2]

ity relation for T4 pon] [41,43. In fact, one can easily derive
a similar, more general erroneous first-degree homogeneity
relation for F pon] [55],

( SFMp]
p(r)

wsy=0, (124)

which is clearly wrong for general multi-electron systems.
)pO’N(I’) = FA[pOYN], (118 Apart from the question of what is the value of the chemi-
P=PoN cal potential, an important problem stands alone how to ac-
based upon the general expression in @44 [13]. tually define the notion itself within the framework of DFT.

The second one is the highest occupied KS orbital energg; the usual DFT practice, the chemical potentid]y, is

eN and is identified to be the negative of the first ionization sociated with the Lagrangian multipligper, for an arbi-
potential[43] trary electron numben (either fractional or integral similar

to Eq. (121).
MSM = EN =—1, (119 As a Compleme_nt to thi_s, we will show below that vyithin
o . our approach their equality can be derived alternat&fely.
which is a consequence of assumfipon](r) to be zero  For this purpose and in order to make a connection with the

asymptotically[43,51: traditional derivation of the Euler-Lagrange equation in DFT,
L KS _ KS _ we vary the energy expression with the Lagrangian normal-
!Tlveff[po'“](r)_ve“[po”\‘](w)_o' (120 ization term explicitly included, for an arbitrary electron

) ) . numbern (either integral or fractional
This assumption has never been proved to be true in general,

nor is consistent with the so-called “derivative discontinuity” SFNp]

Vod p] = moer{p(r)) — nl}

argument16—3Q, which states that adl passes a fixed in- () 3p(r) =0.
teger,v’sl ponJ(r) will exhibit a finite jump. Of course, with P =gy pr P=rgin
Eq. (120), vl ponl(r) will definitely not possess any “de- (125

rivative discontinuity,” but from our discussion in Sec. VII,
such an assumption like E¢L20) is not proved either, be- With our expressions of the functional derivative of the uni-
cause of the finite asymptotic valu&fponl() in Eqs.(95)  versal density functional in Eqg51), (64), and (67), Eq.
and (96). Nonetheless, Eq119) is covered within the ac- (125 thus becomes
ceptable range shown in Eq&8) and(80).

The third one is “conveniently” linked to the Lagrangian &Eg'*(k)
multiplier in DFT [14,15,50,52 which can be shown ok
through the chain rul§¢l4,50,52

. - U(r)) +[v(r) - uper] =0 (126

o= JEFMK | < SESM(K) (9p8’j2(|")> or, just simply,
SM Ik Jen Sppu(r)  ak N BN o .
= porF(r) = soFr, (121 HoFT = K |ien Hsms

whevr;a the property of th(_e Fukui _functiorﬂ5_3] F(r) for an arbitrary electron number (either integral or frac-
=dpyk(r)! Kji-n has been utilized. Obviously, this approachjona)). An important feature of our approach is that the

is basically a Fock-space treatment for boftir) and  apove equality is derived without any aid from the Fukui

SEG™N(K)/ Spii(r). function.
Built upon the third one, the fourth one is the negative of  Up to this point, the actual value gf%,, remains to be
Mulliken's electronegativity[57,58: resolved to draw a satisfactory finale. Let us work with the
L+ A KS method for a fixed integer electron numBémvith v(r)
U =X =, (122 eV andpon(r) € D. As usual, with the equalitywith A=1
2 and\=0 only)

which can be derived via the grand canonical ensemble near

zero temperature[7,15-17,36,4B In Sec. VI, we have  UHajhough Parret al. [15] took a similar path as outlined below,
shown that Eq(122) is just a particular choice among infi- these authorassumedhe existence of the functional derivative of

nite possible values betwegnl , -A]. FMp] for Fock-space ensemble-representable densities, while
Same to Eqs(68) and (80), the fifth one[7,47] is not a  working only with Hilbert-space universal density functionals.
fixed number, but between two limits Hence, their proof is actually logically inconsistent.
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IEPK) OEF 1K) 1/ pu(n)pn(r")
N 0 _ 0 — N N
= — = = —= F =T +E +-\———— ), (129
Hsm Ik - MDFT 3ok |en [on] = Td pn] + Exd pnl 2 r=r'| (129
SF
= SFlp] +o(r) (128
30() | p=pg
and the KS partition of the universal density functional one arrives at
|
SF ST, SE r'
L] _ OTdp] xd p] pon( ,) ar' (130
() 1 p=pn OP() Tpmpo o OP(N) | pmpy Ir=r'l
[
For any external potential(r) e V, Egs.(106), (109, and . I ESM(K) N .
(113) guarantee that pom= ok | T DM (n) =Dy (N)=-1, (136)
=n
. OEdp] where N is the nearest integer upper bound rof For the
fim sop(r) | - =0, (131 entire range ofN-1,N], the chemical potential is a con-
PmPoN stant, hence is continuous with respect to the change of elec-
tron number. |

and it has been well establish¢#,43,66,67 that for v(r)

<V the corresponding ground-state density will be asymo- This is to say that the value of the chemical potential is
> ponding gro Y y pcompletely dictated by the asymptotic limit of the functional
totically exponential-decayingyn(r) € D, such that

derivative of the kinetic-energy density functiorjake Egs.

ST ST (104), (109), (132, and (133)], which in turn is governed
lim ITlp] = lim Tdp] =—-1, (1320 solely by the decaying behavior of the least decaying
re Op(N) [z 1= OP(1) [y N-electron ground-state density for arelectron systenfsee

Egs.(91) and(93)], without any interference from thenoc-
whereT][ p] is the exact kinetic-energy density functional, the cupied (N+1)-electron state. Any other definition fq;QM
kinetic component of[p]. With the help of Eq.(89), one  not consistent with Eq(134—say, the negative of Mullik-
derives the asymptotic behavior en’s electronegativity in Eq122—will be in direct conflict

with the continuity of the functional derivative of the
exchange-correlation functional with respect to electron
=-1l (133 number[see Eq(113)]. Further, the conclusions of Sec. VII
P=PoN should be true for the extended domains: (N-1,N] and
me (N,N+1]. This result is achieved without any reference
whatsoever to the finite asymptotic valu€s[p,]() in

. 6F[p]
M o)

BecausmgM is a global constant, one immediately gets

SFIp] Eqgs.(95) and(96). Hence, it is a general, universal statement
MgM = Iim( —_— + v(l’)) =-1, (139 for v(r) e V andpg,(r) e D.
==\ 0p(r) P=PON Here, we conclude our investigation into the functional

o derivative of density functionals and related issues.
from Eqgs.(94), (128), and(133). Combining Eqgs(52) and

(134), we finalize the value for the chemical potential for an IX. SUMMARY
arbitrary electron numbar (around an integeN):
The contributions of our paper to the discussion of the
{Dﬁk(N) =—1 :ne(N-1,N], functional derivative in DFT are the following.
VAN . (i) It is an old problem but with a renewed interest in
D' (N)=-A :ne(N.N+1]. recent year$1-55. There is a lot of confusion accumulated
(139 over the years and almost no mathematically rigorous studies
except for the papers of Englisch and Engligd@], Lieb
Moreover, Eq(135 can be simplified as a single statement[11], van Leeuwer12], Lindgren and Salomonsdi3], and

. _ ESK
Msm 9k

k=n

below. Gal [14]. Our paper is an additional effort to further
Theorem 6.For an arbitrary electron numbeme (N strengthen the mathematical foundation of DFT.

-1,N] with v(r) e V and py 5(r) € D, the chemical potential (ii) In order to derive the main results, two Hohenberg-

takes the lower derivativevith respect to the electron num- Kohn-like theorems for cases of fractional electron numbers

ben of the ground-state energy as its value: are proved.
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(ii) We prove that within the zero-temperature Fock- APPENDIX
space DFT, the functional derivativéF”[p]/5p(r)|p=pg,h

=C*MNN)-v(r) is not well defined in the case of an ipteger Fock-space ensembierepresentable densitiéﬁgﬁ(r)} in .
number of electronEp(r))=N e N, ], due to the nonunique- Proof. As shown in Eq.(19), any Fock-spaée ensemble
ness ofCUUgN), Wh'f? can be within an entire interval: | ronresentable density?h(r) has a unique decomposition
DA (N)<C"*(N) <Dy"(N). We further show that the often 4 ts two adjacent integeX and (N+1) components:
cited “temperature regularizatioii7,17,57 could not fix the
uncertainty ofC*(N) at an integer electron numbak PoA() = (N+ 1 =n)psN(r) + (N=N)pdn.a(r). (A1)
(iv) We prove that within the zero-temperature Fock-
space DFT, the functional derivativéF”[p]/5p(r)|p=p(u),; Vie i, | (1) ANOL0  and | )
=C7(n)~u(1) is well defined a" () =dE5(K)/ Kl In - ”’x(r.),” =0 kl;cs)crptnhe ktﬁoglemlent in this corr:\](/g;;c il;]n se-
the case of a fractional number of electroféo(r)) Pon S ider diff ¢ splitglabeled 'thg 9
—neN.]. quencepy(r), consider different split§labeled with a non-

(v) The above results are proved for an arbitrary electronfécessarily countable index) into N and (N+1) compo-

electron interaction strengti between 0 and 1 and nents:

Corollary 1a. P[p,] is lower semicontinuougl.s.c) at

Take a sequence of densitig§r) converging tOpSﬁ(r) in

are later restricted to the casas1 and A=0, thus, for Ky = (N+ 1 =) o%5(r) + (n = N) oK (1 A2
ne(N-1,NJ, giving  &F[p]/&p(r)| =y, =1 ~{v(N}can p”(_) ( ) Do Tr) +¢ )prl( ! (k :
STdpl! 6p(1)] =y, =1 {0551 P0a)D}can and  such that lim_.[lpgy (N =pdMm(D]1=0 and lim_.||p§ (1)

SExd P! 8p(1)|p=p, ={v3e(N}can Surprisingly, the canonical =pym(N]lz=0, whereM is eitherN or (N+1). Since it is
representatives of the classes of various potential functionlénown[10-13 thatF[p] is |.s.c. at Hilbert-space ensemble
are required to correctly define their corresponding density-representable densitieyN(r) and pg.4(r), for each
functional derivatives. choice ofa, we have

(vi) The functional derivative of the exchange-correlation

N[ U [V A ak
functional is continuous with respect to the number of elec- Flpon] < lim inf FA{p] (A3)
trons in Fock space. Consequently, there is no “derivative
discontinuity” for the exchange-correlation functional at anand
integer electron number. NN o Oar ak
(vii) The equalityuper=uly, is rigorously derived via an Filoonsa] < "'[L'Qf Filonial- (Ad)

alternative routeuppr is the Lagrangian multiplier used to o _ N .
constrain the normalization of the density, which in the tra-A combination of the above two inequalities with Ed.7)
ditional DFT approach is associated with the chemical potengives

tial, uly=dES"(K)/ k|-, defined according to statistical v ) )
#5u=0EG" ()] Kl g FMNpgal = (N+ 1 =n)FNpga] + (0= N)F [pgihey

mechanics.
(viii) Finally, we show that foo(r) € V, there is no free- < liminf {(N +1 —n)F“[Pﬁ’k] +(n- N)F)‘[pﬁfl]}.
dom of adding an arbitrary constant to the value of the ke
chemical potential at an integer electron numiBeand fur- (A5)
ther resolve this intrinsic nonuniqueness by an exact defini- i , i o
tion: MglM:_L not  the popular preference The final step is to observe that the above inequality is pre-

[7,15-17,36,48,57,380f the negative of Mulliken's elec- served after taking the infimum over the set of different den-
tro,negati\,/ity, —1,(|+1A) sity splits {«}. Once again, using Eq17), we obtain the
P2 ' desired result
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