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Relativistic configuration-interaction perturbation-theory method with application
to intercombination and allowed transitions of light Be-like ions
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We have improved our previous mixed configuration-interaction and perturbation-tt@eriylBPT) meth-
ods by including all second-order Coulomb and lowest-order Breit terms. The method is applied in calculations
of E1 matrix elements for the twos?— 2s2p transitions of light Be-like ions. The results are in good
agreement with experiments and other precise calculations. The length and velocity transition amplitudes are
also more consistent.
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I. INTRODUCTION divalent atoms was discussed 04,15 and dependgin

bre many other possible direct applications of theories of

type muItleIFctron atomg, _hquev?]r, theory |sfless rellabledivalent atoms: for example, by calculating the natural line-
For example, amongab initio theories, a frozen-core :yh of 6180—>61P0 transition of Yb atom, Porseet al.

configuration-interactiofCl) method, a small-model-space [17] ; ;

X . ; proposed ultraprecise Yb atomic clocks.

mqny-quy perturbation theo(WIBI_DT) [1.2, mult|conf|gu_- The construction of theory for open-shell atoms is diffi-
ration Dirac-Fock MCDF) for Mg-like ions [3], and multi- ¢ e g6 1o strong valence-core and especially valence-

configuration Hartree-FOORMCHF) for Be-like ions[4] and | 5 011ce interactions. However, the combination of valence-

for neutral calcium[5] are less accurate than one—valence—v lence CKwCl) and MBPT provides unique opportunity to

electron theories. The same can be said about semiempiric alize advantages of the two powerful methods. Recently
?:alculagolr;s olgsqtgss,fed l;y C_I_thﬁ] f;)r Beihby (I;/Ietrtl)y[7] fo; ¢ we have developed a computer code based on this principle.
a, and by ai[8] for Sr. Therefore, 1€ aevelopment of yyq calculated[18] energies and transition rates of neutral
precise theory for atoms other than helium or alkali metalsBe Mg, Ca, and Sr and found a good agreement with experi-
such as divalent atoms, is well motlvat.ed. . ment for allowed transitions; however, the agreement with
The development of theory for' multlva_llent atoms s aISOexperiment and gauge invariance was much worse in sup-
fmotlvated lby gundar_?ental experlmet:_nt;’\:n heavy_elerr][entspressed transitions. Currently, we would like to investigate
_orT?xgrrllp €, )é_p%fl y-nonconserva '(6. RC) i’ipe“mgr_‘ S possible reasons for the inaccuracy of suppressed transitions
:gb 1[2 ' I-CI)] in Bi ( |sc1;]ss”|on IS gl\;]en in Ref11]), an 'nf and for gauge dependence which could be missing second-
[ i ]h eavy open-she hathoms a]ye malmy common.dea—order Coulomb and first-order Breit corrections, some asym-
tures; however, atoms with three or four electrons outsi e.?netry in truncation, or small denominators in perturbation
core, ow!ng.to enormous conflgurat|on space and SUbStant'?érms. Because light Be-like ions have very strong suppres-
core-excitation effects, are difficult technically. Although sion and other calculations and accurate measurements exist
initio calculations for these atoms have been performed, th{aor them. these ions suit well for the test of our new im-
accuracy Is not great and many questions need further inVef)'roved éI+MBPT program. Our method has the advantage
:!gatlor}. tl;]/laybe "’km ﬁxcept;‘on 1S W;]e gclc;relmci/éof carllc_:urlla— that even standard PC computers are suitable for calculations
lons of the weak charge nas reache b 14 D: whic so that it can be adopted by many theorists without special
can be considered as both a monovalent and a trivalent atorEomputer resources. Because computation time is only sev-
and its three-particle valence-valence interaction is not VeryY ol hours and the él space is largg,., can be as large as
strong. Because the valence-valence correlations of divale% many transitions and energy Ie?;(els can be studied if
?tc:mst can (l:j)e trteatded cqmpletely, sl'gud;ez oftthesefatomr?_ Cﬂ'écessary. The precision of intercombination transitions rap-
Pil% N ollm Iers 'and' V?”OUS corE%:\c/:la ed atoms orh w IChdly increases for heavier Be-like ions which have less accu-
and electric-dipole momen ) experiments have  oiq cancellation of the matrix elements and smaller correla-

b_een performed or are planned. An(_)ther Important ap_p_llcat—lon effects. The code can be applied without change to many
tion of the theory of divalent atoms is to provide transition other divalent atoms and ions

d_ata needed in .COId'COH'S'On and Bose-Einstein conden.sa- The light Be-like ions are relatively well studied theoreti-
tion (BEC) experiments. The prospect for achieving BEC IncaIIy and experimentally. Since these ions have only four
electrons, it is possible to predict their properties with mul-
ticonfigurational methods such as MCDE-22 or MCHF
*Electronic address: isavukov@princeton.edu; URL: http://[23]; however, for high precision of intercombination transi-
www.princeton.eddisavukov tions a careful analysis of various correlation and relativistic
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corrections is necessary. Very useful in this respect is a recebiasis out of the Brueckner orbitals, computing the effective
high-precision storage-ring measurement by Doer¢ral.  Hamiltonian matrix and solving an eigenvalue problem to
[24], which gives the rate of the intercombinatiors?2 obtain coupled two-valence-electron wave functions. The ef-
— 2s2p transition of berylliumlike carbon, fective Hamiltonian contains the first-order Coulomb and the
102.94+0.14 seé. This rate is in agreement with the value second-order screening corrections. RPA corrections are in-
102.9+1.5 sed obtained by Jonsson and Fiscligg] with ~ cluded at the stage of calculations of transition amplitudes.
the MCDF method, but disagrees by 1.3% with the value Despite good agreement with experiment for allowed

obtained by Cheet al.[25] in elaborate large-scal@00 000  transitions, we observed some discrepancy for suppressed
configurations relativistic configuration-interactionRCIl) ~ ransitions. Especially large disagreement was in the case of
calculations accurate to 0.7%. As pointed out in 6] the 2% — 2s2p intercombination transition of Be-like carbon

despite close agreement with experiment the MCDF methoézrg’ Vgg:ﬁg Ibsekgtoags?igﬂralte%.isgﬁasg?zitf(;rng}losr i'gr(;]rgp'
[22] has some unresolved issues: the nonorthogonality o y (1) 9

. . 2 . -second-order Coulomb correction§?) truncation errors
bases, omission of some small effects that could be S|gn|f|\7vhiCh can result in asymmetry of1/2 andl-1/2 contri-
cant at the 1% level. Other calculations give results with

S - %utions, (3) small denominators that can also amplify the
significant scatter, 70—130 sécUnfortunately, not all cal- asymmetry betweeht1/2 andl - 1/2 states, ang4) incom-
culations are done systematically for the sequence: for &x5\ateness of the basis. Therefore, we would like to investi-

culations, with the same number of configurations, for B Il,+x MBPT code.

where another storage-ring precise measurement exists
(Trébert et al. [26]), and cancellation effects are stronger B. Inclusion of Breit and second-order Coulomb corrections
making theory more sensitive to small corrections. However, The importance of relativistic corrections such as spin-
not only do theories have problems; the experiments couldther-orbit and spin-spin terms that come from the Breit op-
be less precise than claimed as well: for example, the ion traprator for the intercombination line in Be-like systems was
measurement121+7 sec! [27]) for carbon is by three stan- pointed out by[29]. In a recent paper Chegt al. [25] have
dard deviations different from the more precise recent meashown that the Breit contribution to the transition rate of
suremenf24]. C Il is approximately 26% in the four-electron Durac-Kohn-
In addition to testing our theory, we also hope to improveSham or the three-electron modified-core Hartree potential.

the accuracy of transition rates for Be-like ions which areAlthough we use the two-electron Dirac-Hartree-FadkiF)

important for various applications in astrophysics and plasm&otential, we expect that the Breit correction in our case is at
physics as well as for tests of atomic theories and experith® same level and must be included. The missing Coulomb
ments. second-order corrections are expected at a few percent level,

The plan of this paper is the following. First, we will which also can be inferred from RgR5].

describe briefly our method giving expressions for new cor-, We complete second-order contributions to the energy in

rections. Next, we will consider the allowed®2- 2s2p tran- th? Cl+MBPT formahsm. by adding one Cqulomb term
sition in some detail: we will show how to improve the (with double-core summatignThe formula for this term can

gauge independence of simple vwCl+RPA or more refinecpe found in Ref{2]:

C|+MBPT methods_, study a convergence pattern, and com- N S (- 1yiuticHked Jo dw J

pare final results with measurements and other calculations. v'wow = To'w! 7ivwkb i jn K

Obviously, if a theory is not able to predict accurately this ¢

allowed transition, it will be even more problematic for ><Xk(bcuw)YJ(v’W’bc) 1

strongly suppressed transitions. Then we will concentrate on srte.—8,—8., (1)
b c w’ v’

various issues of intercombination transitions. We will test

nonrelativistic symmetry of terms, give a breakdown of theThe notations are similar to those in the paper. The summa-
contributions of Breit and Coulomb corrections, carefully tion runs over core statdsandc as well as over the angular
study the truncation errors, and at the end present our finahomentumk. The initial v, w and finalv’, w’ states which
values and compare them with measurements and sevetatlong to the model valence-valence Cl space have been

theoretical calculations. coupled to the angular momentuin The normalization co-
efficient 7,,, is equal 142 for two identical states and 1 for
Il. COMPUTATIONAL METHOD not identical. _ , ,
We include all first-order Breit corrections, which are two.
A. Previous ClI+MBPT program The formula for the first Breit correction,
In our previous papefl8] we included dominant, espe- N — S (= D)iwtiotk
cially for allowed transitions, contributions such as self- vrwhow oA
energy, screening, and random-phase approximaRith) .
corrections. We demonstrated good accuracy for energy lev- x [(_ 1)J{Ju' Jw J }B (o'W
I’ . . k(v W UW)
els and rates of allowed transitions even in strongly corre- w v K
lated atoms such as Ca and Sr. Briefly, the previous version .
of our the CI+MBPT method, which we also call the L w J B (U/W/WU)} )
Brueckner-orbita(BO) Cl method, consists in constructing a v Jw K K ’
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is obtained from the formula for the first-order Coulomb cor-about 6% in three-electron modified core Dirac-Hartree
rection in the DHFVN"2 potential by replacing usual Cou- (MCH) potential calculations which might indicate that
lomb matrix elementsX(ijkl) with the Breit matrix ele- higher-order NE effects are important. How to add NE cor-
ments Bg(ijkl) which consist of three magnetic Slater rections beyond the second order is an open question which
integralsM (ijkl), N, (ijkl), and Oy (ijkl) defined in Johnson requires additional work, but if only second-order NE cor-
et al. [30]: rections are used, velocity form results can be inaccurate. By
- . . . . this reason we will present only length-form results for com-
X (ijkl) — By (ijkl) = M_(ijkl) + N (ijkl) + O_(ijkl). (3)  parison with other calculations and with experiment.
The second Breit correction, which is natural to call Breit- \We also find that it is important to use retarded matrix

Dirac-Hartree-FockBDHF) correction, is defined as elementgequations for reduced matrix elements with retar-
dation can be found ifi31]) in calculations of nonrelativis-

RDHF — E /[J B (iaja). 4) tically forbidden transitions: the retardation contribution to
“J oia] the rate of the Gi intercombination transition is 2%. The

B allowed transitions are insensitive to the retardation, at least
where the functiorB(ijkl) is similar to the functiorz,(ijkl) ~ for the lowZ ions considered here.
except that the Coulomb interaction is replaced with the
Breit interaction. This correction can be incorporated in all || cALCULATIONS FOR THE ALLOWED TRANSITION
orders automatically if we replace the DHF basis with the
BDHF basis. We constructed this basis by diagonalizing the ~ A- Completeness of the spline basis and cavity effects

single-particle Hamiltonian Although light Be-like ions have the convergence pattern
h = e +BPHF. (5) for matrix elements .of th.e gllowed transition a_nd for engrgies
v of lowest states quite similar, theiBand Cui ions require
Since our basis does not contain negative-en@xs) states, more careful consideration to account for larger correlation
it will be slightly different than the basis formed by solving effects. Once the convergence is achieved for these ions, the
the DHF differential equation which contains the Breit inter- number of configurations and other parameters of calcula-
action. Another way to incorporate BDHF correction is by tions can be kept the same, except that the cavity sizes
adding the term should be rescaled. The dipole matrix elements of the al-
VBDHFW ot Tou Sor BDHF 5., BPHF 4 (- 1)° (e BDHF lowed transition and the transition (z.tnergies?’ﬁ’tl and P,

v'w! viUTww states do not change significantly when we vary the maxi-
-5 BDH,F)] (6) mum principal quantum number of spline orbitals, in-
v oW cluded CI+MBPT from 13 to 18 and the cavity siRe,, in

to the two-particle effective Hamiltonian. In this case thewhich splines are generated from 2% to 45/Z°°" a.u. Af-
higher-order terms that have the summation over intermediter an additional analysi@ is given in a separate sectipof

ate core states will not be included. Since the BDHF correcthe convergence of intercombination transitions, which are
tion to nonrelativistically forbidderEl transitions is rela- more sensitive to completeness of the basis, we find that
tively large, it is important to include it in all orders. For R(Z°")=24/Z°" and n,,,=18 are optimal for the resonance
example in Gu, the matrix element calculated in the BDHF and intercombination transitions for all ions; these param-
basis is by several percent smaller than that obtained usingfers will be used in final calculations.

Eqg. (6) at the level of vwCl, but the results agree well after
adding all other corrections because self-energy and screen-

) . - B. Length form vs velocity form
ing corrections are also significantly reduced.

We also calculated the Breit RPA correctitin the RPA In the literature electric-multipole matrix elements are
diagram a Coulomb line is replaced with a Breit line very often calculated in the length forin MCDF the
Babushkin gaugeand the velocity formiin the MCDF the

(al|Z2PAlnyB,(wnwa) Coulomb gaugg and the accuracy of calculations is often
estimated from the length-velocity difference, so it is impor-
tant to understand which form, length or velocity, is more
+§J(waun)<n||zRP’°]|a>] accurate and what does the difference mean. Because the

W) =S (-1 >a—nﬂm[

€2~ €~ W

(7) velocity matrix elemenV;; is proportional to the energy dif-
ferencee; — €, many diagrams that involve states with large
which turned out to be important only for the velocity form. energies are more significant in velocity form, making it
Including this correction without including NE contributions more “dangerous” when not all terms are collected order by
introduces strong disagreement between length and velocityrder. Furthermore, the length-velocity disagreement does
forms for the intercombination transitions. Our result fonC not give the accuracy of calculations, but merely the inaccu-
has the difference between length and velocity forms close toacy of the velocity form. This fact is obvious because form-
that observed in Ref[25] before the NE correction was independent order-by-order MBPT can be constructed
added. The difference would decrease substantially if wé¢32,33. In a CI+MBPT method some diagrams are omitted
added second-order NE contributions. However, even witlwhile others are treated in all orders; therefore, we expect
NE contributions added in Reff25] the agreement was only that the velocity form can be problematic. In other methods

€~ etw
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the situation is often similar, the length-form result is moregauges to check code errors and the completeness of the
accurate than the velocity, but the analysis is required. Fobasis or to use the program to calculate magnetic transitions
example, if we consider convergence with increasing numbewhich do not have length form matrix elements.

of configurations in the Cl method, highly excited states in Can CI+MBPT formalism be made form independent
the cavity have large energies and will be more important fowith high accuracy? We do not have an answer to this im-
the velocity form. This is also true for the contributions from portant question yet, but we have a good starting point. If
the negative-energy continuum. When nonlocal potential®RPA corrections are included in valence-valence CI calcula-
and/or all-order methods are used, it might be difficult totions, disagreement of the order of a few percent is observed,
choose more accurate form or to achieve form independencbut adding the diagram below makes agreement of forms at
However, it is desirable to have complete agreement betweehe level better than 0.1%:

RP. Ins! ’ H H ’ RP 4
st = S oo BN 33 34 e s e, Y
vy ka €t ey € T gy Ja v Jw) U Jw Kk ka €t ey — €€

J J 1 - e J
x{. S }{‘ b } (8)
Ja Jv’ JW’ JW Jv k

Zgg/rr,a — V’m E ﬂvwnu,w,03W03;W, % [Zcorr,a + (_ 1)jv,+jw,+J/+1Z\(,:vorr,a + (_ 1)jv+jW+J+1Zcorr,a

v'w vw "v'vw v'w'wo
vwo'w’

+ (- 1)jul+jw'+jU+JW+J+J’Z\(II‘IOTF,3 ]. (9)

"v'wo

Here C), and Cﬂiwl are configuration weights of the initial formed from positive-energy states and the commutator does

and final states coupled to the total angular momd&naad not vanish. In order to complete. th? summation over NE
J', respectively. Roughly speaking, this term is what is leftStates, the second-order NE contribution was added perturba-

(NE contributions are not important for allowed transitipns t|vely.anq form mdgpendence was improved even in inter-
in the second order from the ter#¥°" given in Ref.[34] if combination transitions. In the valence-valence ClI, the sum-

we use valence-valence Cl wave functions in calculations o ation over intermediate NE and core stafces is also missing.
matrix elements—that is, in the initial summation over all h?refortcre], we addetq the second-ordlert dlagr_atm,(E)q.tot
indicesi the summation over excited states is automaticall;fesl.ireth e summfah|o|r) over a comp ele pfs[;l'_\(g sptec trurln
included in CI, but the summation over core and NE states ié"n' € the case of hellum, we use nonloca potential,

not. This term is small in the length form and can be ne-and in order to have Fl of one-particle matrix elements nec-

glected. However, it is important for the velocity-form am- essary for the proof of FI of the two-particle matrix element_s,
plitude. Why does this correction improve significantly the'nlStead of g?fﬁ we havr(]a to LIJS? dressed,” full RPA mairix
gauge invariance of the valence-valence Cl+RPA? To undef!éments which satisfy the relation

stand this we have to look at a simpler two-electron atom. It

was demonstrated numericall i Vi A= oy Z§ (12

y and proved analytically by ij i%ij
Johnsoret al. [31] that two-electron Cl matrix elements are  The full RPA correction can be obtained by iterating core
accurately form independent if negative-energy correction®RpPA until the convergence is reached. In the case of allowed
are added. To prove form independer(€#) the following  transitions, NE contributions scale aéZ, so even not in-
commutator of the interaction potential with the gauge op-cluding NE contribution it should be possible to achieve the

eratorE was introduced: relative form difference at the level 10 Typical differences
1 between length and velocity matrix elements are shown in
[V,E]==> oijquTaJ.Ta{ak, (100  Table I. Because the completeness of the basis is important,
25 we varyl e Nmax Of RPA matrix elements that replace first-

order matrix elements, the number of core RPA iterations,
and n,,,, of the term defined by Eq(9). It is somewhat
strange that when the basis is the most complete, we obtain
Oija = zr: Wign S+ vikedn =~ Girvrg ~ Grvinal- - (1D e L?]V agreement only at the level of 0.1%? while by re-
stricting the basis we achieved 10 times better agreement.
This commutator will vanish if the index runs over all One reason for the residual disagreement can be the uncer-
positive and negative states. In two-electron CI the basis ifainty in the denominators of MBPT corrections. To avoid

where
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TABLE I. The form independence of the matrix elements for the of others. In Table Ill, we give a comparison for oscillator
B 11 resonance transitioMNgpa is Nmax Of RPA matrix elements that = strengths of the alloweds2— 2s2p transition. The accuracy
replace first-order matrix elementsy,erpais the number of itera-  of our CI+MBPT calculations is expected at the level 0.1%.
tion of core RPA, andNzcere is the maximunm of the term defined e agree with elaborate RCI calculations by Cleéal. [25]

in Eq. (9). within our estimated error and with most calculations given
in the table at the level 0.2% as well as with experiment
I max Nrpa NeorerPA Nzcore L-V within experimental error bars. For example, we have good
3 10 10 10 0.00015 agreement with recent, refin_ed M(;DF calculations by Jons-
3 15 30 15 0.00076 sonet al. [19]'fo'r fo.ur ions, including Fe XXIII. Thg com-
parison for this ion is of interest to check relativistic correc-
4 10 10 10 0.0016 tions. In OV, the MCDF method of Ref20] gives result
4 15 30 15 0.002 different from ours by 0.65%, while we agree well with other
5 10 10 10 0.0015 calculations for this ion. More calculations for this allowed
5 15 30 15 0.0024 transition can be found following Ref19].
IV. CALCULATIONS FOR THE INTERCOMBINATION
closeness to zero we replace each denominator in(%8q. TRANSITION
with the denominator in which the initial valence state is the
lowest excited state for a givgn Thus the denominator is A. Nonrelativistic limit test
always negative. Still not including corrections from K@) Because any small asymmetry of contributions from

would make disagreement at the level of 1%. A similar SitU-+1/2 andl—-1/2 states can result in a |arge error for inter-

ation for the allowed transition of C Il and other iofisee  combination transitions which have strong cancellations, we
Table ”) In this table we also show the Iength—velocity designed a Simp|e test to check for the asymmetry_ We re-
agreement for intercombination tranSitionS, which is SUrpriS'p|aced radial wave functions and energies| ofL/2 states
ingly good starting from OV, considering the fact that we with those ofl —1/2 states at different stages of calculations.
omitted NE corrections. Without NE contributions, as we Thus after this nonrelativistic symmetrization, matrix ele-
already discussed, the BRPA correction becomes problematigents calculated with the frozen-core valence-valence Cl be-
Ieading to IargeL-V disagreement, so that to achieve bettercame very small, less than 0a.u. We tested each diagram
gauge invariance, we decided to exclude BRPA correctionand found that the screening correction gave anomalously
The contribution from Eq(9) is small to intercombination |arge value, up to 1@ a.u. Because the truncation was com-
transitions in the length form and can be neglected. The vepletely symmetric, by fixed orbital angular momentum of
locity form correction is substantial, but does not improverelativistic states, it was difficult to explain this effect. It
form independence for low-ions. turned out that the problem was in the denominators. When
highly excited states are included into the effective Hamil-
tonian, the denominator of the screening correctiqf g,
—eg —&,, Wherea and B8’ belong to excited states included
Since there are many calculations and experiments availato vwCl, can become small accidentally. When we used
able, it is interesting to compare our results with the resultsnstead of this denominator the denominatgy—e¢,, the

C. Comparison for oscillator strengths

TABLE II. The form independence of the allowéld,,V,) and intercombinatiofiLg, Vg) matrix elements
for Be-like ions. The parameters of the calculations are standgig= 18, 1,,=5, optimized cavity sizes; all
corrections considered in this paper except for BRPA are includgd;e Neorerpa @ndNgpadefined in Table
| are equal 10. Small in length form but large in velocity form BRPA correction is not included because it
completely destroys form invariance of the intercombination transitions forZaans due to its large NE
contribution. The ratio of matrix elements of the allowed to the intercombination transition shows the degree
of suppression of the intercombination transition which is somewhat correlated with form independence and
which is important for understanding the accuracy of the intercombination transitions. Numbers in square
brackets denote powers of 10.

lon La La=Va/La Le Le—Ve/Le La/Le
B 21177 -0.0015 4.994] 0.150 4244
Cui 1.5618 -0.0020 9.944] 0.061 1571
N v 1.2402 -0.0022 1.643] 0.052 757
Ov 1.0299 -0.0023 2.433] 0.001 423
Fwvi 0.8813 -0.0023 3.373] -0.001 261
Nevii 0.7707 -0.0023 4.463] -0.002 173
Fexxin 0.2594 0.0000 3.7%2] 0.002 7
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TABLE Ill. Comparison of oscillator strengths for the allowed?22s2p transition of Be-like ions.
Theoretical results are given in the length or equivalent Babushkin gauges, the velocity and equivalent
Coulomb gauge results are disregarded.

Cl+MBPT MCDF MCDF CIV3 RCP Experiment
Bl 0.9998 1.0012 0.994 0.971+0.0798
cu 0.7583 0.7571 0.757 0.7577 0.753+0.026
N v 0.6106 0.6117 0.6099 0.609 0.620+0.022
ov 0.5116 0.5123 05081  0.51F 0.528+0.0283
Fvi 0.4408
Ne vii 0.3878 0.3882 0.387 0.420+0.06'"
Fexxill 0.1538 0.1539 0.156+0.015
aJénssoret al. [19]. 9Fleminget al. [37].
PChenet al. [25]. _hReistedet al. [38].
“Ynnerman and Fischd@1]. 'Fleminget al. [39].
dFleming et al. [35]. jEngstrtjmet al.[40].
°Bashkinet al. [36]. Krwin et al. [41].
"Ynnerman and FischdeQ]. 'Buchetet al. [42].

problem was instantly solved: the nonrelativistic substitutionof lowest excited states. Table IV illustrates variations of
made the screening correction very small. However, accordesults withl s Nmayw @anNdRe,,. First of all, we can see that
ing to the rules of MBPT, such a denominator is wrong. Thenma=18 and the cavities 15 a.u. for B Il and 10 a.u. for C llI
compromise solution, which would be almost correct for theare almost optimal since further reduction of the cavity from
ground and lowest excited states, is to replacaith the 15 to 14 for B Il and from 10 to 8 for C Il does not change
lowest excited states of givgn. Thus denominators will be result. In addition, decrease @k, from 18 to 17 (R,
always negative, and its value will be correct for dominant=14/8 for B Il/C Ill) changes the result only by>110°.
contributions. The nonrelativistic asymmetry from the cor-Because energies of an ion in a cavity starting from some
rected denominators becomes small, and we used the screeggtow very rapidly, the correlation corrections are suppressed
ing term with these denominators in all subsequent calculaby large denominators and decrease rapidly, too.
tions. It also can be concluded thigt,, =5 is sufficient if we add
the value from extrapolation to infinitg,,, equal about 1
% 10°% for B Il and 3x10°® for CIll. For transition rates
these corrections will be 0.4% and 0.6%, respectively. A
Forbidden transitions are very sensitive to various truncasimilar correction from extrapolation for C Ill, 0.56%, was
tion errors. Because of memory restrictions of our particulaestimated in Ref{25]. We have some concern about the B Il
computer, it was necessary to keep the number of valencé-extrapolation correction, which might be larger, since we
valence configurations less than 5000. We restrictedound that for appropriate extrapolation,,, should be suf-
Imax 10 5 andnn,, to 18. By reducing the cavity size we ficiently large; n,,,=18 barely satisfies the completeness
made this basis complete enough to account for correlationsondition forl,,,,=5. The extrapolation problem can be seen

B. Truncation errors for the intercombination transition

TABLE IV. Cavity and truncation effects. The effective Hamiltonian matrix is truncated by the maximum
angular momenturh,,, and by the maximum number of excited statgg, for a givenj=I+1/2: thetotal
number of relativistic single-patrticle stateq®,,4+ 1) Nmaxand the number of two-particle states is less than
5000. The retarded reduced matrix elements in the length (BME) and the cavity radiR.,, are given in
atomic units;nnay andl ., are the same for B and Cin on each line, while the cavity sizes are different

nmax l max RCBU RM E RCBU RM E
B Cu
18 2 15 0.000500 10 0.000989
18 3 15 0.000509 10 0.001005
18 4 15 0.000511 10 0.001010
18 5 15 0.000512 10 0.001012
17 5 15 0.000510 10 0.001011
18 5 14 0.000512 8 0.001012
17 5 14 0.000511 8 0.001011
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TABLE V. Breakdown of contributions to the reduced matrix ment for the intercombination transitions is rather unex-
element for Bi and Cii: vwCl, BDHF, and RPA are treated in all pected. It is interesting to note that the addition of BRPA
orders; the most important are two-particle B(@t 2), Brueckner-  correction does not improve agreement but instead makes it
orbital (BO), the screeningScn, and the matrix-element retardation mych worse. For example, with this diagram included the

(RME) corrections. All values should be multiplied by $Ga.u. C Il rate calculated from the velocity matrix element is ap-
proximately 190 sed, much different from 100 sétin the
_ B Ci length form, but close to the result obtained by Cle¢ral.
Corrections Value Total  Value Total  125] in velocity form before NE corrections were added.
WCl+BDHE+RPA 448 906 Since major part of disagreement arri\(es with BRPA correc-
tion, one can conclude that the dominant NE contribution
+BO 23 471 26 932 . . L . .
must be contained in this diagram. It would be interesting to
+Sor -13 458 8 940 yerify this conclusion.
+CC 0 458 1 941 The BRPA diagram is small in the length form and it does
+Br 2 41 499 53 994  not matter if we include or ignore it in our calculations. In
+RME 9 508 10 1004 fact, we believe that the velocity form result will be more
+BRPA -1 507 -1 1003 accurate if we omit this correction. This conclusion might be
+Extrapl >5,n>18 1+3 510 3+3 1009 Uuseful for calculations of magnetic-multipole transitions for

which the length form does not exist. Note that NE contri-
butions would be automatically included if we solved the

n=18: for|=2,3,4,5 weobtain approximately energies 119, tion, including BRPA, becomes form independent, and will
152, 28, 33 a.u. Extrapolation to infinitecan be warranted, Pe safe for the velocity form. Because in the MCDF method,

but the dependence anis not as smooth as dnso that we SOmMe corrections are included by solving differential equa-
give only approximate estimates: for B Il and C Il the in- tions corresponding to these corrections NE contributions are

crease of the matrix element is about<30°®a.u. For also included automatically, and approximate gauge invari-
heavier ions relative importance of the truncation errors de@nce can be achieved. However, correction based on a diago-
creases rapidly witlZ for the chosen optimal basis as the Nalization of the Hamiltonian matrix built on the basis of
transition becomes less suppresgsele Table Il where the positive-energy states are not necessary gauge independent.

ratios of the allowed to the intercombination transitions aréBecause the velocity form is always more sensitive to NE
given). corrections, the accuracy of the results cannot be judged by

looking at length-velocity difference or having good form

independence does not always mean good accuracy, espe-
C. Breakdown of contributions to the intercombination cially for intercombination transitions.

transition

To understand the most important corrections and the ac- ) _ o L
curacy of our calculations in Table V we show the break-E' Comparison for the rates of the intercombination transition
down of contributions of the MBPT terms. The BDHF cor-  Transition rates of intercombination transitions are com-
rection is dominant correction beyond Coulomb wvClpared in Table VI. In the case of CllI, we find a 1%-5%
approximation, and it was included in all orders by using thedeviation from other calculations and experiments, which is
BDHF basis. The second Breit correction, in the table dethe level of disagreement of other precise calculations pre-
noted as “Br 2" and defined by E) is also very important. sented in the table. For B Il, which has the strongest cancel-
Among second-order Coulomb correlation corrections, agation, our theory is off from experiment by 8% which is the
usual, Brueckner orbital and screening, are dominant. Notaccuracy of our calculations estimated from the analysis of
that the screening correction changes sign from C Il to B IIMBPT corrections) .« and n,., interpolation, and isoelec-
which is due to partial cancellation of lowand highn con-  tronic comparison. It would be interesting to see the results
tributions. The extrapolation to infinitig,,, and Ny iS also  of calculations performed with large-scale RCI method of
significant. Ref. [25] which carefully takes into account relativistic and
correlation effects. For N1V and OV, we agree well with
MCDF calculations by Jénsson and Fiscligg] and Doer-
fert et al. [43] and not very accurate experiments. We also

Length-velocity agreement for allowed and intercombina-agree well, the within 0.7%, with the MCDF of Jonsson and
tion matrix elements has been shown in Table II. It is notFischer[22] for Fe XXIIl. On the other hand, the CIV3
surprising that in general the agreement for allowed transimethod does not agree as precisely with our calculations and
tions is much better since the intercombination transitiongCDF for N IV and O V.
are very sensitive to various relativistic and correlation cor- The C Il intercombination transition has been studied in
rections, in particular to NE contributions. The largest devia-more than 16 theoretical works. The early calculation with
tion of results is obtained for the B Il intercombination tran- Cl method published in 1972 gave 77 Seother results are
sition, 15%, but for O V—FE XXIIl ions, the length and distributed in the range 77—-118 s&cThis large dispersion
velocity form results agrees at 0.2% level. Such an agreesccurs due to very high sensitivity of the C Il intercombi-

D. Length-velocity agreement
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TABLE VI. Comparison of transition rates for the intercombinatias?-2 2s2p transition of Be-like ions. Theoretical results are given
in the length or equivalent Babushkin gauges; the velocity and equivalent Coulomb gauge results are disregarded. The experimental energy
is used to calculate rates from Cl+MBPT line strengths. The error of our CI+MBPT resultifiors@stimated from the truncations error,
about 0.5%, from the value of the omitted diagrams, about 1%, and from comparison with precis¢2Bpangl experimeni24]. For other
ions relative errors where scaled by the degree of cancellation of matrix elements. Brackets denote powers of 10.

CI+MBPT MCDF MCDF MCDP° CIV3 RCI° Experiment
B 9.2+0.7 9.98 9.7% 10.24+0.05
Cii 99+3 100.8 102.9 104.4 101.6+0.7 102.94+0.14
N v 565+8 558.6 5563 577.0 625+ 150
Ov 2229+18 2212 2207 2280 2000+ 400
Fwvi 7022+35 6961
Ne vii 1.89+0.064] 1.8674] 1.9741° 2.2+1.14]
Fexxill 5.277] 5.18q7] 5.71+0.57]™
3j6nssoret al. [19]. "Eleminget al. [37].
®j5nsson and Fisch¢22]. fDoerfertet al.[24].
‘Chenet al. [25]. JFleminget al. [39].
nnerman and FischgR1]. kDoerfertet al. [43].
°Fleminget al. [35]. 'Kunze[44].
Trabertet al. [26]. MHutton et al. [45].

9%Ynnerman and Fischd®Q].

nation transition to various correlation and relativistic correc-rapidly as the cancellation of matrix elements decreases and
tions. For example, we already mentioned the importance odigree well with other elaborate calculations. Our current
Breit interaction, so calculations that do not include this in-theory can be improved in several ways. One interesting ap-
teraction are not accurate. In addition, valence-core interagroach would be to test various starting potentials, which are
tion plays an important role as well. So in order to judge thebetter than two-particle DHF and would lead to faster con-
accuracy of methods, it is important to see the breakdown ofergence of Cl. The positive effects from optimized poten-
various effects and the convergence with an increase of thials should be most important foriB Another improvement
basis. In MCDF methods, there exists also a problem of nonpossible from optimizing denominators in the screening cor-
orthogonality of separately optimized states. Because in outection. Some higher-order diagrams can be also necessary to
calculations we included all most important contributionsconsider.

and studied truncation errors, we believe that our results and

error estimate_s are reliable. Relatively large errors for B V. CONCLUSION

can be explained by strong cancellations which make the

result sensitive to small asymmetry in the treatment of rela- In this paper, we presented relativistic Cl+MBPT transi-
tivistic states of typg =1+1/2 andl—1/2,which we tried to  tion probabilities(oscillator strengthsfor the 2-2p transi-
avoid by truncating states with conditidr<|,,,, and to cor-  tions of berylliumlike ions. We find our results in close
relation and relativistic effects. Although it is not possible to agreement with experiments and other elaborate theories al-
include all MBPT and relativistic corrections, we made esti-though the Bi intercombination transition has relatively
mates of omitted diagrams. For example, the Breit correclarge uncertainty. To improve accuracy and form indepen-
tions to important second-order self-energy and screeningence, we modified our previous code to include all second-
diagrams are at the level less than 0.5% for &d Cu, and  order Coulomb and dominant Breit corrections. The equa-
even smaller is the contribution from the third-order tions for these corrections and their values are provided. One
structure-radiation correction. So the overall error from themportant conclusion from this work is that Cl+MBPT
omitted diagrams is expected at the level of 1% far &d  method can be used in calculations of suppressed transitions
Cui. For heavier ions, our calculations improves precisionwhich are very often of interest for many applications.
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