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We have improved our previous mixed configuration-interaction and perturbation-theorysCI+MBPTd meth-
ods by including all second-order Coulomb and lowest-order Breit terms. The method is applied in calculations
of E1 matrix elements for the two 2s2→2s2p transitions of light Be-like ions. The results are in good
agreement with experiments and other precise calculations. The length and velocity transition amplitudes are
also more consistent.
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I. INTRODUCTION

Atomic structure methods for atoms such as helium and
alkali metals are well developed and give energies and tran-
sition rates that agree precisely with experiment. For other
type multielectron atoms, however, theory is less reliable.
For example, amongab initio theories, a frozen-core
configuration-interaction(CI) method, a small-model-space
many-body perturbation theory(MBPT) [1,2], multiconfigu-
ration Dirac-Fock(MCDF) for Mg-like ions [3], and multi-
configuration Hartree-Fock(MCHF) for Be-like ions[4] and
for neutral calcium[5] are less accurate than one-valence-
electron theories. The same can be said about semiempirical
calculations discussed by Chen[6] for Be, by Metroy[7] for
Ca, and by Dai[8] for Sr. Therefore, the development of
precise theory for atoms other than helium or alkali metals,
such as divalent atoms, is well motivated.

The development of theory for multivalent atoms is also
motivated by fundamental experiments in heavy elements:
for example, by parity-nonconservation(PNC) experiments
in Tl [9,10], in Bi (discussion is given in Ref.[11]), and in
Pb [12]. Heavy open-shell atoms have many common fea-
tures; however, atoms with three or four electrons outside a
core, owing to enormous configuration space and substantial
core-excitation effects, are difficult technically. Althoughab
initio calculations for these atoms have been performed, the
accuracy is not great and many questions need further inves-
tigation. Maybe an exception is Tl(the accuracy of calcula-
tions of the weak charge has reached 1% level[13]), which
can be considered as both a monovalent and a trivalent atom,
and its three-particle valence-valence interaction is not very
strong. Because the valence-valence correlations of divalent
atoms can be treated completely, studies of these atoms can
help to understand various complicated atoms for which
PNC and electric-dipole moment(EDM) experiments have
been performed or are planned. Another important applica-
tion of the theory of divalent atoms is to provide transition
data needed in cold-collision and Bose-Einstein condensa-
tion (BEC) experiments. The prospect for achieving BEC in

divalent atoms was discussed in[14,15] and depends(in
part) on the size of their van der Waals coefficients. Recent
calculations of cold-collision properties of alkaline-earth at-
oms have been performed by Dereviankoet al. [16]. There
are many other possible direct applications of theories of
divalent atoms: for example, by calculating the natural line-
width of 6 1S0→6 1P0 transition of Yb atom, Porsevet al.
[17] proposed ultraprecise Yb atomic clocks.

The construction of theory for open-shell atoms is diffi-
cult due to strong valence-core and especially valence-
valence interactions. However, the combination of valence-
valence CI(vvCI) and MBPT provides unique opportunity to
realize advantages of the two powerful methods. Recently,
we have developed a computer code based on this principle.
We calculated[18] energies and transition rates of neutral
Be, Mg, Ca, and Sr and found a good agreement with experi-
ment for allowed transitions; however, the agreement with
experiment and gauge invariance was much worse in sup-
pressed transitions. Currently, we would like to investigate
possible reasons for the inaccuracy of suppressed transitions
and for gauge dependence which could be missing second-
order Coulomb and first-order Breit corrections, some asym-
metry in truncation, or small denominators in perturbation
terms. Because light Be-like ions have very strong suppres-
sion and other calculations and accurate measurements exist
for them, these ions suit well for the test of our new im-
proved CI+MBPT program. Our method has the advantage
that even standard PC computers are suitable for calculations
so that it can be adopted by many theorists without special
computer resources. Because computation time is only sev-
eral hours and the CI space is large(nmax can be as large as
25), many transitions and energy levels can be studied if
necessary. The precision of intercombination transitions rap-
idly increases for heavier Be-like ions which have less accu-
rate cancellation of the matrix elements and smaller correla-
tion effects. The code can be applied without change to many
other divalent atoms and ions.

The light Be-like ions are relatively well studied theoreti-
cally and experimentally. Since these ions have only four
electrons, it is possible to predict their properties with mul-
ticonfigurational methods such as MCDF[19–22] or MCHF
[23]; however, for high precision of intercombination transi-
tions a careful analysis of various correlation and relativistic
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corrections is necessary. Very useful in this respect is a recent
high-precision storage-ring measurement by Doerfertet al.
[24], which gives the rate of the intercombination 2s2

→2s2p transition of berylliumlike carbon,
102.94±0.14 sec−1. This rate is in agreement with the value
102.9±1.5 sec−1 obtained by Jönsson and Fischer[22] with
the MCDF method, but disagrees by 1.3% with the value
obtained by Chenet al. [25] in elaborate large-scale(200 000
configurations) relativistic configuration-interaction(RCI)
calculations accurate to 0.7%. As pointed out in Ref.[25],
despite close agreement with experiment the MCDF method
[22] has some unresolved issues: the nonorthogonality of
bases, omission of some small effects that could be signifi-
cant at the 1% level. Other calculations give results with a
significant scatter, 70–130 sec−1. Unfortunately, not all cal-
culations are done systematically for the sequence: for ex-
ample, it would be interesting to see completely parallel cal-
culations, with the same number of configurations, for B II,
where another storage-ring precise measurement exists
(Träbert et al. [26]), and cancellation effects are stronger
making theory more sensitive to small corrections. However,
not only do theories have problems; the experiments could
be less precise than claimed as well: for example, the ion trap
measurement( 121±7 sec−1 [27]) for carbon is by three stan-
dard deviations different from the more precise recent mea-
surement[24].

In addition to testing our theory, we also hope to improve
the accuracy of transition rates for Be-like ions which are
important for various applications in astrophysics and plasma
physics as well as for tests of atomic theories and experi-
ments.

The plan of this paper is the following. First, we will
describe briefly our method giving expressions for new cor-
rections. Next, we will consider the allowed 2s2→2s2p tran-
sition in some detail: we will show how to improve the
gauge independence of simple vvCI+RPA or more refined
CI+MBPT methods, study a convergence pattern, and com-
pare final results with measurements and other calculations.
Obviously, if a theory is not able to predict accurately this
allowed transition, it will be even more problematic for
strongly suppressed transitions. Then we will concentrate on
various issues of intercombination transitions. We will test
nonrelativistic symmetry of terms, give a breakdown of the
contributions of Breit and Coulomb corrections, carefully
study the truncation errors, and at the end present our final
values and compare them with measurements and several
theoretical calculations.

II. COMPUTATIONAL METHOD

A. Previous CI+MBPT program

In our previous paper[18] we included dominant, espe-
cially for allowed transitions, contributions such as self-
energy, screening, and random-phase approximation(RPA)
corrections. We demonstrated good accuracy for energy lev-
els and rates of allowed transitions even in strongly corre-
lated atoms such as Ca and Sr. Briefly, the previous version
of our the CI+MBPT method, which we also call the
Brueckner-orbital(BO) CI method, consists in constructing a

basis out of the Brueckner orbitals, computing the effective
Hamiltonian matrix and solving an eigenvalue problem to
obtain coupled two-valence-electron wave functions. The ef-
fective Hamiltonian contains the first-order Coulomb and the
second-order screening corrections. RPA corrections are in-
cluded at the stage of calculations of transition amplitudes.

Despite good agreement with experiment for allowed
transitions, we observed some discrepancy for suppressed
transitions. Especially large disagreement was in the case of
the 2s2→2s2p intercombination transition of Be-like carbon
[28], which is known accurately. Reasons for this discrep-
ancy could be at least four:(1) missing Breit and/or some
second-order Coulomb corrections,(2) truncation errors
which can result in asymmetry ofl +1/2 andl −1/2 contri-
butions, (3) small denominators that can also amplify the
asymmetry betweenl +1/2 andl −1/2 states, and(4) incom-
pleteness of the basis. Therefore, we would like to investi-
gate these questions and to improve our previous CI
+MBPT code.

B. Inclusion of Breit and second-order Coulomb corrections

The importance of relativistic corrections such as spin-
other-orbit and spin-spin terms that come from the Breit op-
erator for the intercombination line in Be-like systems was
pointed out by[29]. In a recent paper Chenet al. [25] have
shown that the Breit contribution to the transition rate of
C III is approximately 26% in the four-electron Durac-Kohn-
Sham or the three-electron modified-core Hartree potential.
Although we use the two-electron Dirac-Hartree-Fock(DHF)
potential, we expect that the Breit correction in our case is at
the same level and must be included. The missing Coulomb
second-order corrections are expected at a few percent level,
which also can be inferred from Ref.[25].

We complete second-order contributions to the energy in
the CI+MBPT formalism by adding one Coulomb term
(with double-core summation). The formula for this term can
be found in Ref.[2]:

Vv8w8vw
s2d = hv8w8hvwo

kbc

s− 1d jv+jc+k+JH jv jw J

jc jb k
J

3
XksbcvwdYJsv8w8bcd

«b + «c − «w8 − «v8
. s1d

The notations are similar to those in the paper. The summa-
tion runs over core statesb andc as well as over the angular
momentumk. The initial v, w and finalv8, w8 states which
belong to the model valence-valence CI space have been
coupled to the angular momentumJ. The normalization co-
efficient hvw is equal 1/Î2 for two identical states and 1 for
not identical.

We include all first-order Breit corrections, which are two.
The formula for the first Breit correction,

Vv8w8vw
B1 = hv8w8hvwo

k

s− 1d jw8+jv+k

3 Fs− 1dJH jv8 jw8 J

jw jv k
JBKsv8w8vwd

+ H jv8 jw8 J

jv jw k
JBKsv8w8wvdG , s2d
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is obtained from the formula for the first-order Coulomb cor-
rection in the DHFVN−2 potential by replacing usual Cou-
lomb matrix elementsXKsi jkl d with the Breit matrix ele-
ments BKsi jkl d which consist of three magnetic Slater
integralsMLsi jkl d, NLsi jkl d, andOLsi jkl d defined in Johnson
et al. [30]:

XLsi jkl d → BLsi jkl d = MLsi jkl d + NLsi jkl d + OLsi jkl d. s3d

The second Breit correction, which is natural to call Breit-
Dirac-Hartree-Fock(BDHF) correction, is defined as

Bij
DHF = d j i j jo

a

Îf jag
f j ig

B̃0siajad, s4d

where the functionB̃Jsi jkl d is similar to the functionZJsi jkl d
except that the Coulomb interaction is replaced with the
Breit interaction. This correction can be incorporated in all
orders automatically if we replace the DHF basis with the
BDHF basis. We constructed this basis by diagonalizing the
single-particle Hamiltonian

hij = eidi j + Bij
DHF. s5d

Since our basis does not contain negative-energy(NE) states,
it will be slightly different than the basis formed by solving
the DHF differential equation which contains the Breit inter-
action. Another way to incorporate BDHF correction is by
adding the term

Vv8w8vw
BDHF = hv8w8hvwfdw8wBv8v

DHF + dv8vBw8w
DHF + s− 1dJsdw8vBv8w

DHF

− dv8wBvw8
DHFdg s6d

to the two-particle effective Hamiltonian. In this case the
higher-order terms that have the summation over intermedi-
ate core states will not be included. Since the BDHF correc-
tion to nonrelativistically forbiddenE1 transitions is rela-
tively large, it is important to include it in all orders. For
example in CIII , the matrix element calculated in the BDHF
basis is by several percent smaller than that obtained using
Eq. (6) at the level of vvCI, but the results agree well after
adding all other corrections because self-energy and screen-
ing corrections are also significantly reduced.

We also calculated the Breit RPA correction(in the RPA
diagram a Coulomb line is replaced with a Breit line)

kwizBRPAivl = o
an

s− 1da−n+J 1

fJg
F kaizRPAinlB̃Jswnvad

ea − en − v

+
B̃JswavndknizRPAial

ea − en + v
G , s7d

which turned out to be important only for the velocity form.
Including this correction without including NE contributions
introduces strong disagreement between length and velocity
forms for the intercombination transitions. Our result for CIII

has the difference between length and velocity forms close to
that observed in Ref.[25] before the NE correction was
added. The difference would decrease substantially if we
added second-order NE contributions. However, even with
NE contributions added in Ref.[25] the agreement was only

about 6% in three-electron modified core Dirac-Hartree
(MCH) potential calculations which might indicate that
higher-order NE effects are important. How to add NE cor-
rections beyond the second order is an open question which
requires additional work, but if only second-order NE cor-
rections are used, velocity form results can be inaccurate. By
this reason we will present only length-form results for com-
parison with other calculations and with experiment.

We also find that it is important to use retarded matrix
elements(equations for reduced matrix elements with retar-
dation can be found in[31]) in calculations of nonrelativis-
tically forbidden transitions: the retardation contribution to
the rate of the CIII intercombination transition is 2%. The
allowed transitions are insensitive to the retardation, at least
for the low-Z ions considered here.

III. CALCULATIONS FOR THE ALLOWED TRANSITION

A. Completeness of the spline basis and cavity effects

Although light Be-like ions have the convergence pattern
for matrix elements of the allowed transition and for energies
of lowest states quite similar, the BII and CIII ions require
more careful consideration to account for larger correlation
effects. Once the convergence is achieved for these ions, the
number of configurations and other parameters of calcula-
tions can be kept the same, except that the cavity sizes
should be rescaled. The dipole matrix elements of the al-
lowed transition and the transition energies of3P1 and P1
states do not change significantly when we vary the maxi-
mum principal quantum number of spline orbitals,n, in-
cluded CI+MBPT from 13 to 18 and the cavity sizeRcav in
which splines are generated from 24/Zion to 45/Zion a.u. Af-
ter an additional analysis(it is given in a separate section) of
the convergence of intercombination transitions, which are
more sensitive to completeness of the basis, we find that
RsZiond=24/Zion andnmax=18 are optimal for the resonance
and intercombination transitions for all ions; these param-
eters will be used in final calculations.

B. Length form vs velocity form

In the literature electric-multipole matrix elements are
very often calculated in the length form(in MCDF the
Babushkin gauge) and the velocity form(in the MCDF the
Coulomb gauge), and the accuracy of calculations is often
estimated from the length-velocity difference, so it is impor-
tant to understand which form, length or velocity, is more
accurate and what does the difference mean. Because the
velocity matrix elementVij is proportional to the energy dif-
ferenceei −e j, many diagrams that involve states with large
energies are more significant in velocity form, making it
more “dangerous” when not all terms are collected order by
order. Furthermore, the length-velocity disagreement does
not give the accuracy of calculations, but merely the inaccu-
racy of the velocity form. This fact is obvious because form-
independent order-by-order MBPT can be constructed
[32,33]. In a CI+MBPT method some diagrams are omitted
while others are treated in all orders; therefore, we expect
that the velocity form can be problematic. In other methods
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the situation is often similar, the length-form result is more
accurate than the velocity, but the analysis is required. For
example, if we consider convergence with increasing number
of configurations in the CI method, highly excited states in
the cavity have large energies and will be more important for
the velocity form. This is also true for the contributions from
the negative-energy continuum. When nonlocal potentials
and/or all-order methods are used, it might be difficult to
choose more accurate form or to achieve form independence.
However, it is desirable to have complete agreement between

gauges to check code errors and the completeness of the
basis or to use the program to calculate magnetic transitions
which do not have length form matrix elements.

Can CI+MBPT formalism be made form independent
with high accuracy? We do not have an answer to this im-
portant question yet, but we have a good starting point. If
RPA corrections are included in valence-valence CI calcula-
tions, disagreement of the order of a few percent is observed,
but adding the diagram below makes agreement of forms at
the level better than 0.1%:

Zv8w8vw
corr,a = o

ka

s− 1d1+k+J+jw+jw8
Zav

RPAXksv8w8wad
ea + ew − ev8 − ew8

3 H J J8 1

ja jv jw
JH ja jw J8

jv8 jw8 k
J + o

ka

s− 1d1+k+jv+jv8
Zv8a

RPAXksaw8vwd

ea + ew8 − ev − ew

3 HJ8 J 1

ja jv8 jw8
JH ja jw8 J

jw jv k
J , s8d

ZJJ8
corr,a = Îs2J + 1ds2J8 + 1d o

vwv8w8

hvwhv8w8Cvw
J Cv8w8

J8 3 fZv8w8vw
corr,a + s− 1d jv8+jw8+J8+1Zw8v8vw

corr,a + s− 1d jv+jw+J+1Zv8w8wv
corr,a

+ s− 1d jv8+jw8+jv+jw+J+J8Zw8v8wv
corr,a g. s9d

Here Cvw
J and Cv8w8

J8 are configuration weights of the initial
and final states coupled to the total angular momentaJ and
J8, respectively. Roughly speaking, this term is what is left
(NE contributions are not important for allowed transitions)
in the second order from the termZcorr given in Ref.[34] if
we use valence-valence CI wave functions in calculations of
matrix elements—that is, in the initial summation over all
indices i the summation over excited states is automatically
included in CI, but the summation over core and NE states is
not. This term is small in the length form and can be ne-
glected. However, it is important for the velocity-form am-
plitude. Why does this correction improve significantly the
gauge invariance of the valence-valence CI+RPA? To under-
stand this we have to look at a simpler two-electron atom. It
was demonstrated numerically and proved analytically by
Johnsonet al. [31] that two-electron CI matrix elements are
accurately form independent if negative-energy corrections
are added. To prove form independence(FI) the following
commutator of the interaction potential with the gauge op-
eratorJ was introduced:

fV,Jg =
1

2o
i jkl

Oijklai
†aj

†alak, s10d

where

Oijkl = o
r

hvi jrl zrk + vi jkrzrl − zirvrjkl − z jrvirklj. s11d

This commutator will vanish if the indexr runs over all
positive and negative states. In two-electron CI the basis is

formed from positive-energy states and the commutator does
not vanish. In order to complete the summation over NE
states, the second-order NE contribution was added perturba-
tively and form independence was improved even in inter-
combination transitions. In the valence-valence CI, the sum-
mation over intermediate NE and core states is also missing.
Therefore, we added the second-order diagram, Eq.(9), to
restore the summation over a complete positive spectrum.
Unlike the case of helium, we use nonlocal DHF potential,
and in order to have FI of one-particle matrix elements nec-
essary for the proof of FI of the two-particle matrix elements,
instead of “bare” we have to use “dressed,” full RPA matrix
elements which satisfy the relation

Vij
RPA= vi jZij

RPA. s12d

The full RPA correction can be obtained by iterating core
RPA until the convergence is reached. In the case of allowed
transitions, NE contributions scale asa2Z, so even not in-
cluding NE contribution it should be possible to achieve the
relative form difference at the level 10−4. Typical differences
between length and velocity matrix elements are shown in
Table I. Because the completeness of the basis is important,
we vary lmax, nmax of RPA matrix elements that replace first-
order matrix elements, the number of core RPA iterations,
and nmax of the term defined by Eq.(9). It is somewhat
strange that when the basis is the most complete, we obtain
the L-V agreement only at the level of 0.1%, while by re-
stricting the basis we achieved 10 times better agreement.
One reason for the residual disagreement can be the uncer-
tainty in the denominators of MBPT corrections. To avoid
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closeness to zero we replace each denominator in Eq.(9)
with the denominator in which the initial valence state is the
lowest excited state for a givenj . Thus the denominator is
always negative. Still not including corrections from Eq.(9)
would make disagreement at the level of 1%. A similar situ-
ation for the allowed transition of C III and other ions(see
Table II). In this table we also show the length-velocity
agreement for intercombination transitions, which is surpris-
ingly good starting from O V, considering the fact that we
omitted NE corrections. Without NE contributions, as we
already discussed, the BRPA correction becomes problematic
leading to largeL-V disagreement, so that to achieve better
gauge invariance, we decided to exclude BRPA correction.
The contribution from Eq.(9) is small to intercombination
transitions in the length form and can be neglected. The ve-
locity form correction is substantial, but does not improve
form independence for low-Z ions.

C. Comparison for oscillator strengths

Since there are many calculations and experiments avail-
able, it is interesting to compare our results with the results

of others. In Table III, we give a comparison for oscillator
strengths of the allowed 2s2→2s2p transition. The accuracy
of our CI+MBPT calculations is expected at the level 0.1%.
We agree with elaborate RCI calculations by Chenet al. [25]
within our estimated error and with most calculations given
in the table at the level 0.2% as well as with experiment
within experimental error bars. For example, we have good
agreement with recent, refined MCDF calculations by Jöns-
son et al. [19] for four ions, including Fe XXIII. The com-
parison for this ion is of interest to check relativistic correc-
tions. In O V, the MCDF method of Ref.[20] gives result
different from ours by 0.65%, while we agree well with other
calculations for this ion. More calculations for this allowed
transition can be found following Ref.[19].

IV. CALCULATIONS FOR THE INTERCOMBINATION
TRANSITION

A. Nonrelativistic limit test

Because any small asymmetry of contributions froml
+1/2 andl −1/2 states can result in a large error for inter-
combination transitions which have strong cancellations, we
designed a simple test to check for the asymmetry. We re-
placed radial wave functions and energies ofl +1/2 states
with those ofl −1/2 states at different stages of calculations.
Thus after this nonrelativistic symmetrization, matrix ele-
ments calculated with the frozen-core valence-valence CI be-
came very small, less than 10−6 a.u. We tested each diagram
and found that the screening correction gave anomalously
large value, up to 10−4 a.u. Because the truncation was com-
pletely symmetric, by fixed orbital angular momentum of
relativistic states, it was difficult to explain this effect. It
turned out that the problem was in the denominators. When
highly excited states are included into the effective Hamil-
tonian, the denominator of the screening correction«a+«b
−«b8−«n, wherea andb8 belong to excited states included
into vvCI, can become small accidentally. When we used
instead of this denominator the denominator«b−«n, the

TABLE I. The form independence of the matrix elements for the
B II resonance transition.NRPA is nmax of RPA matrix elements that
replace first-order matrix elements,NcoreRPAis the number of itera-
tion of core RPA, andNZcore is the maximumn of the term defined
in Eq. (9).

lmax NRPA NcoreRPA NZcore L−V

3 10 10 10 0.00015

3 15 30 15 0.00076

4 10 10 10 0.0016

4 15 30 15 0.002

5 10 10 10 0.0015

5 15 30 15 0.0024

TABLE II. The form independence of the allowedsLA,VAd and intercombinationsLF ,VFd matrix elements
for Be-like ions. The parameters of the calculations are standard:nmax=18, lmax=5, optimized cavity sizes; all
corrections considered in this paper except for BRPA are included;NZcore, NcoreRPA, andNRPAdefined in Table
I are equal 10. Small in length form but large in velocity form BRPA correction is not included because it
completely destroys form invariance of the intercombination transitions for low-Z ions due to its large NE
contribution. The ratio of matrix elements of the allowed to the intercombination transition shows the degree
of suppression of the intercombination transition which is somewhat correlated with form independence and
which is important for understanding the accuracy of the intercombination transitions. Numbers in square
brackets denote powers of 10.

Ion LA LA−VA/LA LF LF−VF/LF LA/LF

B II 2.1177 −0.0015 4.99f−4g 0.150 4244

C III 1.5618 −0.0020 9.94f−4g 0.061 1571

N IV 1.2402 −0.0022 1.64f−3g 0.052 757

O V 1.0299 −0.0023 2.43f−3g 0.001 423

F VI 0.8813 −0.0023 3.37f−3g −0.001 261

Ne VII 0.7707 −0.0023 4.46f−3g −0.002 173

FeXXIII 0.2594 0.0000 3.71f−2g 0.002 7
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problem was instantly solved: the nonrelativistic substitution
made the screening correction very small. However, accord-
ing to the rules of MBPT, such a denominator is wrong. The
compromise solution, which would be almost correct for the
ground and lowest excited states, is to replacea with the
lowest excited states of givenja. Thus denominators will be
always negative, and its value will be correct for dominant
contributions. The nonrelativistic asymmetry from the cor-
rected denominators becomes small, and we used the screen-
ing term with these denominators in all subsequent calcula-
tions.

B. Truncation errors for the intercombination transition

Forbidden transitions are very sensitive to various trunca-
tion errors. Because of memory restrictions of our particular
computer, it was necessary to keep the number of valence-
valence configurations less than 5000. We restricted
lmax to 5 andnmax to 18. By reducing the cavity size we
made this basis complete enough to account for correlations

of lowest excited states. Table IV illustrates variations of
results withlmax, nmax, andRcav. First of all, we can see that
nmax=18 and the cavities 15 a.u. for B II and 10 a.u. for C III
are almost optimal since further reduction of the cavity from
15 to 14 for B II and from 10 to 8 for C III does not change
result. In addition, decrease ofnmax from 18 to 17 (Rcav
=14/8 for B II/C III) changes the result only by 1310−6.
Because energies of an ion in a cavity starting from somen
grow very rapidly, the correlation corrections are suppressed
by large denominators and decrease rapidly, too.

It also can be concluded thatlmax=5 is sufficient if we add
the value from extrapolation to infinitelmax equal about 1
310−6 for B II and 3310−6 for C III. For transition rates
these corrections will be 0.4% and 0.6%, respectively. A
similar correction froml extrapolation for C III, 0.56%, was
estimated in Ref.[25]. We have some concern about the B II
l-extrapolation correction, which might be larger, since we
found that for appropriate extrapolationnmax should be suf-
ficiently large; nmax=18 barely satisfies the completeness
condition for lmax=5. The extrapolation problem can be seen

TABLE III. Comparison of oscillator strengths for the allowed 2s2→2s2p transition of Be-like ions.
Theoretical results are given in the length or equivalent Babushkin gauges, the velocity and equivalent
Coulomb gauge results are disregarded.

CI+MBPT MCDFa MCDF CIV3 RCIb Experiment

B II 0.9998 1.0012c 0.994d 0.971±0.079e

C III 0.7583 0.7571f 0.757g 0.7577 0.753±0.026h

N IV 0.6106 0.6117 0.6099f 0.609i 0.620±0.022j

O V 0.5116 0.5123 0.5081f 0.511d 0.528±0.023j

F VI 0.4408

Ne VII 0.3878 0.3882 0.387d 0.420±0.067k

FeXXIII 0.1538 0.1539 0.156±0.015l

aJönssonet al. [19].
bChenet al. [25].
cYnnerman and Fischer[21].
dFleminget al. [35].
eBashkinet al. [36].
fYnnerman and Fischer[20].

gFleminget al. [37].
hReistedet al. [38].
iFleminget al. [39].
jEngströmet al. [40].
kIrwin et al. [41].
lBuchetet al. [42].

TABLE IV. Cavity and truncation effects. The effective Hamiltonian matrix is truncated by the maximum
angular momentumlmax and by the maximum number of excited statesnmax for a given j = l ±1/2: thetotal
number of relativistic single-particle states iss2lmax+1dnmax and the number of two-particle states is less than
5000. The retarded reduced matrix elements in the length form(RME) and the cavity radiiRcav are given in
atomic units;nmax and lmax are the same for BII and CIII on each line, while the cavity sizes are different

nmax lmax Rcav RME Rcav RME

B II C III

18 2 15 0.000500 10 0.000989

18 3 15 0.000509 10 0.001005

18 4 15 0.000511 10 0.001010

18 5 15 0.000512 10 0.001012

17 5 15 0.000510 10 0.001011

18 5 14 0.000512 8 0.001012

17 5 14 0.000511 8 0.001011
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from the decrease of energies of the states withl for a fixed
n=18: for l =2,3,4,5 weobtain approximately energies 119,
152, 28, 33 a.u. Extrapolation to infiniten can be warranted,
but the dependence onn is not as smooth as onl so that we
give only approximate estimates: for B II and C III the in-
crease of the matrix element is about 3310−6 a.u. For
heavier ions relative importance of the truncation errors de-
creases rapidly withZ for the chosen optimal basis as the
transition becomes less suppressed(see Table II where the
ratios of the allowed to the intercombination transitions are
given).

C. Breakdown of contributions to the intercombination
transition

To understand the most important corrections and the ac-
curacy of our calculations in Table V we show the break-
down of contributions of the MBPT terms. The BDHF cor-
rection is dominant correction beyond Coulomb vvCI
approximation, and it was included in all orders by using the
BDHF basis. The second Breit correction, in the table de-
noted as “Br 2” and defined by Eq.(2) is also very important.
Among second-order Coulomb correlation corrections, as
usual, Brueckner orbital and screening, are dominant. Note
that the screening correction changes sign from C III to B II
which is due to partial cancellation of low-n and high-n con-
tributions. The extrapolation to infinitelmax andnmax is also
significant.

D. Length-velocity agreement

Length-velocity agreement for allowed and intercombina-
tion matrix elements has been shown in Table II. It is not
surprising that in general the agreement for allowed transi-
tions is much better since the intercombination transitions
are very sensitive to various relativistic and correlation cor-
rections, in particular to NE contributions. The largest devia-
tion of results is obtained for the B II intercombination tran-
sition, 15%, but for O V–FE XXIII ions, the length and
velocity form results agrees at 0.2% level. Such an agree-

ment for the intercombination transitions is rather unex-
pected. It is interesting to note that the addition of BRPA
correction does not improve agreement but instead makes it
much worse. For example, with this diagram included the
C III rate calculated from the velocity matrix element is ap-
proximately 190 sec−1, much different from 100 sec−1 in the
length form, but close to the result obtained by Chenet al.
[25] in velocity form before NE corrections were added.
Since major part of disagreement arrives with BRPA correc-
tion, one can conclude that the dominant NE contribution
must be contained in this diagram. It would be interesting to
verify this conclusion.

The BRPA diagram is small in the length form and it does
not matter if we include or ignore it in our calculations. In
fact, we believe that the velocity form result will be more
accurate if we omit this correction. This conclusion might be
useful for calculations of magnetic-multipole transitions for
which the length form does not exist. Note that NE contri-
butions would be automatically included if we solved the
differential RPA equations; then the complete RPA correc-
tion, including BRPA, becomes form independent, and will
be safe for the velocity form. Because in the MCDF method,
some corrections are included by solving differential equa-
tions corresponding to these corrections NE contributions are
also included automatically, and approximate gauge invari-
ance can be achieved. However, correction based on a diago-
nalization of the Hamiltonian matrix built on the basis of
positive-energy states are not necessary gauge independent.
Because the velocity form is always more sensitive to NE
corrections, the accuracy of the results cannot be judged by
looking at length-velocity difference or having good form
independence does not always mean good accuracy, espe-
cially for intercombination transitions.

E. Comparison for the rates of the intercombination transition

Transition rates of intercombination transitions are com-
pared in Table VI. In the case of C III, we find a 1%–5%
deviation from other calculations and experiments, which is
the level of disagreement of other precise calculations pre-
sented in the table. For B II, which has the strongest cancel-
lation, our theory is off from experiment by 8% which is the
accuracy of our calculations estimated from the analysis of
MBPT corrections,lmax and nmax interpolation, and isoelec-
tronic comparison. It would be interesting to see the results
of calculations performed with large-scale RCI method of
Ref. [25] which carefully takes into account relativistic and
correlation effects. For N IV and O V, we agree well with
MCDF calculations by Jönsson and Fischer[22] and Doer-
fert et al. [43] and not very accurate experiments. We also
agree well, the within 0.7%, with the MCDF of Jönsson and
Fischer [22] for Fe XXIII. On the other hand, the CIV3
method does not agree as precisely with our calculations and
MCDF for N IV and O V.

The C III intercombination transition has been studied in
more than 16 theoretical works. The early calculation with
CI method published in 1972 gave 77 sec−1, other results are
distributed in the range 77–118 sec−1. This large dispersion
occurs due to very high sensitivity of the C III intercombi-

TABLE V. Breakdown of contributions to the reduced matrix
element for BII and CIII : vvCI, BDHF, and RPA are treated in all
orders; the most important are two-particle Breit(Br 2), Brueckner-
orbital (BO), the screening(Scr), and the matrix-element retardation
(RME) corrections. All values should be multiplied by 10−6 a.u.

Corrections Value
B II

Total Value
C II

Total

vvCI+BDHF+RPA 448 906

+BO 23 471 26 932

+Scr −13 458 8 940

+CC 0 458 1 941

+Br 2 41 499 53 994

+RME 9 508 10 1004

+BRPA −1 507 −1 1003

+Extrap l .5,n.18 1+3 510 3+3 1009
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nation transition to various correlation and relativistic correc-
tions. For example, we already mentioned the importance of
Breit interaction, so calculations that do not include this in-
teraction are not accurate. In addition, valence-core interac-
tion plays an important role as well. So in order to judge the
accuracy of methods, it is important to see the breakdown of
various effects and the convergence with an increase of the
basis. In MCDF methods, there exists also a problem of non-
orthogonality of separately optimized states. Because in our
calculations we included all most important contributions
and studied truncation errors, we believe that our results and
error estimates are reliable. Relatively large errors for BII

can be explained by strong cancellations which make the
result sensitive to small asymmetry in the treatment of rela-
tivistic states of typej = l +1/2 andl −1/2,which we tried to
avoid by truncating states with conditionl , lmax and to cor-
relation and relativistic effects. Although it is not possible to
include all MBPT and relativistic corrections, we made esti-
mates of omitted diagrams. For example, the Breit correc-
tions to important second-order self-energy and screening
diagrams are at the level less than 0.5% for BII and CIII , and
even smaller is the contribution from the third-order
structure-radiation correction. So the overall error from the
omitted diagrams is expected at the level of 1% for BII and
C III . For heavier ions, our calculations improves precision

rapidly as the cancellation of matrix elements decreases and
agree well with other elaborate calculations. Our current
theory can be improved in several ways. One interesting ap-
proach would be to test various starting potentials, which are
better than two-particle DHF and would lead to faster con-
vergence of CI. The positive effects from optimized poten-
tials should be most important for BII. Another improvement
possible from optimizing denominators in the screening cor-
rection. Some higher-order diagrams can be also necessary to
consider.

V. CONCLUSION

In this paper, we presented relativistic CI+MBPT transi-
tion probabilities(oscillator strengths) for the 2s-2p transi-
tions of berylliumlike ions. We find our results in close
agreement with experiments and other elaborate theories al-
though the BII intercombination transition has relatively
large uncertainty. To improve accuracy and form indepen-
dence, we modified our previous code to include all second-
order Coulomb and dominant Breit corrections. The equa-
tions for these corrections and their values are provided. One
important conclusion from this work is that CI+MBPT
method can be used in calculations of suppressed transitions
which are very often of interest for many applications.
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