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We present a numerical study of the robustness of a specific class of non-Abelian holonomic quantum gates.
We take into account the parametric noise due to stochastic fluctuations of the control fields which drive the
time-dependent Hamiltonian along an adiabatic loop. The performance estimator used is the statefidelity
between noiseless and noisy holonomic gates. We carry over our analysis with different correlation times and
we find out that noisy holonomic gates seem to be close to the noiseless ones for “short” and “long” noise
correlation times. This result can be interpreted as a consequence of the geometric nature of the holonomic
operator. Our simulations have been performed by using parameters relevant to the excitonic proposal for the
implementation of holonomic quantum computation[P. Solinaset al., Phys. Rev. B67, 121307(2003)].
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I. INTRODUCTION

The use of uniquely quantum phenomena to process in-
formation has led to surprising results in quantum key distri-
butions[1], information transfer protocols[2], and computa-
tion [3]. From the point of view of the actual implementation
of these theoretical protocols, a main challenge is posed by
the fact that generically quantum states are very delicate ob-
jects quite difficult to control with the required accuracy. The
interaction with the many degrees of freedom of the environ-
ment causes a loss of information(decoherence), and more-
over errors in processing the information lead to a wrong
output state(control errors). The first problem has been stud-
ied extensively over the past few years and a few ways to
overcome it have been proposed and realized experimentally.
These strategies include error-avoiding[4], error-correcting
strategies[5], and decoupling techniques[6].

A new approach calledtopological quantum computation
has been argued to be able to effectively solve both of them
and open new ways to inherently robust quantum computa-
tion [7]. Information is encoded in topological degrees of
freedom of a system which are not sensitive to the local
environment-noise effects and then are robust against deco-
herence[8]. Unfortunately, to date, no simple feasible physi-
cal system has been identified for this aim; in fact, the sys-
tems proposed are usually complicated many-particle ones
living over a macroscopic nontrivial structure(e.g., torus or
cylinder topology). On the other hand, we can developtopo-
logical information processing, where the operator used de-
pends on topological controls that are robust against the un-
wanted fluctuations of the driving fields. In this case, an
important intermediate step is thegeometrical quantum com-
putation, and particularly promising is the fully geometrical
approach called holonomic quantum computation(HQC) [9].

At variance with topological information processing, for
geometrical QC several implementation proposals have been
made; indeed the holonomic structure shows up in a variety
of quantum systems, both in its Abelian(Berry) [10] and
non-Abelian versions[11–14]. For this reason, interest in

HQC has recently grown leading also to proposals in which
the adiabatic request can be relaxed and for implementing
geometrical nonadiabatic quantum computation[15]. One of
the apparent advantages of HQC is that the gating time for
holonomic gates does not depend on the logical operator
applied, but only on the adiabatic request; then HQC may
lead to a new approach to implement complex operators dif-
ficult to construct with the standard dynamical gates(as dis-
cussed in[14]). In view of its geometric nature, i.e., depen-
dence onareas spanned by loops in the control parameter
manifold, HQC has been suggested to be robust against some
class of errors[16,17]. Nevertheless, thorough studies aimed
to address this important issue are still relatively few and
certainly not exhaustive[18].

In this paper, we will deal with the noise due to imprecise
control of the system parameters during the evolution. This
error source will be referred to asparametric noise. We will
show that thefidelity of the holonomic gates displays three
regimes, depending on theratio between the adiabatic time
and the noise correlation time. These results can be under-
stood in view of the geometrical dependence of the holo-
nomic operator. We will study in detail the class of holo-
nomic gate proposed in[13] in which the physical system is
semiconductor quantum dots and the logical qubits are an
excitonic quantum state controlled byultrafast lasers.

In Sec. II, after a brief review of the holonomic approach,
we describe the system used and the logical gate studied;
moreover, it is discussed how we model the noise in the
control parameters. In Sec. III, we give a description of our
simulations and show the results with different kinds of noise
processes for two single-qubit gates and for a two-qubit gate.
A comparison with dynamical gates subject to the same noise
is given too. Section IV contains the conclusions.

II. HOLONOMIC QUANTUM GATES
WITH PARAMETRIC NOISE

Let us consider a familyF of isodegenerate Hamiltonians
Hsld depending onm dynamically controllable parameters
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l. In the HQC approach[9], one encodes the information in
an n-fold degenerate eigenspace« of a HamiltonianHsl0d.
Varying thel8s and drivingadiabatically Hsld along a loop
in the l manifold, we produce a nontrivial transformation of
the initial stateuc0l→Uuc0l. These transformations, known
as holonomies, are the generalization of Berry’s phase and
can be computed in terms of the Wilczek-Zee gauge connec-
tion [19]: UsCd=P expsrCAd, where C is the loop in the
parameter space andA=om=1

m Amdlm is theusnd-valued con-
nection. If uDisldl si =1, . . . ,nd are the instantaneous eigen-
states ofHsld, the connection issAmdab=kDau] /]VmuDbl
sa ,b=1, . . . ,nd. The set of holonomies associated with a
given connection is known to be a subgroup of the group of
all possiblen-dimensional unitary transformations; when the
dimension of this holonomy group coincides with the dimen-
sion ofUsnd, one is able to perform universal quantum com-
putation with holonomies[9].

For concreteness, in this paper we will focus on the class
of holonomic quantum gates analyzed in[13,14]. Logical
qubits are given by polarized excitonic states controlled by
femtosecond laser pulses. The parameters we have used in
performing our simulations are those relevant to this specific
kind of physical system.

First we concentrate onone-qubit gates. Although this
might seem at first to be a major limitation, we observe that,
as far as the holonomic structure is concerned, the two-qubit
gates are very similar. So we expect that most of the results
we are going to present here, e.g., the existence of separate
regimes, should, to a large extent, hold true for two-qubit
gates too.

The time-dependent interaction Hamiltonian in the inter-
action picture is

Hint = − "sV+uEL
+l + V−uEL

−l + V0uEL
0ldkGu + H.c., s1d

whereuEL
i l si = + ,−,0d are the polarized excitonic states(two

logical and oneancilla) and uGl is the ground state(absence
of exciton). This Hamiltonian family admits twodark states,
i.e., HintsVduDisVdl=0 si =1,2d. This twofold-degenerate
manifold contains our encoded logical qubit:u0lL : = uEL

+l,
u1lL : = uEL

−l. In Refs. [12,13] it has been shown that the
Wilczek-Zee connection associated to the Hamiltonian fam-
ily (1) allows us to construct universal one-qubit gates. These
are realized by giving an explicit prescription for driving the
control parameterV’s along suitable adiabatic loops.

We suppose now to add to the controlV field a “small”
noise which perturbs our trajectory on the control manifold.
We test the robustness of the geometricalmixingsingle-qubit
gate proposed in Ref.[13]. To obtain this gate, we made the
following loop in the parameter space:V−std
=V sin u cosw ,V+std=V sin u sin w, and V0std=V cosu
[where theV parameters are fixed and theustd andwstd are
time-dependent] and the holonomic operator obtained at the
end of the loop isU=eifsy (where isy= uEL

+lkEL
−u− uEL

−lkEL
+u).

The geometrical parameterf=rsin ududw is the solid angle

spanned by the parameter vectorVW =sV+,V−,V0d on the pa-
rameter manifold(sphere). Changing the relation betweenu
and w, we change the loop and then the value off. We

choose a loop in order to obtainf=p /2 and U
=expsipsy/2d= uEL

+lkEL
−u− uEL

−lkEL
+u.

The logical operatorU depends only on geometrical pa-
rameters(i.e., solid angle swept on the parameters manifold);
every perturbation that changes the trajectory in the control
manifold changes the operator, leading to computational er-
rors. This notwithstanding, the perturbations leaving this
angle(almost) unchanged will not affect the holonomic op-
erator. Then we expect that even strong fluctuations—
provided their time scale is sufficiently fast—average out,
leaving in this way the angle unchanged and thus not affect-
ing the computation.

The control parameters are the intensities and the phases
of the lasers(since we suppose to be in a resonant condition,
we have fixed frequencies) perturbed by external noise(one
for the phases and one for the intensities). To clarify which
of these mainly affects the gate operation, first we separate
the two types of errors(intensity and phase fluctuations) and
then we apply both of them.

We use a straightforward model for the noise: we extract
a random number from a probability distribution, we add a
constant noisy field for the timeTn to the evolving control
field, then we extract another random number, and so on. To
simplify the simulations, we chooseTn in such a way thatTad
is a multiple ofTn sTad=nrTnd. The fundamental parameter is
the noise time Tn that is the lapse of time of each random
extraction; i.e., it represents the time scale of each random
fluctuation.

For the “intensity” noise, we modify only the value of the
Rabi frequenciesV. We have three lasers turned on and we
suppose they have independent fluctuationsdVi (i.e., for ev-
ery Tn we extract three random numbers). The evolution on
the control manifold is described by

V−std = V sin u cosw + dV−std,

V+std = V sin u sin w + dV+std, s2d

V0std = V cosu + dV0std.

In this case, the Rabi frequencies remain real parameters,
but if we introduce a “phase” noisesV j →eij jV jd, they ac-
quire an imaginary part. The random numbers are taken as
before and the evolution in the control manifold is

V−std = eij−V sin u cosw,

V+std = eij+V sin u sin w, s3d

V0std = eij0V cosu.

The most general and complicated situation is when both
“intensity” and “phase” noise are present.

III. SIMULATIONS

For all of the simulation we choose the parameters used in
Refs. [13,14] which satisfy the adiabatic conditionV
=0.02 fs−1, Tad=7.5 ps, andVTad=150. The probability dis-
tribution for the noise is a Gaussian with zero mean and
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ksl=kdV /Vl=0.1, wheredV is the fluctuation of the Rabi
frequency. Though this value is far below the experimental
control, we use it to understand the robustness of holonomic
gates against strong perturbations.

Once the evolution of the state with the noise has been
computed, we must compare it with the ideal one in which
the noise is absent. In order to make such a comparison
quantitative, we introduce thefidelity

F = Îkcout
id uroutucout

id l, s4d

where ucout
id l is the final state without noise androut is the

density matrix associated with the noisy final state. In our
case the evolution is unitary, sorout= ucout

noiselkcout
noiseu and the

fidelity reduce to a scalar product between the noisy and the
ideal state. To eliminate the dependence of Eq.(4) on the
initial states, we make a sampling of the initial state space
and then average the results. Even if we have a four-
dimensional working space, the initial-state space has dimen-
sion 2; in fact, in the ideal gates(once the adiabatic condition
is satisfied) we always start and end in a superposition of the
logical statesuEL

+l− uEL
−l. This simplifies the sampling proce-

dure because we can take the Bloch sphere as sampling
space. We sample the Bloch sphere with 18 states[20], and
for each of them we calculate thefidelity. With the random
numbers extracted during the evolution being fixed(i.e.,
fixed Tn), we must also take into account the dependence
from the series of the random number extracted. For every
sampled state, we make five different realizations with dif-
ferent extracted random numbers and calculate the average
fidelity for the particular initial state. Finally, we take the
averagefidelity for all the sampled states to obtain thefidelity
of our gate for a fixedTn.

In the figures presented here, on they axis is plotted the
fidelity and on thex axis is plotted the number of extractions
(that is, theratio Tad/Tn between the adiabatic andnoise
time).

In Fig. 1, we report the simulated evolution for two re-
gimes of noise. In Fig. 1(a), we plot thefidelity when we
extract up to 100 random numbers during the evolution
sTad/100øTnøTadd. With up to 30 random numbers, the av-
eragefidelity is 0.875, while it decreases up to a minimum of
about 0.5(with a total average of 0.632) if we extract more
random numbers.

A possible interpretation of this effect can be seen in Fig.
2, where we show the evolution on the parameter sphere. In
Fig. 2(a), nr =2 sTn=Tad/2d and we change the noise field
twice during the evolution. Despite the intense noise, the
shape of the loop is still clearly visible; it is simply shifted
with respect to the ideal one. The value of the resulting solid
angle swept is near to the ideal one. In Fig. 2(b), we extract
nr =70 random extractions during the adiabatic evolution
sTn=Tad/70d. The fluctuations are too intense and too few to
cancel out. Therefore, as we expected, the solid angles,
swept, respectively, during the ideal and the noisy loops, are
different. This can explain the result in Fig. 1(a).

As stated before, even if we have strong fluctuations, we
expect that if we extract many random numbers, the noise on
average does not affect the solid angle and leaves the holo-

nomic operator unaffected. This is what seems to be con-
firmed by the simulations illustrated in Fig. 1(b), where we
extract from 50 to 5000 random numbers. Thefidelity in-
creases and it is even better than those in Fig. 1(a); the av-
eragefidelity is 0.918, but it increases to 0.956 if take into
account the values from 1000 to 5000 random extractions.
The relative loop in the parameter space is shown in Fig. 3,
where we extract 5000 random numbers during the evolu-
tion: the fluctuations havedV=0.1 V but are so quick that
they cancel out.

From these simulations, it is evident that we have three
regimes in our model which can be explained as the sign of
the geometrical dependence of the holonomic operator.

(i) Slowly varying random fluctuationssTad/Tn<1d: the
loop basically maintains its shape and it is simply shifted.
This situation does not affect the gate too much.

(ii ) Intermediate regimes50øTad/Tnø100d: the intense
fluctuations badly modify the loop shape and alter the gate
operator.

(iii ) Fast varying random fluctuationssTad/Tn@1d: the
fluctuations effectively cancel out and do not change the
operator.

FIG. 1. Fidelity for holonomic gate withV−1=50 fs, Tad

=7.5 pssVTad=150d, and dV=0.1V. (a) Slowly varying fluctua-
tions and(b) fast varying fluctuations.
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These geometrical features are independent of theratio
dV /V and persist even for small values of the fluctuation
dV. If we decrease the intensity of the noise, our adiabatic
gate improves as shown in Fig. 4, where, with the same
parameters(i.e., Rabi frequency and adiabatic time), we
choosedV=0.01V. We note that thefidelity increases but
the features are the same as those of the previous simulations
(i.e., three regimes).

In Fig. 5, the noise is applied only to the phase of the
control field with the same adiabatic parameters as those of
the previous simulations. Since the way of producing the
operator is always the same(i.e., loop in the parameter space
with a noise), we expect that the effects of noise are the same

as those for “intensity” noise. This can be clearly seen in Fig.
5, where we find the same features as those of the previous
plots. Thefidelity is much better with respect to “intensity”
noise, and we can say the “phase” noise does not affect our
gate.

We finally discuss the case of both “intensity” and
“phase” noise(Fig. 6). As we expect, the main part of the
error is given by the “intensity” noise. The three regimes,
discussed previously, are evident also in this case.

In Fig. 7, we show the population of the nonlogical states
(uGl anduEL

0l) at the end of the gate application as a function
of Tad/Tn. In an ideal adiabatic gate(for Tad→`), these
states are not populated. In Fig. 7(a), these populations in-
crease with theTad/Tn ratio due to the strong and fast fluc-
tuations of the Rabi frequencies, which perturb the Hamil-
tonian. For very fast varying fluctuations[Fig. 7(b)], the
undesired populations decrease because of cancellation ef-
fects. From this analysis, we can say that for slowly and fast
varying random fields(i.e., the two extreme regimes), we
remain in the logical computational space.

We wish to compare this holonomic gate with a standard
dynamical gate, the latter one being characterized by the
same unitary operator of the holonomic one and having dif-

FIG. 2. Loop in the parameter space for the holonomic gate with
(solid line) and without (dashed line) noise, with extraction of
2 sTn=Tad/2d (a) and 70 random numberssTn=Tad/70d (b). The
sphere radius is normalized toV=1.

FIG. 3. Loop in the parameter space for the holonomic gate with
noise and the extraction of 5000 random numberssTn=Tad/5000d.
The sphere radius is normalized toV=1.

FIG. 4. Fidelity for small perturbationsdV=0.01V. Parameters
as in Fig. 1.
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ferent(typically shorter) gating time(the time needed for the
application of the gate). In our system this means consider-
ing as logical statesuGl= u0l and uEL

i l= u1l and applying a
p-pulse laser sequence to produce a transitionuGl↔ uEL

i l.
We made similar simulations for the dynamical gate with

the same parametersV=0.02 fs−1d and with the same noise.
In Fig. 8 we make a comparison between holonomic

(solid line) and dynamical(dashed line) gates subject to the
same “intensity” and “phase” noise. The comparison is not
direct since the gating times are different. This means that
the ratios Tad/Tn andTdyn/Tn are different for adiabatic and
dynamical gates. To compare the effect of the gate subject to
the samenoisy field (i.e., with the same noise timeTn), we
have to take into account that the dynamical gates, in our
model, are about 100 times faster than the adiabatic ones(see
Refs. [13,14]). This means that if during the adiabatic evo-
lution the noise changesnr

ad=Tad/Tn times, for the dynamical
gates it changes onlynr

dyn=Tad/ s100Tnd times (if for the dy-
namical noisenr

dyn,1, it changes only once). In other words,
if for the dynamical gate we extractnr

dyn random numbers
during the evolution, for the holonomic gate we extractnr

ad

=100nr
dyn random numbers. This means that to compare the

fidelitieswe have to look at the fast varying fluctuating noise
sTad/Tn@1d region of the previous figures.

For the reason in Figs. 8(a) and 8(b) we put two different
scales for the adiabaticsTad/Tnd and dynamicalsTdyn/Tnd
gates and the plots have been rescaled taking into account for
the different gating time.

Numerical simulations in Fig. 8 show that the perfor-
mance of holonomic gates and dynamical gates are compa-
rablein the regionwhere the first ones are reliable; that when
Tad/Tn@1 (see discussion above).

Both dynamical and holonomic gates can be further im-
proved. Since the dynamical gates are not subject to adia-
batic constraints, we can choose different parameters in order
to minimize the effect of the noise but this can affect the
gating time.

For holonomic gates, given a noise with fixed correlation
noise timeTn, we can try to change adiabatic time in order to
modify the Tad/Tn ratio. This should allow us to fall in a
“good” regime, i.e., fast or slowly varying fluctuations. De-
creasing adiabatic time to get in the smallTad/Tn region can
produce new errors due to the lack of adiabaticity during the
evolution, thus it must be done carefully. Increasing the adia-
batic time to enter in the regionTad/Tn leads to a better
precision in the adiabatic gates and to the cancellation of
noisy fluctuations, but it results in longer gating times.

To complete the set of universal quantum gates, we need
another single-qubit gate and a two-qubit gate.

FIG. 5. Fidelity for the “phase” noise. Parameters as in
Fig. 1.

FIG. 6. Fidelity for holonomic gates when the system is subject
to “intensity” and “phase” noise. Parameters as in Fig. 1.
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In the first case, we apply an intensity noise to thephase
gate presented in Ref. [13] with V−=0, V+
=−V sinsu /2deiw, and V0=V cossu /2d. The holonomic op-

erator isU=eifuE+lkE+u, wheref= 1
2r sin ududw. The results

are shown in Fig. 9 and the structures discussed above are
evident.

Finally, in Fig. 10 we present the simulations of thephase
shift two qubit gate in Ref.[13] with an intensity noise. In
this case we use two exciton statessuEL

i EL
j l and uGGld and a

two photon interaction Hamiltonian similar in structure to
Eq. (1) but with Rabi frequencyVeff=2"V2/d (whered is
the laser detuning we need to avoid single-photon transition
and to create two exciton states).

In Fig. 10(a), the second regime(where thefidelity de-
creases) is present but less evident and seems to be com-
pressed in the slowly varying random fluctuations zones10
øTad/Tnø30d; for greatTad/Tn ratio, thefidelity decisively
increases as in the previous figures[Fig. 10(b)]. Moreover,
we note that thefidelity between the adiabatic final states
with and without noise is high and close to 1 even if we have
chosen the adiabatic parametersVeffTd smaller than the one
used for single-qubit gates. This can be explained as conse-

quence of the fact that in the imperfect adiabatic evolution,
unwanted states gets populated. On the other hand, the effect
of the fluctuating noise is to induce as undesired transition as
well. These two effects are superposed, and with a smaller
adiabatic parameter the effect of the noise seems to be less
important.

IV. CONCLUSIONS

We numerically studied the robustness of a non-Abelian
holonomic quantum gate against stochastic errors in control
parameters. The robustness of logical gates show three re-
gimes upon the variations of the noise correlation timeTn. A
possible interpretation of these regimes can be given on the
basis of the geometric(i.e., solid angle swept in the param-
eter space) dependence of the holonomic operator. For fast
random varying fluctuations we have a good robustness of
the holonomic gate since, as argued in other papers[16,17],
the fluctuations during the loop tend to cancel out. For ran-
dom varying fluctuations in the intermediate regime, the ho-
lonomic gates are significantly corrupted because the fluctua-

FIG. 7. Population of the nonlogical statesuGl anduEL
0l after the

holonomic gate application when the system is subject to “inten-
sity.” Parameters as in Fig. 1.

FIG. 8. Comparison between holonomic(solid line) and dy-
namical (dashed line) gates with (a) dV=0.1V and (b) dV
=0.01V. On the topTad/Tn for the holonomic gate and on the
bottomTdyn/Tn for dynamical gates are reported.
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tions strongly deform the parameter loop. For slowly random
varying fluctuations the performance improves again. This
fact is not as surprising as it may seem. Indeed, the loop in
the parameter space turns out in this case to be simply shifted
rather than deformed; then similar solid angles are swept.
Our analysis suggests that the main noise source is given by
fluctuations in the intensity of the control parameters
whereas the phase fluctuations do not seem to sizeably affect
the gate studied. The effect of the noise decreases with the
variance of the intensity of the fluctuations, and fordV /V
=0.01 we have mediumfidelity close to 1. A first comparison
shows that holonomic and dynamical gates have comparable
performance in theTad/Tn@1 region.

We performed similar simulations for two single-qubit
gates and for a two-qubit gate in order to complete the set of
universal quantum gates. For the single-qubit gates, we ob-
tain similar results. For the two-qubit gate, the three regimes
described above are present but less evident.

We believe that our analysis and conclusions should be
extended rather easily to a different sort of system proposed
for HQC. For example, it definitely extends to the model
proposed in Ref.[12] since the involved holonomic structure
is isomorphic to the one analyzed here. The general features
of our results should hold also in more general situations,
since they apparently do not rely on the detailed features of
Hamiltonian(1), but rather on the general structure of holo-
nomic computations. A related, though logically distinct, is-
sue is the robustness of HQC against environmental decoher-
ence [21]. This is clearly an important subject to be
addressed in future investigations.
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FIG. 9. Fidelity for the single qubitphase shiftgate with inten-
sity noise. The parameters are as in Fig. 1.

FIG. 10. Fidelity for the two qubit phase shift with intensity
noise. Parameters are:d=5 meV, uVu=d /15, andTad=0.8 ns.
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