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We present a numerical study of the robustness of a specific class of hon-Abelian holonomic quantum gates.
We take into account the parametric noise due to stochastic fluctuations of the control fields which drive the
time-dependent Hamiltonian along an adiabatic loop. The performance estimator used is tHilaipte
between noiseless and noisy holonomic gates. We carry over our analysis with different correlation times and
we find out that noisy holonomic gates seem to be close to the noiseless ones for “short” and “long” noise
correlation times. This result can be interpreted as a consequence of the geometric nature of the holonomic
operator. Our simulations have been performed by using parameters relevant to the excitonic proposal for the
implementation of holonomic quantum computatiéh Solinaset al, Phys. Rev. B67, 121307(2003)].
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I. INTRODUCTION HQC has recently grown leading also to proposals in which

The use of uniquely quantum phenomena to process ithe adiabatic request can be relaxed and for implementing
formation has led to surprising results in quantum key distri-g€ometrical nonadiabatic quantum computafidg. One of
butions[1], information transfer protocol], and computa- the apparent advantages of HQC is that the gating time for
tion [3]. From the point of view of the actual implementation holonomic gates does not depend on the logical operator
of these theoretical protocols, a main challenge is posed bgpplied, but only on the adiabatic request; then HQC may
the fact that generically quantum states are very delicate odead to a new approach to implement complex operators dif-
jects quite difficult to control with the required accuracy. Theficult to construct with the standard dynamical gaies dis-
interaction with the many degrees of freedom of the environcussed iN14]). In view of its geometric nature, i.e., depen-
ment causes a loss of informati¢iecoherende and more- dence onareas spanned by loops in the control parameter
over errors in processing the information lead to a wrongmnanifold, HQC has been suggested to be robust against some
output statgcontrol errors. The first problem has been stud- class of errorg16,17. Nevertheless, thorough studies aimed
ied extensively over the past few years and a few ways t¢o address this important issue are still relatively few and
overcome it have been proposed and realized experimentallgertainly not exhaustivel8.

These strategies include error-avoidif4j, error-correcting In this paper, we will deal with the noise due to imprecise
strategieg5], and decoupling techniqugs]. control of the system parameters during the evolution. This

A new approach calletbpological quantum computation error source will be referred to g@rametric noiseWe will
has been argued to be able to effectively solve both of thershow that thefidelity of the holonomic gates displays three
and open new ways to inherently robust quantum computaregimes, depending on thratio between the adiabatic time
tion [7]. Information is encoded in topological degrees ofand the noise correlation time. These results can be under-
freedom of a system which are not sensitive to the locabtood in view of the geometrical dependence of the holo-
environment-noise effects and then are robust against decoomic operator. We will study in detail the class of holo-
herencd8]. Unfortunately, to date, no simple feasible physi- nomic gate proposed if13] in which the physical system is
cal system has been identified for this aim; in fact, the syssemiconductor quantum dots and the logical qubits are an
tems proposed are usually complicated many-particle onegxcitonic quantum state controlled bjtrafast lasers.
living over a macroscopic nontrivial structu¢e.g., torus or In Sec. Il, after a brief review of the holonomic approach,
cylinder topology. On the other hand, we can develmpo-  we describe the system used and the logical gate studied;
logical information processingwhere the operator used de- moreover, it is discussed how we model the noise in the
pends on topological controls that are robust against the ursontrol parameters. In Sec. lll, we give a description of our
wanted fluctuations of the driving fields. In this case, ansimulations and show the results with different kinds of noise
important intermediate step is tigeometrical quantum com- processes for two single-qubit gates and for a two-qubit gate.
putation and particularly promising is the fully geometrical A comparison with dynamical gates subject to the same noise
approach called holonomic quantum computatid@C) [9].  is given too. Section IV contains the conclusions.

At variance with topological information processing, for
geometrical QC several implementation proposals have been
made; indeed the holonomic structure shows up in a variety
of quantum systems, both in its AbeligBerry) [10] and Let us consider a family of isodegenerate Hamiltonians
non-Abelian versiong11-14. For this reason, interest in H(\) depending orm dynamically controllable parameters

II. HOLONOMIC QUANTUM GATES
WITH PARAMETRIC NOISE
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\. In the HQC approaclf], one encodes the information in choose a loop in order to obtainp=7/2 and U
an n-fold degenerate eigenspaeeof a HamiltonianH(\o).  =explimoy/2)=|E XE |- |E(E[].
Varying the\’s and drivingadiabatically H\) along a loop The logical operatot) depends only on geometrical pa-
in the A\ manifold, we produce a nontrivial transformation of rametergi.e., solid angle swept on the parameters manjfold
the initial state|¢o) — U|¢p). These transformations, known every perturbation that changes the trajectory in the control
as holonomies are the generalization of Berry’s phase andmanifold changes the operator, leading to computational er-
can be computed in terms of the Wilczek-Zee gauge connecors. This notwithstanding, the perturbations leaving this
tion [19]: U(C)=P exp$-A), where C is the loop in the angle(almos) unchanged will not affect the holonomic op-
parameter space a7 ,A d\, is theu(n)-valued con- erator. Then we expect that even strong fluctuations—
nection. If|D;(\)) (i=1, ... ,n) are the instantaneous eigen- provided their time scale is sufficiently fast—average out,
states ofH(\), the connection is(Aﬂ)aﬁ:<Da|¢;/aQM|DB> !eaving in this way the angle unchanged and thus not affect-
(a,8=1,...n). The set of holonomies associated with aing the computation. _ N
given connection is known to be a subgroup of the group of The contro! parameters are the intensities and the p_hases
all possiblen-dimensional unitary transformations; when the ©f the lasergsince we suppose to be in a resonant condition,
dimension of this holonomy group coincides with the dimen-We have fixed frequencigperturbed by external noigene
sion of U(n), one is able to perform universal quantum com-for the phases and one for the intensitiek clarify which
putation with holonomie$9]. of these mainly affect_s the gate operation, first we separate
For concreteness, in this paper we will focus on the clasd€ tWo types of erroréintensity and phase fluctuationand
of holonomic quantum gates analyzed [it3,14. Logical €N we apply both of them. ,
qubits are given by polarized excitonic states controlled by e use a straightforward model for the noise: we extract
femtosecond laser pulses. The parameters we have useddnf@ndom number from a probability distribution, we add a

performing our simulations are those relevant to this specificonstant noisy field for the timé, to the evolving control
kind of physical system. field, then we extract another random number, and so on. To

First we concentrate omne-qubitgates. Although this SIMPIify the simulations, we chooSg in such a way thalag -
might seem at first to be a major limitation, we observe that!S & multiple ofT, (Tog=n;Ty). The fundamental parameter is
as far as the holonomic structure is concerned, the two-qubl'€ noise time 7 that is the lapse of time of each random
gates are very similar. So we expect that most of the resylgXtraction; i.e., it represents the time scale of each random

we are going to present here, e.g., the existence of separdtectuation.

regimes, should, to a large extent, hold true for two-qubit_ FOr the “intensity” noise, we modify only the value of the
Rabi frequencie$). We have three lasers turned on and we

gates too. X : .
The time-dependent interaction Hamiltonian in the inter-SUPPOSe they have independent fluctuatiafis (i.e., for ev-
action picture is ery T, we extract three random numbgr$he evolution on
the control manifold is described by
Hine= = (QL[E]) + QED) + Q[ EDNG| +Hee., (1) Q_()=Q sin § cosp + 5Q_(1),
where|E}) (i=+,-,0) are the polarized excitonic statga/o Q.(t) =Q sin 0'sin @+ 8Q,(1), ()

logical and oneancilla) and|G) is the ground statéabsence
of exciton). This Hamiltonian family admits twdark states
ie., Hint?0)|Di(Q)>:0 (i=1,2. T}r/ns twofold-degenerate Qo(t) =2 cos 6+ Ao(V).

manifold contains our encoded logical qubj@), :=|E;), In this case, the Rabi frequencies remain real parameters,
|1),:=|E]). In Refs.[12,13 it has been shown that the but if we introduce a “phase” noise); — €4i();), they ac-
Wilczek-Zee connection associated to the Hamiltonian famquire an imaginary part. The random numbers are taken as
ily (1) allows us to construct universal one-qubit gates. Thesgefore and the evolution in the control manifold is

are realized by giving an explicit prescription for driving the

control parametef)’'s along suitable adiabatic loops. Q-() =€*Q sin 6 cos ¢,
We suppose now to add to the contfolfield a “small” _
noise which perturbs our trajectory on the control manifold. Q.(t) =€&Q sin 0 sin ¢, €)]
We test the robustness of the geometrio@ting single-qubit
gate proposed in Refl3]. To obtain this gate, we made the Qo(t) = €% cos .
following loop in the parameter space:Q_(t) ) o
=0 sin 6 cos e, Q. ()= sin g sin ¢, and Q)= cos g The most general and complicated situation is when both

[where the() parameters are fixed and tl#g) and ¢(t) are ‘intensity” and “phase” noise are present.

time-dependentand the holonomic operator obtained at the

end of the loop isJ=€"%?y (whereioy=|E }E[|~|E(E])). 1. SIMULATIONS

The geometrical parametgr=¢sin dddde is the solid angle For all of the simulation we choose the parameters used in
spanned by the parameter vectdr (£2,,Q_,Qp) on the pa- Refs. [13,14 which satisfy the adiabatic conditioif)
rameter manifoldspherg. Changing the relation betwegh =0.02 fs?, T,4=7.5 ps, and)T,4=150. The probability dis-
and ¢, we change the loop and then the valued®fWe  tribution for the noise is a Gaussian with zero mean and
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(0)=(80/0)=0.1, whered is the fluctuation of the Rabi A
frequency. Though this value is far below the experimental
control, we use it to understand the robustness of holonomic
gates against strong perturbations.

Once the evolution of the state with the noise has been
computed, we must compare it with the ideal one in which
the noise is absent. In order to make such a comparisor
quantitative, we introduce thigdelity

ity

o

Fidel

F=\(ulpoul V5. @

where |49y is the final state without noise ang is the
density matrix associated with the noisy final state. In our
case the evolution is unitary, 0= | U H Wb and the 40 10 20 30 40 =0 60 70 8 9 100
fidelity reduce to a scalar product between the noisy and the T T

ideal state. To eliminate the dependence of &j.on the ad/Tn
initial states, we make a sampling of the initial state space B
and then average the results. Even if we have a four-

dimensional working space, the initial-state space has dimen 095 |
sion 2; in fact, in the ideal gat€ence the adiabatic condition 09 r
is satisfieg we always start and end in a superposition of the 0.85 |
logical statesE;)~|E,). This simplifies the sampling proce- 08 |
dure because we can take the Bloch sphere as samplin» 475 |
space. We sample the Bloch sphere with 18 stf26F and % 07 |
for each of them we calculate tHiglelity. With the random ©
numbers extracted during the evolution being fixee., R 0851
fixed T,), we must also take into account the dependence 06 r
from the series of the random number extracted. For every  0.55 f
sampled state, we make five different realizations with dif- 05
ferent extracted random numbers and calculate the averag 45 P
fidelity for the particular initial state. Finally, we take the 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
averagsdidelity for all the sampled states to obtain tidelity Toa/ T,
of our gate for a fixedr,.
In the figures presented here, on thaxis is plotted the FIG. 1. Fidelity for holonomic gate withQ™1=50 fs, T,y

fidelity and on thex axis is plotted the number of extractions =7.5 ps(QT,q=150, and 582=0.1Q. (a) Slowly varying fluctua-
(that is, theratio T,4/T, between the adiabatic amibise tions and(b) fast varying fluctuations.
time).

In Fig. 1, we report the simulated evolution for two re- nomic operator unaffected. This is what seems to be con-
gimes of noise. In Fig. (B), we plot thefidelity when we firmed by the simulations illustrated in Fig(l, where we
extract up to 100 random numbers during the evolutiorextract from 50 to 5000 random numbers. Thggelity in-
(Taa/ 100=T,,<T,y. With up to 30 random numbers, the av- creases and it is even better than those in Fig); the av-
eragefidelity is 0.875, while it decreases up to a minimum of eragefidelity is 0.918, but it increases to 0.956 if take into
about 0.5(with a total average of 0.632f we extract more account the values from 1000 to 5000 random extractions.
random numbers. The relative loop in the parameter space is shown in Fig. 3,

A possible interpretation of this effect can be seen in Figwhere we extract 5000 random numbers during the evolu-
2, where we show the evolution on the parameter sphere. Ition: the fluctuations havé()=0.1() but are so quick that
Fig. 2a), n,=2 (T,=T,¢/2) and we change the noise field they cancel out.
twice during the evolution. Despite the intense noise, the From these simulations, it is evident that we have three
shape of the loop is still clearly visible; it is simply shifted regimes in our model which can be explained as the sign of
with respect to the ideal one. The value of the resulting solidhe geometrical dependence of the holonomic operator.
angle swept is near to the ideal one. In Figh)2we extract (i) Slowly varying random fluctuationéT .4/ T,~1): the
n,=70 random extractions during the adiabatic evolutionloop basically maintains its shape and it is simply shifted.
(T,=Tad/ 70). The fluctuations are too intense and too few toThis situation does not affect the gate too much.
cancel out. Therefore, as we expected, the solid angles, (i) Intermediate regimé50<T,4/T,<100: the intense
swept, respectively, during the ideal and the noisy loops, arfluctuations badly modify the loop shape and alter the gate
different. This can explain the result in Figal operator.

As stated before, even if we have strong fluctuations, we (iii) Fast varying random fluctuationd,4/T,,>1): the
expect that if we extract many random numbers, the noise ofluctuations effectively cancel out and do not change the
average does not affect the solid angle and leaves the holeperator.
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These geometrical features are independent ofrétie Tod/ T,
60/ and persist even for small values of the fluctuation
8. If we decrease the intensity of the noise, our adiabatic FIG. 4. Fidelity for small perturbationg(2=0.01Q. Parameters
gate improves as shown in Fig. 4, where, with the sames in Fig. 1.
parameters(i.e., Rabi frequency and adiabatic timeve
chooses(2=0.01£). We note that thdidelity increases but as those for “intensity” noise. This can be clearly seen in Fig.
the features are the same as those of the previous SimU|atiOB§Where we find the same features as those of the previous
(i.e., three regimgs plots. Thefidelity is much better with respect to “intensity”

In Fig. 5, the noise is applied only to the phase of thengise, and we can say the “phase” noise does not affect our
control field with the same adiabatic parameters as those fate.
the previous simulations. Since the way of producing the we finally discuss the case of both “intensity” and
operator is always the sanfiee., loop in the parameter space “phase” noise(Fig. 6). As we expect, the main part of the
with a noisg, we expect that the effects of noise are the samexrror is given by the “intensity” noise. The three regimes,
discussed previously, are evident also in this case.

In Fig. 7, we show the population of the nonlogical states
(G) and|EE>) at the end of the gate application as a function
of T,¢/T,. In an ideal adiabatic gator T,4— ), these
states are not populated. In Figay, these populations in-
crease with theél 4/ T, ratio due to the strong and fast fluc-
tuations of the Rabi frequencies, which perturb the Hamil-
tonian. For very fast varying fluctuation$ig. 7(b)], the
undesired populations decrease because of cancellation ef-
fects. From this analysis, we can say that for slowly and fast
varying random fieldgi.e., the two extreme regimgswe
remain in the logical computational space.

FIG. 3. Loop in the parameter space for the holonomic gate with We wish to compare this holonomic gate with a standard
noise and the extraction of 5000 random numk@ys=T,4/5000). dynamical gate, the latter one being characterized by the
The sphere radius is normalized ¢b=1. same unitary operator of the holonomic one and having dif-
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FIG. 6. Fidelity for holonomic gates when the system is subject
FIG. 5. Fidelity for the “phase” noise. Parameters as in 0 “intensity” and “phase” noise. Parameters as in Fig. 1.

Fig. 1. For the reason in Figs(& and &b) we put two different

ferent(typically shortey gating time(the time needed for the Scales for the adiabati€T.y/T,) and dynamical(Tyn/Tn)

application of the gate In our system this means consider- 9ates and the pl_ots h_ave been rescaled taking into account for

ing as logical state$G)=|0) and |E|)=|1) and applying a the different gating time.

m-pulse laser sequence to produce a transi@n— |E} ). Numerical simulations in Fig. 8 show that the perfor-
We made similar simulations for the dynamical gate withmance of holonomic gates and dynamical gates are compa-

the same paramet¢f=0.02 fs1) and with the same noise. rablein the regionwhere the first ones are reliable; that when

In Fig. 8 we make a comparison between holonomicTad Tn>1 (see discussion aboye _
(solid line) and dynamicaldashed linggates subject to the ~ Both dynamical and holonomic gates can be further im-

direct since the gating times are different. This means thapalic constraints, we can choose different parameters in order
the ratios T,y T, and Ty,,/ T, are different for adiabatic and 0 minimize the effect of the noise but this can affect the
dynamical gates. To compare the effect of the gate subject tgating time.

the samenoisy field(i.e., with the same noise timE,), we For holonomic gates, given a noise with fixed correlation
have to take into account that the dynamical gates, in oupoise timeT,, we can try to change adiabatic time in order to
model, are about 100 times faster than the adiabatic @ees modify the T,4/T,, ratio. This should allow us to fall in a
Refs.[13,14). This means that if during the adiabatic evo- “good” regime, i.e., fast or slowly varying fluctuations. De-
lution the noise changen?ad:Tad/Tn times, for the dynamical creasing adiabatic time to get in the smBl}/ T, region can
gates it changes onlly‘r’y”=Tad/(1OOTn) times(if for the dy-  produce new errors due to the lack of adiabaticity during the
namical noisen?y”< 1, it changes only ongeln other words,  evolution, thus it must be done carefully. Increasing the adia-
if for the dynamical gate we extracfy” random numbers batic time to enter in the regiofi,y/ T, leads to a better
during the evolution, for the holonomic gate we extraﬁ precision in the adiabatic gates and to the cancellation of
:1001Ey“ random numbers. This means that to compare th&oisy fluctuations, but it results in longer gating times.
fidelitieswe have to look at the fast varying fluctuating noise  To complete the set of universal quantum gates, we need
(T.o/ T,>1) region of the previous figures. another single-qubit gate and a two-qubit gate.
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FIG. 7. Population of the nonlogical stat@ and|Ep) after the FIG. 8. Comparison between holonontsolid line) and dy-
holonomic gate application when the system is subject to “intenngmical (dashed ling gates with (8 802=0.10 and (b) Q
sity.” Parameters as in Fig. 1. =0.010. On the topT,y/T, for the holonomic gate and on the

) . . ) bottom Tg,/ T,, for dynamical gates are reported.

In the first case, we apply an intensity noise to finase
gate presented in Ref [13] with Q_=0, Q. f the f hat in the i ‘ diabati luti
=—0 Sin(0/2)e"P, and QO:Q COE(G/Z) The holonomic op- quence o the fact that in the imper ect adiabatic evolution,

iSU=¥EYE" where ¢=1¢ sin dddde. The results unwanted states gets populated. On the other hand, the effect

eratorh ISU=€ Fi 9’ d th $=3 d.‘P' d ab of the fluctuating noise is to induce as undesired transition as
argds ?Wn in Fig. 9 and the structures discussed above a[G|| These two effects are superposed, and with a smaller
evident. -~ . . adiabatic parameter the effect of the noise seems to be less

Finally, in Fig. 10 we present the simulations of thiease important
shift two qubit gate in Ref[13] with an intensity noise. In |
this case we use two exciton statés E!) and|GG)) and a

two photon interaction Hamiltonian similar in structure to V. CONCLUSIONS

Eq. (1) but with Rabi frequencyes=2/0%/5 (wheresis  We numerically studied the robustness of a non-Abelian
the laser detuning we need to avoid single-photon transitiofolonomic quantum gate against stochastic errors in control
and to create two exciton stajes parameters. The robustness of logical gates show three re-

In Fig. 1Q@a), the second regiméwhere thefidelity de-  gimes upon the variations of the noise correlation tifpeA
creasepis present but less evident and seems to be compossible interpretation of these regimes can be given on the
pressed in the slowly varying random fluctuations z6b@  basis of the geometri@.e., solid angle swept in the param-
<T,4/ T,=30); for greatT,4/ T, ratio, thefidelity decisively  eter spacedependence of the holonomic operator. For fast
increases as in the previous figuigsg. 1Qb)]. Moreover, random varying fluctuations we have a good robustness of
we note that thdidelity between the adiabatic final states the holonomic gate since, as argued in other pafsl 7,
with and without noise is high and close to 1 even if we havethe fluctuations during the loop tend to cancel out. For ran-
chosen the adiabatic parame(€X.4T) smaller than the one dom varying fluctuations in the intermediate regime, the ho-
used for single-qubit gates. This can be explained as consé&nomic gates are significantly corrupted because the fluctua-
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FIG. 10. Fidelity for the two qubit phase shift with intensity

FIG. 9. Fidelity for the single qubiphase shifgate with inten- .
noise. Parameters aré=5 meV,|Q|=6/15, andT,4=0.8 ns.

sity noise. The parameters are as in Fig. 1.

tions strongly deform the parameter loop. For slowly random We believe that our analysis and conclusions should be
varying fluctuations the performance improves again. Thisxtended rather easily to a different sort of system proposed
fact is not as surprising as it may seem. Indeed, the loop ifor HQC. For example, it definitely extends to the model
the parameter space turns out in this case to be simply shiftgstoposed in Refl12] since the involved holonomic structure
rather than deformed; then similar solid angles are swepis isomorphic to the one analyzed here. The general features
Our analysis suggests that the main noise source is given lyf our results should hold also in more general situations,
fluctuations in the intensity of the control parameterssince they apparently do not rely on the detailed features of
whereas the phase fluctuations do not seem to sizeably affetamiltonian(1), but rather on the general structure of holo-
the gate studied. The effect of the noise decreases with th@omic computations. A related, though logically distinct, is-
variance of the intensity of the fluctuations, and &2/}  sue is the robustness of HQC against environmental decoher-
=0.01 we have mediurfidelity close to 1. A first comparison ence [21]. This is clearly an important subject to be
shows that holonomic and dynamical gates have comparabkddressed in future investigations.
performance in th@,4/ T,>1 region.
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