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We discuss “mode-entangled states” based on the optical transverse modes of the optical field propagating in
multimode waveguides, which are classical simulation of the quantum entangled states. The simulation is
discussed in detail, including the violation of the Bell inequality and the correlation properties of optical
pulses’ group delays. The research on this simulation may be important, for it not only provides useful insights
into fundamental features of quantum entanglement, but also yields interesting insights into quantum compu-
tation and quantum communication.
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I. INTRODUCTION

So far, there is interest in research on classical wave ana-
logs of the Schrodinger wave function[1–3]. It is well
known that, in the paraxial approximation, the transverse
modes of an optical field obey a propagation equation which
is formally identical to the Schrodinger equation with the
time replaced by the axial coordinate[1]. The transverse
modes of the optical field propagating in a waveguide with a
parabolic refractive index profile are formally identical to
quantum harmonic oscillator wave functions. Some efforts
have gone into researching on classical wave analogs of
quantum mechanics, including analogs of Fock states and
measurement of Wigner phase-space distributions for classi-
cal optical fields which can exhibit negative regions[3–6].
However, research on classical analogs has been limited
principally to measurement of first-order coherence, i.e.,
single-particle states. Classical-wave analogs of high-order
coherence(quantum entanglement), i.e., multiparticle states,
have been seldom studied[7]. The quantum entanglement,
which describes nonlocal quantum correlation between dif-
ferent degrees of freedom especially separated particles, is
regarded as the inherent feature of quantum theory[8]. The
quantum correlation has been shown in the correlation mea-
surement of the entangled state, and a criterion has been
given by the violation of the Bell inequality[9]. In recent
research, the quantum entanglement is considered as a key
property to realize the quantum computation[10] and quan-
tum teleportation[11], which makes the quantum entangle-
ment strongly attracted to researchers.

In this paper, we will propose “mode-entangled states”
based on the optical transverse modes of the optical field
propagating in multimode waveguides. It is well known that
the quantum entanglement is the characteristic of the quan-
tum theory with no classical analog. Therefore the mode-
entangled states should be interpreted as the classical simu-
lation of quantum entanglement using the optical transverse
modes of the optical fields. The classical simulation will be
discussed in detail, including the violation of the Bell in-
equality and the correlation properties of optical pulses’

group delays. In Ref.[12], a full optical scheme to perform
quantum computation is proposed, based on the optical trans-
verse modes in multimode waveguides. The proposed
controlled-NOT (CNOT) gate has the potential of being easily
realized since it is based on optical waveguide technology
and can be constructed by using Mach-Zehnder interferom-
eter having semiconductor optical amplifiers(SOA’s) in its
arms. The SOA can provide a very large Kerr-like nonlinear-
ity even at relatively low light intensities and can avoid the
intensity attenuation excited by two-photon absorption[13].
Therefore SOA’s have been used extensively as nonlinear
elements in optical switching and wavelength-conversion de-
vices [14]. But whether the scheme would be capable of
implementing the quantum computation depends on whether
the CNOT gate proposed in Ref.[12] can generate the mode-
entangled states. Given all these, the research on the similar-
ity between the mode-entangled states and the quantum en-
tangled states may be important, for it not only provides a
useful insight into fundamental features of quantum en-
tanglement, but also yields interesting insights into quantum
computation and quantum communication.

The paper is organized as follows: In Sec. II, we will
discuss the analogies between optical transverse modes in a
multimode waveguide and quantum Fock states. In Sec. III,
the superposition of transverse modes in a random wave-
guide is analyzed. In Sec. IV, the Bell inequality as a crite-
rion of the existence of mode-entangled states is deduced. In
Sec. V, an analysis of the mode-entangled states in random
waveguides and the correlation properties of group delays is
discussed. Finally, we summarize our conclusions in Sec. VI.

II. ANALOGS OF QUANTUM FOCK STATES USING
OPTICAL TRANSVERSE MODES

Considering a weakly guiding, symmetric slab wave-
guide, an optical field in the propagation direction, longitu-
dinal z direction, is restricted within the core region, which
has the higher refractive index(RI) compared with that of the
cladding. By using the Fock-Leontovich paraxial approxima-
tion, the Maxwell equations for the monochromatic electric
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field component can be reduced to the equivalent Schro-
dinger equation. The reduced field[1]

Csx,y,zd = În0Esx,y,zd expS− ikE
0

z

n0dzD s1d

satisfies the following equation:

i

k

]C

]j
= −

1

2k2s¹x
2C + ¹y

2Cd +
1

2
fn0

2 + n2sx,y,zdgC = HC,

s2d

whereEsx,y,zd is the monochromatic electric-field compo-
nent, the geometry of the waveguide is defined by the RI
profile nsx,y,zd, n0=ns0,0,zd, k=2p /l (with l being the
wavelength in free space), andj=e0

zdz/n0. Therefore when
the RI profilensx,y,zd is parabolic, Eq.(2) is similar to the
Schrodinger equation for a quantum harmonic oscillator.
Here, instead of Plank’s constanth, we have the vacuum
light wavelengthl. And the variablej plays the role of time.

Following Ref.[15], coordinate and momentum operatorsX̂i

and P̂i =−si /kds] /]xid (i =1,2 denotex and y, respectively)
can be introduced. These operators obey the standard com-

mutation relationsfX̂i , P̂jg=si /kddi j and uncertain relations

sDXid2sDPid2ù s1/4k2d, where sDXid2=kX̂i
2l−kX̂il2 and

sDPid2=kP̂i
2l−kP̂il2.

When the optical field propagates in the waveguide that is
z invariant, in other words, the RI profile is uniform alongz,
the propagation can be equivalently described in the time-
independent Schrodinger equation

HCnsx,yd = vnCnsx,yd, s3d

whereCnsx,yd are a set of eigenmodes corresponding to a
set of discrete eigenvaluesvn. It leads to the expression of
the monochromatic electric field componentEsx,y,zd as fol-
lows:

Esx,y,zd = o
n

Cne
−ibnzCnsx,yd, s4d

where the propagation constantsbn are given as

bn = ksn0
2 − 2vnd1/2. s5d

As described in Ref.[3], such eigenmodesCnsx,yd are simi-
lar to the quantum Fock states. Here we introduce the anni-

hilation operatorsâi =Îk/2sX̂i + iP̂id and the creation opera-

tors âi
+=Îk/2sX̂i − iP̂id that obey the boson commutation

relationsfâi
+,âjg=di j , fâi ,âjg=fâi

+,âj
+g=0. Application of the

creation and annihilation operators to the Fock states yield

â+unl = În + 1un + 1l,

âunl = Înun − 1l, s6d

â+âunl = nunl,

whereunl are the eigenmodesCnsxd, n=0,1,2, . . .(for sim-
plicity only x direction is considered).

It is well known that random perturbations of the geom-
etry of multimode optical waveguides cause fluctuations of
the average arrival time(group delay) and spread(disper-
sion) of optical pulse propagating in the waveguides
[16–20]. In general, the information given for the description
of optical field propagation in a random waveguide by means
of the fieldCsx,y,zd in Eq. (1) is not complete. The optical
field propagation may be generally described by means of
the density-matrix formalism[1]

r = o
mn

rmnumlknu, s7d

which satisfies the Liouville equation

i
]r

]z
= fH,rg. s8d

The density matrix possesses the usual properties: Trr=1,
Tr r2ø1 (the equality is true for pure states). The expecta-

tion value of any operatorQ̂ is given by the trace of the

product ofr andQ̂: kQl=TrsrQ̂d. Therefore the utilization of
the density-matrix formalism seems to be useful for describ-
ing a superposition of modes in the random waveguide.

III. SUPERPOSITION OF TRANSVERSE MODES
IN A RANDOM WAVEGUIDE

In Ref. [12], a full optical method based on the transverse
eigenmodes is proposed to perform the quantum computa-
tion, in which TE0 mode and TE1 mode in dual-mode wave-
guide are used as qubits to represent logical 0 and 1. In this
section, we will use the density-matrix formalism in the
analysis of superposition of these two modes(TE0 mode and
TE1 mode) in a random waveguide.

The superposition of the modes can be described as

Csx,y,zd = C0e
−ib0zuTE0l + C1e

−ib1zuTE1l, s9d

whereb0 andb1 are the propagation constants of the modes
uTE0l and uTE1l, respectively. In the dual-mode waveguide,
the coupling of TE0 mode and TE1 mode is similar to a
two-level system. Thus to describe this kind of coupling, we
introduce the Hamiltonian

H = b0Sâ†â +
1

2
D + b1Sb̂†b̂ +

1

2
D + Cabâ

†b̂ + Cab
* b̂†â,

s10d

whereâ+ and â are the creation and the annihilation opera-

tors of the modeuTE0l, andb̂+ andb̂ are the creation and the
annihilation operators of the modeuTE1l. In the random
waveguide, the random coupling among the guided modes
will be caused by the perturbations in the waveguide geom-
etry. Here we introduce a coupling coefficient to describe the
random coupling. The coupling coefficients are functions of
z coordinate that measures distance along the waveguide
axis. In random waveguides, the coupling coefficient assume
the form [21]
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Cab = Kabfszd, s11d

whereKab is independent ofz. The function fszd often de-
scribes the actual shape of the deformed waveguide bound-
ary or the bent waveguide axis. And it is supposed to be a
stationary random variable whose correlation function is as-
sumed to be Gaussian

kfszdfsz− udl = s2e−su/Dd2 s12d

wherek¯l denotes the average over an ensemble of random
realizations,s is the variance, andD is the correlation length
of fszd.

To study effects on the superposition of transverse eigen-
modes caused by this kind of randomicity, we introduce the
density matrixr. If we rewrite the modesuTE0l anduTE1l as

uTE0l = S1

0
D, uTE1l = S0

1
D , s13d

the density matrixr of the mode superposition(9) can also
be rewritten,

r = S uC0u2 C0C1
*eiDbz

C1C0
*e−iDbz uC1u2

D , s14d

whereDb=b1−b0. The Liouville equation(8) can be written
in the equivalent form

i
]rmnszd

]z
= sbm − bndrmnszd + kfVszd,rszdglmn, s15d

where m, nP h0,1j, Vszd=Cabâ
+b̂+Cab

* b̂+â. By using the
method mentioned in Ref.[18], after the optical field propa-
gates a distance ofL in the random waveguide, the density
matrix r can be described as

r =1s1 + e−2gLd
uC0u2

2
+ s1 − e−2gLd

uC1u2

2
C0C1

*efisDb+kd−ggL

C1C0
*ef−isDb+kd−ggL s1 + e−2gLd

uC1u2

2
+ s1 − e−2gLd

uC0u2

2
2 , s16d

where

g = Îps2De−sDDb/2d2uKabu2, s17d

k = ImfÎps2De−sDDb/2d2 erfsiDDb/2duKabu2g.

We have assumed so far thatDb@g, Db@k and the wave-
guide is lossless. From Eq.(16), we can anticipate ifL→`,
Tr r2→ 1

2, which shows the evolution from the coherence
(pure state) superposition to the incoherence(mixed state)
superposition caused by the perturbation in the random
waveguide.

In order to distinguish between the coherence superposi-
tion and the incoherence superposition, we propose a scheme
by analyzing the symmetries of the eigenmodes. In Fig. 1,
the profiles of the modesuTE0l anduTE1l are shown,uTE0l is
symmetric anduTE1l is antisymmetric. A Y splitter is a de-
vice to split one light beam into two beams. If the perturba-
tion of the Y splitter’s transition is slight(i.e., the change of
propagation constantDb<0), the splitter can split the beam
with extremely low power loss. WhenuTE0l and uTE1l are
launched in the Y splitter,uTE0l is split into two symmetric
parts, whileuTE1l is split into two antisymmetric parts[22].
Therefore the output states of the Y splitter’s two branches
are given explicitly by

u + l =
1
Î2

suTE0l + uTE1ld, s18d

u− l =
1
Î2

suTE0l − uTE1ld.

When the input of Y splitter is given at a coherence super-
position, uCinl=s1/Î2dse−iuuTE0l+eiuuTE1ld, via expanding
the input states in terms of the output states of the two
branches of the splitter, we gotuCinl=cosuu+l− i sinuu−l,
from which the intensities of two branches can be obtained,

uk+ uCinlu2 = cos2 u, s19d

FIG. 1. Electric-field profiles for the optical transverse modes
TE0 (the symmetric mode) and TE1 (the antisymmetric mode).

CLASSICAL SIMULATION OF QUANTUM… PHYSICAL REVIEW A 70, 042313(2004)

042313-3



uk− uCinlu2 = sin2 u.

Note that the phaseu of the input fielduCinl will cause the
variation of intensity in the Y splitter’s two branches. When
the input of the Y splitter is given at an incoherence super-
position, the relationship of the phase between the modes
uTE0l and uTE1l is uncertain. The density matrix of the inco-
herence superposition is given as

r = o
n=0,1

WnuTEnlkTEnu, s20d

whereWn= 1
2 are the probabilities for the two modesuTE0l

and uTE1l. Then the output average intensities in two
branches arek+uru+l=k−uru−l= 1

2. It shows that when the
input is at the incoherence superposition, no matter how the
phase of the input changes, the output intensities will stay
invariable. That is the essence of our scheme of measuring
the intensity difference between the Y splitter’s two branches
to distinguish between the coherence superposition and the
incoherence superposition.

Now, we apply the Y splitter to the analysis of the super-
position state that is the evolution of a coherence superposi-
tion state after propagating in a random waveguide with dis-
tance ofL. We define operators to represent the operations of
a phase controller and Y splitter,

Î+sud = P̂+sudu + lk+ uP̂sud =
1

2
S 1 e2iu

e−2iu 1
D , s21d

Î−sud = P̂+sudu− lk− uP̂sud =
1

2
S 1 − e2iu

− e−2iu 1
D ,

whereP̂sud denotes the phase control of the input state

P̂suduCl = P̂sudsC0uTE0l + C1uTE1ld

= C0e
−iuuTE0l + C1e

iuuTE1l. s22d

The control of the phase difference between the two modes
uTE0l anduTE1l can be achieved by properly changing the RI
of the core layer[22].

After the input at a mode superposition state propagates a
distance ofL in the random waveguide and passes through a
phase controller and a Y splitter, the intensity difference be-
tween the output waveguides can be obtained by using the
density matrixr in Eq. (16),

kÎ+sud − Î−sudl = TrhrfÎ+sud − Î−sudgj

= e−gLfC0C1
*eisDb+kdLe2iu

+ C1C0
*e−isDb+kdLe−2iug. s23d

When C0=C1=1/Î2, kÎ+sud− Î−sudl=e−gL cosf2u+sDb
+kdLg. It is already obvious that the perturbation in the
waveguide geometry may cause the evolution from the co-
herence superposition to the incoherence superposition,
namely decoherence, which leads to disappearance of the
intensity difference between two outputs of the Y splitter.

By using beam propagation method(BPM) [23], we cal-
culate numerically the behavior of the mode superposition in

the dual waveguide when it is propagating in the phase con-
troller and the Y splitter discussed above. The results are
shown in Fig. 2, which show that the intensities of Y split-
ter’s two branches vary by changing the RI of the core layer.

IV. BELL INEQUALITY OF OPTICAL TRANSVERSE
MODE ENTANGLEMENT

As shown in Ref.[3], in the Wigner distribution, the op-
tical transverse modes are similar to quantum Fock states.
However, such similarities are confined to first-order coher-
ence (such as single particle). The higher-order coherence
(such as multiparticle) is regarded as the inherent feature of
quantum phenomena, which is nonlocal quantum correlation
shown in the correlation measurement of the quantum en-
tangled state. The criterion of the existence of the quantum
entanglement is given by the violation of the Bell inequality.
In this section, we will discuss the correlation properties of
the optical mode entanglement that is classical simulation of
the quantum entanglement.

We assume that a kind of mode-entangled states can be
generated by means of some kind of interaction between the
optical fields propagating in multimode waveguides(e.g., the
CNOT gate proposed in Ref.[12]). The mode-entangled states
are given as

uF1
±l =

1
Î2

suTE0lcuTE0lt ± uTE1lcuTE1ltd, s24d

uC1
±l =

1
Î2

suTE0lcuTE1lt ± uTE1lcuTE0ltd,

where c and t represent the control and the target fields,
respectively. The states in each waveguide are a mode super-
position, but they are different from a product state,

uC2l =
1

2
suTE0lc + uTE1lcdsuTE0lt + uTE1ltd. s25d

The difference ofuF1
±l suC1

±ld and uC2l can be obtained not
by measuring a single field, but by the correlation measure-

FIG. 2. The intensity variances of the Y splitter’s two branches
by changing the RI of the core layer(the lengthL=1 mm): (a)
Dn=0, (b) Dn=0.0001,(c) Dn=0.000 21.
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ment of the control and the target fields. This correlation
measurement can show that the two entangled fields are im-
partible to some extent. Similar to quantum entanglement,
the violation of the Bell inequality is also used as the crite-
rion of this impartibility.

To perform the correlation measurement of the Bell in-
equality, a mode analyzer with a phase controller is required.
The construction mentioned in the last section consisting of a
phase controller and a Y splitter meets the requirements. Fol-

lowing Eq. (21), we define operatorsÎ1
± and Î2

± to represent
the mode analyzer’s operations on the control and the target
fields, respectively,

Î1
+ − Î1

− = P̂+su1dsu + lck+ uc − u− lck− ucdP̂su1d

= e2iu1uTE1lckTE0uc + e−2iu1uTE0lckTE1uc, s26d

Î2
+ − Î2

− = P̂+su2dsu + ltk+ ut − u− ltk− utdP̂su2d

= e2iu2uTE1ltkTE0ut + e−2iu2uTE0ltkTE1ut,

whereP̂su1d andP̂su2d represent the phase controllers on the
control and the target fields, respectively. As discussed in
Sec. III, whenu1 andu2 change, the output intensities of the
Y splitters will vary correspondingly.

Based on the correlation analysis, we propose an experi-
mental scheme, shown in Fig. 3, in which the mode-
entangled state is generated via theCNOT gate proposed in
Ref. [12]. The input of control field is given at the mode
superposition 1/Î2 suTE0l+ uTE1ld and the input of target
field is given at the modeuTE0l or uTE1l. Then the output
fields of theCNOT gate are sent to spatially separated mode

analyzers represented byÎ1
± and Î2

±. The detected photocur-
rents of the mode analyzers’ outputs are passively subtracted
and monitored on a spectrum analyzer(SA) to check for
correlations. Therefore the correlation function is given by

Esu1,u2d =
ksÎ1

+ − Î1
−dsÎ2

+ − Î2
−dl

ksÎ1
+ + Î1

−dsÎ2
+ + Î2

−dl
. s27d

Substituting uF1
+l and uC2l into Eq. (27), respectively, we

obtain the correlation functions of the two states,

EF1
+su1,u2d =

ksÎ1
+ − Î1

−dsÎ2
+ − Î2

−dl

ksÎ1
+ + Î1

−dsÎ2
+ + Î2

−dl
=

kF1
+usÎ1

+ − Î1
−dsÎ2

+ − Î2
−duF1

+l

kF1
+usÎ1

+ + Î1
−dsÎ2

+ + Î2
−duF1

+l

= coss2u1 + 2u2d, s28d

EC2
su1,u2d =

ksÎ1
+ − Î1

−dsÎ2
+ − Î2

−dl

ksÎ1
+ + Î1

−dsÎ2
+ + Î2

−dl
=

kC2usÎ1
+ − Î1

−dsÎ2
+ − Î2

−duC2l

kC2usÎ1
+ + Î1

−dsÎ2
+ + Î2

−duC2l

= coss2u1dcoss2u2d. s29d

Then we substitute the correlation functions above into the
Bell inequality,

uBu = uEsu1,u2d − Esu1,u28d + Esu18,u28d + Esu18,u2du ø 2.

s30d

This particular Bell inequality is known as Clause-Horne-
Shimony-Holt(CHSH) inequality[9]. For the entangled state
uF1

+l, when we chooseu1=p /8, u18=−p /8, u2=0, u28=p /4,
we get uBu=2Î2. Obviously, by proper choice of the phases
u1 and u2 in Eq. (26), the correlation of the analyzers can
exhibit a maximum violation of the Bell inequalityuBu.2.
However, the violation never occurs for the product state
uC2l.

We have simulated numerically the scheme shown in Fig.
3 by using BPM. The result is illustrated in Fig. 4. Due to the
limitation of the simulation, we cannot get the correlation of
the control and the target fields. Therefore the experiment is
necessary to validate whether there are mode-entangled
states similar to quantum entangled states.

V. OPTICAL MODE-ENTANGLED STATES
IN RANDOM WAVEGUIDES

As shown in Sec. IV, the Bell inequality will be violated
in the correlation measurement of a mode-entangled state.
However, we can see from Eq.(23) that the violation will
vanish due to perturbations of the random waveguides. The
perturbations cause fluctuations of the average arrival time

FIG. 3. Experimental scheme. The input of control field is given
at the mode superposition 1/Î2 suTE0l+ uTE1ld and the input of
target field is given at the modeuTE0l or uTE1l. Then the output
fields of theCNOT gate are sent to spatially separated mode analyz-
ers, each of which contains a Y splitter and a variable phase control
u1 su2d. The detected photocurrents are passively subtracted and
monitored on a spectrum analyzer(SA) to check for correlations.

FIG. 4. BPM simulation result for the scheme shown in Fig.
3.
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(group delay) and spread(dispersion) of optical pulse propa-
gating in the random waveguides. In this section, we will
further discuss the difference of the entangled statesuF1

±l
suC1

±ld and the product stateuC2l by analyzing the correla-
tion properties of the group delays. And this difference is
another proof of the existence of the mode-entangled states
mentioned in the last section.

After the control and the target fields of the mode-
entangled stateuF1

+l propagate respectively in two random
waveguides with the same random characteristic(the vari-
ances and the correlation lengthD) and the same distance
of L, the density matrixr can be described as

rF1
+ =

1

21
1 0 0 e2fisDb+kd−ggL

0 0 0 0

0 0 0 0

e2f−isDb+kd−ggL 0 0 1
2 . s31d

Due to the perturbations of the random waveguides, the co-
herent properties of mode superposition of the control and
the target fields will decay exponentially with increasing the
distance ofL, until the whole state evolves to an incoherent
superposition ofuTE0lcuTE0lt and uTE1lcuTE1lt. Similarly, the
density matrixr of the product stateuC2l propagating in the
random waveguides can be described as

rC2
=

1

41
1 efisDb+kd−ggL efisDb+kd−ggL e2fisDb+kd−ggL

ef−isDb+kd−ggL 1 e−2gL efisDb+kd−ggL

ef−isDb+kd−ggL e−2gL 1 efisDb+kd−ggL

e2f−isDb+kd−ggL ef−isDb+kd−ggL ef−isDb+kd−ggL 1
2 . s32d

WhenL→`, the stateuC2l evolves to an incoherent super-
position of uTE0lcuTE0lt, uTE1lcuTE1lt, uTE1lcuTE0lt, and
uTE0lcuTE1lt, which is obviously different from the evolution
of the mode-entangled stateuF1

+l. And the difference can be
shown by a correlation measurement of group delays.

The group delay of an optical pulse in a waveguide can be
expressed as

t =
L

c

db

dk
, s33d

whereb is the propagation constant,c is the light velocity,
andL is the length of waveguide. If we introduce the group
delay operatort̂ whose eigenvalues are the group delayt,
the average arrival time of the optical pulse can be obtained
as follows:

ktsLdl = Trsrt̂d. s34d

To study the correlation measurement of the group delays,
we define the correlation function between the group delays
of the control and the target fields as

ktc,ttl = kst̂c − kt̂cldst̂t − kt̂tldl = kt̂ct̂tl − kt̂clkt̂tl. s35d

Substituting Eqs.(31) and(32) into Eq. (35), the correlation
functions of the entangled stateuF1

+l and the product state
uC2l are obtained,

ktc,ttlF1
+ = TrsrF1

+t̂ct̂td − Trsrc1t̂cdTrsrt1t̂td

=
L2

4c2Sdb1

dk
−

db0

dk
D2

=
1

4
ft1sLd − t0sLdg2, s36d

ktc,ttlC2
= TrsrC2

t̂ct̂td − Trsrc2t̂cdTrsrt2t̂td = 0, s37d

where the reduced density matricesrc1, rt1, rc2 and rt2 are
the partial traces TrtsrF1

+d, TrcsrF1
+d, TrtsrC2

d, and TrcsrC2
d,

respectively. Heret0sLd andt1sLd are the propagation time in
the waveguide with distance ofL for the modesuTE0l and
uTE1l, respectively. From Eqs.(36) and(37), we can see the
difference of the correlation properties of the two states’
group delays. Considerable attention should be paid to that
the correlation of the entangled state will increase, instead of
decrease, when the propagation distance ofL increases. Such
effects should be able to be observed by means of the experi-
mental methods shown in[24–26].

VI. CONCLUSIONS

We have demonstrated some properties of the mode-
entangled states as the classical simulation of the quantum
entangled states. These properties can be regarded as the
proofs of the existence of the mode-entangled states. Then
two experimental schemes to demonstrate these properties
are suggested. One is based on the violation of the Bell in-
equality, the other on the correlation properties of the optical
pulses’ group delay in random waveguides. As far as we
know, both of the two schemes can be carried out in current
experimental conditions. We are looking forward to perform-
ing relevant experimental schemes.
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