PHYSICAL REVIEW A 70, 042313(2004)

Classical simulation of quantum entanglement using optical transverse modes
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We discuss “mode-entangled states” based on the optical transverse modes of the optical field propagating in
multimode waveguides, which are classical simulation of the quantum entangled states. The simulation is
discussed in detail, including the violation of the Bell inequality and the correlation properties of optical
pulses’ group delays. The research on this simulation may be important, for it not only provides useful insights
into fundamental features of quantum entanglement, but also yields interesting insights into quantum compu-
tation and quantum communication.
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[. INTRODUCTION group delays. In Ref{12], a full optical scheme to perform
quantum computation is proposed, based on the optical trans-

So far, there is interest in research on classical wave angerse modes in multimode waveguides. The proposed
logs of the Schrodinger wave functiofi—3. It is well  controlledNOT (CNOT) gate has the potential of being easily
known that, in the paraxial approximation, the transversegealized since it is based on optical waveguide technology
modes of an optical field obey a propagation equation whictand can be constructed by using Mach-Zehnder interferom-
is formally identical to the Schrodinger equation with the eter having semiconductor optical amplifig®@0As) in its
time replaced by the axial coordinafé]. The transverse arms. The SOA can provide a very large Kerr-like nonlinear-
modes of the optical field propagating in a waveguide with &ty even at relatively low light intensities and can avoid the
parabolic refractive index profile are formally identical to intensity attenuation excited by two-photon absorpfib8].
quantum harmonic oscillator wave functions. Some effortsTherefore SOA's have been used extensively as nonlinear
have gone into researching on classical wave analogs @flements in optical switching and wavelength-conversion de-
quantum mechanics, including analogs of Fock states angices [14]. But whether the scheme would be capable of
measurement of Wigner phase-space distributions for classimplementing the quantum computation depends on whether
cal optical fields which can exhibit negative regid@s-6l.  the cnoT gate proposed in Ref12] can generate the mode-
However, research on classical analogs has been limiteghtangled states. Given all these, the research on the similar-
principally to measurement of first-order coherence, i.e.ity between the mode-entangled states and the quantum en-
single-particle states. Classical-wave analogs of high-ordesangled states may be important, for it not only provides a
coherencgquantum entanglementi.e., multiparticle states, useful insight into fundamental features of quantum en-
have been seldom studi¢d]. The quantum entanglement, tanglement, but also yields interesting insights into quantum
which describes nonlocal quantum correlation between difcomputation and quantum communication.
ferent degrees of freedom especially separated particles, is The paper is organized as follows: In Sec. I, we will
regarded as the inherent feature of quantum thé8kyThe  discuss the analogies between optical transverse modes in a
quantum correlation has been shown in the correlation meanultimode waveguide and quantum Fock states. In Sec. Il
surement of the entangled state, and a criterion has be@Re superposition of transverse modes in a random wave-
given by the violation of the Bell inequalitj9]. In recent guide is analyzed. In Sec. IV, the Bell inequality as a crite-
research, the quantum entanglement is considered as a kgign of the existence of mode-entangled states is deduced. In
property to realize the quantum computatid®] and quan-  Sec. V, an analysis of the mode-entangled states in random
tum teleportatior{11], which makes the quantum entangle- waveguides and the correlation properties of group delays is

ment strongly attracted to researchers. discussed. Finally, we summarize our conclusions in Sec. VI.
In this paper, we will propose “mode-entangled states”

based on the optical transverse modes of the optical field
propagating in multimode waveguides. It is well known that

the quantum entanglement is the characteristic of the quan-
tum theory with no classical analog. Therefore the mode- Considering a weakly guiding, symmetric slab wave-
entangled states should be interpreted as the classical simguide, an optical field in the propagation direction, longitu-
lation of quantum entanglement using the optical transversdinal z direction, is restricted within the core region, which
modes of the optical fields. The classical simulation will behas the higher refractive indéRl) compared with that of the

discussed in detail, including the violation of the Bell in- cladding. By using the Fock-Leontovich paraxial approxima-
equality and the correlation properties of optical pulses'tion, the Maxwell equations for the monochromatic electric

II. ANALOGS OF QUANTUM FOCK STATES USING
OPTICAL TRANSVERSE MODES
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field component can be reduced to the equivalent Schro- It is well known that random perturbations of the geom-
dinger equation. The reduced fidlt]] etry of multimode optical waveguides cause fluctuations of
. the average arrival timégroup delay and spreaddisper-
W(x,y,2) = \J’n_oE(x,y,z) exp(— ikf nodz> (1) sion) of optical pulse propagating in the waveguides
0 [16-20. In general, the information given for the description
of optical field propagation in a random waveguide by means

satisfies the following equation: of the fieldW(x,y,2) in Eq. (1) is not complete. The optical
iovr_ 1 1 field propagation may be generally described by means of
Ko %(V)Z(\P +V2) + E[né +n?(x,y,2)]¥ =HV, the density-matrix formalisni1]
2 p= 2 pmn| m><n| ) (7)
mn

whereE(x,y,2) is the monochromatic electric-field compo-

nent, the geometry of the waveguide is defined by the Rivhich satisfies the Liouville equation

profile n(x,y,z), ng=n(0,0,2), k=27/\ (with N\ being the

wavelength in free spageand é=[§dz/n,. Therefore when i@ =[H, p] G)
the RI profilen(x,y,2) is parabolic, Eq(2) is similar to the P

Schrodinger equation for a quantum harmonic oscillator.

Here, instead of Plank’s constaht we have the vacuum The density matrix possesses the usual propertiep=T¢
light wavelengthn. And the variablet plays the role of time. 1T p><1 (the equality is true for pure stajeShe expecta-

Following Ref.[15], coordinate and momentum operatdys ~ tion value of any operatoQ is given by the trace of the
and P,=~(i/K)(9/ax) (i=1,2 denotex andy, respectively  product ofp andQ: (Q)=Tr(pQ). Therefore the utilization of
can be introduced. These operators obey the standard coi#fe density-matrix formalism seems to be useful for describ-
mutation relations[f(i,ﬁj]:(i/k)éij and uncertain relations M9 & SUperposition of modes in the random waveguide.

(AX)2(AP)?=(1/4k3), where (AX)2=(X®)—(X)?> and
~ ~ I1l. SUPERPOSITION OF TRANSVERSE MODES

(Api)2:<Pi2>_<Pi?2' _ _ _ _ IN A RANDOM WAVEGUIDE
When the optical field propagates in the waveguide that is
zinvariant, in other words, the RI profile is uniform alorg In Ref.[12], a full optical method based on the transverse
the propagation can be equivalently described in the timeeigenmodes is proposed to perform the quantum computa-
independent Schrodinger equation tion, in which Tk mode and TEmode in dual-mode wave-
guide are used as qubits to represent logical 0 and 1. In this
HWa(xy) = on WX y), (3)  section, we will use the density-matrix formalism in the

where W (x,y) are a set of eigenmodes corresponding to g&nalysis of superposition of these two modég, mode and
set of discrete eigenvalues,. It leads to the expression of TE1 modg in a random waveguide.

the monochromatic electric field compondik,y,z) as fol- The superposition of the modes can be described as
lows: W(x,y,2) = Coe P TEy) + C,e ATE,), (9)
— —i Bz
Exy.2) % Cre P Wn(xY), @) where 3, and 8, are the propagation constants of the modes

_ . |TEp) and|TE,), respectively. In the dual-mode waveguide,
where the propagation constaits are given as the coupling of TEO mode and TE1 mode is similar to a
L2 12 two-level system. Thus to describe this kind of coupling, we

Bn=k(ng = 2w,)™~. (5

introduce the Hamiltonian
As described in Ref.3], such eigenmoded (x,y) are simi-
lar to the quanturP Fc?ﬁsfatesi. Here we introduce the anni- :BO(éTéJr 1) +/81<E)T6+ 1) +CAD + C*bBTé
hilation operatorsg;=vk/2(X;+iP;) and the creation opera-
tors &"=k/2(X;- iP) that obey the boson commutation (10
relations[&",&,]=&;, [&,4]=[&,47]=0. Application of the

ot A . T
creation and annihilation operators to the Fock states yieIdWherea anda are the creation and the annihilation opera-

tors of the moddTEy), andb* andb are the creation and the

a'lny=Vn+1n+1), annihilation operators of the modd@E,). In the random
waveguide, the random coupling among the guided modes
any= \,'ﬁ|n_ 1), (6)  Wwill be caused by the perturbations in the waveguide geom-

etry. Here we introduce a coupling coefficient to describe the
random coupling. The coupling coefficients are functions of
z coordinate that measures distance along the waveguide
where|n) are the eigenmode¥,(x), n=0,1,2,...(for sim-  axis. In random waveguides, the coupling coefficient assume
plicity only x direction is considered the form[21]

arajny=njny,
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Con=HKanf (2, v ITEy = ( ) ITE) = ((l)) (13)

whereK,, is independent of. The functionf(z) often de- e density matrix of the mode superpositiof9) can also

scribes the actual shape of the deformed waveguide boun%je rewritten,

ary or the bent waveguide axis. And it is supposed to be a .

stationary random variable whose correlation function is as- B ( ICol*  CoCie” Z)
CiCe™” [C)* /'

sumed to be Gaussian
) whereAB= ;- By. The Liouville equatior{8) can be written
(f(2)f(z- u)) = g2 WD (120 in the equivalent form

12— (- B + (V@ p @D (19

(14)

where(:--) denotes the average over an ensemble of random
realizationso is the variance, anB is the correlation length . .
of f(2). where m, ne{0,1}, V(2=C,,A'b+C,,b*a. By using the

To study effects on the superposition of transverse eigermethod mentioned in Ref18], after the optical field propa-
modes caused by this kind of randomicity, we introduce thegates a distance df in the random waveguide, the density
density matrixp. If we rewrite the mode$§TEy) and|TE;) as  matrix p can be described as

| o|2 |C1|2 . i
(1+ —27L) +(1- —27L) COCle[I(AB+K)—7]L
p= 2 2 | (16)
Clc’(‘)e[—i(Aﬁ+K)—y]L (1+e—2yL)@+(l —zyL)|Co|
2
|
where 1
|_ )= ’_E(|TEO> - |TE1>)-
_ A
y=\mo?De PYA2|K 2, (17)

When the input of Y splitter is given at a coherence super-
— _ 2 position, |¥;,)=(1/\2)(e | TEy)+€TE,)), via expanding

x = Im[\mo?De P22 erf(iDABI2)|Kapl?]. the input states in terms of the output states of the two
We have assumed so far th&8> vy, AB> «k and the wave- ]E)ranche_s of the splitter, we go¥y,)=cosd|+)-isind-),

S L ) rom which the intensities of two branches can be obtained,
guide is lossless. From E¢L6), we can anticipate iE — o,

Tr p?— 3, which shows the evolution from the coherence (+ | W,)|2= cog 0, (19)
(pure statg superposition to the incoheren¢mixed statg
superposition caused by the perturbation in the rando
waveguide.

In order to distinguish between the coherence superposi
tion and the incoherence superposition, we propose a schen
by analyzing the symmetries of the eigenmodes. In Fig. 1,
the profiles of the modg3 Ey) and|TE;) are shown|TEg) is
symmetric andTE;) is antisymmetric. A Y splitter is a de-
vice to split one light beam into two beams. If the perturba- '
tion of the Y splitter’s transition is slighii.e., the change of | ~ ~~~~- .o H
propagation constat 8~ 0), the splitter can split the beam . |
with extremely low power loss. WhefTEy) and |TE;) are \ " 1

'
1
[}

TE,

4
]
I
?
1
1]
1]
f

e~ ——

launched in the Y splittef,TE) is split into two symmetric \
parts, while|TE;) is split into two antisymmetric part2]. ‘\‘

A
(%4

Therefore the output states of the Y splitter’s two branches|
are given explicitly by

1 FIG. 1. Electric-field profiles for the optical t d
+)y= ——(|ITEy) +|TE,)), 18 1. p ptical transverse modes
[+ V’z(| Eo) +[TEw) (18 TE, (the symmetric modeand TE (the antisymmetric mode
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(= [Win)|? = sirf .

Note that the phasé of the input field|¥;,) will cause the
variation of intensity in the Y splitter’s two branches. When
the input of the Y splitter is given at an incoherence super-
position, the relationship of the phase between the mode
|TEp) and|TE,) is uncertain. The density matrix of the inco-
herence superposition is given as

p= 2 WITEXTE, (20)
n=0,1
whereW,=3 are the probabilities for the two modéEEy) G

and |TE;). Then the output average intensities in two
branches ard+|p|+)=(~|p|-)=3. It shows that when the
input is at the incoherence superposition, no matter how the
phase of the input changes, the output intensities will stay FIG. 2. The intensity variances of the Y splitter’s two branches
invariable. That is the essence of our scheme of measuringy changing the RI of the core laygthe lengthL=1 mm): (a)
the intensity difference between the Y splitter’s two branches\n=0, (b) An=0.0001,(c) An=0.000 21.

to distinguish between the coherence superposition and the

incoherence superposition. , the dual waveguide when it is propagating in the phase con-
Now, we apply the Y splitter to the analysis of the super-yqjier and the Y splitter discussed above. The results are
position state that is the evolution of a coherence superposinown in Fig. 2, which show that the intensities of Y split-

tion state after propagating in a random waveguide with distep's two branches vary by changing the RI of the core layer.
tance ofL. We define operators to represent the operations of

a phase controller and Y splitter, IV. BELL INEQUALITY OF OPTICAL TRANSVERSE
1 0 MODE ENTANGLEMENT
1(6) = P*(0)| + )+ |P(0) = §<e—2i0 1 ) (21) As shown in Ref[3], in the Wigner distribution, the op-

tical transverse modes are similar to quantum Fock states.
io However, such similarities are confined to first-order coher-
N . . 1/ 1 -¢€ : . h
17(0) = P*(6)|- }— |P(6) = —< oo ) ence(such as single particle The higher-order coherence
2\-e 1 (such as multiparticleis regarded as the inherent feature of
quantum phenomena, which is nonlocal quantum correlation
shown in the correlation measurement of the quantum en-
A A tangled state. The criterion of the existence of the quantum
P(O)[W) = P(O)(ColTE) + C4[TEy) entanglement is given by the violation of the Bell inequality.
=Coe | TEy) + &Y TE)). (22)  In this section, we will discuss the correlation properties of
) the optical mode entanglement that is classical simulation of
The control of the phase Q|fference between the _two modeg,q quantum entanglement.
[TE) and|TE,) can be achieved by properly changing the Rl \ye assume that a kind of mode-entangled states can be

of the core laye[22]. o enerated by means of some kind of interaction between the
After the input at a mode superposition state propagates g~ fields propagating in multimode waveguidesy., the

distance ofL in the random waveguide and passes through a5t gate proposed in Refl12]). The mode-entangled states

phase controller and a Y splitter, the intensity difference be o given as

tween the output waveguides can be obtained by using the

where ﬁ(a) denotes the phase control of the input state

density matrixp in Eq. (16), 0% = =(TEQITEDN £ [TEQITED),  (24)
(@*(0) - 1(0) = Tr{pli*(6) - ()]} V2
=G CE e W) = = TEQ TED, £ [TEDTED)
+C,CleriBHLg20], 23) N v

When Cy=C,=1/\2 (1 (6)-1-(0))=e co$26+(AB where c and t represent the control and the target fields,

+x)L]. It is already obvious that the perturbation in the respgctwely. The states'm each waveguide are a mode super-
position, but they are different from a product state,

waveguide geometry may cause the evolution from the co*
herence superposition to the incoherence superposition, 1
namely decoherence, which leads to disappearance of the |‘I’2>:§(|TEo>c+|TE1>C)(|TEo>t+|TE1>t)- (25)
intensity difference between two outputs of the Y splitter.

By using beam propagation meth@@PM) [23], we cal-  The difference of®7) (|¥7)) and|¥,) can be obtained not
culate numerically the behavior of the mode superposition irby measuring a single field, but by the correlation measure-
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Control field | DC
\/_\_/ 4

Target field | J:_C
o,

C-NOT Analyzer

FIG. 3. Experimental scheme. The input of control field is given
at the mode superposition {2 (|TEg)+|TE;)) and the input of
target field is given at the mod&@E) or [TE;). Then the output
fields of thecNoOT gate are sent to spatially separated mode analyz- FIG. 4. BPM simulation
ers, each of which contains a Y splitter and a variable phase contrg.

01 (6,). The detected photocurrents are passively subtracted and
monitored on a spectrum analyz&A) to check for correlations.

result for the scheme shown in Fig.

£ (0.0, < =05 =T2) _ (@13 =T)(05-T5)|05)
ment of the control and the target fields. This correlation L ) e T e T Tt
[T+ +1 D117 +1)UZ+ 1) |DP
measurement can show that the two entangled fields are im- (12 + 1) (@113 + 102+ 12)|Py)
partible to some extent. Similar to quantum entanglement, =cog26, + 20,), (28)
the violation of the Bell inequality is also used as the crite-
rion of this impartibility.

To perform the correlation measurement of the Bell in- (T=1)05-15))  (W,|(1E =15 - 1)y
equality, a mode analyzer with a phase controller is required Ew,(61,62) = — ————"—= e A
The construction mentioned in the last section consisting of a ((T+1DU3+13)) (Wl (17+1D(15+15)[¥)
phase controller and a Y splitter meets the requirements. Fol- = c0g26,)c0426,). (29)

lowing Eg. (21), we define operator% and f§ to represent

t_he mode ana!yzers operations on the control and the targe‘IIhen we substitute the correlation functions above into the
fields, respectively, Bell inequality,

11 =172 P 00 +)el* |~ el P(6y)
= eZi 01|TE1>C<TEO|C + e_2i01|TEO>C<TE1|Cr (26) |B‘ = |E(01’ 02) - E(el! 0&) + E( 05_' eé) + E(gjll! 02)| <2.

(30
13 =132 PH(0)(| + )+ | = =)= [)P(62) R Cassen
_ g 208 is particular Bell inequality is known as Clause-Horne-
= 2T (Tl + €™ %[ TE(TEy}, Shimony-Holt(CHSH) inequality[9]. For the entangled state
|®7), when we choos#,=7/8, ;=-/8, 6,=0, 6,=7/4,
e get|B|=2y2. Obviously, by proper choice of the phases
, and 6, in Eq. (26), the correlation of the analyzers can

Wherel5(01) and ﬁ(az) represent the phase controllers on the
control and the target fields, respectively. As discussed i
I, wh h h i iti f th - . L ) X
\S(escplittég viirl}g\l/azlir;dc%rrce:::)nognediﬁ\g?yompm Intensities of the exhibit a maximum violation of the Bell inequalit| > 2.
Based on the correlation analysié we propose an exper[iOWeVer, the violation never occurs for the product state
mental scheme, shown in Fig. 3, in which the mode- V).

. ; . We have simulated numerically the scheme shown in Fig.
entangled state is generated via theoT gate proposed in . . P
Ref. [12]. The input of control field is given at the mode 3 by using BPM. The result is illustrated in Fig. 4. Due to the

superposition 142 (|TEy)+|TE,)) and the input of target limitation of the simulation, we cannot get the correlation of

field is given at the modéTEy) or [TEy). Then the output the control and the target fields. Therefore the experiment is

. ; necessary to validate whether there are mode-entangled
fields of thecNOT gate are sent to spatially separated mode y g

- ., States similar to quantum entangled states.
analyzers represented Iy and l5. The detected photocur-
rents of the mode analyzers’ outputs are passively subtracted

and monitored on a spectrum analyZ&A) to check for V. OPTICAL MODE-ENTANGLED STATES
correlations. Therefore the correlation function is given by IN RANDOM WAVEGUIDES
’|‘+ _ ’I‘— ’|‘+ _ ’I‘— . . . . .
E(6y,6,) = (=15 = 13)) 27 As shown in Sec. IV, the Bell inequality will be violated

<(f++f‘)(f++f‘))' in the correlation measurement of a mode—_enta_ngled_ state.
1o U2 T2 However, we can see from E3) that the violation will

Substituting|®7) and |¥,) into Eq. (27), respectively, we vanish due to perturbations of the random waveguides. The

obtain the correlation functions of the two states, perturbations cause fluctuations of the average arrival time
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(group delay and spreaddispersion of optical pulse propa- 1 0 0 eAipro-l

gating in the random waveguides. In this section, we will 1 0 00 0

further discuss the difference of the entangled st&dgs P+ == . (3D
(Jw7)) and the product statel,) by analyzing the correla- t o2 . 0 00 0

tion properties of the group delays. And this difference is a0 0 1

another proof of the existence of the mode-entangled statq$ye to the perturbations of the random waveguides, the co-
mentioned in the last section. herent properties of mode superposition of the control and

After the control and the target fields of the mode-the target fields will decay exponentially with increasing the
entangled statéb]) propagate respectively in two random distance of_, until the whole state evolves to an incoherent
waveguides with the same random characterig@he vari-  superposition of TEy)¢ TEy); and|TE;) | TE,);. Similarly, the
anceo and the correlation lengtD) and the same distance density matrixp of the product staté¥,) propagating in the

of L, the density matrixp can be described as random waveguides can be described as
|

1 didpr-ylL  di@pr-ylL  2liAp+-yIL

1 e[—i(ABﬂc)—y]L 1 e—Z‘yL e[i(AB+K)—'y]L
Pu, = gl g gt 1 Jiapro—lL (32

@Byl d-i@pro-yIL  J-i(Ap+-yIL 1
[

WhenL — o, the statdW,) evolves to an incoherent super- (7e, Tt>\1,2: Tr(p%}c}t) — Tr(pe7) Tr(ppm) =0, (37)

position of [TEg)|TEok, |TE[TEp:, [TE1)([TEo:, and _ _
ITEo)c[ TE1), which is obviously different from the evolution where the reduced density matrices, pu, pc2 and py, are
of the mode-entangled sta®}). And the difference can be the partial traces Tipg:), Tre(pa:), Tri(py,), and Te(py,),

shown by a correlation measurement of group delays. respectively. Heréy(L) andt,(L) are the propagation time in
The group delay of an optical pulse in a waveguide can behe waveguide with distance &f for the modegTEy) and
expressed as ITE,), respectively. From Eq$36) and(37), we can see the
difference of the correlation properties of the two states’
LdB group delays. Considerable attention should be paid to that
= cdk’ (33) the correlation of the entangled state will increase, instead of

decrease, when the propagation distanck iofcreases. Such
where 8 is the propagation constarg,is the light velocity, effects should be able to be observed by means of the experi-

andL is the length of waveguide. If we introduce the group mental methods shown i{24-24.
delay operatofr whose eigenvalues are the group detay

the average arrival time of the optical pulse can be obtained

as follows: VI. CONCLUSIONS

_ - We have demonstrated some properties of the mode-
(L)) =Tr(p7). (34) entangled states as the classical simulation of the quantum
entangled states. These properties can be regarded as the

roofs of the existence of the mode-entangled states. Then

o experimental schemes to demonstrate these properties
are suggested. One is based on the violation of the Bell in-
A . o equality, the other on the correlation properties of the optical
(7070 = (7 = (7)) (7 = (1) = (77 = (7X7. (3D pulses’ group delay in random waveguides. As far as we
know, both of the two schemes can be carried out in current

Substituting Eqs(31) and(32) into Eq.(35), the correlation  experimental conditions. We are looking forward to perform-
functions of the entangled staj®]) and the product state ing relevant experimental schemes.

|'W,) are obtained,

To study the correlation measurement of the group delay
we define the correlation function between the group delay
of the control and the target fields as

<7'01 Tt><1>1' = Tr(PfDI%c}t) - Tr(pcla'c)Tr(Ptl}t) ACKNOWLEDGMENT
- '—_2<% _ %)2: E[t (L) -t(L), (36) Work was supported by the Natural Science Foundation
42\ dk  dk/ ~4-? o= of Zhejiang Province under Grant No. 601068.

042313-6



CLASSICAL SIMULATION OF QUANTUM... PHYSICAL REVIEW A 70, 042313(2004)

[1] S. G. Krivoshlykov and I. N. Sissakian, Opt. Quantum Elec- Lett. 35 1477 (1999; K. E. Stubkjaer, IEEE J. Sel. Top.

tron. 12, 463 (1980; S. G. Krivoshlykov, Quantum- Quantum Electron.6, 1428 (2000; A. Kloch et al, IEICE
Theoretical Formalism for Inhomogeneous Graded-Index Trans. Electron.E82-C, 1475 (1999; I. Glesk et al, Acta
WaveguidegAkademie Verlag, Berlin, 1994 Phys. Slov.51, 151 (2001).

[2] G. Nienhuis and L. Allen, Phys. Rev. A8, 656(1993. [14] D. Cotteret al, Science286, 1523(1999; T. Durhuuset al,

[3] D. Dragoman, Prog. Op#2, 424(2002; D. Dragoman, Optik
(Stuttgary 111, 393 (2000; D. Dragoman, Optik(Stuttgarj
111, 179(2000.

[4] C. laconis and I. A. Walmsley, Opt. LetR1, 1783(1996.

[5] C.-C. Cheng and M. G. Raymer, Phys. Rev. L&®2, 4807

J. Lightwave Technoll14, 942 (1996

[15] D. Marcuse,Light Transmission Opticg§Van Nostrand Rein-
hold, New York, 1972

[16] M. Rousseau and J. Arnaud, Opt. Quantum Electrb®. 53

(1999. (1978.
[6] K. F. Lee, R. Reil, S. Bali, A. Wax, and J. E. Thomas, Opt. [17] L. Jeunhomme and J. P. Pocholle, Appl. OpT, 463 (1978

Lett. 24, 1370(1999. [18] D. Marcuse, Bell Syst. Tech. B1, 1199 (1972; 48, 3187
[7] K. F. Lee and J. E. Thomas, Phys. Rev. Le88, 097902 (1969.

(2002. [19] J. A. Arnaud, Bell Syst. Tech. B3, 1599(1974; 49, 2311
[8] M. A. Nielsen and I. L. ChuangQuantum Computation and (1970.

Quantum Information(Cambridge University Press, Cam- [20] D. Gloge and E. A. J. Marcatili, Bell Syst. Tech. 532, 1563

bridge, England, 2000 Chap. 4. (1973.

[9] J. S. Bell, PhysicgAmsterdam 1, 195(1964; J. F. Clauser, [21] D. Marcuse, Bell Syst. Tech. &1, 229(1972.
M. A. Horne, A. Shimony, and R. A. Holt, Phys. Rev. Le#9, [22] T. Tamir, Guided-Wave Optoelectroni¢Springer, New York,

1804 (1969. 1988.

[10] R. Jozsa and N. Linden, e-print quant-ph/0201143; D. A. Li-[23] K. Kawano and T. Kitoh,ntroduction to Optical Waveguide
dar, Appl. Phys. Lett80, 2419(2002; A. Ekert and R. Jozsa, Analysis: Solving Maxwell's Equation and the Schrodinger
Philos. Trans. R. Soc. London, Ser. 266, 1769(1998. Equation(John Wiley and Sons, New York, 2001

[11] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Pere§24] R. Rokitski, P.-C. Sun, and Y. Fainman, Opt. Le®6, 1125
and W. K. Wootters, Phys. Rev. Letf0, 1895(1993. (200Y).

[12] J. Fu, Proc. SPIE5105 225(2003); e-print quant-ph/0211038. [25] F. Louradour and S. Shaklan, J. Opt. A, Pure Appl. QptL7
[13] X. Yang, D. Lenstra, G. D. Khoea, and H. J. S. Dorren, Opt. (1999.
Commun.223 169(2003; H. J. S. Dorren, G. D. Khoea, and [26] W. R. White, Michael Dueser, W. A. Reed, and Tsuyoshi On-
D. Lenstra,ibid. 205 247(2002; A. E. Kelly et al,, Electron. ishi, IEEE Photonics Technol. Letl1, 997 (1999.

042313-7



