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Spatial search and the Dirac equation
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We consider the problem of searchinglalimensional lattice ofN sites for a single marked location. We
present a Hamiltonian that solves this problem in time of orderfor d>2 and of order/N log N in the
critical dimensiond=2. This improves upon the performance of our previous quantum walk search algorithm
(which has a critical dimension al=4), and matches the performance of a corresponding discrete-time
quantum walk algorithm. The improvement uses a lattice version of the Dirac Hamiltonian, and thus requires
the introduction of spir{or coin) degrees of freedom.
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I. INTRODUCTION memory beyond the present location of the walker. We

Quantum mechanical computers can solve certain probihowed that this algorithm can find a single marked site in
lems asymptotically faster than classical computers. One dime O(WN) for dimensionsi>4 and in timeO(VN log N) in
the major advantages of quantum computation comes from f@ur dimension<.We also showed that this algorithm fails to
fast algorithm for the problem of finding a marked item provide an interesting speedup for dimensidrs4. Subse-
amongN items. Whereas a classical computer requidéll) quently, Ambainis, Kempe, and Rivosh found a discrete-time
steps to solve this problem, Grover showed that a quanturguantum walk algorithm that works in lower dimensions
computer can solve it using onlP(\N) steps[1], which is [10]._This algorithm runs in tim&®(yN) for d>2 and in time
optimal [2]. O(WN log N) in two dimensions. Because a discrete-time

To apply Grover's algorithm, it must be possible to quantum walk cannot be defined on a state space consisting
quickly perform a reflection about a superposition of all pos-only of the vertices of a graphl1], the algorithm of[10]

sible items. However, this may not be feasible if the ittmsnecessarily uses additional memasometimes referred to
are distributed in space and the algorithm is restricted tq;5 5 “coin” in analogy to classical random walkén this
access them by local moves. For example, if the items arBaper, we consider a continuous-time quantum walk using

arranged on a one-dimensional line, simply traveling fromyygitional memory, and we show that it achieves the same
one end of the line to the other requirBsmoves, and a running times as the discrete-time algorithm

straightforward argument shows that no local algorithm, Through the analysis 48], the failure of the continuous-

classical or quantum, can find a marked item in less time. : .
than Q) (N). But for other geometries, such as higher dimenﬁIme quantum walk algorlth.m f<.)d<4.can be yle\./ved asa.
consequence of a quadratic dispersion relation: states with

sional lattices, a quantum algorithm can conceivably aChiengaII momentum have energy proportional to their momen-

a slgeedut[Ia O\tlﬁr theh clazswal comdeeX|tb)IEu(ﬂ\l). . q tum squared. If the dispersion were linear instead of qua-
ecently, there has been considerable progress in un ed"ratic, so that states with small momentum had energy pro-
standing the spatial search problem for quantum computer

A 4 Ambaini lorithm that find jortional to their momentum, one might expect the algorithm
aronson and Ambainis gave ?ﬂ aigorithm that TIinds g, \york wheneverd>2. A natural way to achieve linear
marked item in the optimal tim®(yN) for a lattice ind> 2

. . o . 5 X ; dispersion is to employ the massless Dirac equation. Indeed,
dimensions, and in im®(yN log™ N) for a two-dimensional  ,qing an appropriate lattice version of the Dirac Hamiltonian,
lattice [3]. Their algorithm is based ona garefully optlmlged we find a fast algorithm for spatial searchdir 2. Because
recursive search of subcubes, which raises the question gfe pirac particle necessarily possesses spin degrees of free-
whether a simpler algorithm could solve the problem just agjom, the resulting algorithm must have additional memory
quickly (or perhaps even faster in two dimensipri® par-  peyond the present location. Thus, although a continuous-
ticular, it is interesting to considguantum walkalgorithms,  time quantum walk can be defined without additional

which use only local, time-independent dynamics. Two dis1nemory, we find that the additional degrees of freedom can
tinct kinds of quantum walk algorithms have been considmprove the algorithm’s performance.

ered. In thecontinuous-timejuantum wall{4], the algorithm

is described by a time-independent Hamiltonian connecting 1. HAMILTONIANS FOR SPATIAL SEARCH

adjacent sites. In thdiscrete-timequantum walk[5-7], the o _ .

algorithm consists of repeated application of a fixed local In the Hamiltonian formulation of the spatial search prob-

unitary transformation. lem, our goal is to write down a local Hamiltonian that will
In [8], we considered a continuous-time quantum walk

algorithm for the spatial search problem using no additional = o (s timeO(yN log N) in d=4 can be achieved using ampli-

tude amplification9]. Using only classical repetition of the quan-

tum walk, the algorithm require®(VN log®? N) steps. The same
*Electronic address: amchilds@caltech.edu remark applies to the discrete-time quantum walk algorithm in
Electronic address: goldston@mit.edu d=2.
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quickly transform a simple initial state, such as the uniform i
superposition over all lattice sites Pilx) = 5(|X+ e)—[x—e)), (7)

I = iz 1 whereg; is a unit vector in thg direction. However, as we
9= NS [, (1) will see later, it turns out that simply taking the free Hamil-
tonian(5) using the lattice approximatiofY) is insufficient.
to a state with substantial overlap on the marked dtateln  Instead, we will také
[8], we considered the Hamiltonian
Ho= wE_ a;P; + yBL, (8)
J

Hig = — yL = [w(w]. 2

] - o where bothw and y are adjustable parameters. For a Hamil-

Here the second term identifies the marked locatiois an  tgnjan with spin degrees of freedom, translation invariance
adjustable parameter, andis the Laplacian of arN-site  gpnows that the eigenstates have the fork), where|7) is
square lattice ind dimensions, periodic in each direction 5 (momentum-dependentpin state. For Eq(8), we find

with period N*. L has matrix elements states with energies
1,  xadjacent to<’, EK) = £ Vw?S(K) + Y2c(K), 9
X'|Lxy=y-2d, x=x', | (3 where
0 otherwise.
d d
It is called the Laplacian because it is a discrete approxima- (k) = >, sir? ki, c(k= 2>, (1- coskj). (10
tion to the continuum operatdF?. j=1 =1

Since the free Hamiltonianyt is translationally invari-

. . . = + i
ant, its eigenstates are the momentum eigenstates For small momenta, we hav&k) _w|k|’ which leads to a

better search algorithm in low dimensions.
1 _ The full algorithm is as follows. We begin in the state
|ky = =2 ex), (4)  |n,s),where|n) is any spin state an) is the uniform su-
VN x perposition(1). We then evolve with the Hamiltonian

where kj=27my/NY, with m=0,+1,..., +£(NY-1) for H=Hy— Bw)Ww| (11

1/d - 1L 1L/
N odd, and m=0,%1,...,(N*"-2), +5N for with parametersy, v to be determined in the analysis below,

1/d H
N even. The energy of the state|ki > for atimeT also determined below. The goal is to choose the
(K =2y(1-3] cosk)). Thus, for small |k, (k)= yk*. parameterso and y so that for som& as small as possible,

This quadratic dispersion relation ultimately gives rise to thene spatial component of the evolved state has a substantial
critical dimensiond=4 for the algorithm of 8]. overlap onw).

To achieve linear dispersion, we can replad& by the
massless Dirac Hamiltonian. In the general case of mass

this Hamiltonian has the forrfi2] IIl. ANALYSIS OF THE ALGORITHM
d To analyze the algorithm, we would like to determine the
- spectrum ofH using our knowledge of the spectrum Id§.
L= D + . . . .
Hpirac Eajpj pm, ®) We do this using the same techniques we applied to the

Hamiltonian (2) in [8]. An eigenvector oH, denoted|.),
where the operators; and3 act on spin degrees of freedom, with eigenvalueE,, satisfies
andp=-i d/dxis the momentum operator. If the spin opera-

tors o; and B satisfy the anticommutation relations H| ) = (Ho — BIW)W)| ) = E| ). (12
{0, ay=28, {a,B=0, B2=1, ®) Defining B
<W| tha) = Ra| b (13

then one findH3, ,..=|p[>+n?, as required for a relativistic .
particle. Thus form=0, Hp;,c has linear dispersiorEp,c  Where|¢,) is a normalized spin state, anéR,>0 by choice

=+|p|. of phases, we can rewrite E(L.2) as
To write down the Dirac equation id dimensions, we —
needd+1 anticommuting operators. The minimal represen- (Ho— Ed|#a) = VRaB| o, W) (14

tation of the algebr#6) uses #/2-dimensional matrices, and
hence there ard%?! spin componentéwhere[x] denotes the
least integer greater than or equalxjo

Now consider a lattice version of the massless Dirac
Hamiltonian, Eq.(5) with m=0. The continuum operatqy; This choice is closely related to a standard remedy for the fer-
can be discretely approximated as mion doubling problem in lattice field theoft3], p. 27.

AssumingH,—E;, is nonsingular, we can write the eigenstate
of H as
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\R 0.35
e = w). (15)
0.3
Consistency with Eq(13) then gives the eigenvalue condi- 0.25
tion )
|6a) = F(Ea)Bla), (16 02
where 0.15
F(E) =(w W 17 0.1
(B) = wl—lw) (17)
i i ) 0.05
operates on the spin degree of freedom. To find eigenvalues
of H, we must look for values dE such that the spin opera- 0j 5T = o3 o7 o5
tor F(E)B has an eigenvector of eigenvalue 1. ) Tow ) ’

In addition to finding eigenvalues df, we need some

facts about its eigenvectors. The normalization condition on
rightmost curve to leftmost curvel=2,3,4,5.

FIG. 1. Critical values of w,y) for various dimensions. From

i) gives
R = (faWlB =3Bl daW) (18) 1 f Tk
(Ho- Ea)2 VO=5md) e 27
=(al BF'(E2) Bl o) - (190 In d=2, this integral is logarithmically infrared divergent,

We also need the overlap ¢f,) with eigenvectors oH,,. and instead we find

From Eqg.(15) we have
=y V(0) =

<<‘3|,3| PaW), (20)

(28

(Elih) =
Now suppose we choose and y such thatU(0)=1. In

this case, we are simply looking for a zero eigenvalue of

where|€) is an eigenvector ofly with eigenvaluef. A[—1/NE+EV(0)]. We find such eigenvalues with

For the free Hamiltoniaii8), we find

_ g HotE E,~ + 1_ 29
FE)B= W7 S w)B (21) = £ ON (29
which indeed satisfy the conditole,| < &(k) for all k+#0.
2 ye(k) + BE (22) These eigenvalues are degenerate in the spin space, i.e., any
S(k)2 state|¢.) provides an eigenvector with the same eigenvalue.

The condition U(0)=1 can be satisfied by choosing
B u(w/ y)=1, whereu(w/y)=yU(0) is a function only ofw/ .
=" NET U(E) + BEV(E), (23)  Figure 1 shows the critical curve in th@,y) plane ford
=2 through 5. For anw with 0< w< ", wherew" is some
where in Eq.(22) we have canceled terms that are odk,in dimension-dependent threshold value, there are two values
and of v such thatU(0)=1. Note that withw=0, we recover the
7c(k) results of[8]. Also, with y=0, no solution ofU(0)=1 exists,

U(E) = E PCEr=T (24) so it was essential to include this additional tefamd the
Niczo E(K)°-E ability to fine tune its coefficient
Having found the relevant eigenvalues, we need to deter-
1 1 mine the corresponding eigenstates. Usin we find
VE) == . (25) p g eig g#&9
NK#O S(k) - E 1
-1 = ~
If |E|<&(k) for all k# 0, then we can Taylor exparid(E) R, NE? *V(0) ~ 2v(0), (30)
andV(E) in powers ofE. We will need only the leading order ) )
termsU(0) andV(0). For largeN, we have and using Eq(20) we find
1 (™ ye(kd%k R. 1
U O = y 26 ,S + = — '+ =~ /—, 31
(0) i) k2 (26) (7,8[1h) <77|/3|¢ )= F B (31

which is a convergent integral regardlessdoford>2 and
N large, we can also writ¥/(0) as a convergent integral,

where we have chosen the eigenstatdHofiith |¢.)= 3| 7).
Therefore we have
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1 () =), (32 {oj,adlm) =25 dm), {e.Bm) =0, Bly)=|n

S = =
|7,9) % 34

for some spin statgy), then the algorithm will work starting
from the statd#,s). The condition(34) is sufficient to give
HZ|7,ky=£(k)?|7,k). The previous analysis then shows that

i 1
e = Sl + 14, (33) R

'Ra
|lr//a> - Ho _ Ea| 771W> (35)

and choosingr'=7 /(2|E.|) produces the state

which has an overlap ofy,w) of \2R,. — is an eigenstate afl with eigenvalueE, provided —1N
. For d>2, we _have shown t_hat there isT&O(VN) that +U(E,) EEaV(Eagzl, whereL?(E) andV(aiE?are as defineﬁain
gives a probabilityO(1) of finding w. For d=2, there is a  gqs (24) and (25). The rest of the analysis with two states
T=O(VN log N) that gives an amplitud®©(1/ylog N), so |y,) follows exactly as before. Finally, we see that [E8¢)
that amplitude amplificatiof9] can be used to finds with a  can be satisfied in &+ 1)-dimensional spin space with basis
probability O(1) in time O(\N log N). |0),]1), ... .|d), since in that case we can choosg=|0)(j|
+[iX0[, B=2|0)X0[-1, and|7)=0).
Unlike the algorithm of[8], the algorithm of this paper
IV. DISCUSSION cannot be turned into an adiabatic algorithm. With the

. . . Hamiltonian(2), by starting in the statgs) and lowering the
We have described a continuous-time quantum walk algog, .3 metery from a large value to zero sufficiently slowly,

rithm for the spatial search problem. Using Dirac's insight ofyhe 2 diahatic theorem guarantees that the system will remain
introducing spin to take the square root in a relativistic dis-naar its ground state, ending up close to the shaje In
persion relation, we have found a Hamiltonjgn that locates > 4, this can be done in tim@&(\N), and ind=4, it can be
single marked item in the optimal time @(\N) above the  4one in timeO(\N log®2N). However, in the algorithm of
critical dimension(d>2), and that runs in im®©(VN log N)  the present paper, states with0 are not the ground state of
ind=2. the free Hamiltonian(8); these states have zero energy, but
This algorithm is closely related to the discrete-time quan+his is in the middle of the spectrum. Although the adiabatic
tum walk search algorithm dfl0]. Very similar techniques theorem applies to any eigenstate, not just the ground state,
to the ones we have used in this paper can also be applied states near the middle of the spectruniiff) with »,y small
discrete-time quantum walK44]. This analysis for the algo- have very little overlap ofw), so that even perfectly adia-
rithm of [10] closely parallels the analysis above, which batic evolution produces a state far from the desired one.
highlights the similarity between the two kinds of algorithm.  Finally, we note that the actual complexity of the spatial
However, there are a few important differences. Thesearch problem ird=2 is still an open question. A gap of
continuous-time algorithm requires fine tuning the paramiog N remains between the best known algorithm and the
etersw and y, whereas there igapparently no equivalent lower bound of[2]. It would be interesting to improve the
fine tuning in the discrete-time algorithm. Also, the discrete-algorithm further or to show that no such improvement is
time algorithm has noticeably different behavior dependingpossible.
on whetheN' is odd or even, a difference that is not seen
in the continuous-time algorithm. In short, although the es- ACKNOWLEDGMENTS
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