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We consider the problem of searching ad-dimensional lattice ofN sites for a single marked location. We
present a Hamiltonian that solves this problem in time of orderÎN for d.2 and of orderÎN log N in the
critical dimensiond=2. This improves upon the performance of our previous quantum walk search algorithm
(which has a critical dimension ofd=4), and matches the performance of a corresponding discrete-time
quantum walk algorithm. The improvement uses a lattice version of the Dirac Hamiltonian, and thus requires
the introduction of spin(or coin) degrees of freedom.
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I. INTRODUCTION

Quantum mechanical computers can solve certain prob-
lems asymptotically faster than classical computers. One of
the major advantages of quantum computation comes from a
fast algorithm for the problem of finding a marked item
amongN items. Whereas a classical computer requiresQsNd
steps to solve this problem, Grover showed that a quantum
computer can solve it using onlyOsÎNd steps[1], which is
optimal [2].

To apply Grover’s algorithm, it must be possible to
quickly perform a reflection about a superposition of all pos-
sible items. However, this may not be feasible if the items
are distributed in space and the algorithm is restricted to
access them by local moves. For example, if the items are
arranged on a one-dimensional line, simply traveling from
one end of the line to the other requiresN moves, and a
straightforward argument shows that no local algorithm,
classical or quantum, can find a marked item in less time
thanVsNd. But for other geometries, such as higher dimen-
sional lattices, a quantum algorithm can conceivably achieve
a speedup over the classical complexity ofQsNd.

Recently, there has been considerable progress in under-
standing the spatial search problem for quantum computers.
Aaronson and Ambainis gave an algorithm that finds a
marked item in the optimal timeOsÎNd for a lattice ind.2
dimensions, and in timeOsÎN log2 Nd for a two-dimensional
lattice [3]. Their algorithm is based on a carefully optimized
recursive search of subcubes, which raises the question of
whether a simpler algorithm could solve the problem just as
quickly (or perhaps even faster in two dimensions). In par-
ticular, it is interesting to considerquantum walkalgorithms,
which use only local, time-independent dynamics. Two dis-
tinct kinds of quantum walk algorithms have been consid-
ered. In thecontinuous-timequantum walk[4], the algorithm
is described by a time-independent Hamiltonian connecting
adjacent sites. In thediscrete-timequantum walk[5–7], the
algorithm consists of repeated application of a fixed local
unitary transformation.

In [8], we considered a continuous-time quantum walk
algorithm for the spatial search problem using no additional

memory beyond the present location of the walker. We
showed that this algorithm can find a single marked site in
time OsÎNd for dimensionsd.4 and in timeOsÎN log Nd in
four dimensions.1 We also showed that this algorithm fails to
provide an interesting speedup for dimensionsd,4. Subse-
quently, Ambainis, Kempe, and Rivosh found a discrete-time
quantum walk algorithm that works in lower dimensions
[10]. This algorithm runs in timeOsÎNd for d.2 and in time
OsÎN log Nd in two dimensions. Because a discrete-time
quantum walk cannot be defined on a state space consisting
only of the vertices of a graph[11], the algorithm of[10]
necessarily uses additional memory(sometimes referred to
as a “coin” in analogy to classical random walks). In this
paper, we consider a continuous-time quantum walk using
additional memory, and we show that it achieves the same
running times as the discrete-time algorithm.

Through the analysis of[8], the failure of the continuous-
time quantum walk algorithm ford,4 can be viewed as a
consequence of a quadratic dispersion relation: states with
small momentum have energy proportional to their momen-
tum squared. If the dispersion were linear instead of qua-
dratic, so that states with small momentum had energy pro-
portional to their momentum, one might expect the algorithm
to work wheneverd.2. A natural way to achieve linear
dispersion is to employ the massless Dirac equation. Indeed,
using an appropriate lattice version of the Dirac Hamiltonian,
we find a fast algorithm for spatial search ind.2. Because
the Dirac particle necessarily possesses spin degrees of free-
dom, the resulting algorithm must have additional memory
beyond the present location. Thus, although a continuous-
time quantum walk can be defined without additional
memory, we find that the additional degrees of freedom can
improve the algorithm’s performance.

II. HAMILTONIANS FOR SPATIAL SEARCH

In the Hamiltonian formulation of the spatial search prob-
lem, our goal is to write down a local Hamiltonian that will
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1The run timeOsÎN log Nd in d=4 can be achieved using ampli-
tude amplification[9]. Using only classical repetition of the quan-
tum walk, the algorithm requiresOsÎN log3/2 Nd steps. The same
remark applies to the discrete-time quantum walk algorithm in
d=2.
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quickly transform a simple initial state, such as the uniform
superposition over all lattice sites

usl =
1

ÎN
o

x

uxl, s1d

to a state with substantial overlap on the marked stateuwl. In
[8], we considered the Hamiltonian

Hf8g = − gL − uwlkwu. s2d

Here the second term identifies the marked location,g is an
adjustable parameter, andL is the Laplacian of anN-site
square lattice ind dimensions, periodic in each direction
with periodN1/d. L has matrix elements

kx8uLuxl = 51, x adjacent tox8,

− 2d, x = x8,

0 otherwise.

s3d

It is called the Laplacian because it is a discrete approxima-
tion to the continuum operator¹2.

Since the free Hamiltonian −gL is translationally invari-
ant, its eigenstates are the momentum eigenstates

ukl =
1

ÎN
o

x

eik·xuxl, s4d

where kj =2pmj /N
1/d, with mj =0, ±1, . . . , ±1

2sN1/d−1d for

N1/d odd, and mj =0, ±1, . . . , ±1
2sN1/d−2d , + 1

2N1/d for
N1/d even. The energy of the stateukl is
ELskd=2gs1−o j=1

d coskjd. Thus, for small uku ,ELskd<gk2.
This quadratic dispersion relation ultimately gives rise to the
critical dimensiond=4 for the algorithm of[8].

To achieve linear dispersion, we can replace −¹2 by the
massless Dirac Hamiltonian. In the general case of massm,
this Hamiltonian has the form[12]

HDirac = o
j=1

d

a jpj + bm, s5d

where the operatorsa j andb act on spin degrees of freedom,
andp=−i d /dx is the momentum operator. If the spin opera-
tors a j andb satisfy the anticommutation relations

ha j,akj = 2d j ,k, ha j,bj = 0, b2 = 1, s6d

then one findsHDirac
2 = upu2+m2, as required for a relativistic

particle. Thus form=0, HDirac has linear dispersion,EDirac
= ± upu.

To write down the Dirac equation ind dimensions, we
needd+1 anticommuting operators. The minimal represen-
tation of the algebra(6) uses 2dd/2e-dimensional matrices, and
hence there are 2dd/2e spin components(wheredxe denotes the
least integer greater than or equal tox).

Now consider a lattice version of the massless Dirac
Hamiltonian, Eq.(5) with m=0. The continuum operatorpj
can be discretely approximated as

Pjuxl =
i

2
sux + ejl − ux − ejld, s7d

whereej is a unit vector in thej direction. However, as we
will see later, it turns out that simply taking the free Hamil-
tonian (5) using the lattice approximation(7) is insufficient.
Instead, we will take2

H0 = vo
j

a jPj + gbL, s8d

where bothv andg are adjustable parameters. For a Hamil-
tonian with spin degrees of freedom, translation invariance
shows that the eigenstates have the formuh ,kl, whereuhl is
a (momentum-dependent) spin state. For Eq.(8), we find
states with energies

Eskd = ± Îv2s2skd + g2c2skd, s9d

where

s2skd = o
j=1

d

sin2 kj, cskd = 2o
j=1

d

s1 − coskjd. s10d

For small momenta, we haveEskd< ±vuku, which leads to a
better search algorithm in low dimensions.

The full algorithm is as follows. We begin in the state
uh ,sl,where uhl is any spin state andusl is the uniform su-
perposition(1). We then evolve with the Hamiltonian

H = H0 − buwlkwu s11d

with parametersv ,g to be determined in the analysis below,
for a timeT also determined below. The goal is to choose the
parametersv andg so that for someT as small as possible,
the spatial component of the evolved state has a substantial
overlap onuwl.

III. ANALYSIS OF THE ALGORITHM

To analyze the algorithm, we would like to determine the
spectrum ofH using our knowledge of the spectrum ofH0.
We do this using the same techniques we applied to the
Hamiltonian (2) in [8]. An eigenvector ofH, denoteducal,
with eigenvalueEa, satisfies

Hucal = sH0 − buwlkwuducal = Eaucal. s12d

Defining

kwucal = ÎRaufal, s13d

whereufal is a normalized spin state, andÎRa.0 by choice
of phases, we can rewrite Eq.(12) as

sH0 − Eaducal = ÎRabufa,wl. s14d

AssumingH0−Ea is nonsingular, we can write the eigenstate
of H as

2This choice is closely related to a standard remedy for the fer-
mion doubling problem in lattice field theory[13], p. 27.
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ucal =
ÎRa

H0 − Ea
bufa,wl. s15d

Consistency with Eq.(13) then gives the eigenvalue condi-
tion

ufal = FsEadbufal, s16d

where

FsEd = kwu
1

H0 − E
uwl s17d

operates on the spin degree of freedom. To find eigenvalues
of H, we must look for values ofE such that the spin opera-
tor FsEdb has an eigenvector of eigenvalue 1.

In addition to finding eigenvalues ofH, we need some
facts about its eigenvectors. The normalization condition on
ucal gives

Ra
−1 = kfa,wub

1

sH0 − Ead2bufa,wl s18d

=kfaubF8sEadbufal. s19d

We also need the overlap ofucal with eigenvectors ofH0.
From Eq.(15) we have

kEucal =
ÎRa

E − Ea
kEubufa,wl, s20d

whereuEl is an eigenvector ofH0 with eigenvalueE.
For the free Hamiltonian(8), we find

FsEdb = kwu
H0 + E

H0
2 − E2uwlb s21d

=
1

No
k

gcskd + bE

Eskd2 − E2 s22d

=−
b

NE
+ UsEd + bEVsEd, s23d

where in Eq.(22) we have canceled terms that are odd ink,
and

UsEd =
1

No
kÞ0

gcskd
Eskd2 − E2 , s24d

VsEd =
1

No
kÞ0

1

«skd2 − E2 . s25d

If uEu!Eskd for all kÞ0, then we can Taylor expandUsEd
andVsEd in powers ofE. We will need only the leading order
termsUs0d andVs0d. For largeN, we have

Us0d <
1

s2pddE
−p

p gcskdddk

Eskd2 , s26d

which is a convergent integral regardless ofd. For d.2 and
N large, we can also writeVs0d as a convergent integral,

Vs0d <
1

s2pddE
−p

p ddk

Eskd2 . s27d

In d=2, this integral is logarithmically infrared divergent,
and instead we find

Vs0d =
1

4pv2ln N + Os1d. s28d

Now suppose we choosev and g such thatUs0d=1. In
this case, we are simply looking for a zero eigenvalue of
bf−1/NE+EVs0dg. We find such eigenvalues with

E± < ±
1

ÎVs0dN
, s29d

which indeed satisfy the conditonuE±u!Eskd for all kÞ0.
These eigenvalues are degenerate in the spin space, i.e., any
stateuf±l provides an eigenvector with the same eigenvalue.

The condition Us0d=1 can be satisfied by choosing
usv /gd=g, whereusv /gd=gUs0d is a function only ofv /g.
Figure 1 shows the critical curve in thesv ,gd plane ford
=2 through 5. For anyv with 0,v,v* , wherev* is some
dimension-dependent threshold value, there are two values
of g such thatUs0d=1. Note that withv=0, we recover the
results of[8]. Also, with g=0, no solution ofUs0d=1 exists,
so it was essential to include this additional term(and the
ability to fine tune its coefficient).

Having found the relevant eigenvalues, we need to deter-
mine the corresponding eigenstates. Using Eq.(19) we find

R±
−1 <

1

NE±
2 + Vs0d < 2Vs0d, s30d

and using Eq.(20) we find

kh,suc±l = −
ÎR±

E±
ÎN

khubuf±l < 7
1
Î2

, s31d

where we have chosen the eigenstate ofH with uf±l=buhl.
Therefore we have

FIG. 1. Critical values ofsv ,gd for various dimensions. From
rightmost curve to leftmost curve,d=2,3,4,5.
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uh,sl <
1
Î2

suc−l − uc+ld, s32d

and choosingT=p/ s2uE± u d produces the state

e−iHTuh,sl <
1
Î2

suc+l + uc−ld, s33d

which has an overlap onuh ,wl of Î2R±.
For d.2, we have shown that there is aT=OsÎNd that

gives a probabilityOs1d of finding w. For d=2, there is a
T=OsÎN log Nd that gives an amplitudeOs1/Îlog Nd, so
that amplitude amplification[9] can be used to findw with a
probability Os1d in time OsÎN log Nd.

IV. DISCUSSION

We have described a continuous-time quantum walk algo-
rithm for the spatial search problem. Using Dirac’s insight of
introducing spin to take the square root in a relativistic dis-
persion relation, we have found a Hamiltonian that locates a
single marked item in the optimal time ofOsÎNd above the
critical dimensionsd.2d, and that runs in timeOsÎN log Nd
in d=2.

This algorithm is closely related to the discrete-time quan-
tum walk search algorithm of[10]. Very similar techniques
to the ones we have used in this paper can also be applied to
discrete-time quantum walks[14]. This analysis for the algo-
rithm of [10] closely parallels the analysis above, which
highlights the similarity between the two kinds of algorithm.
However, there are a few important differences. The
continuous-time algorithm requires fine tuning the param-
etersv and g, whereas there is(apparently) no equivalent
fine tuning in the discrete-time algorithm. Also, the discrete-
time algorithm has noticeably different behavior depending
on whetherN1/d is odd or even, a difference that is not seen
in the continuous-time algorithm. In short, although the es-
sential infrared features of the two kinds of algorithm are
identical, their detailed behaviors differ.

In high dimensions, our algorithm is very wasteful in
terms of the number of spin degrees of freedom: it uses a
2dd/2e-dimensional spin space, whereas[8] shows that no spin
degrees of freedom are required at all ford.4. In compari-
son, the discrete-time quantum walk search algorithm in[10]
uses 2d extra degrees of freedom. The Dirac particle ind
dimensions cannot be represented with fewer than 2dd/2e de-
grees of freedom, but a continuous-time search algorithm
with only d+1 degrees of freedom can arise from reproduc-
ing the Dirac algebra(6) only on a subspace. If the operators
a j andb satisfy

ha j,akjuhl = 2d j ,kuhl, ha j,bjuhl = 0, buhl = uhl
s34d

for some spin stateuhl, then the algorithm will work starting
from the stateuh ,sl. The condition(34) is sufficient to give
H0

2uh ,kl=Eskd2uh ,kl. The previous analysis then shows that

ucal =
ÎRa

H0 − Ea
uh,wl s35d

is an eigenstate ofH with eigenvalueEa provided −1/NEa
+UsEad+EaVsEad=1, whereUsEd andVsEd are as defined in
Eqs. (24) and (25). The rest of the analysis with two states
uc±l follows exactly as before. Finally, we see that Eq.(34)
can be satisfied in asd+1d-dimensional spin space with basis
u0l , u1l , . . . ,udl, since in that case we can choosea j = u0lk j u
+ u jlk0u, b=2u0lk0u− I, and uhl= u0l.

Unlike the algorithm of[8], the algorithm of this paper
cannot be turned into an adiabatic algorithm. With the
Hamiltonian(2), by starting in the stateusl and lowering the
parameterg from a large value to zero sufficiently slowly,
the adiabatic theorem guarantees that the system will remain
near its ground state, ending up close to the stateuwl. In
d.4, this can be done in timeOsÎNd, and ind=4, it can be
done in timeOsÎN log3/2Nd. However, in the algorithm of
the present paper, states withk=0 are not the ground state of
the free Hamiltonian(8); these states have zero energy, but
this is in the middle of the spectrum. Although the adiabatic
theorem applies to any eigenstate, not just the ground state,
states near the middle of the spectrum of(11) with v ,g small
have very little overlap onuwl, so that even perfectly adia-
batic evolution produces a state far from the desired one.

Finally, we note that the actual complexity of the spatial
search problem ind=2 is still an open question. A gap of
log N remains between the best known algorithm and the
lower bound of[2]. It would be interesting to improve the
algorithm further or to show that no such improvement is
possible.
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