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By definition, the Kraus representation of a harmonic oscillator suffering from the environment effect,
modeled as the amplitude damping or the phase damping, is directly given by a simple operator algebra
solution. As examples and applications, we first give a Kraus representation of a single qubit whose compu-
tational basis states are defined as bosonic vacuum and single particle number states. We further discuss the
environment effect on qubits whose computational basis states are defined as the bosonic odd and even
coherent states. The environment effects on entangled qubits defined by two different kinds of computational
basis are compared with the use of fidelity.
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I. INTRODUCTION

Since the fast quantum algorithms were developed, the
quantum information and computation have aroused great
enthusiasm among physicists because of their potential ap-
plications. The basic unit of the classical information is a bit,
which can only have a choice between two possible classical
states denoted by 0 or 1. The information carriers in the
quantum communication and computation are called quan-
tum bits or qubits. The main difference between the qubit
and the classical bit is that the qubit is defined as a quantum
superposition of two orthogonal quantum states usually writ-
ten asu0l and u1l called as the computational basis states. It
means that the qubit has an infinite number of choices of the
statesau0l+bu1l with the conditionuau2+ ubu2=1. It is obvi-
ous that the superposition principle allows application of
quantum states to simultaneously represent many different
numbers, this is called the quantum parallelism, which en-
ables the quantum computation to solve some problems, such
as factorization, intractable on a classical computer.

However, a pure quantum superposition state is very frag-
ile. A quantum system cannot be isolated from the environ-
ment, it is always open and interacts with the uncontrollable
environment. This unwanted interaction induces entangle-
ment between the quantum system and the environment such
that the pure superposition state is destroyed, which results
in an inevitable noise in the quantum computation and infor-
mation processing. Unlike a closed system, whose final state
r8 can be obtained by a unitary transformationU of the
initial stater asr8=UrU†, the final state of an open system
cannot be described by a unitary transformation of the initial
state. Quantum operation formalism is usually used to de-
scribe the behavior of an open quantum system in which the
final stater8 and the initial stater can be related by a quan-
tum operationE asr8=Esrd. In general, the quantum opera-
tion E on the stater can be described by the Kraus operator-
sum formalism[1,2] asEsrd=omEmrEm

† where the operation

elementsEmsEm
†d satisfy the completeness relationomEm

†Em

= I. OperatorsEm act on the Hilbert spaceHS of the system.
They can be expressed asEm=kemuUtue0l by the total unitary
operatorUt of the system and the environment with an or-
thonormal basisueml for the Hilbert spaceHE and the initial
staterE= ue0lke0u of the environment. This elegant represen-
tation is extensively applied to describe the quantum infor-
mation processing[3,4].

In practice, the environment effect on the quantum system
is a more complicated problem. There are two ideal models
of noise called the amplitude and phase damping, which can
capture many important features of the noise[2]. They are
applied in many concrete discussions to model noise of the
quantum information processing, e.g., Ref.[5]. As a system,
a single-mode harmonic oscillator is the simplest and most
ideal model to represent a single mode light field, vibration
phonon mode, or excitonic wave. For convenience, we refer
this harmonic oscillator to a single-mode light field in this
paper. A study of a single harmonic oscillator suffering from
damping is expected to give us an easier grasp of the nature
of damping. The Kraus representation of a harmonic oscilla-
tor suffering from the above two kinds of noise has been
given by Chuanget al., simply modeling environment as a
single mode oscillator[2,7]. However generally speaking,
the environment is usually described as a system of multi-
mode oscillators for both the phase damping and amplitude
damping. Milburnet al. have also given the Kraus represen-
tation of a harmonic oscillator suffering from the amplitude
damping by modeling the environment as a system of the
multimode oscillators using the quantum measurement
theory[8]. Although there are many studies about Kraus rep-
resentation, e.g., in Refs.[1,5,6], to the best of our knowl-
edge, there is no proof of the Kraus representation for a
harmonic oscillator suffering from amplitude damping or
phase damping by directly using its definition when the en-
vironment is modeled as a system of multimode oscillators.
In view of the importance of the Kraus representation in the
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quantum information, we would like to revisit this question
in this paper. We will extend the proof of Chuanget al., that
is, we will give the Kraus representation using a simple op-
erator algebra method by modeling the system as a single
mode oscillator and the environment as multimode oscilla-
tors according to the definition of the Kraus representation.

Our paper is organized as follows. In Sec. II, we give the
Kraus representation for the amplitude damping case, then
we discuss the effect of the environment on a qubit whose
computational basis is defined by odd and even coherent
states with decay of at most one particle, we compare this
result with that of a qubit defined by vacuum and single
photon number states. In Sec. III, we give the Kraus repre-
sentation for the phase damping case, and explain its effect.
Similar to the analysis in Sec. II, we also compare the effect
of the phase damping on the entangled qubit defined by dif-
ferent states. Finally, we give our conclusions in Sec. IV.

II. AMPLITUDE DAMPING

A. Kraus representation

One of the most important reasons for the quantum state
change is the energy dissipation of the system induced by the
environment. This energy dissipation can be characterized by
an amplitude damping model. Ideally we can model the sys-
tem, for example, a single mode cavity field, as a harmonic
oscillator, which is coupled to the environment modeled as
multimode oscillators. Then the whole Hamiltonian of the
system and the environment can be written as

H = "vb†b + "o
i

vibi
†bi + "o

i

gisb†bi + bbi
†d s1d

under the rotating wave approximation, wherebsb†d is the
annihilation(creation) operator of the harmonic oscillator of
frequencyv, andbisbi

†d is the annihilation(creation) operator
of the ith mode of the environment with frequencyvi ,gi is
coupling constant between the system and theith mode of
the environment. We assume that the initial state of the
whole system is

rs0d = rSs0d ^ rEs0d, s2d

whererSs0d andrEs0d denote the initial states of the system
and environment respectively. With the time evolution, the
initial state evolves into

rstd = UstdrSs0d ^ rEs0dU†std s3d

with U=exps−iHt /"d. Since we are only interested in the
time evolution of the system, we perform a partial trace over
the environment and find the reduced density operator of the
system as

rSstd = TrEhUstdrSs0d ^ rEs0dU†stdj

= o
hkij

khkijuUstdrSs0d ^ rEs0dU†stduhkijl, s4d

wherehuhkijl;uk1¯ki¯ l=Pi ^ ukilj is an orthonormal basis
of the Hilbert spaceHE for the environment, andki denotes
that there areki bosonic particles in theith mode. We assume

that the environment is at zero temperature, so its initial state
is in the vacuum stateuh0jl;Pi ^ u0il= u¯0¯ l of multi-
mode harmonic oscillators. The Hilbert spaceHE can be de-
composed into a direct sum of many orthogonal subspaces
Hk asHE= %k=0

` Hk with an orthonormal basishuhkijlj, which
satisfies the conditionoi=1

` ki =k for each subspaceHk. So we
can regroup the summation in Eq.(4) and define the quantum
operation elementAk as follows:

Akstd = o
hkij

k

8khkijuUstduh0jl s5d

which acts on the Hilbert spaceHS of the system. Hereafter,
o8 stands for summation under the conditionoiki =k; Akstd
means that there arek bosonic particles absorbed by the en-
vironment through the evolution over a finite timet, and
Ak

†std denotes the Hermitian conjugate ofAkstd. Then Eq.(4)
can be rewritten by virtue of the operation elementsAkstd and
its Hermitian conjugateAk

†std as a concise form called the
Kraus representation[2]

rSstd = o
k=0

`

AkstdrSs0dAk
†std. s6d

It is very easy to check that the elementsAkstd satisfy the
relationokAk

†stdAkstd= I. In order to further give the solution
of the operatorAkstd, we first use the number stateunl of the
system to define an orthonormal basishunlj of the Hilbert
spaceHS of the system. Then the matrix representation of the
operatorAkstd can be written as

Akstd = o
m,n

Am,n
k stdumlknu s7d

with the matrix element

Am,n
k std = o

hkij

k

8kmukhkijuUstduh0jlunl. s8d

Because the stateUstduh0jlunl can be written asUstd
3sb†dn/În! uh0jlu0l=fb†s−tdgn/În! uh0jlu0l. Using the
Wigner-Weisskopf approximation[9], the operatorb†std can
be obtained by solving the Heisenberg operator equation of
motion for Hamiltonian(1) as

b†std = ustdb†s0d + o
i=1

`

vistdbi
†s0d, s9d

whereustd=exp(−sg /2dt+ ivt) and the Lamb shift has been
neglected. The damping rateg is defined as g
=2pesvdugsvdu2 with a spectrum densityesvd of the environ-
ment. The details of the time dependent parametervistd can
be found in[9,10]. We can use Eq.(9) to expandUstduh0jlunl
as many terms characterized by the particle numberk lost
from the system, and each term with fixedk can be expressed
as
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fu*stdgn−kÎ 1

k!
Sn

k
D o

i1¯Þiq¯Þik=0

`

o
hl ij

k

8
k!

l1 ! ¯ lk!

3 p
q=1

k

fviq
* stdbiq

† s0dglquh0jlun − kl. s10d

By using Eqs.(7)–(10), we can obtain the product of the
matrix elements ofAm,n

k and its Hermitian conjugate as

Am,n
k sAk

m,nd† = Sn

k
Dfhstdgsn−kdf1 − hstdgkdm,n−k s11d

with hstd=e−gt, where we have used the completeness of the
subspace with fixedk

o
hkij

k

8uhkijlkhkiju = 1, s12d

and conditionuustdu2+oiuvistdu2=1, which comes from the
commutation relationfbstd ,b†stdg=1. It is clear that the non-
zero matrix elementAm,n

k std must satisfy the relationn−m
=k, and all contributions to the elements of the quantum
operationAkstd come from the statesunl satisfying the con-
dition nùk. Then we can take each matrix elementAm,n

k std as
a real number and finally obtain[7,8]

Akstd = o
n=k

` ÎSn

k
Dfhstdgsn−kd/2f1 − hstdgk/2un − klknu.

s13d

It is not difficult to prove thatokAk
†stdAkstd=1. In Eq. (13),

one finds that(1−hstd)k/2 is the probability that the system
losesk particles up to timet, or the probability that the state
unl is undecayed corresponds tofhstdgsn−kd/2 for k particle
decay process up to timet. For the convenience, we will
write hstd ash in the following expressions.

Using a single qubitr defined by the bosonic number
statehu0l , u1lj as the computational basis states, we can sim-
ply demonstrate how to give its Kraus representation when it
suffers from the amplitude damping. By Eq.(13), it is very
easy to find that the quantum operation on qubitr includes
only two operational elementsA0 andA1, that is

Esrd = A0rA0
† + A1rA1

† s14d

with

A0std = u0lk0u + Îhu1lk1u, s15ad

A1std = Î1 − hu0lk1u, s15bd

whereÎ1−h is the probability that the system lose one par-
ticle up to timet.

B. Effect of amplitude damping on qubits

In this subsection, we will demonstrate an application of
the above conclusions about the Kraus representation. We
know that two kinds of logical qubits, whose computational
basis states are defined by using the bosonic even and odd

coherent states[11] or vacuum and bosonic single particle
number states, are accessible in experiments. For brevity, we
refer to qubits defined via the even and odd coherent states as
the (Schrödinger) cat-state qubits by contrast to the Fock-
state qubits defined by vacuum and single-photon states in
the following expressions. It has been shown that the bit flip
errors caused by a single decay event, which results from the
spontaneous emissions, are more easily corrected by a stan-
dard error correction circuit for the logical qubit defined by
the bosonic even and odd coherent states[12] than that de-
fined by the bosonic vacuum and single particle number
states. We know that the entangled qubit takes an important
role in the quantum information processing. So in the follow-
ing, we will study the effect of the environment on entangled
qubits defined by the above two kinds of computational basis
states when they are subject to at most one decay event
caused by the amplitude damping. Letual be a bosonic co-
herent state(we denote this single bosonic mode as a single-
mode light field, but it can be generalized to any bosonic
mode, for example, excitonic mode, vibrational mode of trap
ions and so on). In general, if a single-mode light field,
which is initially in the coherent stateual, suffers from am-
plitude damping, the Kraus operation element(13) changes it
as follows:

Akual = e−s1−hduau2/2saÎ1 − hdk

Îk!
uÎhal, s16d

and the normalized state, which is denoted byNfAkualg, can
be written as

NfAkualg = uÎhal, s17d

which means that the coherent state remains coherent under
the amplitude damping, but its amplitudea is reduced to
Îha due to the interaction with the environment.

Now we define a logical zero-qubit stateu0lL and a logical
one-qubit stateu1lL using the even and odd coherent states as

u0lL = N+sual + u− ald

u1lL = N−sual − u− ald s18d

with N±=s2±2e−2uau2d−1/2 and subscriptL denotes the logical
state. If we know that the system loses at most one photon
with the time evolution but we do not have the detailed in-
formation on the lost photons. Then, we only need to calcu-
late two Kraus operatorsA0 and A1 corresponding to no-
photon and single-photon decay events, respectively.

No-photon decay event changes the logical qubitsu0lL and
u1lL as follows:

u0̃l = NfA0u0lLg = N+8suÎhal + u− Îhald, s19d

u1̃l = NfA0u1lLg = N−8suÎhal − u− Îhald, s20d

whereu0̃l and u1̃l are normalized states ofA0u0lL andA0u1lL
with the normalized constantsN±8=h2±2 exps−2huau2dj−1/2.
It is obvious that no-photon decay event reduces only the
intensity of the logical qubit, leaving the even and odd prop-
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erties of the logical qubit states unchanged. A simple analysis
of how the noisy channel affects the original quantum state
can be made by calculating the fidelity defined as the average
value of the final reduced density matrixrstd with initial pure
stateucl, that is fstd=kcurucl. The fidelity f istd of the qubit
state(18) with no-photon decay event can be obtained as

f istd =
feÎhuau2 + s− 1die−Îhuau2g2

feuau2 + s− 1die−uau2gfehuau2 + s− 1die−huau2g
s21d

with i =0, 1, which denotes zero-qubit state or one-qubit
state. But for a single-photon decay event, we can have the
following:

u1̃l = NfA1u0lLg, u0̃l = NfA1u1lLg. s22d

We find that the single photon decay event flips an even
coherent state to an odd coherent state with the reduction of
the amplitude and vice versa. It is very easy to prove that

u1̃l = NfAs2m+1du0lLg = NfA2mu1lLg, s23d

u0̃l = NfAs2m+1du1lLg = NfA2mu0lLg s24d

with m=0,1,2 ,̄ , which means that the even number of
photons decay event only reduces the intensity of the logical
signal, and keeps the even and odd properties of the logical
state unchanged; but the odd number of photons decay event
flips a qubit causing error and reduces the intensity of the
qubit signal. If the coherent amplitude of the cat states is
infinitely large, that is,uau→`, then we find that the fidelity
f istd<1 with a largerh, so under this condition, we can say
that the no-photon decay event essentially leaves the logical
qubit states unchanged and the single-photon decay event
causes a qubit flip error. It means that the use of the even and
odd coherent states as logical qubit statesu0lL and u1lL is
better than the use of the vacuum stateu0l and single-photon
state u1l as logical qubit states in the amplitude damping
channel with a few photons loss. Because the single-photon
decay event changes vacuum and single-photon states to
A1u0l=0 andA1u1l= u0l, the single-photon decay event is an
irreversible process for vacuum and single-photon states.

An entangled pair of qubits, whose computational basis
states are defined by the even and odd coherent states(18),
can be written as

uCl =
1
Î2

hu0lLu1lL + u1lLu0lLj. s25d

On the basis of the above discussions, we can study the
effect of environments on entangled qubits when each mode
loses at most one photon. For simplicity, two modes are as-
sumed to suffer from effect of two same independent envi-
ronments. There is no direct interaction between two sys-
tems. After the environment performs the following four
measurements hE0=A0 ^ A0,E1=A0 ^ A1,E2=A1 ^ A0,E3

=A1 ^ A1j with A0 an A1 determined by Eq.(13), the en-
tangled qubit(25) becomes the following mixed state

rstd =

o
i=0

3

Eirs0dEi
†

TrHo
i=0

3

Eirs0dEi
†J = ÑH2puau2SN−8

2

N+8
2u0̃0̃lk0̃0̃u

+
N+8

2

N−8
2u1̃1̃lk1̃1̃u + u0̃0̃lk1̃1̃u + u1̃1̃lk0̃0̃uD

+ s1 + p2uau4dsu0̃1̃l + u1̃0̃ldsk0̃1̃u + k1̃0̃udJ s26d

with p=1−h and the normalized constant

Ñ−1 = 2
s1 + puau2d2 − e−4huau2s1 − puau2d2

1 − e−4huau2
. s27d

The fidelityF1std of the entangled qubituCl with at most one
photon decay for each mode can be calculated as

F1std = kCurstduCl

=
s1 + uau4p2dcschs2uau2dsinh2s2Îhuau2d

2uau2p coshs2uau2hd + s1 + uau4p2dsinhs2uau2hd
.

s28d

If each mode can dissipate any number of photons, but we
know nothing about the details of dissipation, then we must
sum up all possible environment measurements on the sys-
tem, obtaining the reduced matrix operator of the system as

r8std =
1

2 − 2e−4uau2
hublublkbukbu + u− blu− blk− buk− buj

−
M

2 − 2e−4uau2
hu− blu− blkbukbu + ublublk− buk− buj

s29d

with M =e−4uau2s1−e−gtd and ubl= uustdal. Then we obtain the
fidelity F2std as

F2std = coshs2uau2pdcsch2s2uau2dsinh2s2Îhuau2d. s30d

We can find that the logical stateu0lL andu1lL in Eq. (25) can
be reduced to the vacuum stateu0l and single-photon state
u1l, respectively in the limit of the weak light fielduau→0. It
is easy to check that

A0u0l = u0l, A0u1l = Îhu1l, s31d

A1u0l = 0, A1u1l = Î1 − hu0l s32d

which means that theu0l qubit state is invariant when no-
photon decay event happens, but the amplitude of theu1l
qubit state is reduced toÎh. If the system leaks one photon,
then theu0l qubit state vanishes and theu1l qubit state returns
to the u0l with the probabilityÎ1−h. The entangled qubit,
whose computational basis states are defined by vacuum and
single-photon states, can be written as

LIU et al. PHYSICAL REVIEW A 70, 042308(2004)

042308-4



uCl =
1
Î2

su0lu1l + u1lu0ld s33d

which can be obtained by settinguau→0 in Eq.(25). We can
use the same step to obtain the fidelityF18std corresponding to
Eq. (33) when both modes are subject to the amplitude
damping as

F18std = hstd, s34d

where we assume that the damping is the same for the two
modes. When the weak light field limituau→0 is taken, we
find that Eq.(28) and Eq.(30) can be written as

F1std = h +
h

3
s1 − 5h + 3h2 + h3duau4 + Osuau8d,

F2std = h +
2

3
hs1 − 4h + 3h2duau4 + Osuau8d. s35d

It is clear that all the higher order terms ofuau2 can be ne-
glected in the limituau→0, so Eq.(28) and Eq.(30) can
return toF18std in the weak field approximation. By recalcu-
lating the difference

F1std − F2std = −
1

3
hs1 − hd3uau4 + Osuau8d, s36d

it is clear that fidelityF1std is less thanF2std in the low-
intensity regime. These predictions are confirmed by the ex-
act evolution of fidelities depicted in Fig. 1 foruauø1. To
compare the fidelities in the short-time evolution, we expand
the difference of Eqs.(28) and(30) in power series inGt as
follows:

F1std − F2std = −
2

3
uau6coths2uau2dsgtd3 + Ohsgtd4j s37d

which shows thatF1std is less thanF2std for arbitrary inten-
sities in the short-time regime although the difference might

be very small as presented in Fig. 1 foruau=2, 4. In the
long-time limit, we can expand the difference in a series ofh
resulting in

F1std − F2std =
2uau2

sinhs2uau2d
f1 + uau4 − 2uau2coths2uau2dgh

+ Ohh2j s38d

which is negative only for the intensityuau2,1.1997…. For

higher intensity, we find thatu1̃l<u1lL and u0̃l<u0lL, andp
=1−h will become small with the time evolution, then the
fidelity F1std will become greater than the fidelityF2std in
some regimes. But in the low intensity limit we find that

u1̃l<u0l andu0̃l<u0l, then the fidelityF1std will become less
thanF2std.

III. PHASE DAMPING

A. Kraus representation

A state can be a superposition of different states, which is
one of the main characteristics of the quantum mechanics.
The relative phase and amplitude of the superposed state
determines the properties of the whole state. If the relative
phases of the superposed states randomly change with the
time evolution, then the coherence of the quantum state will
be destroyed even if the eigenvalue of the quantum system
will be changed. This kind of quantum noise process is
called the phase damping. We can have the Hamiltonian of a
harmonic oscillator suffering from the phase damping as

H = "vb†b + "o
i

vibi
†bi + "o

i

xib
†bsbi + bi

†d, s39d

wherebsb†d is the annihilation(creation) operator of the har-
monic oscillator with frequencyv; andbisbi

†d is the annihi-
lation (creation) operator of theith mode of the environment
with frequencyvi. xi is a coupling constant between the
system and theith mode of the environment. We can solve
the Heisenberg operator equation of motion, and very easily
obtain the solution of the system operatorbstd as

bstd = bs0dexpf− ivt − i o x jtfbj
†std + bjstdgg , s40d

bjstd = bjs0dexpf− iv jt − ix jtb
†bg. s41d

We also assume that the system-environment is initially in a
product state rs0d=rSs0d ^ rEs0d. We apply the time-
dependent unitary operatorUstd=e−iHt/" with the Hamil-
tonianH determined by Eq.(39) to the stateuh0jluml as fol-
lows:

Ustduh0jluml =
fb†s− tdgm

Îm!
uh0jlu0l

= eh−imvt−iox jmtfbj
†s−td+bjs−tdgjb

†ms0d
Îm!

uh0jlu0l.

s42d

By assuming that the environment scatters off the quantum

FIG. 1. Difference of fidelities:F1−h (solid curves), given by
Eqs.(28) and (34), andF2−h (dashed curves), given by Eqs.(30)
and(34), versus scaled timegt for different values of amplitudea.
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system randomly into the stateshuk1¯ki¯ lj with the total
particle numberk, then the Kraus operators can be defined as
follows:

Pkstd = o
hkij

k

8khkijuUstduh0jl s43d

with its Hermitian conjugatePk
†. Using Eq.(42) and Eq.

(43), the reduced density operator of the system can be ex-
pressed as

rstd = o
k=0

`

Pkstdrs0dPk
†std s44d

with

Pkstd ; Pkstd = o
n=0

`

expH−
1

2
n2t2JÎsn2t2dk

k!
unlknu,

s45d

wheret= tÎG is a rescaled interaction time andG=o jux ju2.Î1−exph−n2t2j can be interpreted as the probability thatn
particles from the system are scattered by the environment. It
is clear that a sum of allPk satisfies the condition
ok=0

` Pk
†stdPkstd= I. We still use qubit as a simple example to

investigate the phase damping effect on it and give its Kraus
representation. We assume that our harmonic system is ini-
tially in ucl=au0l+bu1l and suffers from the phase damping.
By virtue of Eq. (45), it is easy to find that the quantum
operation on the qubitucl can be expressed as

Esrd = o
k=0

PkstdrPk
†std s46d

with r= uclkcu, and

Pkstd = dk0u0lk0u + expH−
1

2
t2J tk

Îk!
u1lk1u, s47d

wheredk0 is a Kronecker delta. By contrast to the case of the
amplitude damping in whichk can only take 0 and 1, in the
case of the phase damping,k can take values from 0 tò ,
which means that the system can be scattered by any number
of particles in the environment. In this sense, we can say that
there is an infinite number of quantum operation elements
Pkstd acting on the qubitucl when it suffers from a phase
damping. We find thatPkÞ0std makes the stateu0l equal to
zero, so we can rearrange all operation elementsPkÞ0std as
one group, and redefine two Kraus operators as

E0 = u0lk0u + expH−
1

2
t2Ju1lk1u,

E1 = Î1 − exph− t2ju1lk1u s48d

which is the form of the Ref.[2]. It is evident thatE0E0
†

+E1E1
†= I, andE0 means that the environment returns to the

ground state after it is scattered by the system. Unlike the
amplitude damping,E1 means that the environment is scat-
tered to another state, which is orthogonal to its ground state.
It does not mean that only one particle in the environment is

scattered by the system. We find that the probability of a
photon from the system being scattered by the environment
is Î1−exph−t2j.

B. Phase damping effect on qubits

In this subsection, we will further discuss the phase damp-
ing effect on a qubit whose computational basis states are
defined by the bosonic even and odd coherent states or
vacuum and single photon number states. If the coherent
stateual of the system is scattered byk photons of the envi-
ronment, then it changes as

Pkstdual =
tk

Îk!
o
n=0

`

expH−
1

2
sn2t2 + uau2dJnkan

În!
unl. s49d

We are interested in the change of the off-diagonal terms for
the system state after it scatters the photons of the environ-
ment, fork photons scattering, we have

PkstdualkbuPk
†std =

t2k

k!
expH−

1

2
suau2 + ubu2dJ

3 o
n,m=0

`

expH−
t2

2
sn2 + m2dJ

3
snmdkanb*m

În ! m!
unlkmu. s50d

As the system can scatter an arbitrary number of photons in
the environment, we need to sum allPkstd, getting

o
k=0

`

PkstdualkbuPk
†std = expH−

1

2
suau2 + ubu2dJ

3o
n,m

expH−
t2

2
sn − md2J

3
anb*m

În ! m!
unlkmu. s51d

In order to get a clear illustration of way how the phase
damping affects the logical qubit states, we can write out
reduced density matrix of logical statesu0lL and u1lL in Eq.
(18) as follows:

r0std = o
n,m

e−2t2sn − md2a2na*2m

coshuau2Îs2nd ! s2md!
u2nlk2mu, s52d

r1std = o
n,m

e−2t2sn − md2a2n+1a*2m+1

sinhuau2Îs2n + 1d ! s2m+ 1d!
u2n + 1lk2m+ 1u.

s53d

It is obvious that when the qubit states are subject to phase
damping, although the even and odd properties are not
changed, all of the off-diagonal elements of the reduced ma-
trix rkstd with (k=0, 1) tend to zero with the time evolution.
In contrast to the amplitude damping, the qubit states suffer-
ing from the phase damping are no longer pure states even
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though no photon is lost. Because the relative phases of dif-
ferent superposed elements of the coherent state have been
destroyed by the random scattering process of the environ-
ment. The fidelityfkstd (k=0, 1) of the logical qubit states
(18) can be obtained as

fkstd =
1

cosh2uau2 − k
o
n,m

uau4sn+m+kde−2sn − md2t2

s2n + kd ! s2m+ kd!
, s54d

where fkstdø1sk=0,1d with the equality sign holding only
in the limit uau→0 so thatu0lL<u0l and u1lL<u1l. But if we
directly choose the vacuum stateu0l and single photon state
u1l as the logical qubit states, and they independently go into
the phase damping channel, the fidelity is kept as one. It is
because the phase damping only changes the off-diagonal
terms. It means that in the phase damping channel, the use of
the vacuum stateu0l and single-photon stateu1l as logical
qubit states is better than the use of the even and odd coher-
ent states as logical qubit statesu0lL andu1lL. The fidelities of
the even and odd coherent states suffering from phase damp-
ing are compared in Fig. 2. We find that in the low coherent
intensity of uau2, the even coherent state can keep a better
fidelity than that of the odd coherent state. But the fidelities
for the even and odd coherent states approach to each other
with increasing intensity, so the states have no difference for
the loss of information in the high coherent intensity.

To show this property analytically, we find that one sum-
mation in Eq.(54) can be performed leading us to relation
(k=0, 1)

fk =
1

2scosh2uau2 − kdHI0s2uau2d + s− 1dkJ0s2uau2d

+ 2o
d=1

`

e−2d2t2
fI2ds2uau2d + s− 1dkJ2ds2xdgJ , s55d

whereJ2dsxd is the Bessel function andI2dsxd is the hyper-
bolic Bessel function. Ifuau2@1 (on the scale of Fig. 2, for
uau2ù4) then Ids2xd@Jds2xd and scosh2uau2−kd−1<e−2uau2,
which implies that both fidelitiesfk are approximately equal
to

f0 < f1 < 2e−2uau2SI0s2uau2d + 2o
d=1

`

e−2d2t2
I2ds2uau2dD . s56d

Assuming also long scaled interaction times,t2;Gt2@1, the
fidelities can be approximated by compact formulas

f0 < f1 < 2e−2uau2fI0s2uau2d + 2e−2t2
I1s2uau2dg

<
1

Îpuau
f1 + 2 exps− 2t2dg. s57d

We can also study the effect of the phase damping on the
entangled qubit(25) based on the above discussions, and the
relevant calculations are straightforward. Here, we only give
a fidelity Fstd for two modes subjected to the phase damping
as

Fstd =
1

2
f0stdf1std +

2e−t2

sinh2s2uau2d

3 So
n,m

uau2s2n+2m+1de−2sn−mdsn−m+1dt2

s2md ! s2n + 1d! D2

, s58d

where f0std and f1std are given by Eq.(54). Assuming that
both channels have the same phase damping constantG, Eq.
(58) simplifies to the following single-sum formula:

Fstd =
1

2
f0stdf1std +

2e−t2

sinh2s2uau2d

3 So
d=1

`

e−2dsd+1dt2
I2d+1s2uau2d + I1s2uau2dD2

s59d

which helps us to find approximate compact-form solutions.
For example, for either long scaled interaction times,t@1,
or low intensities,uau2!1, the fidelityFstd reduces to

Fstd <
1

2
f0stdf1std +

2e−t2

sinh2s2uau2d
fI1s2uau2dg2. s60d

On the other hand, by assuming high intensity,uau2@1, to-
gether witht@1, one obtains the following approximation:

Fstd <
1

2puau2
f1 + 4 exps− t2dg. s61d

If the qubit states are defined by the vacuum stateu0l as
logical zero state and single-photon stateu1l as logical one
state, then for the entangled qubits(33), if both of them go
into phase damping channels with the same damping con-
stantG, we can obtain the fidelity as

F8std =
1

2
h1 + e−t2j . s62d

In Fig. 3, we compare the fidelities for the Eqs.(58) and
(62). We find that their fidelities are almost the same when
the odd and even coherent qubit states are in the low inten-
sity limit. But when the intensity increases, the fidelity given
in Eq. (58) is less than that in Eq.(62). It shows that in case
of the phase damping, the odd and even coherent states are
not good coding states.

FIG. 2. Evolution of fidelitiesf0std (solid curves) and f1std
(dashed curves) are given by Eq.(54) for different values of inten-
sity uau2. It is seen that the curves forf0std and f1std coincide if
uau2ù4.
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IV. CONCLUSIONS AND DISCUSSIONS

Using a simple operator algebra solution, we have derived
the Kraus representation of a harmonic oscillator suffering
from the zero temperature environmental effect, which is
modeled as the amplitude damping or the phase damping. It
is worth noting that we could not derive a compact form for
the Kraus representation when the environment is initially in
the thermal field, because it becomes very difficult to distin-
guish the number of photons detected by the environment
and that absorbed by the system due to the existence of the
thermal field, which can excite the system to higher states
[14].

As examples and applications of a system in a zero tem-
perature environment, we first give a Kraus representation of
a single qubit whose computational basis states are defined
as bosonic vacuum and single particle number states. We
further discuss the environment effect on the qubits whose
computational basis states are defined as the bosonic odd and

even coherent states. We find that when the system suffers
from the amplitude damping, the loss of even number of
photons leaves the qubit, whose computational basis is de-
fined by the even and odd coherent states, unchanged, but the
loss of an odd number of photons changes the even or odd
properties of the qubit. If the system loses a few photons and
the intensity of the coherent states is taken infinitely large,
then we can roughly say that the loss of an even number of
photons keeps qubit unchanged, but the loss of an odd num-
ber of photons causes a bit flip error. Such an error can be
corrected by some unitary operation. But if the computa-
tional basis is defined by the vacuum and single-photon
states, a single-photon loss is an irreversible process, we can-
not find any unitary operation to correct this error resulting
from a single photon loss. So in the amplitude damping
channel, the use of the even and odd coherent states as logi-
cal qubit is more suitable than the use of the vacuum and
single-photon state as logical states[12,13].

When the qubit states, whose computational basis is de-
fined by the even and odd coherent states, enter the phase
damping channels, the even and odd properties will not be
changed, however all off-diagonal terms of the qubit density
matrices gradually vanish. Then the originally pure states
change into mixtures of states because of the random scat-
tering of the environment on the system even without loss of
photons. It is much more difficult to correct such an error. So
the use of the even and odd coherent states as logical qubit
states cannot solve the problem of the phase damping.
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