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By definition, the Kraus representation of a harmonic oscillator suffering from the environment effect,
modeled as the amplitude damping or the phase damping, is directly given by a simple operator algebra
solution. As examples and applications, we first give a Kraus representation of a single qubit whose compu-
tational basis states are defined as bosonic vacuum and single particle number states. We further discuss the
environment effect on qubits whose computational basis states are defined as the bosonic odd and even
coherent states. The environment effects on entangled qubits defined by two different kinds of computational
basis are compared with the use of fidelity.
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. INTRODUCTION elementsE,(E]) satisfy the completeness relatiah,E'E,,
=1. OperatorsE,, act on the Hilbert spacks of the system.
Since the fast quantum algorithms were developed, th&hey can be expressed Bs=(e,|Ui|ey) by the total unitary
quantum information and computation have aroused greasperatorU, of the system and the environment with an or-
enthusiasm among physicists because of their potential aphonormal basise,) for the Hilbert spacéde and the initial
plications. The basic unit of the classical information is a bit,statepg=|ey){ey| of the environment. This elegant represen-
which can only have a choice between two possible classicahtion is extensively applied to describe the quantum infor-
states denoted by O or 1. The information carriers in themation processing3,4].
quantum communication and computation are called quan- |n practice, the environment effect on the quantum system
tum bits or qubits. The main difference between the qubis a more complicated problem. There are two ideal models
and the classical bit is that the qubit is defined as a quantursf noise called the amplitude and phase damping, which can
superposition of two orthogonal quantum states usually writcapture many important features of the nojgg They are
ten as|0) and|1) called as the computational basis states. ltapplied in many concrete discussions to model noise of the
means that the qubit has an infinite number of choices of thguantum information processing, e.g., R&l. As a system,
statese|0)+B|1) with the condition|a|?+|B|2=1. It is obvi-  a single-mode harmonic oscillator is the simplest and most
ous that the superposition principle allows application ofideal model to represent a single mode light field, vibration
quantum states to simultaneously represent many differeqghonon mode, or excitonic wave. For convenience, we refer
numbers, this is called the quantum parallelism, which enthis harmonic oscillator to a single-mode light field in this
ables the quantum computation to solve some problems, sugiaper. A study of a single harmonic oscillator suffering from
as factorization, intractable on a classical computer. damping is expected to give us an easier grasp of the nature
However, a pure quantum superposition state is very fragef damping. The Kraus representation of a harmonic oscilla-
ile. A quantum system cannot be isolated from the environtor suffering from the above two kinds of noise has been
ment, it is always open and interacts with the uncontrollableyiven by Chuanget al, simply modeling environment as a
environment. This unwanted interaction induces entanglesingle mode oscillatof2,7]. However generally speaking,
ment between the quantum system and the environment sug¢he environment is usually described as a system of multi-
that the pure superposition state is destroyed, which resuligode oscillators for both the phase damping and amplitude
in an inevitable noise in the quantum computation and infordamping. Milburnet al. have also given the Kraus represen-
mation processing. Unlike a closed system, whose final stat@tion of a harmonic oscillator suffering from the amplitude
p' can be obtained by a unitary transformatibhof the  damping by modeling the environment as a system of the
initial statep asp’ =UpU", the final state of an open system multimode oscillators using the quantum measurement
cannot be described by a unitary transformation of the initiatheory[8]. Although there are many studies about Kraus rep-
state. Quantum operation formalism is usually used to deresentation, e.g., in Ref§l,5,6, to the best of our knowl-
scribe the behavior of an open quantum system in which thedge, there is no proof of the Kraus representation for a
final statep’ and the initial state) can be related by a quan- harmonic oscillator suffering from amplitude damping or
tum operatiort asp’=&(p). In general, the quantum opera- phase damping by directly using its definition when the en-
tion £ on the state can be described by the Kraus operator-vironment is modeled as a system of multimode oscillators.
sum formalism[1,2] aSS(p):E#EMpEL where the operation In view of the importance of the Kraus representation in the
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quantum information, we would like to revisit this question that the environment is at zero temperature, so its initial state
in this paper. We will extend the proof of Chuaagal, that is in the vacuum stat¢{0})=1II;®|0,)=|---0---) of multi-

is, we will give the Kraus representation using a simple op-mode harmonic oscillators. The Hilbert spade can be de-
erator algebra method by modeling the system as a singleomposed into a direct sum of many orthogonal subspaces
mode oscillator and the environment as multimode oscillaH, asHg=®,_,H, with an orthonormal basi§{k;})}, which

tors according to the definition of the Kraus representation.satisfies the conditio®;- k;=k for each subspadd,. So we

Our paper is organized as follows. In Sec. I, we give thecan regroup the summation in E¢) and define the quantum
Kraus representation for the amplitude damping case, thegperation elemen, as follows:

we discuss the effect of the environment on a qubit whose

computational basis is defined by odd and even coherent k

states with decay of at most one particle, we compare this Alt) = > "{kHU(t)[{0}) (5)
result with that of a qubit defined by vacuum and single {ki}

photon number states. In Sec. Ill, we give the Kraus repre- . .

sentation for the phase damping case, and explain its effecf/nich acts on the Hilbert spadés of the system. Hereafter,
Similar to the analysis in Sec. II, we also compare the effect:’ Stands for summation under the conditibiri=k; A(t)

of the phase damping on the entangled qubit defined by dif"€ans that there akebosonic particles absorbed by the en-

ferent states. Finally, we give our conclusions in Sec. Iv. Vironment through the evolution over a finite tinte and
Al(t) denotes the Hermitian conjugate A&f(t). Then Eq.(4)

can be rewritten by virtue of the operation elemeXj&) and
Il. AMPLITUDE DAMPING its Hermitian conjugate\/(t) as a concise form called the

A. Kraus representation Kraus representatiof?]

One of the most important reasons for the quantum state o
change is the energy dissipation of the system induced by the ps(t) = > At Ps(O)AE(t)- (6)
environment. This energy dissipation can be characterized by k=0
an amplitude damping model. Ideally we can model the sys-
tem, for example, a single mode cavity field, as a harmonidt is very easy to check that the elemertgt) satisfy the
oscillator, which is coupled to the environment modeled agelationZ,Al(t)A(t)=1. In order to further give the solution
multimode oscillators. Then the whole Hamiltonian of the of the operatoA(t), we first use the number stat® of the
system and the environment can be written as system to define an orthonormal basijs)} of the Hilbert

spaceHg of the system. Then the matrix representation of the
H=%ob'b+ ﬁz wibfb; + ﬁz gi(b™+bb)) (1) operatorA(t) can be written as
1 I

undgr_ th_e rotating wave approximation, wh@(@*) _is the At = Akm,n(t)|m><n| (7)
annihilation(creation operator of the harmonic oscillator of mn

frequencyw, andbi(biT) is the annihilatior(creatior) operator

of theith mode of the environment with frequenay,g, is ~ With the matrix element

coupling constant between the system andithemode of

k
the environment. We assume that the initial state of the ,
whole system is Afn(D) :% (kU ©{0})[n). (8)

0) = p5(0) ® pe(0), 2
Pl0=ps0) p_E(_ _) @ Because the statdJ(t)[{0})|n) can be written asU(t)
wherepg(0) and pe(0) denote the initial states of the system x (pt)n/\[ni}{0})|0)y=[b'(-t)]"/ ! |{0})|0). Using the
and environment respectively. With the time eVOIUtion, theWigner_Weisskopf approximatio[‘g], the OperatobT(t) can

initial state evolves into be obtained by solving the Heisenberg operator equation of
p(t) =U(t)pg(0) ® pe(0)UT(1) 3) motion for Hamiltonian(1) as

with U=exp(-iHt/%). Since we are only interested in the *

time evolution of the system, we perform a partial trace over bT(t) = u(t)b'(0) + X vi(H)b{(0), 9

the environment and find the reduced density operator of the =1

system as

whereu(t)=exp(—(y/2)t+iwt) and the Lamb shift has been
ps(t) = Tre{U (1) ps(0) @ pe(0)UT (1)} neglected. The damping ratey is defined as vy
~ . =27e(w)|g(w)|? with a spectrum density(w) of the environ-
- {% ({ki}|U(ps(0) ® pe(OU Ok, (4 ment. The details of the time dependent parameig) can
! be found in[9,10]. We can use Eq?9) to expandJ(t)[{0})|n)
where{|{ki})=|ky- -k --)=II;® |k} is an orthonormal basis as many terms characterized by the particle nunbkst
of the Hilbert spaceH¢ for the environment, anl; denotes  from the system, and each term with fixedan be expressed
that there ard; bosonic particles in thegh mode. We assume as
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n * k Kl coherent stategll] or vacuum and bosonic single particle
( ) > > — number states, are accessible in experiments. For brevity, we
K i Fig e #i=0 {Ii} It refer to qubits defined via the even and odd coherent states as
k the (Schrédinger cat-state qubits by contrast to the Fock-

x [T [v ()b (0)]al{0})n - k). (10)  state qubits defined by vacuum and single-photon states in
1 1 the following expressions. It has been shown that the bit flip
errors caused by a single decay event, which results from the
spontaneous emissions, are more easily corrected by a stan-

dard error correction circuit for the logical qubit defined by
n the bosonic even and odd coherent stqfed than that de-
A A= (k)[ﬁ(t)](n_k)[l—ﬁ(t)]k5m,n—k (11)  fined by the bosonic vacuum and single particle number
states. We know that the entangled qubit takes an important
with 7(t)=e"", where we have used the completeness of theole in the quantum information processing. So in the follow-
subspace with fixedt ing, we will study the effect of the environment on entangled
" qubits defined by the above two kinds of computational basis
, _ states when they are subject to at most one decay event
% kbl = 1, 12 caused by the amplitude damping. Lle} be a bosonic co-

' herent statéwe denote this single bosonic mode as a single-
and condition|u(t)|?+=;[vi(t)|?=1, which comes from the mode light field, but it can be generalized to any bosonic
commutation relatiofib(t),b’(t)]=1. It is clear that the non- mode, for example, excitonic mode, vibrational mode of trap
zero matrix elemenAf, (1) must satisfy the relatiom-m  ions and so op In general, if a single-mode light field,
=k, and all contributions to the elements of the quanturmwhich is initially in the coherent stater), suffers from am-
operationA(t) come from the statef) satisfying the con- plitude damping, the Kraus operation elemer8) changes it
dition n=k. Then we can take each matrix eleméfit,(t) as ~ as follows:
a real number and finally obtaii7,8]

Al = Zk \ (E)[n(t)](”‘k)’z[l = 7(®1%n - ky(n|.

It is not difficult to prove thatS, Al(HA(t)=1. In Eq.(13), MAJa)] = |\s’7;a>, 17
one finds tha(1-7(t))¥? is the probability that the system
losesk particles up to time, or the probability that the state
Iny is undecayed corresponds ftg(t)]"2 for k particle
decay process up to time For the convenience, we will
write 7(t) as 7 in the following expressions.

Using a single qubitp defined by the bosonic number

e 1
G Vo

By using EQgs.(7)—(10), we can obtain the product of the
matrix elements oA,"n,n and its Hermitian conjugate as

T O e i
Ak|a> =e (1-7)|a] lz—yﬁ |\,’ 770(>’ (16)
VK

and the normalized state, which is denoted\fyA )], can
(13) be written as

which means that the coherent state remains coherent under
th_e amplitude damping, but its amplitude is reduced to
Vna due to the interaction with the environment.

Now we define a logical zero-qubit stgd@, and a logical
one-qubit statél), using the even and odd coherent states as

state{|0),|1)} as the computational basis states, we can sim- |0}, =N,(|a) + |- a))
ply demonstrate how to give its Kraus representation when it
suffers from the amplitude damping. By E@.3), it is very |1, =N_(|&) = |- a)) (18)
easy to find that the quantum operation on qubihcludes )
only two operational element&, and A4, that is with N, =(2+2e 2712 and subscript. denotes the logical
: T T state. If we know that the system loses at most one photon
E(p) = AopAg + A1pAq (14) \ith the time evolution but we do not have the detailed in-
with formation on the lost photons. Then, we only need to calcu-
_ late two Kraus operatord, and A; corresponding to no-
Ag(t) = |0)0| + V711, (158  photon and single-photon decay events, respectively.
No-photon decay event changes the logical qybj{sand
Ag(t) =1 - 7o), (15b) |1), as follows:
where1-7 is the probability that the system lose one par- |6> =MA0) 1= NL(IV“;a) +|- \",7701}), (19

ticle up to timet.
~ , J/_ e J’r—
B. Effect of amplitude damping on qubits |1 =MA1) 1= NZ([V7a) = |- Va)), (20)

In this subsection, we will demonstrate an application ofwhere|0) and|1) are normalized states @|0)_ andAq|1),
the above conclusions about the Kraus representation. Waith the normalized constants={2+2 exg-27|a|?)} Y2
know that two kinds of logical qubits, whose computationallt is obvious that no-photon decay event reduces only the
basis states are defined by using the bosonic even and oduensity of the logical qubit, leaving the even and odd prop-
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erties of the logical qubit states unchanged. A simple analysis 3
of how the noisy channel affects the original quantum state > Eip(O)E;r N2
can be made by calculating the fidelity defined as the average __ =0 —X 2[ = [0V en
value of the final reduced density matyig) with initial pure p(0 3 N) 2plaf N;2|OO><OO|
state|), that isf(t)=(y|p|). The fidelity f;(t) of the qubit Ty S Ep(0)E!
state(18) with no-photon decay event can be obtained as i=0 '
Vrlaf? i V7lal22 N2 o e
= [ee + (- D'e 7] (21) + —5[11)(11] + [00)(11| + [11)(00]
T [ + (- 1)ielaPy[ente? + (= 1yig e N-
with i=0, 1, which denotes zero-qubit state or one-qubit +(1+P2|a|4)(|6?l>+|~16>)(<61|+<16|)} (26)
state. But for a single-photon decay event, we can have the
following: with p=1-7 and the normalized constant
1) =MAO) ], [0)=MA1)]. 22 - 1 +p|af?)? - e 4ol (1 - p|af?)?
D=MAJOL B=MALL @22 1o oL rpla? a-pa”

_ a4 of?
We find that the single photon decay event flips an even 1-e

coherent state to an odd coherent state with the reduction gfe fidelity F,(t) of the entangled qubjt¥’) with at most one
the amplitude and vice versa. It is very easy to prove that photon decay for each mode can be calculated as

(1) = MA@ |0) ] = MAgy/ 1)1, (23) Fa(t) = (¥|p(0)| W)
3 _ (1 +|al*pPesch2]a)sin(2\7la)
|0 = MAzmen)| D] = MAgm|O) ] (24) ~ 2|al?p cost2]al?y) + (1 +|al*p?sinh(2]al?y)”

with m=0,1,2;--, which means that the even number of (28)

photons decay event only reduces the intensity of the logicaf each mode can dissipate any number of photons, but we
signal, and keeps the even and odd properties of the logic&how nothing about the details of dissipation, then we must
state unchanged; but the odd number of photons decay evegim up all possible environment measurements on the sys-

flips a qubit causing error and reduces the intensity of th@em, obtaining the reduced matrix operator of the system as
qubit signal. If the coherent amplitude of the cat states is

infinitely large, that is|«| — =, then we find that the fidelity e 1

f,(t) =1 with a Iargernl, io under this condition, we can say " v = o 2e—4\a|2{|'8>|ﬁ><ﬁ|<ﬂ| *[=B)= 8= B Bl}
that the no-photon decay event essentially leaves the logical
qubit states unchanged and the single-photon decay event
causes a qubit flip error. It means that the use of the even and
odd coherent states as logical qubit st and |1), is
better than the use of the vacuum st@eand single-photon
state|1) as logical qubit states in the amplitud_e dampingWith M=eda1-¢" anq 18)=|u®a). Then we obtain the
channel with a few photons loss. Because the smgle—photo]rﬂ

decay event changes vacuum and single-photon states tglellty Fa(t) as

A1|O>=O_ andA,|1)=|0), the single-photon decay event is an Fy(t) = cosr(2|a|2p)cscr?(2|a|2)sian(2\r77|a|2). (30)
irreversible process for vacuum and single-photon states.

An entangled pair of qubits, whose computational basidVe can find that the logical stal@), and|1), in Eq.(25) can
states are defined by the even and odd coherent gt8gs be reduced to the vacuum std@® and single-photon state
can be written as |1), respectively in the limit of the weak light field| — 0. It

is easy to check that

M
- {- Bl BB + 188 Bl Bl
2-2e¢

(29)

1
== ~
[¥) \r’E{|O>L|1>L +|1)[0)} (25) Al0)=10),  Agll)=7l1), (31)
On the basis of the above discussions, we can study the AJ0)=0, AD)= \*"ﬁﬂo} (32)

effect of environments on entangled qubits when each mode

loses at most one photon. For simplicity, two modes are aswvhich means that théd) qubit state is invariant when no-
sumed to suffer from effect of two same independent enviphoton decay event happens, but the amplitude of|ihe
ronments. There is no direct interaction between two sysgubit state is reduced to. If the system leaks one photon,
tems. After the environment performs the following four then thelO) qubit state vanishes and tHie qubit state returns
measurements {E,=A;®Ag,E;=A;® A, E,=A;®Ag,E;  to the |[0) with the probabilityy1-7. The entangled qubit,
=A;® Ay} with Ay an A; determined by Eq(13), the en- whose computational basis states are defined by vacuum and
tangled qubit(25) becomes the following mixed state single-photon states, can be written as
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be very small as presented in Fig. 1 fr]=2, 4. In the
long-time limit, we can expand the difference in a serieg of
resulting in

|af?
sinh(2|al?)
+ O (38

which is negative only for the intensity|?<1.1997... For
higher intensity, we find thgtl) ~|1), and|0)~|0),, andp
=1-7 will become small with the time evolution, then the
fidelity F;(t) will become greater than the fidelity,(t) in
some regimes. But in the low intensity limit we find that
|1) =~|0) and|0) = |0), then the fidelityF,(t) will become less
thanF,(t).

Fa(t) = Fo(t) = [1+]al* - 2/ef*coth(2]e]?)]n

FIG. 1. Difference of fidelitiesF{—» (solid curves$, given by IIl. PHASE DAMPING
Egs.(28) and(34), andF,— 7 (dashed curvgsgiven by Eqs(30) .
and(34), versus scaled timet for different values of amplitude. A. Kraus representation

A state can be a superposition of different states, which is

1 one of the main characteristics of the quantum mechanics.

|w>:3(|0>|1>+|1>|0>) (33)  The relative phase and amplitude of the superposed state
v

determines the properties of the whole state. If the relative
which can be obtained by settifig| — 0 in Eq.(25). We can  Phases of the superposed states randomly change with the

use the same step to obtain the fideRtyt) corresponding to time evolution, then the coherence of the quantum state will
be destroyed even if the eigenvalue of the quantum system

Eq. (33) when both modes are subject to the amplitude
damping as will be changed. This kind of quantum noise process is
called the phase damping. We can have the Hamiltonian of a
Fi(t) = 5(t), (34 harmonic oscillator suffering from the phase damping as

where we assume that the damping is the same for the two H=hwb'b+4> wbb +%> xbb(b +b), (39
modes. When the weak light field limjiz] — 0 is taken, we Do e I

find that Eq.(28) and Eq.(30) can be written as . o i
whereb(b") is the annihilatior(creation operator of the har-

— 7.4 _ 2 3\ 14 8 monic oscillator with frequencw; and bi(bi’r) is the annihi-
Fi® =7+ 3(1 S+ 37+ )laf*+ O(lab), lation (creation) operator of théth mode of the environment
with frequencyw;. x; is a coupling constant between the
_ 2 o 1 8 system and théth mode of the environment. We can solve
Fol) = n+ Zm(1-4n+ 37 al*+0(la®). (35 the Heisenberg operator equation of motion, and very easily
obtain the solution of the system operalgt) as
It is clear that all the higher order terms faf|? can be ne-

glected in the limitja| —0, so Eq.(28) and Eq.(30) can b(t) :b(O)ex;{—iwt—iZth[bJT(t) +bj(t)]], (40
return toF;(t) in the weak field approximation. By recalcu-
lating the difference by(t) = b;(0)ex - iwjt - inthb]_ (41)
F.(t) = Fo(t) = = = (1 = n)3al*+ O(lal®), 36 We also assume that the system-environment is initially in a
10 = Fo() 377( 7l (laf) (36 product state p(0)=ps(0) ® pe(0). We apply the time-

dependent unitary operatdd(t)=e "M% with the Hamil-

it is clear that fidelityF4(t) is less thanF,(t) in the low- tonianH determined by Eq(39) to the statd{O})|m) as fol-

intensity regime. These predictions are confirmed by the e

act evolution of fidelities depicted in Fig. 1 fos|<1. To lows:
compare the fidelities in the short-time evolution, we expand T( )]m
the difference of Eqs(28) and(30) in power series it as U Kop| >— {0})[0)
follows:
_ e{ imat— |E)(Jm1[bT —t)+bj(~ t)]} |{0}>|0>

2
Fa(t) —Fa(t) == §|6¥|600th(2|a|2)(Vt)3 +0{(W* (37)

which shows thafF(t) is less tharF,(t) for arbitrary inten- (42)
sities in the short-time regime although the difference mighBBy assuming that the environment scatters off the quantum
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system randomly into the statél&;---k;--- )} with the total  scattered by the system. We find that the probability of a
particle numbek, then the Kraus operators can be defined aghoton from the system being scattered by the environment
follows: is y1-exd-7}.

Pu(t) = > "k U(t)|{0}) (43 B. Phase damping effect on qubits

K . _ . .
e} In this subsection, we will further discuss the phase damp-

with its Hermitian conjugateP}. Using Eq.(42) and Eq. ing effect on a qubit whose computational basis states are
(43), the reduced density operator of the system can be exdefined by the bosonic even and odd coherent states or

pressed as vacuum and single photon number states. If the coherent
o state|a) of the system is scattered lyphotons of the envi-
)= Pk(t)p(O)Pl(t) (44) ronment, then it changes as
k=0
k a"
with P(n)|e) = —2 exp) - —(n272+ |af?) } =In). (49
- 2 2\k
P(t) = P(n) = >, exp) - }nzfz} (n 72) 2 |nxn], We are interested in the change of the off-diagonal terms for
2 the system state after it scatters the photons of the environ-
(45) ment, fork photons scattering, we have
/ o 1
where 7= t\ZF is a rescaled interaction time atEX;|x;|2 Pu(n)|a)B|P} (1) =-—expi - > (a2 + |8
J1-exd—-n?7?} can be interpreted as the probablllty thnat k! 2
particles from the system are scattered by the environment. It 2
is clear that a sum of allP, satisfies the condition x 2 exp - —(n + mz)}
pol OP ()P (t)=1. We still use qubit as a simple example to n,m=0
investigate the phase damping effect on it and give its Kraus (nM)a"g"™
representation. We assume that our harmonic system is ini- ><—| m|. (50)

tially in |4)=a|0)+B|1) and suffers from the phase damping.
By virtue of Eq. (45), it is easy to find that the quantum

. As the system can scatter an arbitrary number of photons in
operation on the qubity) can be expressed as y y P

the environment, we need to sum BJl(7), getting

£(p) = 2 PpPL(7) (46) - 1
=0 2 P(n]a)IPi(7) = exp{— S(laf? IBIZ)}
with p=|¥)(¢|, and k=0
2
PL(7)= 0l00] exp{— %F}\,—%w. @) X2 exp| =5 (n- m)z}
whereéyq is a Kronecker delta. By contrast to the case of the % f“nﬂ*m Iny(m. (51)

amplitude damping in whick can only take 0 and 1, in the
case of the phase dampingcan take values from 0 t®,
which means that the system can be scattered by any numb
of particles in the environment. In this sense, we can say th
there is an infinite number of quantum operation element
P (t) acting on the qubity) when it suffers from a phase

order to get a clear illustration of way how the phase
amping affects the logical qubit states, we can write out
educed density matrix of logical stat@, and|1), in Eq.
%18) as follows:

damping. We find thaP,..o(t) makes t.he staté) equal to g 27A(n-m? 2n *2m
zero, so we can rearrange all operation elem@pis(t) as po(1) =, > : I|2n (52)
one group, and redefine two Kraus operators as nm Costal*V(2n) ! (2m)!
1 _52(n - m)?2 .
Eo=[0)0] + exp) — =7 (| 1)(1], g 2r(n-m’ g 2ntly2m
0=10X0 p{ 2 }| ke pu(n) =2 ———— |2n + 1)(2m + 1]
nm SinHal?/(2n+ 1) | (2m+ 1)!
E,=\1-exd- 2|11 (49) (53)

wh|ch is the form of the Ref[2]. It is evident thatEOEO It is obvious that when the qubit states are subject to phase
+E;El=1, andE, means that the environment returns to thedamping, although the even and odd properties are not
ground state after it is scattered by the system. Unlike thehanged, all of the off-diagonal elements of the reduced ma-
amplitude dampingE; means that the environment is scat- trix p(t) with (k=0, 1) tend to zero with the time evolution.

tered to another state, which is orthogonal to its ground statdn contrast to the amplitude damping, the qubit states suffer-
It does not mean that only one particle in the environment igng from the phase damping are no longer pure states even
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fo=f,~ 2e-2a|2<|0(2|a|2) +2> e_2d272I2d(2|a|2)) . (56)
d=1

Assuming also long scaled interaction timeés=TI't’> 1, the
fidelities can be approximated by compact formulas

fo= f,~ 26290 1(2|af) + 26271,(2]a))]
1

—
V|l

[1+2exg-27)]. (57)

T We can also study the effect of the phase damping on the
FIG. 2. Evolution of fidelitiesfo(7) (solid curve$ and f1(7) entangled qubi(25) based on the above discussions, and the

(dashed curvesare given by Eq(54) for different values of inten- relgvarrt calculations are straightforward. Here, we only g.ive
sity |of2 It is seen that the curves fdg(n) and f,(7) coincide if @ fidelity F(t) for two modes subjected to the phase damping

|af>=4. as
1 -2
though no photon is lost. Because the relative phases of dif- F(r) = Efo(T)fl(T) + SN2l
ferent superposed elements of the coherent state have been @
destroyed b_y trre random scattering process of t_he environ- | a|2<2n+2m+1>e—2(n—m)(n—m+1)rz 2
ment. The fidelityf,(t) (k=0, 1) of the logical qubit states X = (2m) 1 (2n+ 1! , (58

(18) can be obtained as
wherefy(7) andf,(7) are given by Eq(54). Assuming that

+m+K) o— -m)?
fi(7) = 1 | Hrrrgr2in = m ’ (54) both channels have the same phase damping coristdty.
K cosf|al?—knm (2n+K) ! (2m+K)! (58) simplifies to the following single-sum formula:
-7
- - . ; 1

\./vherefk(-r)sl(k—o,l) with trle equality SEjn holdlng only F(7) = Zfo(Dfy(7) + — = 2
in the limit || — 0 so thatl0), =|0) and|1), =|1). But if we 2 sinft(2al?)
directly choose the vacuum std@® and single photon state o 2
|1) as the logical .qubrt states, and t_hey mr_jependently go mtp % (E e—2d(d+1)72|2d+1(2|a|2) n |1(2|a|2)) (59)
the phase damping channel, the fidelity is kept as one. It is d=1

because the phase damping only changes the off-diagonal . , , ,
terms. It means that in the phase damping channel, the use Wich helps us to find approximate compact-form solutions.

the vacuum staté0) and single-photon statd) as logical ~FOr €xample, for EIt2|’1€I’ long scaled interaction times; 1,
qubit states is better than the use of the even and odd cohé? 1OW intensities|a|?<1, the fidelityF(7) reduces to

ent states as logical qubit statey and|1), . The fidelities of 1 e

the even and odd coherent states suffering from phase damp- F(1) = Zfo(Dfy(D) + —5 5 [1:(2]a)]>.  (60)
ing are compared in Fig. 2. We find that in the low coherent 2 sint?(2al?)

intensity of [af?, the even coherent state can keep a bettepy, the other hand, by assuming high intensfigf?> 1, to-

for the even and odd coherent states approach to each other

with increasing intensity, so the states have no difference for 1
- L . . . F(r) = 1+4 - . 1
the loss of information in the high coherent intensity. (0 27T|a|2[ X~ )] (61

To show this property analytically, we find that one sum- _ ,
mation in Eq.(54) can be performed leading us to relation I.f the qubit states are defined by the vacuum.sL@leas
k=0, 1) logical zero state and single-photon stHte as logical one

state, then for the entangled qubi&3), if both of them go
1 into phase damping channels with the same damping con-
f=—————— 9 1.(2lal? + (= DKI(2|a|? stantl’, we can obtain the fidelity as
k 2(C05ﬁ|a’|2—k) O( |a| ) ( ) 0( |a| ) )
- F'(7) = 5{1 +e ). (62

+23 &2 120 + (- DK0g(220] {,  (55)

d=1 In Fig. 3, we compare the fidelities for the Eq$8) and

) ) ) (62). We find that their fidelities are almost the same when
where Jo4(x) is the Besselzfunctlon antq(x) is the hyper- e odd and even coherent qubit states are in the low inten-
bolic Bessel function. Ife|*>1 (on the scale of Fig. 2, for sty limit. But when the intensity increases, the fidelity given
la|2=4) then 14(2x)>J4(2x) and (cosif|a|?-K)"t=e2",  in Eq.(58) is less than that in Eq62). It shows that in case
which implies that both fidelitie$, are approximately equal of the phase damping, the odd and even coherent states are
to not good coding states.

042308-7



LIU et al. PHYSICAL REVIEW A 70, 042308(2004)

1 ' ' ' ' ' even coherent states. We find that when the system suffers
from the amplitude damping, the loss of even number of

0.8 ] photons leaves the qubit, whose computational basis is de-

fined by the even and odd coherent states, unchanged, but the

061 loss of an odd number of photons changes the even or odd
"‘04_ 8.; properties of the qubit. If the system loses a few photons and
’ . the intensity of the coherent states is taken infinitely large,
02l 1 then we can roughly say that the loss of an even number of
. photons keeps qubit unchanged, but the loss of an odd num-

0 . . , . ber of photons causes a bit flip error. Such an error can be
o 05 1 L5225 3 corrected by some unitary operation. But if the computa-

tional basis is defined by the vacuum and single-photon
FIG. 3. Evolution of fidelitiesF’(7) (dashed curve given by  states, a single-photon loss is an irreversible process, we can-
Eq. (62), andF(7) (solid curves, given by Eq.(58), for different  not find any unitary operation to correct this error resulting

values of intensitye/?. from a single photon loss. So in the amplitude damping
channel, the use of the even and odd coherent states as logi-
IV. CONCLUSIONS AND DISCUSSIONS cal qubit is more suitable than the use of the vacuum and

single-photon state as logical stafé2,13.

Using a simple operator algebra solution, we have derived When the qubit states, whose computational basis is de-
the Kraus representation of a harmonic oscillator sufferingined by the even and odd coherent states, enter the phase
from the zero temperature environmental effect, which isdamping channels, the even and odd properties will not be
modeled as the amplitude damping or the phase damping. thanged, however all off-diagonal terms of the qubit density
is worth noting that we could not derive a compact form formatrices gradually vanish. Then the originally pure states
the Kraus representation when the environment is initially inchange into mixtures of states because of the random scat-
the thermal field, because it becomes very difficult to distin-tering of the environment on the system even without loss of
guish the number of photons detected by the environmerphotons. It is much more difficult to correct such an error. So
and that absorbed by the system due to the existence of tiibe use of the even and odd coherent states as logical qubit
thermal field, which can excite the system to higher statestates cannot solve the problem of the phase damping.

[14].
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