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The optimized version of the Deutsch-Jozsa algorithm proposed by Collinset al.was implemented using the
three19F nuclear spins of 2,3,4-trifluoroaniline as qubits. To emulate the behavior of pure quantum-mechanical
statespseudopure statesof the ensemble were prepared prior to execution of the algorithm. Full tomography of
the density matrix was employed to obtain detailed information about initial, intermediate, and final states.
Information, thus obtained, was applied to optimize the pulse sequences used. It is shown that substantial
improvement of the fidelity of the preparation may be achieved by compensating the effects caused by the
different relaxation behavior of the different substates of the density matrix. All manipulations of the quantum
states were performed under the conditions of unresolved spin-spin interactions.
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I. INTRODUCTION

Theoretical aspects of quantum information processing
and, in particular, quantum computing have been published
already extensively[1–13]. In contrast, only very few cases
of experimental implementations have been reported, mostly
with liquid-state NMR [14–25]. Besides the more recent
demonstration of the two-qubit Deutsch-Jozsa(DJ) algo-
rithm in an ion trap setup[26], already several years ago the
two-qubit version of the DJ algorithm[16,19,21,27] and a
little later the three-qubit Collins version of the DJ algorithm
[28] were emulated by liquid-state NMR experiments[23].

The first implementation of the Collins version of the DJ
algorithm was reported by Arvindet al. [23]. In this contri-
bution, we extend their work by preparing all eight
pseudopure initial density matricesr000–r111 to be used as
input to the algorithm and performing a complete tomogra-
phy of the input and output states of the different oracle
functions.

Another major difference with respect to the implementa-
tion presented by Arvind is that we are dealing with a system
of nonresolved spin-spin interactions. That is, there is no line
splitting due to these interactions in the NMR spectrum and
only spin-selective transitions can be excited. In contrast to
the commonly reported liquid-state NMR quantum comput-
ing, this situation is more akin to the one found in solids. The
implementation and tomography presented here will, there-
fore, also be applicable to other quantum computing sce-
narios where only qubit-selective manipulations are possible.

Compared to the conditions of nonresolved spin-spin in-
teractions, high-resolution NMR spectra provide more infor-
mation on the quantum-mechanical state of the system. How-
ever, whether spin couplings are resolved or not, most of the
correlation terms of the density matrix are not available from
simple spectra. More elaborate techniques are thus required.

Therefore, we have used the full tomography of the 838
density matrices to obtain complete knowledge of the
quantum-mechanical states of the spin system.

II. DEUTSCH-JOZSA ALGORITHM AND ITS OPTIMIZED
VERSION

The Deutsch-Jozsa algorithm was one of the first quantum
algorithms implemented with nuclear spins in liquid-state
NMR [16,19,27]. In the following, we briefly summarize the
concepts of the Deutsch-Jozsa algorithm.

A. Deutsch-Jozsa problem

The Deutsch-Jozsa problem[2] considers a set of func-
tions which map a binary string of lengthN to a single bit:

f:Z2N ° Z2. s1d

We are given an opaque physical deviceUf (called anoracle
for f) which when given an inputi will produce the corre-
sponding outputfsid of ana priori unknown functionf from
the set defined in Eq.(1). The task consists of answering the
question whether the functionf has any of the two proper-
ties: (i) it is constant or(ii ) it is balanced, meaning that
applied to all possible inputs it outputs 0 exactly as often as
1. Deutsch and Jozsa have shown that, for a reasonable
model of the oracleUf, a quantum computer can solve this
problem exponentially faster than a classical computer.

B. Optimized version of the Deutsch-Jozsa algorithm

The original version of the algorithm requiredN+1 qubits
for a N-bit function and two applications ofUf. Later, Cleve,
Ekert, Macchiavello, and Mosca(CEMM) modified the
Deutsch-Jozsa algorithm by reducing the number of evalua-
tions of Uf to one[29]. Collins, Kim, and Holton removed
the requirement of an ancilla qubit[28]. We used this opti-
mized version of the DJ algorithm for the work reported
here.
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The block diagram for this extended version of the algo-
rithm is shown in Fig. 1. Hereu0lN is the initial state with all
N qubits in stateu0l. The application ofUf is defined by

u0lN→
HN 1

Î2N o
k=0

2N−1

uklN→
Uf 1

Î2N o
k=0

2N−1

3s− 1d fskduklN→
HN 1

2N o
k=0

2N−1

s− 1d fskd o
m=0

2N−1

s− 1d o
j=0

N−1
mjkjumlN.

s2d

HN=H ^ H ^ ¯ ^ H ^ H is theHadamardtransform applied
to all N qubits simultaneously. The Hadamard transform of
one qubit is defined by

H =
1
Î2

S1 1

1 − 1
D s3d

and is equal to its inverse. The decision on the class of the
test function is based upon the amplitude of the stateu0lN in
the output state:

Psu0lNd =
1

2NU o
k=0

2N−1

s− 1d fskdU = H 1 if f constant,

0 if f balanced.
s4d

III. EXPERIMENT

All manipulations were implemented using liquid-state
NMR at 313 MHz. The compound used was pure 2,3,4-
trifluoroaniline whose molecular structure and19F free in-
duction decay(FID) spectrum are shown in Fig. 2. The
chemical shifts andJ couplings were obtained through a
standard two-dimensional(2D) echo modulation experiment
and are summarized in Table I. The coupling between spins 1

and 3 is very weak compared to the next-neighbor couplings
and all couplings are much smaller than the chemical shifts.
In addition, J12<J23<20 Hz. Thus, the following approxi-
mate Hamiltonian was used in all calculations:

H = v1I z1
+ v2I z2

+ v3I z3
+ 2pJsI z1

I z2
+ I z2

I z3
d. s5d

Relaxation times of the three spins at room temperature dif-
fer slightly and lie in the rangeT1=3.3–4.7 s,T2=200 ms.

Selective excitation was achieved through soft rf pulses of
2 ms duration applied separately or simultaneously. To re-
duce undesired effects on neighboring spins, the pulses were
given a Fermi-type envelope. Required rotation angles were
adjusted by choosing proper rf-pulse amplitudes. Gradient
pulses required for the preparation of pseudopure states were
implemented by an additional coil parallel to the main field.
Pulse lengths were on the same order of magnitude as those
of the rf pulses. Instead of the Hadamard transform, we used
p /2 pulses in they direction and their inverses where appro-
priate. More details can be found in[30].

IV. PREPARATION AND TOMOGRAPHY OF
PSEUDOPURE STATES

A. Notation

1. Density matrices

The density matrices for a system of threeI =1/2 spins
are Hermitian 838 matrices. The density matrices of the
pure states of such a system have all elements equal to 0
except for one element on the main diagonal, which is equal
to 1. E.g., the pure stater000 is given by

TABLE I. Chemical shifts andJ couplings of the19F in 2,3,4
trifluoroaniline. Chemical shifts are given relative to spin number 2.
Note that the numbering of spins is different from the chemical
nomenclature.

2 3 1

2 0 ppm 20.0 Hz 19.3 Hz

3 6.48 ppm 1.5 Hz

1 13.28 ppm

TABLE II. Parameters for the preparation sequence for the
pseudopure states.

r 000 001 010 011 100 101 110 111

h p /3 p /3 p /3 p /3 2p /3 2p /3 p /3 p /3

x p /4 p /4 p /4 p /4 −3p /4 p /4 p /4 p /4

j1 0 0 0 0 0 0 p p

j2 p p 0 0 p p 0 0

j3 −3p /4 p /4 −3p /4 p /4 −3p /4 −3p /4 −3p /4 p /4

FIG. 1. Block diagram of the CEMM version of the Deutsch-
Jozsa algorithm forN qubits.

FIG. 2. Molecular structure and the spectrum of 2,3,4
trifluoroaniline.
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r000=1
1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2 . s6d

For the purpose of discussion of NMR experiments, the den-
sity matrices are most conveniently expressed in the basis of
the spin component operators:

hI 0,I ai
,I ai

I b j
,I ai

I b j
I gk

j, s7d

whereI 0 is the 838 identity matrix,a ,b ,gP hx,y,zj denote
the spin components, andi , j ,kP h1,2,3j the spin numbers.
Product terms with multiple occurrences of the same spin
component operator are excluded. The termI z1

I x3
, for in-

stance, is constructed by taking the dyadic productI z1
I x3

= I z^ I 0 ^ I x of the spin-1/2 matrices and the 232 identity
matrix.

Using this basis, the pure stater000 can be written as

r000= 1
8I 0 + 1

4I z1
+ 1

4I z2
+ 1

4I z3
+ 1

2I z1
I z2

+ 1
2I z2

I z3
+ 1

2I z3
I z1

+ I z1
I z2

I z3
. s8d

The representation of the other pure states consists of the
same terms with different sign combinations.

2. Pulse sequences

In the description of the pulse sequences the following
shorthand notation is used.

(a) rf pulses:

Pxj
sb,fd = e−ifIzje−ibIxjeifIzj s9d

special cases of which are

Pxj
sbd = Pxj

sb,0d,

P−xj
sbd = Pxj

sb,pd,

Pyj
sbd = Pxj

sb,p/2d,

P−yj
sbd = Pxj

sb,− p/2d.

(b) Gradient pulses:

G =
1

2p
E

b=0

2p

db Pz1,2,3
sbd. s10d

(c) free evolution under an arbitrary and time depen-
dent HamiltonianH:

Ustd = T expS− iE
0

t

dt HstdD , s11d

whereT is the Dyson time ordering operator.
The unitary transformation of density matrices by pulse

sequences are abbreviated by applying the Liouville notation
as in the following[31].

(a) rf pulses:

Pxj
sb,fdurd = Pxj

sb,fdrPxj
s− b,fd. s12d

(b) Gradient pulses:

Gr =
1

2p
E

b=0

2p

db Pz1,2,3
sbdrPz1,2,3

s− bd. s13d

(c) Free evolution:

Ustdurd = FT expS− iE
0

t

dt HstdDGrFT

3expSiE
0

t

dt HstdDG . s14d

The pulses in a sequence are written from right to left in the
order in which they are applied. Multiple spin numbers im-
ply that the pulse is applied to several spins simultaneously
as are successive commuting pulses.

B. Preparation

1. Sequence

The pulse sequence used for the preparation of the eight
pseudopure states starting at theBoltzmann statemay be
written as

uri jkd = G · Px3
sj3d · Px2

sj2d · Px1
sj1d·Ustd · P−x1,2,3

spd ·Ustd · Py1
sxd·G · Px1

S3p

4
D ·Ustd · P−x1,2,3

spd ·Ustd · Py1
Sp

4
D

·G · Py2
sb2d·Ustd · P−x1,2,3spd ·Ustd · P− y2

sb2d·GPx2
sb1d · Px1,3

shdurBd, s15d

whereb1=arccoss3/4d andb2=arccoss1/Î3d. The free evo-
lution time is t=1/4 J. The parameters required to obtain
each of the possible states are given in Table II.

The basic blocks of the sequence are more clearly recog-
nized in the representation shown in Table III. HereX, Y, and
Z indicate the rotation direction of an rf pulse, the rotation
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angle is given after the comma. “U ,t” indicates a period of
free evolution for timet, and¹ means a gradient pulse. In all
tables representing pulse sequences, pulses are applied start-
ing in the upper left corner. They apply to the spins indicated
on the left. The consecutive segments of the sequence are
separated by the horizontal lines.

2. Tomography

Most terms of the density matrix—namely, all operator
products—cannot be observed in NMR because their product
with the measurement operator has a vanishing trace. Even
under the conditions of fully resolved spin-spin interactions
more commonly encountered in high-resolution NMR, full
density matrix information is not available from simple
NMR spectra. In our case, terms of the formI ai

I b j
and all

higher-order products cannot be detected directly. Thus, as
one can see from Eq.(8), much of the information in the
density matrix is not accessible to direct measurement. Den-
sity matrix tomography is therefore mandatory to obtain this
information. In high-resolution NMR part of the density ma-
trix is visible already in the sign and phase of the NMR lines.
It has been further shown that details of the density matrix
can be extracted from two-dimensional spectroscopy[32]. In
our situation, however, the spin interactions are not resolved
and we must resort to alternative tomography concepts
which will be applicable in the general case.

In this procedure, suitable pulse sequences are employed
to convert the higher-order operator products to linear terms
for detection. Two basic sequences were used for such con-
versions. These sequences are designed to convert the off-
diagonal elements of the corresponding density matrix to ob-
servable operators. To summarize, only theI xi

and I yi
are

accessible to direct measurement.I zi
is readily converted to

one of these through a simplep /2 pulse.I z1
I z2

andI z2
I z3

can
be converted toI z1

andI z2
, respectively, using variants of the

sequence in Table VII(a) in the Appendix.I z1
I z2

I z3
can be

converted toI z2
using the sequence in Table VII(b). I z1

I z3
can

be converted toI z2
by applying both sequences successively.

Product terms containingx and y components are readily
converted to purez-term products through simple selective
pulses and are then accessible to tomography as above.

In order to account for losses due to relaxation and pulse
errors, the losses were calibrated by applying two sequences

of the same type consecutively and comparing the signal
amplitudes before and after.

3. Results

Using this preparation and tomography procedure, we
prepared and measured the density matricesr000–r111. A se-
lection sr000–r011d of the prepared states is shown in Fig. 3.

The density matrices clearly show deviations from the
desired form. This can be attributed to nonuniform relaxation
and different error sensitivity of the different elements of the
density matrix. Since the preparation sequence employs gra-
dient pulses and is, thus, essentially nonunitary(“lossy”), it
is possible to improve on the overall result by adjusting suit-
able rotation angles and thus boosting appropriate relative
amplitudes. The pulses within the preparation sequence
which were chosen for such adjustments are highlighted in
Table III. Using this procedure it was possible to obtain den-
sity matrices with a fidelity of F.0.95 for all eight
pseudopure states where we have used the definition

F = 1 −
1

2
Trhurexpt− rtheoru2j. s16d

The measured density matrices were normalized according to
Trhrexptj=1.

To demonstrate the achievable improvement, we juxta-
pose the two cases forr000 in Fig. 4.

V. IMPLEMENTATION OF THE COLLINS VERSION OF
THE DEUTSCH-JOZSA ALGORITHM

A. Selection of oracles

The total number of functions is 22N
whereas the number

of functions allowed for the Deutsch problem grows with the
width N of the input as

S 2N

2N−1D + 2. s17d

Table IV shows a comparison of the statistics of the possible
functions with the growing number of input bits. In the case
of three bits, there are 72 functions of interest. Not all of
them, however, are essentially different from the experimen-

TABLE III. Pulse sequence for the preparation of the
pseudopure states.

I1 X, h ¹ U, t −X, p U, t

I2 X, b1 ¹ −Y, b2 U, t −X, p U, t Y, b2

I3 X, h ¹ U, t −X, p U, t

I1 ¹ Y, p/4 U, t −X, p X, 3p/4 ¹

I2 ¹ U, t −X, p ¹

I3 ¹ U, t −X, p ¹ Y, x

I1 U, t −X, p U, t X, j1 ¹

I2 U, t −X, p U, t X, j2 ¹

I3 U, t −X, p U, t X, j3 ¹ FIG. 3. Density matrix tomograms of the selected pseudopure
statesr000–r011.
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tal point of view. First, there is the freedom of reversing the
statesu0l and u1l to spin upand spin down, resulting in a
mirror image function. This halves the number of functions.
We present in Table V examples of some of constant and
balanced oracle functions of the three-qubit CEMM Deutsch-
Jozsa algorithm. The other constant function is of course like
f1 where all zeros are replaced by ones.

For further discussion, it is instructive to represent the
oracles belonging to the remaining functions in the spin op-
erator basis. It turns out that the oracles consist of linear
combinations of certain sets of basis operators. There are
seven such sets:

I 0, s18ad

I z1
,

I z2
, s18bd

I z3
,

I z1
I z2

,

I z1
I z3

, s18cd

I z2
I z3

,

I z1
I z2

I z3
, s18dd

I z1
, I z2

, I z3
, I z1

I z2
I z3

, s18ed

I z1
, I z2

, I z1
I z3

, I z2
I z3

,

I z1
, I z3

, I z1
I z2

, I z3
I z2

, s18fd

I z2
, I z3

, I z1
I z2

, I z2
I z3

,

I z1
, I z1

I z2
, I z1

I z3
, I z1

I z2
I z3

,

I z2
, I z1

I z2
, I z2

I z3
, I z1

I z2
I z3

, s18gd

I z3
, I z1

I z3
, I z2

I z3
, I z1

I z2
I z3

.

Given the appropriate symmetry of the Hamiltonian, all
oracles in a set can be mapped onto each other by exchang-
ing the labels on two qubits. Thus, the implementation se-
quence for all oracles in a set is essentially the same. In
principle, it would be sufficient to implement one oracle out
of each of the seven sets. In this paper we adopt, for com-
parison, the choice of oracles made in[23]. These oracle
functions correspond to the test functions listed in Table V.

Equations(19) show the unitary transforms associated
with these oracle functions written partially as matrices as
well as in the spin operator notation. The transformsU1–U5
involve only z Rotations(one-bit gates), transformsU6 and
U8 involve effective two-bit gates,U9 uses a three-bit gate,
andU7 needs a two-bit gate which is not directly available in
our system due to the coupling network and must be imple-
mented using next-neighbor interactions:

U1 = I 0, s19ad

U2 =1
+ 1 0 0 0 0 0 0 0

0 + 1 0 0 0 0 0 0

0 0 + 1 0 0 0 0 0

0 0 0 + 1 0 0 0 0

0 0 0 0 − 1 0 0 0

0 0 0 0 0 − 1 0 0

0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 0 − 1

2 .

= 2I z1
, s19bd

TABLE IV. Statistics of the oracle functions ofN qubits.

N Total Constant Balanced Rest

1 4 2 2 0

2 16 2 6 8

3 256 2 70 184

TABLE V. The 9 three-qubit oracle functions implemented
here.

f 000 001 010 011 100 101 110 111

f1 0 0 0 0 0 0 0 0

f2 0 0 0 0 1 1 1 1

f3 0 1 0 1 0 1 0 1

f4 0 0 1 1 1 1 0 0

f5 0 1 1 0 1 0 0 1

f6 0 0 0 1 1 1 1 0

f7 0 0 1 1 0 1 1 0

f8 0 1 0 1 0 1 1 0

f9 0 1 0 0 0 1 1 1FIG. 4. Improvement of the fidelity of the preparation of a
pseudopure statesr000d achieved by accounting for the nonuniform
relaxation of different density matrix components. Top: as prepared.
Bottom: after refinement.
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U3 = 2I z3
, s19cd

U4 = 4I z1
I z2

, s19dd

U5 = 4I z1
I z2

I z3
, s19ed

U6 =1
+ 1 0 0 0 0 0 0 0

0 + 1 0 0 0 0 0 0

0 0 + 1 0 0 0 0 0

0 0 0 − 1 0 0 0 0

0 0 0 0 − 1 0 0 0

0 0 0 0 0 − 1 0 0

0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 0 + 1

2
= I z1

+ 2I z1
I z2

+ 2I z1
I z3

− 4I z1
I z2

I z3
, s19fd

U7 = I z2
+ 2I z1

I z2
+ 2I z2

I z3
− 4I z1

I z2
I z3

, s19gd

U8 =1
+ 1 0 0 0 0 0 0 0

0 − 1 0 0 0 0 0 0

0 0 + 1 0 0 0 0 0

0 0 0 − 1 0 0 0 0

0 0 0 0 + 1 0 0 0

0 0 0 0 0 − 1 0 0

0 0 0 0 0 0 − 1 0

0 0 0 0 0 0 0 + 1

2
= I z3

+ 2I z1
I z3

+ 2I z2
I z3

− 4I z1
I z2

I z3
, s19hd

U9 = I z1
+ I z3

− 2I z1
I z2

+ 2I z2
I z3

. s19id

B. Entanglement, mixed vs pseudopure states

1. Entanglement

It has been shown[28] that entanglement between qubits
does not always take place in the course of the Deutsch al-
gorithm: some oracles are entangling in nature and others are
not. Furthermore, entangling oracles only occur starting with
at least three qubits. Here, we discuss the entangling nature
of the oracles we implemented and contrast the expected
results for the cases when theBoltzmannstate is used as
input instead of apseudopurestate.

It can be readily shown that applying the Deutsch algo-
rithm to the pure(or pseudopure) stater000 in Eq. (8) will
produce the following output density matrices for the first
five oracles[Eqs.(20)]:

r1 = S1

2
I 0 + I z1

DS1

2
I 0 + I z2

DS1

2
I 0 + I z3

D , s20ad

r2 = S1

2
I 0 − I z1

DS1

2
I 0 + I z2

DS1

2
I 0 + I z3

D , s20bd

r3 = S1

2
I 0 + I z1

DS1

2
I 0 + I z2

DS1

2
I 0 − I z3

D , s20cd

r4 = S1

2
I 0 − I z1

DS1

2
I 0 − I z2

DS1

2
I 0 + I z3

D , s20dd

r5 = S1

2
I 0 − I z1

DS1

2
I 0 − I z2

DS1

2
I 0 − I z3

D . s20ed

These are clearly fully separable states, so, at least in the
final state, no entanglement is present.

Oracles 6–9[Eqs.(21)] produce entangled density matri-
ces. This is most clearly demonstrated by rotating the output
states into one of the base vectors of an entangled basis by
means of local transformations. This is summarized in the
following equations:

Py2
S−

p

2
Dr6 = S1

2
I 0 − I z1

DS1

4
I 0 + I x2

I x3
+ I y2

I y3
− I z2

I z3
D

= S0 0

0 1
D ^ 1

0 0 0 0

0
1

2

1

2
0

0
1

2

1

2
0

0 0 0 0

2 , s21ad

Py3
S−

p

2
Dr7 = S1

2
I 0 − I z2

DS1

4
I 0 + I x1

I x3
+ I y1

I y3
− I z1

I z3
D ,

s21bd

Py3
S−

p

2
Dr8 = S1

2
I 0 − I z3

DS1

4
I 0 + I x1

I x2
+ I y1

I y2
− I z1

I z2
D ,

s21cd

Py1
spdPy2

S−
p

2
Dr9 =

1

8
I 0 +

1

2
sI z1

I z2
+ I z2

I z3
+ I z1

I z3
d

+ I x1
I x2

I x3
− I x1

I y2
I y3

− I y1
I x2

I y3

− I y1
I y2

I x3

=1
1
2 0 0 0 0 0 0 1

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 1

2

2 .

s21dd
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Up to a local (confined to one qubit) transformation, the
output states for the oraclesU6–U8 correspond to a product
of a one-qubit stateu 1l and theBell stateC+=1/Î2su01l
+ u10ld. The state produced byU9 can be locally transformed
to theGHZ state1/Î2su000l+ u111ld.

2. Input density matrix: Pseudopure vs Boltzmann

The final states shown in Eqs.(21) are only produced if
the pseudopure stater000 from Eq.(8) is used as input to the
algorithm. If one starts, instead, from the Boltzmann state,
like in [23], the final density matrices do not reflect entangle-
ment in any case. We therefore note that our final density
matrices of the DJ algorithm as presented in Figs. 7–9 do
represent the expected entanglement produced by the oracles
U6 andU8.

C. Implementation of oracle functions

The pulse sequences required for the implementation of
these transforms are as follows.U1 is the identity transform
and requires no pulses.U2 and U3 are implemented by ap-
plying a p pulse to the first and third spins, respectively.U4

andU5 require ap rotation of spins 1 and 2 and 1, 2, and 3,
respectively. The other four sequences require two- and
three-qubit gates. They are shown in the Appendix.

After applying the different pulse sequences correspond-
ing to the nine different oracle functions we have evaluated
the decision parameterD—namely, the population of the
stateu000lk000u which according to the DJ algorithm should
be either 1 for the constant functions or 0 for balanced func-
tions together with the fidelityF as defined in Eq.(16). Fi-
delities and the decision parameter for the experimental re-
sults on the Deutsch algorithm are shown in Table VI.

D. Output tomography

The DJ algorithm does not require full knowledge of the
resulting density matrix for the evaluation of the decision
criterion. It is, therefore, common to present just some spec-
tral signatures which are consistent with the expected out-
come of the algorithm. However, in order to evaluate the
performance of the implementation of the algorithm it is nec-
essary to perform a complete tomography of the resulting

density matrix. We have done this for all nine oracle func-
tions and present some of the results in the following.

For all density matrices, one expects a vanishing imagi-
nary part; however, small imaginary contributions were de-
tected experimentally. In the following graphical representa-
tions of the density matrices, we only display the real part.
The imaginary part was considered when calculating the fi-
delities reported.

We start with the identity operationU1 which represents
the only constant function. Although this corresponds to “no
operation” we have implemented it with a similar pulse se-
quence as all the others except for phase settings such that no
effective operation occurs in the ideal situation. Figure 5
shows the comparison between the expected and measured
results for the oracle functionf1. The deviations from the
ideal situation are due to pulse imperfections during prepa-
ration and tomography. Since this is an identity transforma-
tion, it is suitable for the assessment of the fidelity of the
preparation and the tomography procedures.

Figure 6 shows the comparison between the expected and
measured results for the oracle functionf2. The correspond-
ing unitary transformation involves only a spin-1z rotation.
Note thatf2 is a balanced function and correspondingly the
population of the stateu000lk000u is close to zero like for all
the other balanced function.

The next two functionsf6 (Fig. 7) and f8 (Fig. 8) involve
two-spin and three-spin gates. In the course of the quantum
algorithm the corresponding unitary transformations generate
entangled states, as described in Sec. V B 1. To emphasize
the Bell-like entangled structure of the obtained density ma-
trix, we subjected the data forU6 to a local transform accord-
ing to

TABLE VI. Fidelity and decision parameter for the experimental implementation of the DJ algorithm.

r1 r2 r3 r4 r5 r6 r7 r8 r9

D 0.862 0.206 0.121 0.051 −0.066 0.084 0.015 0.027 0.184

F 0.862 0.874 0.879 0.897 0.905 0.891 0.819 0.862 0.646

FIG. 5. Comparison between the theoretically expected(top)
and experimentally obtained(bottom) output density matrix for the
Cleve-Deutsch-Jozsa algorithmsU1d.
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to obtain the BellF+ state which is more suitable for graphi-
cal representation. Figure 9 shows a comparison between the
theoretically expected and experimentally obtained density
matrices.

VI. SUMMARY

We have implemented the CEMM version of the Deutsch-
Jozsa algorithm for three qubits with three19F nuclear spins
in trifluoroaniline by applying liquid-state NMR. As an ex-
tension of earlier work[23] we have started from pseudopure

density matrices as initial states and have performed exten-
sive density matrix tomography of the final density matrices.
This allowed us to verify the performance of the experimen-
tal implementation and on the other hand to investigate the
type of entanglement involved in some of the oracle func-
tions. Moreover, the type of our implementation and tomog-
raphy can be considered a template for the general case en-
countered usually in solids and other systems where the spin
interactions are not resolved and only spin—but not
transition-selective irradiation—can be performed.
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FIG. 6. Comparison between the theoretically expected(top)
and experimentally obtained(bottom) output density matrix for the
Cleve-Deutsch-Jozsa algorithmsU2d.

FIG. 7. Comparison between the theoretically expected(top)
and experimentally obtained(bottom) output density matrix for the
Cleve-Deutsch-Jozsa algorithmsU6d.

FIG. 8. Comparison between the theoretically expected(top)
and experimentally obtained(bottom) output density matrix for the
Cleve-Deutsch-Jozsa algorithmsU8d.

FIG. 9. Output density matrix for the oracleU6 after a local
rotation onto the Bell stateF+ in the subspace of spins 2 and 3.

MANGOLD, HEIDEBRECHT, AND MEHRING PHYSICAL REVIEW A70, 042307(2004)

042307-8



APPENDIX: PULSE SEQUENCES

For completeness, we list the pulse sequences used for density matrix tomography and implementation of the oracle
functions in Tables VII–IX. The following notation is used:X, Y, and Z indicate the rotation direction of an rf pulse; the
rotation angle is given after the comma. “U ,t” indicates a period of free evolution for timet, and¹ means a gradient pulse.
In all tables representing pulse sequences, pulses are applied starting in the upper left corner. They apply to the spins indicated
on the left. Consecutive segments of the sequence are separated by horizontal lines.

The pulse sequence for the oracleU7 needs to be rather long because there is no sufficient direct coupling between spins 1
and 3 so that next-neighbor couplings must be used instead.

TABLE VII. Pulse sequences used for density matrix tomography:(a) conversion of the termI z1
I z2

to I z1
,

(b) conversion of the termI z1
I z2

I z3
to I z2

.

(a)
I1 Y, p/2 U, 1/4J X, p U, 1/4J −X, p/2 ¹
I2 U, 1/4J X, p U, 1/4J ¹
I3 U, 1/4J U, 1/4J ¹

(b)
I1 U, 1/4J X, p U, 1/4J ¹
I2 Y, p/2 U, 1/4J X, p U, 1/4J −Y, p/2 ¹
I3 U, 1/4J X, p U, 1/4J ¹

TABLE VIII. Pulse sequence implementing the oraclesU6 andU7 of the Deutsch-Jozsa algorithm.

U6
I1 U, 1/4J X, p U, 1/4J ¹
I2 Y, p/2 U, 1/4J X, p U, 1/4J −Y, p/2 ¹
I3 U, 1/4J X, p U, 1/4J ¹

U7
I1 −Z, p/2 U, 1/8J U, 1/8J X, p U, 1/8J
I2 Z, p U, 1/8J U, 1/8J X, p U, 1/8J
I3 −Z, p/2 U, 1/8J X, p U, 1/8J U, 1/8J −X, p

I1 U, 1/8J −X, p U, 1/8J X, p U, 1/8J
I2 U, 1/8J Y, p/2 Z, p U, 1/8J U, 1/8J X, p
I3 U, 1/8J U, 1/8J U, 1/8J X, p

I1 U, 1/8J −X, p U, 1/8J U, 1/8J U, 1/8J
I2 U, 1/8J U, 1/8J −X, p/2 U, 1/8J U, 1/8J
I3 U, 1/8J U, 1/8J −X, p U, 1/8J X, p U, 1/8J

I1 X, p U, 1/8J U, 1/8J −X, p U, 1/8J X, p
I2 X, p U, 1/8J U, 1/8J Y, p/2 U, 1/8J
I3 U, 1/8J −X, p U, 1/8J U, 1/8J

I1 U, 1/8J U, 1/8J −X, p U, 1/8J −Z, p/2
I2 U, 1/8J X, p U, 1/8J U, 1/8J −X, p/2
I3 U, 1/8J X, p U, 1/8J U, 1/8J −X, p Z, p/2

TABLE IX. Pulse sequence implementing the oraclesU8 andU9 of the Deutsch-Jozsa algorithm.

U8
I1 −Z, p/2 U, 1/8J U, 1/8J X, p U, 1/8J
I2 −Z, p/2 U, 1/8J U, 1/8J X, p U, 1/8J
I3 Z, p U, 1/8J X, p U, 1/8J U, 1/8J −X, p

I1 U, 1/8J −X, p
I2 U, 1/8J −X, p
I3 U, 1/8J

U9
I1 −Z, p/2 Y, p U, 1/8J X, p U, 1/8J
I2 U, 1/8J X, p U, 1/8J −X, p
I3 Z, p/2 U, 1/8J X, p U, 1/8J −X, p
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