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NMR tomography of the three-qubit Deutsch-Jozsa algorithm
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The optimized version of the Deutsch-Jozsa algorithm proposed by Cetladswas implemented using the
three!®F nuclear spins of 2,3,4-trifluoroaniline as qubits. To emulate the behavior of pure quantum-mechanical
stategpseudopure statesf the ensemble were prepared prior to execution of the algorithm. Full tomography of
the density matrix was employed to obtain detailed information about initial, intermediate, and final states.
Information, thus obtained, was applied to optimize the pulse sequences used. It is shown that substantial
improvement of the fidelity of the preparation may be achieved by compensating the effects caused by the
different relaxation behavior of the different substates of the density matrix. All manipulations of the quantum
states were performed under the conditions of unresolved spin-spin interactions.
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I. INTRODUCTION Therefore, we have used the full tomography of the &8

Theoretical aspects of quantum information processing!€nsity matrices to obtain complete knowledge of the
and, in particular, quantum computing have been publisheguantum-mechanical states of the spin system.
already extensivelyl-13. In contrast, only very few cases
of experimental implementations ha\_/e been reported, mostly, pEUTSCH-JOZSA ALGORITHM AND ITS OPTIMIZED
with liquid-state NMR [14-25. Besides the more recent VERSION
demonstration of the two-qubit Deutsch-Joz&a)) algo-
rithm in an ion trap setup26], already several years ago the  The Deutsch-Jozsa algorithm was one of the first quantum
two-qubit version of the DJ algorithrf16,19,21,27 and a  algorithms implemented with nuclear spins in liquid-state
little later the three-qubit Collins version of the DJ algorithm NMR [16,19,27. In the following, we briefly summarize the
[28] were emulated by liquid-state NMR experimef2s)]. concepts of the Deutsch-Jozsa algorithm.

The first implementation of the Collins version of the DJ
algorithm was reported by Arvindt al. [23]. In this contri-
bution, we extend their work by preparing all eight
pseudopure initial density matricggyo—p111 to be used as  The Deutsch-Jozsa problef] considers a set of func-
input to the algorithm and performing a complete tomogra-tions which map a binary string of lengt to a single bit:
fpuhrilct(i);ntshe input and output states of the different oracle F i T, 1)

_ Another major diffe.renlce with respect to _the implementa—We are given an opaque physical devig¢ge(called anoracle

tion presented by Arvind is that we are dealing with a systemfor f) which when given an inpuit will produce the corre-

of nonresolved spin-spin interactions. That is, there is no Imegponding outpuf(i) of ana priori unknown functionf from
splitting due to these interactions in the NMR spectrum anghe set defined in Eq1). The task consists of answering the
only spin-selective transitions can be excited. In contrast tquestion whether the functiohhas any of the two proper-
the commonly reported liquid-state NMR quantum comput+ies: (i) it is constant or(ii) it is balanced, meaning that
ing, this situation is more akin to the one found in sol_|ds. Theapplied to all possible inputs it outputs 0 exactly as often as
implementation and tomography presented here will, there1, peutsch and Jozsa have shown that, for a reasonable
fore, also be applicable to other quantum computing scemodel of the oracldJ;, a quantum computer can solve this

narios where only qubit-selective manipulations are possiblgyroblem exponentially faster than a classical computer.
Compared to the conditions of nonresolved spin-spin in-

teractions, high-resolution NMR spectra provide more infor- o _ _
mation on the quantum-mechanical state of the system. How-  B. Optimized version of the Deutsch-Jozsa algorithm

ever, whether spin couplings are resolved or not, most of the The original version of the algorithm requirét 1 qubits

correlation terms of the density matrix are not available fromfor a N-bit function and two applications af;. Later, Cleve,

simple spectra. More elaborate techniques are thus requiregkert, Macchiavello, and Mosc&CEMM) modified the
Deutsch-Jozsa algorithm by reducing the number of evalua-
tions of Us to one[29]. Collins, Kim, and Holton removed

A. Deutsch-Jozsa problem

*Electronic address: m.mehring@physik.uni-stuttgart.de; the requirement of an ancilla qulji28]. We used this opti-
URL: http://www.physik.uni-stuttgart.de/ExPhys/2.Phys.Inst./ mized version of the DJ algorithm for the work reported
MMgroup/index.html here.
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|0), Meas. trifluoroaniline. Chemical shifts are given relative to spin number 2.
Note that the numbering of spins is different from the chemical
nomenclature.

TABLE I. Chemical shifts and couplings of the™F in 2,3,4
N HN Uf HN

FIG. 1. Block diagram of the CEMM version of the Deutsch-
Jozsa algorithm foN qubits.

2 3 1
The block diagram for this extended version of the algo-2 0 ppm 20.0 Hz 19.3 Hz
rithm is shown in Fig. 1. Her{D), is the initial state with all 3 6.48 ppm 1.5Hz
N qubits in statg0). The application ofJ; is defined by 1 13.28 ppm

N
Hy Us 21

2N-1
1 1
|O>NH@ g) |k>'\‘_>@ g) and 3 is very weak compared to the next-neighbor couplings

N . and all couplings are much smaller than the chemical shifts.
Hy 1 2t 21 N-1 In addition, J;,~ J,3~ 20 Hz. Thus, the following approxi-
X(= 1)f(k)|k>N—>§ 2 DD (= 1) ZmNmy. mate Hamiltonian was used in all calculations:
k=0 m=0

)

Hy=H®H® ---®H®H is theHadamardtransform applied
to all N qubits simultaneously. The Hadamard transform of
one qubit is defined by

H=wl, +wply,+ w3l +2m(1 1, +1,1,).  (5)

5

Relaxation times of the three spins at room temperature dif-
111 fer slightly and lie in the rang&,=3.3-4.7 s,T,=200 ms.
B \_E 1 -1 S Selective excitation was achieved through soft rf pulses of
2 ms duration applied separately or simultaneously. To re-
and is equal to its inverse. The decision on the class of th@uce undesired effects on neighboring spins, the pulses were
test function is based upon the amplitude of the s@jigin  given a Fermi-type envelope. Required rotation angles were

H

the output state: adjusted by choosing proper rf-pulse amplitudes. Gradient
MNoq _ pulses required for the preparation of pseudopure states were
_1 S (-] = 1 if f constant, implemented by an additional coil parallel to the main field.
PO = N & -1 " |0 if f balanced. ) Pulse lengths were on the same order of magnitude as those

of the rf pulses. Instead of the Hadamard transform, we used
7/ 2 pulses in the direction and their inverses where appro-
priate. More details can be found jB0].

I, EXPERIMENT
All manipulations were implemented using liquid-state
NMR at 313 MHz. The compound used was pure 2,3,4- IV. PREPARATION AND TOMOGRAPHY OF
trifluoroaniline whose molecular structure ahd free in- PSEUDOPURE STATES
ductiqn decqy(FID) spectrgm are shown 'in Fig. 2. The A. Notation
chemical shifts andl couplings were obtained through a _ _
standard two-dimension#2D) echo modulation experiment 1. Density matrices

and are summarized in Table I. The coupling between spins 1 ) ) )
The density matrices for a system of threel/2 spins

are Hermitian 8<8 matrices. The density matrices of the

NH,
pure states of such a system have all elements equal to 0
F@O except for one element on the main diagonal, which is equal
to 1. E.g., the pure staf&), is given by
FQ) .
TABLE Il. Parameters for the preparation sequence for the
FQ pseudopure states.
® ® ® p 000 001 010 011 100 101 110 111
n w3 @3 @3 #I3 2wl/3 2#/3 w3 w3
X wl4d wld wld w4 -3wld w4 w4 w4
3 4 5 6 7
¢ (KHz] & 0 0 0 0 0 0 T ow

& T T 0 0 T T 0 0
FIG. 2. Molecular structure and the spectrum of 2,3,4§3 —3mwl4 w4 -3mld w4 -37l4 -3wld -3wld4 w4
trifluoroaniline.
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Py (B) = Py (B,12),

P—yj(ﬂ) = ij(IBa_ 77/2)

b) Gradient pulses:
Pooo= (6) ®) P )

1
G=5r) 8 Pu 4B (10)

O O O O O O -
O O O O O o o
O O O O O o o
O O O O O o o
O O O O O o o
O O O O O o o
O O O O O O

(c) free evolution under an arbitrary and time depen-
dent HamiltoniarH:

O O O O O o o o

00O0OO0O0DO

For the purpose of discussion of NMR experiments, the den- ,
sity matrices are most conveniently expressed in the basis of U(D =T exp (_ if dt H(t)) (11)
the spin component operators: 0 ’

{lo,1 ai,lailﬂj,lailﬂjl e } (7 whereT is the Dyson time ordering operator.
The unitary transformation of density matrices by pulse
wherel is the 8x 8 identity matrix,a, 8,y € {X,y,z} denote  sequences are abbreviated by applying the Liouville notation
the spin components, andj,k e {1,2,3 the spin numbers. 3s in the following[31].

Product terms with multiple occurrences of the same spin (@) rf pulses:
component operator are excluded. The tdf{lmxa- for in-

stance, is constructed by taking the dyadic prodq«ljtx3 ij('B Do) = ij(,8 D)p PXJ(_ B.®). (12
=1,@lo®I, of the spin-1/2 matrices and thex2 identity (b) Gradient pulses:
matrix. 5
Using this basis, the pure st can be written as 1
¢ Pure Staio Gp=5_| dBP,,(BWP,,(-B. (13
_1 1 1 1 1 1 1 27 g 2, 2,
Pooo=glo+ lel+ Z|22+ Z|13+ §|21|22+ 5'22|z3+ §|z3| 7
(c) Free evolution:
i PAPAPS (8) ]
The representation of the other pure states consists of the U(7)|p) = {T exp(—if dt H(U)]P[T
same terms with different sign combinations. 0
2. Pulse sequences XeXp<ifo dt H@)} : (14
In the description of the pulse sequences the following_l_ ] ] ] )
shorthand notation is used. he pulses in a sequence are written from right to left in the
(@ rf pulses: order in which they are applied. Multiple spin numbers im-
‘ S ply that the pulse is applied to several spins simultaneously
PXJ_(,B, @) = e Pzign Plxig ¥z (9)  as are successive commuting pulses.
special cases of which are B. Preparation
P, (8) =P, (8,0), 1. Sequence
: : The pulse sequence used for the preparation of the eight
_ pseudopure states starting at tBeltzmann statemay be
P‘XJ('B )= PXJ‘('B ), written as
|
3 T
|pijk) =G- Px3(§3) ) Px2(§2) : le(gl)'U(T) ) P_X1,2,3(7T) U(T) ) Pyl(X)'G ’ le 7 ’ U(T) : P_X1,2,3(7T) ’ U(T) : IDyl Z
G- Pyz(BZ)'U(T) ' P—xl,2,3(77) ' U(T) -P- yZ(BZ)'Gsz(Bl) ' PXl,S( 77)|PB)1 (15)
[
where 8;=arcco$3/4) and 8,=arcco$l/ \@). The free evo- The basic blocks of the sequence are more clearly recog-
lution time is 7=1/4 J. The parameters required to obtain nized in the representation shown in Table Ill. H¥eY, and
each of the possible states are given in Table II. Z indicate the rotation direction of an rf pulse, the rotation
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TABLE |Ill. Pulse sequence for the preparation of the
pseudopure states.

. X, 5 \Y% u, r =X, T U, r

|2 X, Bl V _Y, BZ U, T _X, a U, T Y, Bz

I X, @ \Y% U, r =X, 7 U,

Iy vV Y,7/4 U, X7 X 3w/4 V

Iy \Y Ur X \Y
I3V Ur —Xm vV Y.x

I, U7 X U, X, & \Y

|2 U, T _X, T U, X] §2 V . .

s U7 X = U7 X & v FIG. 3. Density matrix tomograms of the selected pseudopure

statespoog—pPo11:

w_n

angle is given after the commal)’ 7" indicates a period of of the same type consecutively and comparing the signal
free evolution for timer, andV means a gradient pulse. In all amplitudes before and after.

tables representing pulse sequences, pulses are applied start-

ing in the upper left corner. They apply to the spins indicated 3. Results

on the left. The consecutive segments of the sequence are

separated by the horizontal lines. Using this preparation and tomography procedure, we

prepared and measured the density matriggs-p111- A Se-
2. Tomography lection (ppog—po11) Of the prepared states is shown in Fig. 3.
Most terms of the density matrix—namely, all operator ~The density matrices clearly show deviations from the
products—cannot be observed in NMR because their produétesired form. This can be attributed to nonuniform relaxation
with the measurement operator has a vanishing trace. Eveand different error sensitivity of the different elements of the
under the conditions of fully resolved spin-spin interactionsdensity matrix. Since the preparation sequence employs gra-
more commonly encountered in high-resolution NMR, full dient pulses and is, thus, essentially nonunitéyssy”), it
density matrix information is not available from simple is possible to improve on the overall result by adjusting suit-
NMR spectra. In our case, terms of the fotpl ; and all able rotation angles and thus boosting appropriate relative
higher-order products cannot be detected directly. Thus, a@Mplitudes. The pulses within the preparation sequence
one can see from Eq8), much of the information in the Which were chosen for such adjustments are highlighted in
density matrix is not accessible to direct measurement. Dentable lIl. Using this procedure it was possible to obtain den-
sity matrix tomography is therefore mandatory to obtain thisSity matrices with a fidelity ofF>0.95 for all eight
information. In high-resolution NMR part of the density ma- PSeudopure states where we have used the definition
trix is visible already in the sign and phase of the NMR lines. 1
It has been further shown that details of the density matrix F=1-=Tr{|pexpt~ Ptheol}- (16)
can be extracted from two-dimensional spectrosd@2y. In 2

our situation, however, the spin interactions are not resolvedhe measured density matrices were normalized according to
and we must resort to alternative tomography conceptﬁ-r{pexp‘}: 1.

which vyill be applicable' in the general case. To demonstrate the achievable improvement, we juxta-
In this procedure, suitable pulse sequences are employgghse the two cases faigg in Fig. 4.

to convert the higher-order operator products to linear terms

for detection. Two basic sequences were used for such con-

versions. These sequences are designed to convert the offy. IMPLEMENTATION OF THE COLLINS VERSION OF

diagonal elements of the corresponding density matrix to ob- THE DEUTSCH-JOZSA ALGORITHM

servable operators. To summarize, only theand I, are

accessible to direct measuremelr;‘,t.is readily converted to

one of these through a simpte/'2 pulse.l, |, andl, |, can The total number of functions is?2whereas the number

be converted té, andl,, respectively, using variants of the of functions allgwed for the Deutsch problem grows with the

sequence in Table M) in the Appendix.|, |, can be width N of the input as

converted td 2 using the sequence in Table h). 2,12, can oN

be converted td,, by applying both sequences successively. ( ) +2.

Product terms containing and y components are readily

converted to pure-term products through simple selective Table IV shows a comparison of the statistics of the possible

pulses and are then accessible to tomography as above. functions with the growing number of input bits. In the case
In order to account for losses due to relaxation and pulsef three bits, there are 72 functions of interest. Not all of

errors, the losses were calibrated by applying two sequencékem, however, are essentially different from the experimen-

A. Selection of oracles

N1 (17)

042307-4
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TABLE V. The 9 three-qubit oracle functions implemented
here.

f 000 001 010 0112 100 101 110 1112

fq 0 0 0 0 0 0 0 0
fy 0 0 0 0 1 1 1 1
fa 0 1 0 1 0 1 0 1
fy 0 0 1 1 1 1 0 0
fs 0 1 1 0 1 0 0 1
fs 0 0 0 1 1 1 1 0
f, 0 0 1 1 0 1 1 0
fg 0 1 0 1 0 1 1 0
FIG. 4. Improvement of the fidelity of the preparation of a f4 0 1 0 0 0 1 1 1
pseudopure statiggy) achieved by accounting for the nonuniform
relaxation of different density matrix components. Top: as prepared.
Bottom: after refinement. Izlv |zz- Izll zy Izzl zy
tal point of view. First, there is the freedom of reversing the Lz Mgy Mzlz, gls, (18f)
states|0) and|1) to spin upand spin down resulting in a
mirror image function. This halves the number of functions. Loy lzp glz, 1g)la,
We present in Table V examples of some of constant and
balanced oracle functions of the three-qubit CEMM Deutsch- (PP P P P PV P P P
Jozsa algorithm. The other constant function is of course like
f; where all zeros are replaced by ones. L, 1,0, 1,0, 1,0,1,, (189
For further discussion, it is instructive to represent the z e s aes
oracles belonging to the remaining functions in the spin op- | I I L1
erator basis. It turns out that the oracles consist of linear Boaw hm anhy
combinations of certain sets of basis operators. There are Gijven the appropriate symmetry of the Hamiltonian, all
seven such sets: oracles in a set can be mapped onto each other by exchang-
lo, (189 ing the labels on two q_ubits. Thgs, the implementation se-
quence for all oracles in a set is essentially the same. In
| principle, it would be sufficient to implement one oracle out
4’ of each of the seven sets. In this paper we adopt, for com-
parison, the choice of oracles made [@3]. These oracle
Izzy (18b) functions correspond to the test functions listed in Table V.

Equations(19) show the unitary transforms associated
with these oracle functions written partially as matrices as
well as in the spin operator notation. The transfotths-Us
1, involve only z Rotations(one-bit gateg transformsUg and

12 Ug involve effective two-bit gated)g uses a three-bit gate,
andU; needs a two-bit gate which is not directly available in

FAEN (189 our system due to the coupling network and must be imple-
- mented using next-neighbor interactions:
L' Z3? U]_:lo, (193)
EUATS (18d) +1 0 0 0 0 0 0 O
0O +1 0 0 O O 0 oO
(PP PR PP P P P (18¢ 0 0 +1 o 0 o0 o0
TABLE |V. Statistics of the oracle functions & qubits. U,= c 0 0 +1 0 0 0 0
0O 0 0 0o -1 0 0 O
N Total Constant Balanced Rest 0 0 0 0 0O -1 O 0
1 4 2 2 0 0O 0 0 o O O -1 0
16 2 6 8 O o o o o O o0 -
3 256 2 70 184 _ (19b)
le
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Uz=2l (190 1 1 1
z e = =
p2= 2'0 Iz, 2|0+|22 2|0+|231 (20b)
Ug=4l,l,, (19d) 1
=(5lo* | +1y, |O 2, ), (200
Us=4l, 1,1, (199
1 >< ) (310wt
—lg—1 lo+1, (200
+1 0 0 0 0 0 0 O (2 & °
0O +1 O 0 0 0 0 0
0O 0O +1 0 O O O O ( |21>< )( lo— I). (20e
Un= 0 0 0O -1 0 0 0 0 )
“l o 0o 0 0 -1 0 0 O ]'cl_'hese are clearly fully sepa_rable states, so, at least in the
inal state, no entanglement is present.
c 6 0 0 0 -1 0 O Oracles 6-9Eqs.(21)] produce entangled density matri-
O 0 0O O O 0 -1 0 ces. This is most clearly demonstrated by rotating the output
O 0 0 0 0 0 0 + states into one of the base vectors of an entangled basis by
means of local transformations. This is summarized in the
I 420, 05,+2, 1, =41, ), (19f)  following equations:
Pl =T pe= (Lt ) (Rigwtr, + 10, —1,1
Up=ly, + 20,0, +20,0, 41,1, (199 o\ "5 [P = (50T Izl FloF holxs Ty ly T lal 2
0 0 00O
+1 O 0 0 0 0 0 0 1 1
O -1 0 0 0 0 0 O 00 05350
O 0 +1 0 0 0 0 O “\p 1/® 11 | (218
s-| 0 o 0 -10 0 0 0 0550
1 0o o o 0 +1 0 0 O 00 00
O 0 O O O -12 0 o0
O 0 0 0 0 0 -1 0 AT T _
O 0 0 0 0 0 0 + Py3< 2)p7_(2|° |22)<4|°+|X1|X3+|y1|y3 '412,).
=l + 20,0+ 2,0, — 4, 0,5, (19h (21b)
(s P R I I
Ug=1, +1,= 2,1, +21,], (19i) s\ T o JP8T 50T 5 [\ 410" b Tivly, Tzl )

B. Entanglement, mixed vs pseudopure states
1. Entanglement

It has been showf8] that entanglement between qubits
does not always take place in the course of the Deutsch al-
gorithm: some oracles are entangling in nature and others are
not. Furthermore, entangling oracles only occur starting with
at least three qubits. Here, we discuss the entangling nature
of the oracles we implemented and contrast the expected
results for the cases when tiBoltzmannstate is used as
input instead of gseudopurestate.

It can be readily shown that applying the Deutsch algo-
rithm to the pure(or pseudopurestatepggg in Eq. (8) will
produce the following output density matrices for the first
five oracles[Egs.(20)]:

1 1 1
p1= Elo"'lz1 E'o'“z2 §|0+|231

(209

042307-6
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T\ 1 1
Pyl(ﬂ')Py2 - E Po— §|0+ E(lzll 22+ |22|23+

Fly Iy, = 1k

I —
Xp X' X3 TX'Y2' Y3

I212)
Iyl

Iyl X2'Y3

Y1 ¥2' X3

0

N =

O O O o oo o o
O O O o oo o o
O O O o oo o o
O O O o oo o o
O O O o oo o o
O O O O o o

NIE O O O O O O NIk
O O O o o oo
N =

(21d)
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TABLE VI. Fidelity and decision parameter for the experimental implementation of the DJ algorithm.

pP1 p2 P3 Pa Ps Ps p7 P8 P9
D 0.862 0.206 0.121 0.051 -0.066 0.084 0.015 0.027 0.184
F 0.862 0.874 0.879 0.897 0.905 0.891 0.819 0.862 0.646

Up to a local(confined to one qubjttransformation, the density matrix. We have done this for all nine oracle func-
output states for the oraclés—Ug correspond to a product tions and present some of the results in the following.

of a one-qubit staté 1) and theBell state\lf*zl/\f§(|01> For all density matrices, one expects a vanishing imagi-
+|10)). The state produced by can be locally transformed nary part; however, small imaginary contributions were de-
to the GHZ statel/y2(]000)+|111)). tected experimentally. In the following graphical representa-

tions of the density matrices, we only display the real part.
The imaginary part was considered when calculating the fi-
delities reported.
We start with the identity operatiod; which represents

the only constant function. Although this corresponds to “no
operation” we have implemented it with a similar pulse se-
quence as all the others except for phase settings such that no
effective operation occurs in the ideal situation. Figure 5

like in [23], the final density matrices do not reflect entangle- hows the comparison between the expected and measured
ment in any case. We therefore note that our final densit P . pect
esults for the oracle functiof,. The deviations from the

matrices of the DJ algorithm as presented in Figs. 7-9 d? al situation are due to pulse imperfections during prepa-
represent the expected entanglement produced by the oraclg%. P Imp . . g prep
ration and tomography. Since this is an identity transforma-

Ug andUs. tion, it is suitable for the assessment of the fidelity of the
preparation and the tomography procedures.

Figure 6 shows the comparison between the expected and
measured results for the oracle functifpn The correspond-
ing unitary transformation involves only a spinzXotation.

The pulse sequences required for the implementation oNote thatf, is a balanced function and correspondingly the
these transforms are as follows, is the identity transform Population of the statp00(00d is close to zero like for all
and requires no pulsesl, and U, are implemented by ap- the other balanced function.
plying a 7 pulse to the first and third spins, respectivély, The next two functiondg (Fig. 7) andfg (Fig. 8) involve
andUs require ar rotation of spins 1 and 2 and 1, 2, and 3, two-spin and three-spin gates. In the course of the quantum
respectively. The other four sequences require two- and@lgorithm the corresponding unitary transformations generate
three-qubit gates. They are shown in the Appendix. entangled states, as described in Sec. VB 1. To emphasize
After applying the different pulse sequences correspondthe Bell-like entangled structure of the obtained density ma-
ing to the nine different oracle functions we have evaluatedrix, we subjected the data fttg to a local transform accord-
the decision parametdb—namely, the population of the ing to
state|000(000 which according to the DJ algorithm should
be either 1 for the constant functions or O for balanced func-
tions together with the fidelitfF as defined in Eq(16). Fi-
delities and the decision parameter for the experimental re- &5 e,
sults on the Deutsch algorithm are shown in Table VI. L P T L A
=Ty v X

2. Input density matrix: Pseudopure vs Boltzmann

The final states shown in Eg&1) are only produced if
the pseudopure stajgy, from Eq.(8) is used as input to the
algorithm. If one starts, instead, from the Boltzmann state

C. Implementation of oracle functions

D. Output tomography

The DJ algorithm does not require full knowledge of the
resulting density matrix for the evaluation of the decision
criterion. It is, therefore, common to present just some spec-
tral signatures which are consistent with the expected out-
come of the algorithm. However, in order to evaluate the FIG. 5. Comparison between the theoretically expecteg)
performance of the implementation of the algorithm it is nec-and experimentally obtaing@ottom) output density matrix for the
essary to perform a complete tomography of the resultingCleve-Deutsch-Jozsa algorith(d,).
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O ) ey
S-Sl
S D SasY 111
LT 110

FIG. 6. Comparison between the theoretically expegted)
and experimentally obtainggottom) output density matrix for the
Cleve-Deutsch-Jozsa algorithfd,).

FIG. 8. Comparison between the theoretically expecteg)
and experimentally obtaing@hottom) output density matrix for the

1 1 Cleve-Deutsch-Jozsa algorith(g).

o
PX3(7T)Py2(— E)pez (5|0— Izl)<4_1_|0+ IX2|X3+ |y2|y3

1 901 density matrices as initial states and have performed exten-
2 2 . . . . . .
00 000 0 sive density matrix tomography of the final density matrices.
+1,) 23) = ( ) ® This allowed us to verify the performance of the experimen-
01 0000 tal implementation and on the other hand to investigate the
% 00 % type of entanglement involved in some of the oracle func-

22) tions. Moreover, the type of our implementation and tomog-
raphy can be considered a template for the general case en-

countered usually in solids and other systems where the spin

interactions are not resolved and only spin—but not

to obtain the Bellb* state which is more suitable for graphi- I S .
%ansmon—selectlve irradiation—can be performed.

cal representation. Figure 9 shows a comparison between tﬁ
theoretically expected and experimentally obtained density
matrices.
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APPENDIX: PULSE SEQUENCES

For completeness, we list the pulse sequences used for density matrix tomography and implementation of the oracle
functions in Tables VII-IX. The following notation is usel; Y, and Z indicate the rotation direction of an rf pulse; the
rotation angle is given after the commaJ '7” indicates a period of free evolution for time andV means a gradient pulse.

In all tables representing pulse sequences, pulses are applied starting in the upper left corner. They apply to the spins indicated
on the left. Consecutive segments of the sequence are separated by horizontal lines.

The pulse sequence for the oratle needs to be rather long because there is no sufficient direct coupling between spins 1

and 3 so that next-neighbor couplings must be used instead.

TABLE VII. Pulse sequences used for density matrix tomograpdyconversion of the termzllZZ to IZl’

(b) conversion of the termh, |, 1, to 14,
(€Y
Iy Y, 7/2 U, 1/4J X, U, 1/43 -X, 7/2 \Y
I, U, 1/4J X, U, 1/43 \Y
I3 U, 1/4 U, 1/43 v
(b)
Iy u, 1/43 X, U, 1/4J \Y
Iy Y, w/2 U, 1/4 X, U, 1/4 =Y, w/2 \Y
I3 u, 1/43 X, U, 1/4J \Y

TABLE VIII. Pulse sequence implementing the oraclésand U, of the Deutsch-Jozsa algorithm.

Us
Iy U, 1/43 X, 7 U, 1/4 \Y
I Y, w/2 u, 1/43 X, U, 1/4J =Y, w/2 \Y
I3 u, 1/43 X, U, 1/4J \Y

U7
Iy -Z, w/2 U, 1/8J U, 1/83 X, U, 1/8J
Iy Z U, 1/8J U, 1/83 X, 7 U, 1/8J
I3 -7, 7/2 U, 1/8J X, U, 1/8J U, 1/83 =X,
Iy U, 1/8J =X, U, 1/8J X, U, 1/8J
Iy u, 1/8J Y, w/2 Z U, 1/8J U, 1/83 X,
I3 U, 1/8J U, 1/83 U, 1/83 X,
Iy U, 1/8J =X, U, 1/8J U, 1/83 U, 1/8J
Iy U, 1/8J U, 1/83 =X, w/2 U, 1/8J U, 1/8J
I3 U, 1/8J U, 1/8J X, 7 U, 1/8J X, 7 U, 1/8J
Iy X, U, 1/8J U, 1/8J X, 7 U, 1/8J X, 7
Iy X, U, 1/8J U, 1/83 Y, w/2 U, 1/8J
I3 U, 1/8J =X, 7 U, 1/8J U, 1/83
Iy U, 1/8J U, 1/83 =X, 7 U, 1/8J -Z, w/2
I U, 1/8J X, U, 1/8J U, 1/83 =X, w/2
I3 U, 1/8J X, U, 1/8J U, 1/83 =X, Z, /2

TABLE IX. Pulse sequence implementing the oradlgsandUq of the Deutsch-Jozsa algorithm.

Us
I -Z, w2 U, 1/8J U, 1/83 X, U, 1/8J
Iy -Z, w/2 U, 1/8J U, 1/8J X, U, 1/8J
I3 Z U, 1/8J X, U, 1/8J U, 1/83 =X,
Iy U, 1/8J =X,
Iy U, 1/8J =X,
I3 U, 1/8J

Ug
Iy -Z, w/2 Y, 7 U, 1/8J X, U, 1/83
Iy U, 1/8J X, U, 1/8J =X,
I3 Z /2 U, 1/8J X, U, 1/8J =X,
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