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We propose quantum key distribution protocols based on coherent single-photon optical pulses with duration
T and with minimum time-frequency uncertainty. The pulses are sent with possible delays(e.g., 0,T/2) that are
used to code the information(e.g., bit 0, bit 1) and that are shorter than the pulse width. Therefore, the time
detection of the photons may result in a ambiguity of the delay evaluation for a potential eavesdropper. The
duration of the received pulses is controlled thanks to a contrast measurement using an interferometer. A
quantum formalism is given, allowing us to model the transmission of the key and the consequences of a
possible eavesdropping. Two protocols are proposed and discussed. The first one involves two states and is
limited to channels with losses lower than 50%. The second one involves four states, which prevents the
eavesdropper from exploiting the losses of the line. The security of each protocol is evaluated as a function of
channel losses, quantum bit error rate, and contrast loss in the case of intercept-resend attacks. It is applied to
situations where photocounters dark counts are the main limitation of the system. The resulting maximum
propagation distance allowing secure communication is evaluated.
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I. INTRODUCTION

The quantum key distribution(QKD) is a way, alternative
to mathematical methods, to distribute a key between two
parties usually called Alice and Bob. The purpose of the
QKD is not to prevent a third party Eve from eavesdropping
the line, but to make the eavesdropping detectable by Alice
and Bob. In that case, they do not validate the key. The QKD
is based on the fundamental principles of quantum mechan-
ics. It relies on the quantum properties of photons that are
used to transmit the key. The first protocols that have been
proposed used a polarization basis to encode the key, with
either four nonorthogonal polarization states[1] (the
Bennett-Brassard 1984 protocol usually called BB84) or two
nonorthogonal polarization states[2] (the Bennett 1992 pro-
tocol usually called B92). Several experimental demonstra-
tions have been achieved based on those protocols[3]. The
first one was based on polarization coding with propagation
in air [4]. For telecommunication applications, a better
propagation medium is an optical fiber. Polarization ap-
peared to be unpractical due to technical limitations in opti-
cal fibers such as stress induced birefringence which trans-
forms the initial linear polarization of the photon into an
elliptical polarization[5]. Another possibility is phase coding
[6]. The principle is to implement a long-arm Mach-Zender
interferometer between Alice and Bob, allowing each of
them to modify the dephasing between the two arms of the
interferometers. This technique allows a coding similar to
that of BB84 with polarization. It is also necessary to com-
pensate for polarization modifications due to the propagation
but this can be achieved with go and return techniques that
allow for birefringence compensation[7,8].

An alternative protocol to polarization coding or phase
coding for the quantum key distribution is to use the time-

frequency uncertainty of coherent one-photon pulses[9]. The
protocol we propose exploits that uncertainty and is based on
a time coding technique that is expected to be robust against
propagation medium disturbances. The information is coded
on coherent one-photon pulses of durationT with uniform
probability detection density. Alice sends the pulses at a
regular frequency giving the time reference. To encode the
key, an additional delay with respect to that reference can be
put on each pulse(Fig. 1). The possible delays are chosen
smaller than the pulse duration. Bob uses photocounters with
a time resolution much better than the pulse duration. He
evaluates the delay measuring the detection time with respect
to the reference. He can perform only one measurement
which may lead to an ambiguity on the delay evaluation.
Previous use of the time domain for quantum key distribu-
tion [10,11] or quantum computation[12] made use of pulses
well separated in time. The originality of our protocol is to
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FIG. 1. Principle of the two-state protocol. Alice sends pulses of
durationT with chosen delay 0 orT/2. Bob measures the photon
detection time. The time slots 1 and 3 are nonambiguous and allow
for delay determination. The time slot 2 is ambiguous and does not
allow for delay determination.
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explicitly exploit the possible overlap between pulses.
If a measurement is only performed in the time domain,

Eve can get a perfect copy of the key after the reconciliation
process. She only has to send back to Bob one photon pulses
with a durationTE much smaller thanT and with a delay
identical to the one she measured. Bob cannot distinguishT
pulses fromTE pulses with only one measurement. To protect
the transmission from that kind of attack, Alice sends coher-
ent pulses with minimum time-frequency uncertainty
product—i.e., pulses with a coherence length equal to their
duration. In parallel to the measurement in the time domain,
Bob does a measurement in the frequency domain thanks to
an interferometer. All the protocols that are analyzed in the
following require performing those two measurements at the
same time. Bob sends at random the pulses he receives to a
Mach-Zender interferometer with a propagation time differ-
ence equal to the delay used to encode the key and with a
phase difference ofp between the two arms(Fig. 2). The
imbalance between the average photon number detected in
each output arm of the interferometer varies with the pulse
duration, thus giving a way to measure that duration. The
other arm of the input beam splitter is sent to the photo-
counter that is used to establish the key between Alice and
Bob (Fig. 2). The control of the pulse duration via a coher-
ence measurement allows coding the information only in the
time domain. In that way our protocol differs from the stan-
dard BB84 or B92 protocols where the information is coded
equally between two non orthogonal basis. This removes the
possibility for Eve to choose an appropriate basis combina-
tion to increase her information on the key[4]. This also has
the practical advantage of avoiding for Bob to randomly
switch his detection between the two basis.

From an experimental point of view, this protocol has
several advantages. Available photocounters can have re-
sponse time smaller than 1 ns[13]. We will thus consider
pulse durations in the 10–20 ns range for which the time
propagation of the pulses is only little affected by the propa-
gation disturbances of the fiber. A low error rate requires
precisions in the arrival time of about 1 ns which makes it
insensitive to fiber thermal dilatation. In addition pulse
spreading due to group velocity dispersion starts to be no-
ticeable only in the ps range with usual telecommunication
fibers [14]. The measurement of the arrival time of the pho-
ton does not require that the polarization of the photon be
conserved. If the interferometer is made insensitive to the
polarization, the whole system is potentially insensitive to
the polarization. As a consequence there is no need for go
and return of the pulses, which opens the way to high trans-
mission rates. Coherent faint pulses can be produced com-
bining a single-mode diode laser and an high-speed electro-

optics amplitude modulator that can be driven with an
electrical pulse generator having rise time and decay time
smaller than 1 ns. These technical considerations combined
with the advantages of the principle described above make
the time coding protocol a realistic method for quantum key
distribution.

The purpose of the paper is to give a formalism that al-
lows describing quantum mechanically the protocols based
on time coding. Then two protocols are discussed based on
two or four states. The defects of the line between Alice and
Bob as well as those of Bob’s photocounters allow for eaves-
dropping. They are modeled to give a security evaluation of
the protocols in the frame of intercept-resend attacks.

II. QUANTUM FORMALISM

The use of coherent one-photon pulses in the time domain
can lead to many different protocols. We choose to study one
class where Alice sends square pulses having all the same
durationT. The delay is a multiple ofT/2, which gives the
time resolution of the problem. To describe the protocols, we
divide the temporal axis inN successive time slots of dura-
tion T/2 labeledj . This allows introducing a discrete basis
for the time coding protocols. For each time slot we intro-
duce a characteristic functionujstd equal toÎ2/T in the in-
tervalfs j −1dT/2 , jT /2g and zero elsewhere. It obeys the nor-
malization relation

E dtuujstdu2 = 1. s1d

To each time slot corresponds a one-photon state given by

u jl =E dvcjsvda†svdu0l. s2d

Here, j denotes the time slot and not the number of photons
of usual Fock states.

cjsvd has the following expression wherev0 is the central
optical frequency(see the Appendix):

cjsvd =
1

Î2p
E dt ujstdeisv−v0dt. s3d

The different amplitudes are identical up to a phase shift:

cjsvd = eisv−v0ds j−1dT/2c1svd. s4d

To describe a protocol requiringN time slots, one considers
an N-dimensional Hilbert space. Theu jl states form a dis-
crete basis which can be used to describe quantum mechani-
cally that protocol.

FIG. 2. Scheme of the experiment. Bob di-
rects the pulses sent by Alice at random to a pho-
ton counter to establish the key or to a Mach-
Zender interferometer that allows for duration
measurement of the pulses.
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The pulses sent by Alice are square pulses which are non-
zero only on two adjacent time slotsj and j +1. The corre-
sponding one-photon pure state can be written

u j , j + 1l =
1
Î2

su jl + u j + 1ld. s5d

In such a state, the probability to detect a photon in the time
slot j or in the time slotj +1 is equal to 1/2 and to 0 for other
time slots. Moreover, there is a coherence between statesu jl
and u j +1l which allows us to observe interferences with a
properly designed interferometer. In that case, the coherence
is equal to 1/2.

III. CODING PROTOCOLS

A. Principles

In all the protocols which will be analyzed in the follow-
ing, Bob sends at random half of the pulses he has received
to a photocounter to measure their arrival time. The other
half is sent to a Mach-Zender interferometer to evaluate the
average contrast which is defined as the difference between
the photon numbers in the two output ports normalized to
their sum. In the ideal case, a contrast of 50% should be
measured.

The simplest configuration is a two-state protocol in anal-
ogy with the B92 protocol[2]. Alice may send two kinds of
pulses. One(e.g., bit 0) is coded with zero delay, and the
other one(e.g., bit 1) is coded withT/2 delay(Fig. 1). The
photon detection can occur within three different time slots.
The first one and third one are nonambiguous and allow for
an exact determination of the delay. The photon detection in
the second time slot leads to an ambiguity on the delay de-
termination. At that point the raw key is established and the
contrast has been measured. Then Bob announces to Alice
when he has obtained a nonambiguous result and discards
the others. This is the reconciliation step which results in the
sifted key. Alice and Bob can then evaluate the quantum bit
error rate(denotedQ) sacrifying part of the sifted key. In
order to share a secret key, Alice and Bob must perform two
additional steps. First they must remove the errors from the
key thanks to an error correction algorithm(at the price of an
increase of the information available to Eve). Then they have
to cancel the information of Eve on the key thanks to a
privacy amplification algorithm[3]. Those steps are required
for any protocol that is considered. In the following, we will
concentrate on the quantum aspect of the protocols and stop
our analysis to the establishment of the sifted key.

Analyzing eavesdropping on the two states protocol, one
sees that Eve cannot deduce with certainty the delay chosen
by Alice for all pulses she detects. She unavoidably intro-
duces errors in the message when she sends back pulses of
durationT to Bob. Anyhow, Eve can exploit the losses of the
channel between Alice and Bob. Eve resends nothing when
she obtains an ambiguous result and she resends the appro-
priate state when she obtains a non ambiguous result. When
the losses of the channel between Alice and Bob exceed
50%, Eve can measure all the pulses sent by Alice and she
obtains complete information on the key. To overcome that

limitation one has to go to a more sophisticated protocol
involving four states as described below.

For that protocol Alice makes use of four different states
with temporal overlap between them. The protocol is illus-
trated on Fig. 3. Pulses(a), (b), (c), and (d) are one-photon
square pulses which are nonzero only for time slots(2,3)
(3,4), (4,5), and (5,6), respectively. The fact that we do not
use time slot 1 at the moment will become clear when taking
into account the defects of the line. Pulses(a) and (d) are
auxiliary pulses which do not carry any information. Pulses
(b) and (c) can be chosen to encode bit 0 and bit 1, respec-
tively. To establish the raw key, Alice sends at random to
Bob the four possible pulses with the same probability. As
previously, half of the pulses are used by Bob to establish the
raw key and the other half is sent to the Mach-Zender inter-
ferometer for the contrast measurement. Once the raw key
has been sent, part of it can be compared publicly between
Alice and Bob to make sure that the measurements at Bob
are consistent with the pulses sent by Alice. To produce the
sifted key, Bob announces to Alice when he has detected the
result in time slot 3 or 5 without revealing the result. Alice
validates the measurement if the corresponding pulse she had
sent was carrying some information[pulses(b) or (c)]. Oth-
erwise she discards the measurement. Alice and Bob can
then compare publicly part of the resulting string of bits to
evaluate the quantum bit error ratesQd. For a given value of
the contrast, ifQ is small enough, they proceed with error
correction and privacy amplification to obtain a non ambigu-
ous string of secret bits. The main difference with the previ-
ous protocol is that all measurements that allow Eve to get
some information on Alice(detections in time slot 3 or 5) are
now ambiguous in a way similar to the detection in time slot
4. To preserve the symmetry of the string of pulses sent by
Alice, Eve has to resend pulses with the same probability
whenever she detects in 3, 4, or 5. As a consequence she can
no more exploit the losses of the channel to resend a pulse
with a higher probability when she has detected in 3 or 5
than when she has detected in 4 as is the case in the two-state
protocol. The ratio between the rate of bits in the sifted key
and the rate of pulses that are sent by Alice can be evaluated
considering that Bob keeps only half of the pulses he re-
ceives and sends the other ones to the interferometer. Then
Alice discards half of the pulses she has sent[pulses(a) and

FIG. 3. Principle of the four-state protocol. Alice sends pulses of
durationT with chosen delays 0,T/2, T, or 3T/2. Pulses(a) and(d)
carry no information. Pulses(b) and (c) encode bit 0 and bit 1,
respectively. Bob measures the photon detection time. He keeps
only the results corresponding to time slot 3 and time slot 5. The
results are ambiguous which prevents Eve from exploiting the
losses of the line.
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(d)] and only half of Bob’s measurements lead to unambigu-
ous results. Therefore the bit rate is 12.5% of the pulse rate.

B. Transmission with no eavesdropping

The formalism described below is used to give a quanti-
tative evaluation of the protocols security. It can be used to
describe the two-state protocol and the four-state protocol as
well.

The states corresponding to the four possible pulses sent
by Alice are defined as follows:ual= u2,3l, ubl= u3,4l, ucl
= u4,5l, and udl= u5,6l. The states are sent at random by Al-
ice with probabilitiespa, pb, pc, and pd which are let as
parameters whose values are set according to the case.

In the two-state protocol, the probabilitiespa and pd are
set to 0 when Alice sends the raw key. We will consider the
symmetric case wherepb andpc are chosen equal to 1/2.

In the four-state protocol, they are all equal to 1/4(in the
symmetric case), in order to simulate the launch of the raw
key. To simulate the sifted keypb andpc are set to 1/2 and
pa andpd are set to zero.

In both protocols, eitherpb or pc is set to 1 the other ones
being set to 0, in order to calculate the quantum bit error rate
and the mutual information between Alice and Eve. Bob who
does not know the choice of Alice can describe the state by a
density matrix of the form

rA = o
k=a,b,c,d

pskduklkku, s6d

with

o
k=a,b,c,d

pskd = 1. s7d

The diagonal coefficientsrAjj
of the density matrix give

the probability to detect a photon in time slotj . The off-
diagonal coefficients of the density matrix are nonzero only
for the two diagonals closest to the main diagonal. They are
measured thanks to Bob’s interferometer.

In a real system, the transmission of the signal is affected
by several defects. Since the protocol is based on a precise
timing of the photon detection, the system is sensitive to
synchronization defects between the clocks of Alice or Bob
or intrinsic fluctuations in the clocks. One could also con-
sider a broadening of the pulses received by Bob. It can be
due to the propagation in the fiber although negligible in the
nanosecond range. It can also be due to imperfect pulses sent
by Alice, if, for example, the pulses are produced with non-
zero rise time and decay time. In that latter case this would
induce errors for Bob but for Eve as well. Imperfect timing
or pulse broadening would result in the possibility of detect-
ing a photon in another time slot than the two time slots
corresponding to the given state sent by Alice. In a simple
model one can consider a nonzero probability to detect a
photon in the two adjacent time slots—i.e., to detect a photon
in time slots j −1 or j +2 for a stateu j , j +1l. This explains
why we have defined the stateual spanning the statesu2l and
u3l. In a perfect transmission the probability to detect a pho-
ton in the time slots 1 would be zero, but due to the imper-
fect synchronization, this probability is nonzero. For the

same reason, a time slot 7 must be considered accounting for
the same kind of error when stateudl= u5,6l is sent.

Another defect due to the transmission line is the un-
avoidable occurrence of loss. We mainly consider those oc-
curring at the outside of Alice and Bob. Those occurring
inside the apparatus of Alice and Bob can be measured and
their effect corrected. The losses occurring in the transmis-
sion line are modeled with a coupler of probability transmis-
sion h that redirects the pulses to an additional auxiliary
mode with probability 1−h. Thus an eighth state(labeled
u0l) has to be introduced to account for the losses. Due to the
losses, the state sent by Alice becomes after transmission
through the line: hrA+s1−hdp0, wherep0 is the density
matrix corresponding to the stateu0l simulating the losses.

Another defect is a loss of coherence that would prevent
from measuring an optimal value of the contrast at Bob’s
interferometer. There are unavoidable defects in the interfer-
ometer itself, but they can be measured by Bob and taken
into account. Thus the contrast measurement can be cor-
rected from proper interferometer imperfections. On the
other hand, the source used by Alice cannot have a perfect
coherence and decoherence may occur in the transmission
line. Since the contrast measurement is an average over a
large number of pulses lasting as long as the key transmis-
sion, the lack of coherence can induce phase fluctuations,
resulting in a lowering of the contrast measured at Bob’s
interferometer. It should be mentioned that the lack of coher-
ence of Alice’s source does not affect the measurements of
Eve since she only has to measure the detection time of the
photon. This lack of coherence is simply modeled multiply-
ing all the nondiagonal terms of the density matrix received
by Bob by s1−dCd with 0ødCø1 wheredC accounts for
the loss of coherence.dC=0 corresponds to the case of no
loss of contrast at Bob’s interferometer. The casedC=1 cor-
responds to an incoherent source at Alice or the absence of
contrast measurement at Bob. It will be shown that in this
last case, the transmission can never be secure.

The last defect that will be considered is the existence of
dark counts in the photocounters. They consist of a triggering
of the avalanche occurring without any incoming photon and
due, for example, to thermal fluctuations. A signal from the
detector can thus result from the detection of an effective
photon or from a dark count. The dark count probability per
time unit is specific from a given detector whereas the prob-
ability to detect a photon depends on several parameters such
as the line losses. As a consequence, as the propagation dis-
tance increases, the probability to receive a photon decreases
and the dark count probability becomes predominant. This
results in an increase of the quantum bit error rate, which
compromises the security of the transmission[15]. The oc-
currence of dark counts is one of the main limitations to
single photon quantum key distribution. In order to simplify
the analysis of the proposed protocols, we will first neglect
the detector dark counts. Then, Sec. VIII will be devoted to
the consequences of dark counts and to the resulting limita-
tion on the secure distance of propagation.

C. Eavesdropping modeling

The four main defects that have been introduced can be
used by an eavesdropper to tap some information about the
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key. The purpose of Eve is to maximize her available infor-
mation while being undetected by Alice and Bob. The main
goal of the security evaluation of the protocol is to evaluate
quantitatively the information that is made available to Eve.
Numerous attacks can be considered. We limit our study to
simple intercept-resend attacks. To simulate Eve’s attack on
the line, we suppose that she benefits from unlimited techno-
logical power. Therefore she can replace the imperfect chan-
nel between Alice and Bob with a perfect one with no loss
and no error. In addition when Eve resends a pulse she uses
a perfectly coherent source, which allows her to exploit the
possible lack of coherence of Alice’s source.

When Eve makes a measurement and detects a photon in
time slot j s2ø j ø6d, she can decide to resend a pulse or
not, thus simulating the losses of the imperfect channel. De-
tecting a photon in time slotj , Eve knows that the pulse she
has received from Alice wasu j , j +1l or u j −1,jl with equal
probability (except for j =1 and j =6 where she knows ex-
actly which pulse was sent by Alice). When she sends a
pulse, she sends pure states in order to maximize the contrast
in Bob interferometer. In a first step we consider that she can
send any kind of state that is nonzero only on two adjacent
time slots. She is not bound to square pulses and she can
choose any time profile. It can be shown in fact that square
pulses are the optimum choice for Eve in order to send maxi-
mum coherence pulses for given probability detections in the
time slots. Let us suppose that Eve sends a pulse on time
slots j and j +1. It can be expressed as

fstd = ajgjstd + aj+1gj+1std, s8d

wheregjstd are arbitrary shape functions which are nonzero
only in the time slotj and which are normalized:

E dtugjstdu2 = 1. s9d

The coefficientsaj andaj+1 obey the relation

uaju2 + uaj+1u2 = 1. s10d

The contrast(A14) wherev1t is set to 2kp is given by

C =
1

2
E dtfstdf * St +

T

2
D + c.c., s11d

which reduces to

C =
1

2
ajaj+1

* E dtgjstdgj+1
* St +

T

2
D + c.c. s12d

The contrast is maximized choosingaj and gjstd real. In
addition, the overlap integral betweengjstd andgj+1st+T/2d
is maximized to 1 when those two functions are identical.
Square pulses appear to be a particular case of that condition
which allows maximizing the coherence of the pulses sent by
Eve. Thus one can consider that Eve sends square pulses and
uses the same state basis as Alice without restricting the gen-
erality of the problem.

The state received by Bob is now the one that has tran-
sited via the perfect line of Eve. If Eve does not measure the
state, she simply transmits the initial state sent by AlicerA. If

she performs a measurement(probability m), she intercepts
the pulse with a photocounter and she determines the detec-
tion time of the photon. She then sends the staterE, which
allows her to minimize the possibility for Alice and Bob to
detect the eavesdropping. The state received by Bob is de-
scribed by a density matrixrB given by

rB = mrE + s1 − mdrA. s13d

The state received by Bob must be consistent with a state
that could have been sent by Alice. ThusrB must mimicrA
taking into account the defects of the line.

The density matrix received from Alice has no coherence
of the formr j−1,j+1. Thus the density matrix resent by Eve is
a statistical mixture of statesuc j ,j+1l and uc j ,j−1l with prob-
abilities pj ,j+1 andpj ,j−1 respectively. They are of the form

uc j ,j+1l = Î1 − xj ,j+1u jl + Îxj ,j+1u j + 1l, s14d

uc j ,j−1l = Î1 − xj ,j−1u jl + Îxj ,j−1u j − 1l. s15d

The first index stands for the time slot where the photon has
been detected. The second one stands for the neighboring
state.uc j ,j+1l differs from u j , j +1l in the sense thatxj ,j+1 is
not necessarily equal to 1/2. This parameter allows Eve to
take advantage from a possible defect in the contrast mea-
surement of Bob. Takingxj ,j+1 smaller than 1/2 increases the
probability for Bob to obtain the same measurement result
than Eve(detection in time slotj).

In the case where there is no lack of coherence between
Alice and BobsdC=0d, xj ,j±1 must be equal to 1/2 to avoid
a drop of the contrast in Bob interferometer that would im-
mediately show the presence of Eve. In the limit case where
dC=1, Eve can setxj ,j±1 to zero. Eve can thus intercept all
the pulses and send a perfect copy to Bob without being
detected.

After measurement, Eve resends a statistical mixture char-
acterized by the following density matrix:

rE = o
j=2

6

Trsu jlk j urAu jlk j udfpj ,j+1uc j ,j+1lkc j ,j+1u + pj ,j−1uc j ,j−1l

3kc j ,j−1u + s1 − pj ,j+1 − pj ,j−1dp0g. s16d

The detailed expression ofrB is obtained inserting Eqs.
(6) and(16) into Eq.(13). It is complicated partly due to the
different possible values of parametersxj ,j±1 andpj ,j±1. It can
be greatly simplified taking into account the symmetry prop-
erties ofrA thatrB has to verify if the eavesdropper wants to
remain undetected. Alice and Bob can check these properties
after the raw key has been exchanged sacrifying part of that
one. The main idea is that the probability detections at Bob
have to be independent of the pulse(a), (b), (c), or (d) that
has been sent by Alice. One evaluates the detection condi-
tional probabilities for each time slot and for each kind of
pulse sent by Alice. The conditions are the following.

(a) The probabilities to detect inj or j +1 when Alice has
sentu j , j +1l must be identical and independent ofj .

(b) The error probabilities must be identical. When Alice
has sentu j , j +1l, the probabilities to detect inj −1 or j +2
must be identical and independent ofj .
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(c) The probabilities to detect inj +1 must be independent
of the statesu j , j +1l or u j +1,j +2l that can have been sent by
Alice.

Eve is free to violate these assumptions, but doing so, she
will be detected when Bob will analyze part of his raw key
knowing the pulses sent by Alice. Her purpose being to
eavesdrop the key without being detected, we will assume in
the following that these assumptions are satisfied. They will
result in constraints putting an upper bound to the informa-
tion available to Eve.

The consequences of those requirements differ according
to the protocol that is being considered(either two states or
four states). At that point we separate their study. We start
considering the two-state protocol.

IV. TWO-STATE PROTOCOL

In the two-state protocol,pa andpd are zero. We set suc-
cessivelypb andpc to 1 in rB keeping the other probability to
0. Applying the requirement on the error probability, we ob-
tain the following condition:

p32x32 = p43x43 = p45x45 = p56x56. s17d

Applying the symmetry requirements we obtain the follow-
ing conditions:

p54x54 = p34x34, s18d

p34 + p32 = p54 + p56 = p3 = p + dp, s19d

p43 + p45 = p4 = p − dp, s20d

p34x34 = p32x32 +
p3 − p4

2
= p32x32 + dp. s21d

The probabilities that Eve sends a pulse when she has
detected in 3 or 4(p3 andp4, respectively) are not necessar-
ily identical. Thus we define their average valuep and half
differencedp. These parameters can be adjusted by Eve ac-
cording to the defects of the real line. The possibility thatdp
is nonzero is specific to the two states protocol.

At that point, fulfilling the relations(17)–(21) allows Eve
not to be detectable by symmetry considerations on the raw
key received by Bob. The second step in the determination of
rB is to take into account the defects of the line admitted by
Alice and Bob: quantum bit error ratesQd, relative contrast
loss sdCd, and line transmissionshd. This will allow us to
determine the remaining free parameters in the density ma-
trix. In addition we calculate at that point the mutual infor-
mation between Alice and EvesIAEd, since it will appear that
the contrast of the interferometer can be expressed directly as
a function ofIAE andQ.

Bob keeps only the results where he has obtained a mea-
surement in 3 or 5(without revealing the result). The pulses
are sent by Alice with the same probabilitiess1/2d; thus the
quantum bit error rate can be calculated considering one or
the other of the two pulses. It can thus be defined as the ratio
between the probability for Bob to detect in 5 when a pulse
(b) has been launched by Alice divided by the total probabil-

ity for Bob to detect in 3 or 5 when a pulse(b) has been
launched by Alice. Settingpb to 1 in rB, one obtains the
relation

Q =
rB55

spb = 1d

rB55
spb = 1d + rB33

spb = 1d
=

mp32x32

1 − m+ mp
. s22d

The same expression would have been obtained consider-
ing that Alice had sent a pulse(c). The existence of the
quantum bit error rate is directly proportional to the probabil-
ity that Eve resends a pulse that spans the neighboring time
slots when detecting a photon in time slotj .

To calculate the information of Eve on Alice we consider
only the case where Bob detects in time slot 3. Due to the
equal probabilities for Alice to send a pulse(b) or a pulse(c)
the consideration of a detection in 5 by Bob would lead to
the same result.

Knowing that Bob has detected a photon in time slot 3,
one has to calculate the probability that Eve has detected a
photon in time slot 3 in which case she knows with certainty
which pulse was sent by Alice and she gets one bit of infor-
mation. The case where Eve has detected in 4 does not bring
any information to her. The case where Eve detects in 5 and
Bob detects in 3 is impossible in the limit of our starting
hypothesis. The calculation is done calculating the probabil-
ity that Bob detects in time slot 3 when Eve has detected in
time slot 3 and using Bayes theorem. Using Eqs.(18) and
(21), one gets

IAE =
PsB = 3uE = 3dPsE = 3d

PsB = 3d

=
sp32s1 − x32d + p34s1 − x34ddm

1 − m+ mp

=
msp − 2x32p32d

1 − m+ mp
. s23d

In the case where Eve is not allowed to induce any error,
x32 is zero. Then the information is equal to the rate of pulses
that are intercepted and resent by Eve. Each time she detects
a photon in time slot 3, she has to resend a pulse correspond-
ing to the stateu3l. She thus knows for sure that Bob will
detect in time slot 3 and will validate the measurement[if
Alice has sent a pulse(b)], but doing that she induces a
strong drop of contrast on Bob’s interferometer.

In the case where no drop of contrast is allowed,x32 is
one-half. Then the information rate is half the rate of pulses
that are detected in time slot 3 and resent by Eve. If Eve
detects a photon in time slot 3, she has to resend a pulse
corresponding to the stateu3,2l or u3,4l. The probability that
Bob validates the measurement is one-half.

Combining Eqs.(22) and(23) one obtains the quantityA
which has the following expression:

A = IAE + 2Q =
mp

1 − m+ mp
. s24d

It represents the rate of pulses that are intercepted and resent
by Eve over the total number of pulses detected by Bob. It is
always smaller than 1 and is equal to one only in the case
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wherem=1, which means that Eve has intercepted all pulses
sent by Alice. This results in a physical upper limit on the
information that Eve can obtain on Alice through intercept-
resend attack which is given by

IAE ø 1 − 2Q. s25d

In particular, Eve can obtain complete information on the
key (i.e., one bit per pulse) only in the case where she does
not induce any error at Bob’site and the quantum bit error
rate is zero.

The following quantity that has to be calculated to evalu-
ate the security of the protocol is the contrast of Bob’s inter-
ferometer and the effect of Eve interception of the original
message. Since we are considering real probability ampli-
tudes the contrast is given by Eq.(A21) where we have to
take into account the losses induced by Eve. We obtain

CAEB=

o
j=1

6

rBj ,j+1

1 − rB0,0

. s26d

The contrast is an average measurement performed on the
raw key sent by Alice. Pulses(b) and (c) have the same
probability to be launched and thus one has to setpb=pc

= 1
2 in the expression ofCAEB. Inserting the relations(22) and

(23) in Eq. (26), one obtains the expression for the contrast
in the two-state protocol as a function ofIAE andQ, and of
the various probabilities for Eve to resend a pulse:

CAEB2
=

1

4
ÎQÎA

p32

p
− Q

+
1

4
ÎQ + A

dp

p
ÎA

p34

p
− Q − A

dp

p

+
1

2
ÎQÎA

p43

p
− Q +

1

4
ÎQÎA

p56

p
− Q

+
1

4
ÎQ + A

dp

p
ÎA

p54

p
− Q − A

dp

p

+
1

2
ÎQÎA

p45

p
− Q +

1

2
−

1

2
A, s27d

whereA is given by Eq.(24).
In the absence of eavesdropping, the contrast in the ideal

case is 1/2. Taking into account the possible loss of contrast,
it becomes

CAB =
1

2
s1 − dCd. s28d

Expressing that the minimum value ofCAEB2
is equal toCAB,

one obtains an implicit relation defining the mutual informa-
tion IAE as a function of variablespj ,j−1, 3ø j ø5, Q anddC
being parameters. The extremum ofIAE is obtained when the
partial derivatives ofCAEB2

with respect topj ,j−1 are zero.
This mathematical derivation ofIAE may lead to values that
are not physically attainable which means thatQ anddC are
not compatible. One has to bear in mind that the value ofIAE

has to fulfill the condition(25), which will be implicitly as-
sumed in the following. Taking into account relations(19)
and (20), one obtains the following relations:

p34 − p32 = p54 − p56 =
Adpsp + dpd
2Qp+ Adp

, s29d

p45 = p43. s30d

Inserting Eqs.(29) and (30) into Eq. (27) greatly simpli-
fies the expression ofCAEB2

, which becomes

CAEB2
=

1

2
FÎ2Q + A

dp

p
ÎIAE + Î2QÎIAE − A

dp

p
+ 1 −AG .

s31d

The purpose of Eve is to maximize its information on
Alice for a given value ofQ, dC, and the line transmissionh
respecting the relationCAEB2

=CAB. Here p and dp are two
adjustable parameters that Eve can choose to optimizeIAE.
Expressing that the probability to detect a photon has to be
equal toh in order to mimic the losses of the line, one finds
that

h = 1 −rB0,0
= 1 −m+ mp. s32d

The resulting expression ofm is combined with Eq.(24)
to obtain the following expression:

A = IAE + 2Q = S1 − h

h
DS p

1 − p
D . s33d

It shows thatIAE is an increasing function ofp for given
values ofh andQ. Intercepting the pulse sent by Alice with-
out resending a pulse to Bob is of no interest for Eve. Thus
she has to resend a pulse as often as possible, maximizing
the value ofp. With the constraint thatA be smaller than 1,
the maximum value ofp is h. Eve can obtain two measure-
ment results. If she detects a photon in time slot 3, she knows
which pulse Alice sent and she has no risk to induce a bit
error in the sifted key. If she detects a photon in time slot 4,
she does not know which pulse Alice sent and she may in-
duce an error in the sifted key with probability 0.5. The best
strategy for Eve is thus to resend a pulse each time she de-
tects in 3 and to avoid resending a pulse when she detects in
4. With the definition ofp and the fact that its maximum
value ish, this is possible as soon ashù

1
2. From now on,

we assume that this relation is fulfilled. Eve can then resend
a pulse each time she detects in 3 and setp3 to 1. As a
consequence there is only one free parameterp4, and one
finds thatp is equal to 1−dp. From Eq.(33), one gets

A
dp

p
=

1 − h

h
. s34d

Inserting Eq.(34) into Eq. (29) shows thatp34 is always
greater thanp32. The coherence of stateuc32l is limited by
the amount of error that is allowed in the transmission. On
the opposite,uc34l does not induce any error for Bob. There-
fore its coherence can be higher, which means that when Eve
detects a photon in 3, she has to send more likely statesuc34l
than statesuc32l. In the limit case whereQ is zero, Eve sends
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only statesuc34l sinceuc32l is equal tou3l and has no coher-
ence. The same situation occurs comparingp54 and p56.
When Eve detects a photon in 4 she sendsuc43l or uc45l with
the same probability since the effect on the error and on the
contrast is the same in both cases.

With Eq. (34) inserted into Eq.(31), the relationCAEB2
=CAB entirely definesIAE as a function ofQ, dC, andh. In
the general case it gives a fourth-order polynomial that can
be solved numerically. In any case, in order for Eq.(31) to be
defined, it is necessary to fulfill the following requirement:

IAE ù
1 − h

h
. s35d

This appears explicitly in two limit cases where the expres-
sion of IAE can be calculated analytically. When no decrease
of contrast is allowedsdC=0d, one obtains

IAE =
1 − h

h
+ 2Q. s36d

When no errors are allowedsQ=0d, one gets

IAE =
1 − h + 2hdC+ Î1 − hÎ1 + 4hdC− h

2h
. s37d

Equations(36) and (37) are valid in the limit of the con-
straint imposed by Eq.(25). This lower limit on IAE shows
that Eve can exploit the losses of the channel to tap some
information on Alice without being detected. In particular,
when the channel losses exceed 50%, Eve can have complete
information on the key. In that case she never sends any
pulse when she detects in 4 and she resends a pulse when she
detects in 3 or 5 with probabilityp3. This confirms the intui-
tive approach given previously and shows that the use of the
two-state protocol is limited in practical to channels with
very low transmission losses.

V. FOUR-STATE PROTOCOL

The goal of the four-state protocol is to overcome the
limitations of the two-state protocol that have been analyzed
in the previous part. The main drawback is that Eve obtains
measurement results that are not ambiguous when she de-
tects a photon in 3 or in 5. She can then choose to send states
which do not induce errors such asuc34l and uc54l. The ad-
ditional states of the four states protocol make the detection
in 3 and 5 ambiguous. Thus, when sendinguc34l or uc54l,
Eve induces errors at Bob. When a photon has been detected
in 3, statesuc32l and uc34l play the same role and have to be
sent with the same probability.

The analysis of the protocol is performed in a very similar
way as before. Calculating the different conditional prob-
abilities [settingpa, pb, pc, and pd to 1 successively in Eq.
(13)] one obtains that the following relations have to be ful-
filled:

pj ,j±1xj ,j±1 = p32x32, s38d

pj ,j+1 + pj ,j−1 = p. s39d

Those relations are a particular case of relations(17)–(21)
wheredp is set to zero and they are much more symmetric.p
is thus the probability that Eve resends a pulse when she has
measured the pulse received from Alice whatever the result
of the measure. The last relation guarantees that the losses
are independent of the pulse sent by Alice.

At that point, fulfilling the relations(38) and (39) allows
Eve not be detectable by symmetry considerations on the raw
key received by Bob. As previously, the second step in the
determination ofrB is to calculate the quantum bit error rate
and the mutual information between Alice and Eve. Those
two quantities are calculated on the sifted key that results
from the second part of the key exchange process. Bob keeps
only the results where he has obtained a measurement in 3 or
5 (without revealing the result). Alice validates only the mea-
surements corresponding to the launch of a pulse(b) or (c).
Those pulses are sent with the same probabilitiess1/2d. We
are thus brought back to the case of the two-state protocol
and we obtain similar results.Q is given by Eq.(22) andIAE
by Eq. (23). The influence of the parameterx32 is the same.
The maximum value ofIAE is given by Eq.(25).

The following quantity that has to be calculated to evalu-
ate the security of the protocol is the contrast of Bob’s inter-
ferometer and the effect of Eve interception of the original
message. We proceed the same way as previously. The con-
trast is an average measurement performed by Bob on the
raw key. Pulses(a), (b), (c), and(d) have the same probabil-
ity to be launched and thus one has to setpa=pb=pc=pd

= 1
4 in the expression ofCAEB. Inserting the relations(22) and

(23) into Eq. (26), one obtains the following expression for
the contrast:

CAEB4
=

1

4
ÎQH1

2
SÎA

p21

p
− Q +ÎAS1 −

p21

p
D − QD

+
1

2
FÎA

p65

p
− Q +ÎAS1 −

p65

p
D − QG

+ o
j=3

5 FÎA
pj ,j−1

p
− Q +ÎAS1 −

pj ,j−1

p
D − QGJ

+
1

2
−

1

2
A. s40d

Expressing that the minimum value ofCAEB4
is equal to

CAB, one obtains an implicit relation defining the mutual in-
formation IAE as a function of variablespj ,j−1, 2ø j ø6, Q
and dC being parameters. The extremum ofIAE is obtained
when the partial derivatives ofCAEB4

with respect topj ,j−1

are zero. As previously, the physically possible values ofIAE
are limited by Eq.(25). This results in the relations

pj ,j+1 = pj ,j−1 =
1

2
p. s41d

The information of Eve on Alice is maximum when the
probabilities to resend statesuc j ,j+1l anduc j ,j−1l are identical.
This results in a maximization of the coherence of the result-
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ing mixed state which is consistent with the intuition that
Eve has to maximize the coherence of the states she resends.
In addition, the probabilities defined by Eq.(41) are consis-
tent with the identity of the conditional probabilities for Eve
to have receivedu j , j +1l or u j −1,jl when she detects a pho-
ton in time slot j s3ø j ø5d. As a consequence, one gets
from Eq. (38) that all thexij are equal tox.

Inserting Eq.(41) into Eq. (40) greatly simplifies the ex-
pression ofCAEB4

which becomes

CAEB4
= Î2ÎQÎIAE +

1

2
−

1

2
IAE − Q. s42d

CAEB4
appears to be a particular case ofCAEB2

wheredp has
been set to zero. It can also be expressed as a function ofm,
p, andx:

CAEB4
=

mpÎxÎ1 − x +
1

2
s1 − md

1 − m+ mp
. s43d

ÎxÎ1−x is the contrast of the pulse resent by Eve. In the case
of no eavesdropping, the contrast is 1/2.

Equating(28) and (42), one obtains the relation defining
IAE:

IAE = 2Q + dC+ Î8QdC. s44d

This expression depends only on the quantum bit error rateQ
and on the contrast lossdC. In particular it does not involve
anymore any dependence on the losses of the channel, which
shows that Eve cannot exploit the losses of the channel to
select the pulses she resends depending on the time where
she has detected the photon. Any loss of contrast increases
the available information for Eve. In the case of a perfect
interferometer,dC is zero and necessaryx is equal to 1/2.
Settingm to 1 in Eq.(22), one obtains that each pulse inter-
cepted and resent by Eve induces a probability error of 0.25.
From Eqs.(44) and (25), the maximum information gained
by Eve is equal to 0.5 bit and is twice the error probability.
This is a result similar to what is obtained with BB84 when
Eve intercepts and resends all photons sent by Alice. In the
case wheredC=1 (Bob does not measure the contrast), Eve
does not have anymore to exploit the errors and she can setx
to zero resulting in no induced error. The information gained
by Eve is then equal to 1 bit per pulse. Eve knows com-
pletely the sifted key. Thus the security of the transmission
cannot be guaranteed. This corresponds in practical to the
case where Eve resends square pulses of durationT/2 in the
time slot corresponding to her measurement result. Eve can
get a perfect copy of the key without being detected.

After having found the expression ofIAE, one can calcu-
late the three free parameters inrB: x, p, andm, assuming
that Eve mimics the transmission of the line(32), which is
identical than in the two-state protocol.

From the definition ofIAE, Eq. (23), combined with its
expression(44), one gets the expression ofm:

m= 1 −h + hs4Q + dC+ 2Î2QdCd. s45d

The first part of the equation simply means that some mea-
surements have to be made and no pulse resent in order
mimicking the losses of the channel. The other part concerns
the useful measurements where pulses are resent from Eve to
Bob.

Similarly to m, one can then deduce the expression ofp:

p =
hs4Q + dC+ 2Î2QdCd

1 − h + hs4Q + dC+ 2Î2QdCd
. s46d

In the case whereh is equal to 1,p has to be equal to 1.
As soon as a measurement is performed, Eve has to resend a
pulse to Bob. In the general case,p decreases in order to
simulate the channel losses. Finally, from Eqs.(22), (45), and
(46), one can expressx as

x =
2Q

s4Q + dC+ 2Î2QdCd
. s47d

In the case of perfect contrast, whatever the value ofQ,
one findsx= 1

2, which means that Eve has to send square
pulses corresponding to states of the formu j , j +1l or u j
−1,jl. When there is a loss of contrast,x is smaller than 1/2,
which allows Eve to increase the probability that Bob obtains
the same measurement result that she has obtained, thus in-
creasing the information she obtains on the key. IfdC is
equal to 1, Eve can setQ to 0. As a resultx is 0 and Eve
resends square pulses of durationT/2 in the time slot corre-
sponding to her measurement result.

VI. MUTUAL INFORMATION OF BOB ON ALICE

To evaluate the security of the protocol, one has to calcu-
late the mutual information between Alice and Bob,IAB, in
the case of an eavesdropping of the line and to compare it to
IAE. The security of the key transmission can be guaranteed if
IABù IAE [16]. IAB is evaluated on the sifted key. Bob keeps
only the results corresponding to a detection in 3 or 5 and
Alice validates them only if it corresponds to a launch of
pulse(b) or (c). As previously, the probabilities evaluated for
detections in 3 or 5 are identical. It is thus sufficient to evalu-
ate the conditional probabilities in the case where Bob de-
tects in 3 for example. They are given by the relations

PsA = buB = 3d =
PsB = 3uA = bdPsA = bd

PsB = 3d

=rB33
„psbd = 1,pscd = 0… = 1 −Q,

s48d

PsA = cuB = 3d =
PsB = 3uA = cdPsA = cd

PsB = 3d

=rB33
„psbd = 0,pscd = 1… = Q. s49d

Those expressions allow calculating thea posteriorientropy
of Alice knowing Bob’s results. Since pulses(b) and (c)

TIME CODING PROTOCOLS FOR QUANTUM KEY… PHYSICAL REVIEW A 70, 042306(2004)

042306-9



are sent with equal probability, thea priori entropy is
1 bit/pulse. The information of Bob on Alice is thus given
by

IAB = Ha priori − Ha posteriori

= 1 + s1 − Qdlog2s1 − Qd + Q log2sQd. s50d

This is the classical expression of the information rate of a
binary channel with cross talk.IAB is a decreasing function of
Q. It does not depend on other parameters such ash or dC,
since only the detected photons can be taken into account
and since the off-diagonal elements of the density matrix
play no direct role in the information transmission between
Alice and Bob.

IAB and IAE can be plotted as a function ofQ, dC being a
parameter(Fig. 4). The possible values ofIAE are limited by
relation(25). In the ideal case with no contrast loss in Bob’s
interferometersdC=0d, the maximum quantum bit error rate
compatible with the security of the transmission is 17%,
which is comparable with the BB84 protocol[3]. When there
is a loss of contrast at Bob’s interferometer, the maximum
acceptable quantum bit error rate decreases. Anyhow the pro-
tocol can tolerate quite large contrast losses. For example a
contrast of 45% instead of 50% corresponds todC=0.1. In
that case the maximum value ofQ is 9%. This tolerance is
quite high. In any case, it is of first importance to minimize
the quantum bit error rate since this allows to maximize the
difference betweenIAB and IAE whatever the value of the
contrast loss.

VII. EVE ATTACK WITH MAXIMUM COHERENCE
PULSES IN THE FOUR-STATE PROTOCOL

As seen previously, the ideal solution for Eve is to maxi-
mize the coherence of the state she resends in order to fully
exploit the loss of contrast of the interferometer. Therefore,
she would resend a pure state instead of a statistical mixture.
Considering that when she detects a photon in time slotj she
can induce errors only in the two closest neighbors, the pure
state that she can resend has the following expression:

uc jl =Îx

2
u j − 1l + Î1 − xu jl +Îx

2
u j + 1l. s51d

We have supposed a state symmetric inj −1, j +1 to respect
the symmetry of the problem. The density matrix sent by Eve
is the following:

rE = o
j=2

6

Trsu jlk j urAu jlk j udfpjuc jlkc ju + s1 − pjdp0g. s52d

The density matrix received by Bob is given by

rB = mrE + s1 − mdrA s53d

wherem is the probability for Eve to do a measurement.
Exploiting the same symmetry argument on the errors in-

troduced in the raw key as previously, one finds the neces-
sary condition on the probabilities:

pj = p. s54d

From the resulting expression ofrB, one can calculate the
expression of the quantum bit error rateQ and that of the
mutual information between Alice and EveIAE. One finds the
expressions

Q =

1

2
mpx

1 − m+ mp
, s55d

IAE =
mps1 − xd

1 − m+ mp
. s56d

Those expressions are the same as for the attack on two
adjacent states in the case of the four-state protocol. In par-
ticular the same limit on physically attainable values ofIAE,
Eq. (25), still holds.

The contrast defined as previously has the following ex-
pression which only slightly differs from that of the previous
case(43):

CAEBmax
=

2mpÎx

2
Î1 − x +

1

2
s1 − md

1 − m+ mp
. s57d

Here the contrast measurement of a pulse sent by Eve is
2sÎx/2dÎ1−x. CAEBmax

can also be expressed as a function of
IAE anddC:

FIG. 4. Information of Bob on AlicesIABd and Eve on Alice for
a relative contrast loss of 0%(a), 10% (b), and 20%(c) as a func-
tion of the quantum bit error ratesQd. Eve sends pulses spanning
only two time slots. For each curve, the maximum information of
Eve on Alice is obtained when Eve intercepts all pulses(dashed
line). For no loss of contrast, the maximum allowed value ofQ is
17%. For a relative contrast loss of 10%, the maximum allowed
value ofQ is 9%.
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CAEBmax
= 2ÎQÎIAE +

1

2
−

1

2
sIAE + 2Qd. s58d

As previouslyIAE can be expressed as a function ofdC and
of Q [in the limit of the constraint(25)]:

IAE = 6Q + dC+ 4ÎQs2Q + dCd. s59d

In that case the available information for Eve is higher than
that of the previous case for given values ofQ anddC. The
mutual information between Alice and Bob has the same
expression as previously since it does not depend on the
coherence of the pulses. One can plot those quantities as a
function of Q (Fig. 5). In the ideal case the maximum al-
lowed quantum bit error rate is 5.8%. WithdC=0.1 it is
4.4%.

As previously, the parametersm, p, andx can be calcu-
lated as a function of the characteristic parameters of the
lines h, Q, anddC:

m= 1 −h + hf8Q + dC+ 4ÎQs2Q + dCdg, s60d

p =
hf8Q + dC+ 4ÎQs2Q + dCdg

1 − h + hf8Q + dC+ 4ÎQs2Q + dCdg
, s61d

x =
2Q

8Q + dC+ 4ÎQs2Q + dCd
. s62d

In principle, Alice and Bob can detect that kind of attack
since the pulses resent by Eve induce coherences between
nonadjacent time slots. It can be measured with an additional
interferometer with two arms having a time propagation dif-

ference ofT. In case of no eavesdropping, the contrast is
zero. In case of eavesdropping, the contrast is defined by

CT =

o
j=1

5

rBj ,j+2

1 − rB0,0

. s63d

Alice sends the pulses with probabilitiespa=pb=pc=pd

= 1
4. The expression of the contrast is thus

CT =

1

2
mpx

1 − m+ mp
= Q. s64d

This is a value in the order of a few percent, which may be
difficult to measure in practice. Therefore, Alice and Bob
have two alternatives. Either keep the simplicity of the initial
scheme with only one interferometer at the price of restric-
tion of the acceptable quantum bit error rate to ensure secu-
rity or increase the complexity of the system introducing an
additional interferometer in order to allow higher values of
the quantum bit error rate without compromising the secu-
rity. On the other hand, Eve does not know which solution
Alice and Bob choose. To be certain not to be discovered she
should only choose the first case where pulses are sent only
on two adjacent time slots.

VIII. CONSEQUENCES OF THE DARK COUNTS
ON THE PROTOCOLS

After having analyzed the security in a general way, we
focus on a particular limitation which is due to photocounters
dark counts and which is very important in practical imple-
mentations. Dark counts result from the probability to trigger
the avalanche in the photocounter even without any incident
photon. It is not possible to separate effective photodetec-
tions from dark counts. Therefore all the triggerings of the
photocounter are considered resulting from an incident pho-
ton. For a given kind of photocounter, the dark counts are
characterized by a probability of occurrence per second.
They are typically of 300 s−1 for Perkin Elmer SPCM14 Si-
licium photocounters and of 40 000 s−1 for InGaAs photo-
counters[3]. To extend our model we definepdark as the
probability of a dark count during a time slot of duration
T/2. Then we simply addpdark to each probability detection
calculated during the same time slot and derived from the
previous calculations. The dark counts become predominant
when their probability is of the same order as the probability
to detect a photon. Considering time slots of duration 10 ns
and the case of InGaAs we see that the dark-count probabil-
ity is typically of the order of 4310−4. The probability to
detect a photon is mainly of the order of the line transmission
h. We have seen previously that the two-state protocol is
limited to transmissions greater than 0.5. In that case dark
counts are not the limitation since their probability is several
orders of magnitude smaller than the probability to detect a
photon. We can thus conclude that, within its domain of va-
lidity, the two-state protocol is not affected by dark counts.

In Sec. V we have seen that the four-state protocol is not
affected by the losses of the line when perfect photodetectors

FIG. 5. Information of Bob on AlicesIABd and Eve on Alice for
a relative contrast loss of 0%(a), 10% (b), and 20%(c) as a func-
tion of the quantum bit error ratesQd. Eve sends maximum coher-
ence pulses(spanning three time slots). For each curve, the maxi-
mum information of Eve on Alice is obtained when Eve intercepts
all pulses(dashed line). For no loss of contrast, the maximum al-
lowed value ofQ is 5.8%. For a relative contrast loss of 10%, the
maximum allowed value ofQ is 4.4%.
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with no dark counts are used. It is thus possible to consider
low transmissions(or long propagation distances) that can be
of the same order of the dark-count probability. Then those
latter play a crucial role and induce a limitation to the range
of the system. We will thus focus on the consequences of
dark counts on the four-state protocol.

The main advantage of the four-state protocol as com-
pared to the two-state protocol is to impose symmetry con-
ditions that Eve has to fulfill if she wants to remain undetec-
ted. These conditions are enounced in Sec. III C and rely on
equalities of conditional probabilities knowing the state sent
by Alice. The result of the dark counts is to add an identical
probability pdark to all of those conditional probabilities.
Therefore the requirement on their equality remains valid
and Bob can still check the symmetry of the results on part
of his raw key. As a consequence Eve still has to fulfill the
symmetry relations(38) and (39) and the derivation of Sec.
V is still valid.

To proceed, we first start evaluating the quantum bit error
rate in the presence of dark counts, denotedQ8, in the case of
the imperfect line between Alice and Bob with no eavesdrop-
ping. In the previous parts we have considered a quantum bit
error rate resulting only from the propagation of the pulses in
the line or from the shape of the pulses themselves. We have
introduced it as an external parameter given by the experi-
ment without analyzing the precise process that is at its ori-
gin. This would be a tricky task very dependent on the cho-
sen model. To avoid that, we can go back to the definition
of Q:

Q =
rB55

spb = 1d

rB55
spb = 1d + rB33

spb = 1d
. s65d

In the range allowing secure communication,Q is always
small compared to one which allows one to develop Eq.(65)
at first order inQ. ThereforerB55

spb=1d is a term at first
order inQ whereasrB33

spb=1d is a term at zero order inQ
whose value is given by the probability to detect a photon in
time slot 3 knowing that Alice has sent a pulse(b). Taking
into account the line transmissionh, the beam splitter trans-
missionhb, and the photocounter efficiencyhc we obtain

rB33
spb = 1d =

hchbh

2
, s66d

rB55
spb = 1d =

hchbhQ

2
. s67d

The expression ofQ8, in the presence of dark counts, is
obtained addingpdark in the numerator of Eq.(65) and de-
veloping at first order, leading to

Q8 = Q +
b

h
, s68d

whereb is a parameter which is specific from Bob’s setup
and has the expression

b =
2pdark

hchb
. s69d

In addition to its intrinsic part due to the transmission
through the line, the quantum bit error rate has a new con-
tribution due to the dark counts which introduces a depen-
dence with the line transmission.

The second step consists in analyzing how Eve can ex-
ploit this additional term to eavesdrop the line. We make the
assumption that she has no access to the apparatus of Bob.
The measurements of the pulses she sends are thus affected
by the same limitations: transmission of the beam splitter,
efficiency and dark counts of the photocounters. As in the
previous part we assume that she is able to replace the im-
perfect line with a perfect line with no loss and no intrinsic
quantum bit error rate. She introduces a controlled quantum
bit error rate calledQE which simulates the quantum bit error
rate expected by Bob and allows her to tap some informa-
tion. The maximum value ofQE allowed with her perfect line
is thus given by

QE = Q + bS 1

h
− 1D . s70d

In addition to the intrinsic quantum bit error rate, Eve can
exploit an additional term that is due to the dark counts and
which increases as the transmission of the line decreases. As
a consequence, as the propagation distance increases, the
transmission can become small enough so that the term due
to the dark counts is predominant. The quantum efficiency of
the photocounter and the transmission of the beam splitter
appear explicitly. The beam splitter is unavoidable since it is
intrinsic to the protocol, but it is important to have quantum
efficiency as great as possible to minimize the effect of the
dark counts.

Dark counts not affect only the quantum bit error rate, but
the contrast as well since similar photocounters are used to
measure it. To evaluate their incidence on the contrast mea-
surement, we proceed the same way as for the quantum bit
error rate. For the sake of simplicity, we assume that the two
photocounters have the same quantum efficiency and have
the same probability of dark counts. An imbalance between
the two photocounters would not change the main results
provided it consists in a small correction. We consider that
the photocounters remain activated during a time sufficient
to register all possible detection events, but not much in or-
der to keep the dark-count probability as low as possible.
Depending on the protocol, the required number of time
slots, n, can vary. For the four-state protocol, the detection
can occur during seven successive time slots if one takes into
account the possible errors. An additional time slot is neces-
sary to take into account the delay introduced by the inter-
ferometer. A total of eight time slots is thus necessary to
record all possible events. We consider the photon detection
probabilities in the two output ports of the interferometerP2+
and P2− in the ideal case with perfect detectors and a loss
less channel. Their sum is equal to 1 and their difference is
equal to1

2s1−dCd which depicts the intrinsic coherence loss
due to the quantum channel. Introducing the dark counts, and
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assuming that they are identical for both photocounters, the
new expression of the contrast becomes

C8 =
hcs1 − hbdhsP2+ − P2−d
hcs1 − hbdh + 2npdark =

1

2
s1 − dCd

1

S1 +
nb8

h
D ,

s71d

whereb8 has the same expression thanb with hb replaced by
s1−hbd. Sincen can be large(8 in the four-state protocol),
the expansion of the denominator in first order is not neces-
sary justified. The new expression for the relative contrast
loss, defined byC8= 1

2s1−dC8d, is given by

dC8 = dC+
nb8s1 − dCd

h + nb8
. s72d

As previously, we define the relative contrast lossdCE
that can be induced by Eve, considering a lossless channel:

C8 =
1

2
s1 − dCEd

1

s1 + nb8d
. s73d

We obtain

dCE = dC+
nb8s1 − hds1 − dCd

sh + nb8d
. s74d

Similarly to the quantum bit error rate, the dark counts
allow Eve to introduce an additional decoherence which in-
creases as the transmission of the channel between Alice and
Bob decreases. It is clear from the previous analysis that the
dark counts induce a dependence with the channel losses of
both quantum bit error rate and contrast loss. It cancels only
in the case of a perfect channel with no loss since we have
assumed that Eve cannot control the detection setup at Bob’s
site and is affected by the partial transmission of the beam
splitter and by the photocounters quantum efficiency as well.
The dependence with the losses of the line imposes a limita-
tion of the range in which the security of the transmission
can be guaranteed. To evaluate that range, we assume thatQ
and dC are negligible in front of the terms due to the dark
counts in Eqs.(70) and(74), respectively. ThereforeQE and
dCE depend only on one variableh. Knowing the parameters
characteristic of Bob’s setup, one is then able to calculate the
range for which the transmission is secure. In Eqs.(70) and
(74), we setdC and Q to 0. The resulting relations can be
inserted into Eq.(44) to obtain the dependence of the mutual
information of Alice and Eve in the case of an attack using
pulses spanning only to adjacent time slots(Sec. V) or in Eq.

(59) in the case of an attack with maximum coherence
pulses. The minimum tolerable transmission is obtained
when the mutual information of Alice and Eve is equal to the
mutual information of Alice and Bob. The maximum propa-
gation length can be deduced from that value knowing the
attenuation of the linea (in dB/km).

We have calculated the maximum propagation length in
the case of the four-state protocolsn=8d for both kinds of
attacks. We have considered typical implementations in the
case of silicium photocounterss850 nmd or InGaAs photo-
counterss1550 nmd. The number of dark counts per second
is typically of 300 for Perkin Elmer SPCM14 silicium pho-
tocounters and of 40 000 for InGaAs photocounters[3]. Con-
sidering time slots of 10 ns, the corresponding probability of
dark count per time slot is thus 3310−6 for silicium photo-
counters and 4310−4 for InGaAs photocounters. The quan-
tum efficiency is 0.5 for Perkin Elmer SPCM14 silicium
photocounters and 0.06 for InGaAs photocounters[3]. The
transmission of the beam splitter is 50%. The losses of the
fibers are 2 dB/km at 850 nm and 0.2 dB/km at 1550 nm.
The maximum propagation lengths obtained for the different
cases are gathered in the Table I. The propagation length is in
the range of 15 km for Si photocounters and in the range of
20 km for InGaAs photocounters. The smallest range is ob-
tained for the attack with maximum coherence pulses. Any-
how the difference with the attack using two time slots
pulses is not very big. This can be attributed to the fact that
the decrease of contrast is predominant on the quantum bit
error rate sincen is high. The ranges that are found can be
considered as small compared to results obtained with other
systems(e.g., 67 km[3]). It is worth being noticed that the
dark-count probability is very dependent on the duration of
the pulses and thus on the time slots which are considered.
Assuming pulses with a duration of 2.5 ns, which is compat-
ible with the performances of present modulators and photo-
counters, one divides by 4 the dark-count probability. The
maximum ranges calculated in that case are gathered in Table
II. In that case the difference between the two kinds of at-
tacks is still not very important. One can see a range that is
doubled in the case of InGaAs counters whereas it has not
varied that much in the case of Si photocounters. In the case
of high loss fiberss850 nmd decreasing the dark-count prob-
ability does not bring that much since the fiber losses are
predominant. In the case of low-loss fiberss1550 nmd it is
thus very important to decrease the dark-count probability to
increase the range. The ranges obtained with both kinds of
attacks are compatible with an implementation at Telecom
wavelength.

TABLE I. Maximum propagation distances(in km) as a func-
tion of the kind of attack and of the type of photocounter for time
slots of 10 ns.

Attack with two
time-slot pulses

Maximum
coherence attack

Si photocounters 16.6 15.7

InGaAs photocounters 23.9 18.2

TABLE II. Maximum propagation distances(in km) as a func-
tion of the kind of attack and of the type of photocounter for time
slots of 2.5 ns.

Attack with two
time-slot pulses

Maximum
coherence attack

Si photocounters 19.6 18.7

InGaAs photocounters 46.6 39.1
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IX. CONCLUSION

We have proposed quantum key distribution protocols
based on coherent single-photon optical pulses with duration
T and with minimum time-frequency uncertainty. The pulses
are sent with possible delays(e.g., 0,T/2) which are used to
code the information(e.g., bit 0, bit 1) and which are shorter
than their width. Therefore, the time detection of the photons
may result in an ambiguity of the delay evaluation for a
potential eavesdropper. In parallel, pulses are sent at random
by Bob to a long-arm interferometer(T/2 delay) allowing
checking, thanks to a coherence measurement, that the re-
ceived pulses have the requested duration. We have given a
formalism allowing describing quantum mechanically those
protocols. A first protocol has been proposed based on two
different pulses with delay 0 orT/2. It has been shown in
that case that the losses of the channel can be exploited by
Eve to tap some information on the transmitted key. Even in
the absence of any other defect of the line, the transmission
is not secure if the channel losses exceed 50%. To overcome
that limitation another protocol has been proposed with de-
lays 0,T/2, T, and 3T/2. We have shown in that case that
Eve cannot exploit the channel losses(assuming perfect pho-
tocounters). Comparing the mutual information between Al-
ice and Eve and between Alice and Bob, we have evaluated
the security as a function of the quantum bit error rate and of
the relative contrast loss of the interferometer. In a first part,
those parameters have been considered as independent. The
quantum bit error rate can be attributed to defects in the
transmission line(possible pulse spreading of the pulse or
time jitter of the clock) or to the dark counts of Bob’s pho-
tocounters. The possible loss of contrast can be attributed to
decoherence during the propagation, imperfect source line-
width, or to the dark counts of Bob’s photocounters. We have
first considered an attack where Eve sends pulses which are
similar to those of Alice. In the case of a transmission with
no decoherence the maximum allowed quantum bit error rate
is 17% which is comparable to that obtained with BB84
protocol. For a realistic value of 10% relative loss of contrast
in the interferometer, the allowed quantum bit error rate is
still 9%. We have considered another kind of attack where
Eve sends pulses which maximize the coherence for a given
error value. Bob can in principle detect those pulses but this
requires an additional interferometer withT time delay be-
tween the two arms and the measurement of a contrast equal
to the quantum bit error rate. This may be difficult from a
practical point of view, thus making that kind of attack pos-
sible. In the case of no decoherence the maximum allowed
quantum bit error rate is then 5.8%. In the case of a 10%
relative contrast loss it is 4.4%. Those values are much
smaller than those obtained in the previous case but are still
compatible with a realistic experimental setup with a quan-
tum bit error rate in the order of a few percent. On the other
hand, Eve can never be sure not to be detected in that case,
which would prevent her to send pulses with maximum co-
herence. In any case, it is of first importance to minimize the
quantum bit error rate since this allows maximizing the dif-
ference between Alice and Bob mutual information and Alice
and Eve mutual information whatever the value of the con-
trast loss.

Those protocols have several practical advantages. The
information is coded only in the time domain, which simpli-
fies the implementation and avoids for Bob to randomly
switch his detection between two bases. Their implementa-
tion in an experimental setup is realistic. Considering that the
response time of available photocounters can be smaller than
1 ns leads to the use of pulse durations in the 10–20 ns
range. For those duration values, the precision in the arrival
time is about 1 ns. Coherent faint pulses can be produced
combining a single-mode diode laser and a high-speed
electro-optics amplitude modulator that can be driven with
an electrical pulse generator having rise time and decay time
smaller than 1 ns. The measurement of the arrival time of the
photon does not require that the polarization of the photon be
conserved. If the interferometer is made insensitive to the
polarization, the whole system is potentially insensitive to
the polarization. As a consequence there is no need for go
and return of the pulses, which opens the way to high trans-
mission rates.

In the 10 ns range, the clock can be precisely controlled.
In addition pulse spreading due to propagation is negligible
over long distances in this range[14]. The time propagation
of the pulses is little affected by the propagation disturbances
of the fiber such as fiber thermal dilatation or group velocity
dispersion. The main limitation is expected from the dark
counts of the photocounters which introduce a dependence of
the quantum bit error rate and the relative contrast loss with
the attenuation of the line. Considering standard characteris-
tics of present photocounters and fiber optics, we have cal-
culated secure transmission distance in the 20 km range
when using 10 ns time slots. That range can be extended to
40 km when using 2.5 ns time slots and optical fibers at
1550 nm. Such small time slots are possible with present
technology.

These technical considerations combined with the advan-
tages of the principle described above make the time coding
protocol a realistic method for quantum key distribution.
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APPENDIX

Coherent one-photon state expression

One way to produce faint pulses which can approximate
coherent single-photon pulses is to couple a single-frequency
laser field through an electro-optic modulator which is driven
with a voltage having the appropriate time profile. We con-
sider a one-dimensional problem. We describe the incoming
field (index 1) with a single-mode coherent state and the
output (index 2) as a sum of modes initially in the vacuum
state. We consider a point interaction to avoid phase-
matching limitations in the coupling of the two modes. The
modulator can thus be considered as a beam splitter with a
time varying coupling constant. The incoming field has a
high intensity which allows us to neglect its depletion and to
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consider it as classical. The interaction can thus be described
by a Hamiltonian of the form

H = "xgstda1o
k2

ak2

† e−isv1−v2dt + H.c. sA1d

x is a coupling constant,gstd is a normalized time profile
function obeying the relation

E dtugstdu2 = 1, sA2d

a1 is the incoming field amplitude,ak2

† is the creation opera-
tor on output modek2 with frequencyv2=ck2, andv1 is the
input mode frequency.

The final state is obtained applying the evolution operator
obtained from Eq.(A1) to the initial state. The evolution
operator is a product of displacement operators for each
mode of the output field. A product of coherent states thus
describes the resulting output state. When sufficiently attenu-
ated, this state can be approximated by an expansion limited
to its first order term inx which is a superposition of the
vacuum and of a one-photon state of the form[17]

o
k2

ck2
ak2

† u0l. sA3d

Changing from the discrete basis to a continuous basis and
using the frequency as the variable, the expression of the
one-photon state becomes

ucl =E dv2csv2da†sv2du0l. sA4d

csv2d obeys to the normalization relation

E dv2ucsv2du2 = 1. sA5d

Its expression deduced from the previous Hamiltonian is
given by

csv2d = g̃sVd, sA6d

whereV=v2−v1 and g̃sVd is the Fourier transform ofgstd
defined by

g̃sVd =
1

Î2p
E dtgstdeiVt. sA7d

csv2d is the Fourier transform of the envelope of the pulses
generated by the modulator centered at frequencyv1. This
way, coherent one-photon pulses are produced starting from
a coherent single-mode incoming field. For sufficient attenu-
ation, the output faint pulse can be approximated by a coher-
ent one-photon state.

Detection probability

The expression of the one dimension electric field is given
by

Es+dsx,td = «vE dvasvde−ivst−x/cd . sA8d

We have supposed that the frequency distribution of the state
on which it applies is much smaller than the optical mean
frequency.

The first-order count rate is defined by[17]

wIsx,td = uEs+dsx,tduclu2. sA9d

One can deduce the photon detection density probability inx
and t:

dP

dt
sx,td =

1

2p
ue dvcsvde−ivst−x/cdu2 = UgSt −

x

c
DU2

.

sA10d

Interferometer contrast

One key element of the setup is the interferometer that
allows to detect a possible change in the pulse duration in-
duced by the eavesdropper. We consider a perfect Mach-
Zender interferometer with an equal balance of the two
propagation arms that combines two input ports into two
output ports introducing a delay difference in the two arms.
The two output fieldsE2−

outsx2,td and E2+
outsx2,td can be ex-

pressed as a function of the incoming fieldsE1−
in sx1,td and

E1+
in sx1,td. We consider a one-photon state incoming into the

1 input port of the interferometer and the vacuum in the2
port. Keeping only the terms with nonzero input, the output
fields are given by the relations

E2−
outsx,td =

1

2
fE1+

in sx − Lb,td − E1+
in sx − La,tdg, sA11d

E2+
outsx,td =

1

2
fE1+

in sx − La,td + E1+
in sx − Lb,tdg. sA12d

The origin is taken on the second beam splitter.La andLb are
the lengths of the two arms of the interferometer.

One can calculate the first-order count rate and deduce the
photon probability detection in the two output portsP2+ and
P2−:

P2± =
1

2
±

1

4
SE dtgSt +

La

c
Dg*St +

Lb

c
Deiv1sLa−Lbd/c + c.c.D .

sA13d

The sum of the probabilities is equal to 1. The contrast of the
interferometer can be defined as the difference in the prob-
abilities between arm1 and arm2. It can be expressed in
the time domain as well as in the Fourier domain:

C =
1

2
SE dtgstdg*st + tdeiv1t + c.c.D

=E dVug̃sVdu2 cosfsV + v1dtg, sA14d

where the time propagation difference between the two arms
t is given by
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t =
Lb − La

c
. sA15d

The expression(A14) in the time domain shows that the
contrast is the real part of the autocorrelation function of a
monochromatic optical field modulated by the time envelope
of the pulse. In the Fourier domain the contrast is the sum of
the interferograms produced at each frequency of the distri-
bution corresponding to the pulse. In addition there is a com-
mon phase depending ont and on the optical carrier fre-
quency.

In our setup the interferometer is set at a constant value of
t equal to half of the pulse duration. The possible reduction
of the pulse duration by the eavesdropper is measured
through a measurement of the interferometer contrast. In or-
der to maximize its value, one has to setv1t to 2kp. Thus
the contrast is only depending on the shape and duration of
the temporal pulse.

The protocols imply the use of mixed states. It is thus
important to generalize the expression of the contrast(A14)
to that case. A general pulsefstd can be described as the sum
of N square pulses with coefficientsa j defined by the rela-
tions

fstd = o
j=1

N

a jujstd, sA16d

o
j=1

N

ua ju2 = 1. sA17d

The corresponding state is

ucl = o
j=1

N

a ju jl. sA18d

The interferometer evaluates the autocorrelation of the re-
ceived pulse for a delay equal to the propagation time differ-
ence between the two arms. When that delay is exactly equal
to T/2, the measurement result of the interferometer is sim-
ply related to the scalar product of the incoming state and the
same state where all the indices are shifted by one. Inserting
Eq. (A16) andujstd=uj+1st+T/2d into Eq.(A14) the contrast
can be expressed as a function of thea j:

C =
1

2Fo
j=1

N−1

a ja j+1
* eiv1T/2 + c.c.G . sA19d

In the case where Bob receives a density matrix that is a
mixture of pure states, the previous expression can be ex-
tended taking into account the linearity of the trace in the
calculation of the first-order counting ratewI. The contrast is
the weighted sum of the contrast of each pure state. It writes
as a function of the off-diagonal terms of the density matrix:

C =
1

2Fo
j=1

N−1

r j ,j+1e
iv1T/2 + c.c.G . sA20d

In the particular case of our protocol, we setT to v1T/2
=2kp, and the probability amplitudes are real. The expres-
sion of the contrast simplifies to

C = o
j=1

N−1

r j ,j+1. sA21d
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