
Statistical reconstruction of qutrits

Yu. I. Bogdanov
Russian Control System Agency,9Angstrem,9 Moscow 124460, Russia

M. V. Chekhova, L. A. Krivitsky, S. P. Kulik, A. N. Penin, and A. A. Zhukov*
Department of Physics, Moscow M.V. Lomonosov State University, 119992 Moscow, Russia

L. C. Kwek†

National Institute of Education Nanyang Technological University, 637616 Singapore

C. H. Oh and M. K. Tey‡

Department of Physics, Faculty of Science, National University of Singapore, 117542 Singapore
(Received 16 April 2004; published 5 October 2004)

We discuss a procedure of measurement followed by the reproduction of the quantum state of a three-level
optical system—a frequency—and spatially degenerate two-photon field. The method of statistical estimation
of the quantum state based on solving the likelihood equation and analyzing the statistical properties of the
obtained estimates is developed. Using the root approach of estimating quantum states, the initial two-photon
state vector is reproduced from the measured fourth moments in the field. The developed approach applied to
quantum-state reconstruction is based on the amplitudes of mutually complementary processes. The classical
algorithm of statistical estimation based on the Fisher information matrix is generalized to the case of quantum
systems obeying Bohr’s complementarity principle. It has been experimentally proved that biphoton-qutrit
states can be reconstructed with the fidelity of 0.995–0.999 and higher.
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I. INTRODUCTION

The ability of measuring quantum states is of fundamental
interest because it provides a powerful tool for the analysis
of basic concepts of quantum theory, such as the fundamen-
tally statistical nature of its predictions, the superposition
principle, Bohr’s complementarity principle, etc. To measure
the quantum state one needs to perform some projective
measurements on the state and then to apply some computa-
tion procedure to the data. The first step is a genuine mea-
surement consisting of a set of operations on the representa-
tives of a quantum statistical(pure or mixed) ensemble. As a
result of such an operation an experimentalist acquires a set
of frequencies at which particular events occur. In the second
step a mathematical procedure is applied to the statistical
data obtained in the previous step to reconstruct the quantum
state. Obviously, the complexity of the whole reconstruction
procedure depends directly on the minimal number of mea-
surements required for the reconstruction, which, in its turn,
is given by the dimensionality of the state Hilbert space.

The necessity of an adequate measurement of the states of
such systems is caused not only by fundamental interest but
also by some applications. For example, it has been shown
that the security of the key distribution in quantum cryptog-
raphy is associated with the dimensionality of the Hilbert
space for the states in use[1]. From this point of view certain

hopes are pinned on the three-level systems or qutrits[2–4]
rather than qubits.

The present paper is devoted to state reconstruction for
the optical three-level systems. The object under study is the
polarization state of a frequency and spatially degenerate bi-
photon field[5,6].

We should mention that there are other implementations
of three-level optical systems. The most familiar ones deal
with three-arm interferometers[7] and lower-order trans-
verse spatial modes of optical field, realized with holograms
[8–10]. Polarization-entangled four-photon fields, which are
equivalent to two entangled spin-1 particles, were studied in
[11].

All these implementations belong to the art of the modern
experimental technique and demonstrate the development of
those quantum information branches relating to the practice.
However, note that successful manipulation with quantum
states implies the ability to control three important stages:
state preparation, its transformation, and measurement. From
this point of view, biphoton qutrits look quite promising
since the mentioned stages are under the full control. The
unitary transformations of biphoton polarization states as
well as quantum ternary logic have been considered in[12].
Preparation of arbitrary qutrits was realized recently[13], so
in the present paper we focus on the complete reconstruction
of the biphoton qutrits. Although realistic tomographic pro-
cedures for measuring such quantum states were suggested
earlier [14–16], this work includes the most advanced ap-
proach. Such an approach consists of statistical estimation of
the experimental data based on solving the likelihood equa-
tion, the so-called root estimation technique[17]. The advan-
tages of the root estimation method are based on the ability
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to reconstruct the states in the Hilbert space of high dimen-
sionality. The method is asymptotically effective, so it allows
one to reconstruct the states with an accuracy that is most
close to the accuracy achievable in principle. That is why the
formalism applied to the unknown quantum states allowed us
to formulate and experimentally check the fundamental sta-
tistical limits of the accuracy of state reconstruction. Practi-
cally, this is the first application of the root estimation to a
large set of experimental data obtained in different regimes
of biphoton-state generation, which are widely used in quan-
tum optics and quantum information—namely, speaking
about temporal regimes, the data under analysis related to
continuous and short-pulsed biphoton sources. As to the po-
larization regimes, we investigated both types of phase
matching (type I and type II) for producing biphotons.
Among the works that closely relate to the subject of the
present paper and are devoted to state reconstruction, we
would like to refer to the family of papers in[18–21], where
quantum tomography of qubit pairs was developed. In these
works, a detailed analysis of the biphoton polarization states
involved in a wide range of processes like decohering, uni-
tary, etc., was implemented. The approach developed in these
works exploits the noncollinear(and degenerate) regime for
the correlated photon source. Transition to the collinear(and
degenerate) regime when biphotons propagate in the single
beam rather than in two beams becomes crucial. We put great
emphasis on that fact because it makes possible to pass from
qubits to qutrits or to a new class of states with higher di-
mensionality(see Sec. II).

The paper is organized as follows. In Sec. II we discuss
the main properties of qutrits based on the polarization state
of the biphoton field. We focus on their preparation, visual
representation on a Poincaré sphere, and unitary transforma-
tion by phase plates. Then we consider the coherence matrix,
which characterizes completely the properties of biphoton
qutrits in the fourth field moments. Section III is devoted to
the methods of biphoton-qutrit measurement; in particular,
we introduce two quantum tomography protocols and discuss
in detail their experimental implementation. We conclude
this part with an analysis of statistical reconstruction for
qutrits from the outcomes of mutually complementary mea-
surements. Section IV deals with the methods of quantum-
state reconstruction. Namely, we consider the least-squares
and maximum-likelihood methods and apply these tools to
analysis of the data obtained in quantum tomography. In the
Appendix we explore the problem of statistical fluctuations
of the state vector which is important for estimation and
control of the precision and stability of quantum information.

II. QUTRITS BASED ON BIPHOTONS

A. Preparation

Biphoton field is a coherent mixture of two-photon Fock
states and the vacuum state[22]:

C = uvacl +
1

2o
kWsk

W
i

FkWs,k
W
i
u1kWs

,1kWi
l, s1d

whereu1kWs
,1kWi

l denotes the state with one(signal) photon in

the modekWs and one(idler) photon in the modekW i. The co-

efficient FkWs,k
W
i
is called the biphoton amplitude[23], because

its squared modulus gives a probability to register two pho-

tons in modeskWs andkW i.
Let us consider the collinear and frequency-degenerate

regime, for whichkWs<kW i, vs<vi andvs+vi =vp, wherevp
is the laser pump frequency. We further restrict our discus-
sion to biphotons that are indistinguishable in terms of spa-
tial, spectral, or temporal parameters. From the point of view
of polarization there are three natural states of biphotons:
namely,C1= u2,0l, C2= u1,1l, andC3= u0,2l. Here the no-
tation u2,0l;u2H ,0Vl, for example, indicates that there are
two photons in the horizontalsHd polarization mode, while
no photons are present in the orthogonal verticalsVd mode.
These basic states can be generated using type-I(for C1 and
C3) and type-II (for C2) phase matching. Since only two-
photon Fock states are considered, for the stateum,nl the
conditionm+n=2 must be satisfied.

Any arbitrary pure polarization state of biphoton field can
be expressed in terms of three complex amplitudesc1,c2,
andc3:

ucl = c1u2,0l + c2u1,1l + c3u0,2l, s2d

where cj = ucjuexphiw jj and o j=1
3 ucju2=1. The vector ucl

=sc1,c2,c3d represents a three-state state or qutrit.
There is an important note concerning the state vector(2).

In principle, one can write the complete polarization state in
the form

ucl = c1u2H,0Vl + c2u1V,1Hl + c28u1H,1Vl + c3u0H,2Vl, s3d

where the termsu1H ,1Vl and u1V,1Hl might be distinguish-
able somehow, for example, if the photon with vertical po-
larization comes first with respect to the photon with hori-
zontal polarization. However, we consider a particular two-
mode polarization state, so photons differ in polarization
only and there are no other parameters responsible for their
distinguishability.

In general, to generate an arbitrary qutrit state one needs
to put three nonlinear crystals separated in space into a com-
mon pump and superpose the biphoton fields generated by
the three crystals coherently or incoherently(Fig. 1).

B. Representation of qutrits using the Poincaré sphere

Sometimes it is very convenient to use a visual represen-
tation of the state. For example, a single-photon pure polar-
ization state(qubit) may be mapped onto the Poincaré sphere
[three-dimensional(3D) Euclidian sphere]. A (pure) qubit
state is determined by polar and azimuthal anglessq ,fd in
spherical coordinates. Any unitary polarization transforma-
tion of the qubit is represented by the corresponding rotation
of the sphere. Thus, in order to learn the final transformed
state one just has to apply the rotation operation using certain
rules.

It would be helpful to use the same visual representation
of a qutrit using the Poincaré sphere. Although generalization
of the Poincaré sphere for qutrits has been discussed earlier
[24] we suggest an alternative approach, which allows us to
manipulate with qutrits in natural 3D space rather than in
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sophisticated 8D space. Let us map the pure polarization
state of a biphoton into a pair of points on the sphere(but
this is not the two-qubit case since the statesuH ,Vl and
uV,Hl are indistinguishable). In this representation each pho-
ton forming the biphoton is plotted as a single point on the
Poincaré sphere, so the qutrit-state vector is represented by

ucl =
fas

†sq,fdai
†sq8,f8d + ai

†sq,fdas
†sq8,f8dguvacl

uufas
†sq,fdai

†sq8,f8d + ai
†sq,fdas

†sq8,f8dguvacluu
,

s4d

wherea†sqi ,fid anda†sqs,fsd are the creation operators in
idler and signal polarization modes anda†sqm,fmd
=cossqm/2da†+eifmsinsqm/2db†, m= i ,s. Note that opera-
tors a†;aH

† ,b†;aV
† are creation operators forH- and

V-polarized photons.
It is well known that the number of real parameters char-

acterizing a quantum state is determined by the dimension of
the Hilbert spacessd. For a pure state,

Npure= 2s− 2, s5ad

and for mixed states,

Nmixed= s2 − 1. s5bd

According to Eqs.(5a) and(5b), four real parameters de-
termine completely the pure state of a qutrit, so in the
Poincaré sphere representation these parameters are simply
the four spherical anglessqi ,fi ;qs,fsd. The links between
the anglessqi ,fi ;qs,fsd and the amplitudescj = ucjuexp iw j

are derived in[6]. As an example three basic statesC1
= u2,0l, C2= u1,1l, andC3= u0,2l are shown in Fig. 2. It can
be shown that the polarization degree of a qutritP
=Îuc1u2− uc3u2+2uc1

*c2+c2
*c3u2 [6] has a clear geometrical

meaning: it is defined by the angleb between the pair of
points on the Poincaré sphere as seen from its center:

P =
2 cossb/2d

1 + cos2sb/2d
. s6d

For the statesC1 andC3 the polarization degree takes values
P1,3=1, since two points coincide on the sphere andb=0.

For the second state,C2, two points are positioned at the
opposite sides of the sphere; that is whyb /2=p /2 andP2
=0.

C. Transformation

Experimentally a unitary transformation of the polariza-
tion state (2) can be achieved by placing any retardation
plates, rotators, etc., into the biphoton beam. The action of
such elements on the state(2) is described by the matrix[12]

G = 1 t2 Î2tr r2

− Î2tr* utu2 − ur u2 Î2t* r

r*2 − Î2t* r* t*2 2 , s7d

where

t = cosd + i sin d cos 2a, r = i sin d sin 2a, s8d

d=psno−nedh/l is the optical thickness of the plate,h is its
geometrical thickness, anda is the orientation angle between
the optical axis of the plate and one of the basis—for ex-
ample, the vertical direction.

Let us consider the action of thel /2 plate on a particular
stateC'=s1/Î2dsu2,0l− u0,2ld, when the plate is oriented at
22.5°. For the stateC' there are two nonzero amplitudes
c1=c3=1/Î2 and there is only one relative phasew13;w1
−w3=p. Taking into account that for al /2 plated=p /2, the
corresponding transmission and reflection coefficients are

t = r =
i

Î2
. s9d

Thus the matrixG has the form

FIG. 1. Preparation of an arbitrary qutrit based on biphotons, in
principle. Three nonlinear crystals placed in the common pump
generate biphotons with type-I(1, 3) and type-II(2) phase match-
ing. Three attenuatorssuc1u2, uc1u2, uc3u2d and three phase shifters
sw1,w2,w3d allow one to control three complex amplitudesc1, c2,
andc3.

FIG. 2. Representation of a qutrit using the Poincaré sphere.(a),
(b), and (c) show three basic states forming superposition(2). (d)
represents the state of an arbitrary qutrit.
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G =1
−

1

2
−

1
Î2

−
1

2

−
1
Î2

0
1
Î2

−
1

2

1
Î2

−
1

2

2 . s10d

Hence, acting by matrixG on the stateC' we get

GC' =
G
Î21 1

0

− 1
2 = 1 0

− 1

0
2 = C2.

Note that such kind of transformations cannot change the
polarization degree of a qutrit. For the stateC' chosen
above, as well as for the stateC2, the polarization degreeP
is zero.

In the experiment described below we used a simpler way
to generate qutrits. Biphotons were produced via collinear
frequency-degenerate spontaneous parametric downconver-
sion in a nonlinear crystal(BBO, type-I or type-II phase
matching). For type-I phase matching the polarization of
both created photons was vertical; i.e., the stateC3 was gen-
erated. Then, this state was transformed using a quartz plate
with a fixed optical thickness. By changing the angle of the
plate, the stateC3= u0H ,2Vl is transformed according to the
formula ucinl=GC3. For the case of type-II phase matching
the final state isucinl=GC2. Of course, the stateucinl does not
involve all possible qutrit states because the transformation
given by matrix(7) preserves the polarization degree. Any-
way, using such a transformation, we select some subset of
qutrits to work with.

Such a simple method of state preparation and transfor-
mation was chosen in order to be able to compare the results
of reconstruction with the parameters of the input states,
which should be known with a high accuracy. The purpose of
this work is the reconstruction of the initial stateucinl.

We would like to emphasize that only pure qutrit states
are accessible by this method. To create a mixed state, some
more complicated method is to be used. This method allows
one to create arbitrary qutrit states and it implies a possibility
to introduce controlled delay between three fundamental
states forming the qutrit which could exceed the coherence
length of the laser pump[13].

D. Coherence matrix

We introduced only qualitative description of the qutrits
based on biphotons so far. The quantitative measure charac-
terizing the polarization properties of any single-mode state
in the fourth moment in the field(including the biphoton
state) was proposed by Klyshko[25]. It is a matrix consisting
of six fourth-order moments of the electromagnetic field. An
ordered set of such moments can be obtained using the direct
product of 232 coherence matrixes for both qubits. After
normal ordering, averaging, and crossing out the redundant
row and column the matrix takes the following form:

K4 ; 1 A D E

D* C F

E* F* B
2 . s11d

The diagonal elements are formed by real moments, which
characterize the intensity correlation in two polarization
modesH andV:

A ; kâ†2â2l, B ; kb̂†2b̂2l, C ; kâ†b̂†âb̂l. s12d

Nondiagonal moments are complex:

D ; kâ†2âb̂l, E ; kâ†2b̂2l, F ; kâ†b̂†b̂2l. s13d

Three real moments(12) and three complex ones(13) com-
pletely determine the state under consideration. The elements
of the matrix(11) are expressed through the elements of the
polarization density matrix. The normalization condition

A + B + 2C = 2 s14d

reduces the number of independent real parameters, so for a
mixed state we get eight parameters as expected. In the spe-
cial case of a pure biphoton state, taking the average in Eqs.
(12) and (13) over the state(2), we obtain the matrix com-
ponents in the following form:

A = 2uc1u2, B = 2uc3u2, C = uc2u2. s15d

D = Î2c1
*c2, E = 2c1

*c3, F = Î2c2
*c3. s16d

So the links between the polarization density matrix and the
matrix (11) can be found comparing the corresponding com-
ponents ofsK4dmk and of r;uclkcu; rmk=cmck

* ;m,k=1,2,3
for a pure state andrmk=cmck

* for a mixed state where the
averaging, as usual, is taken over the classical probability
distribution. The statistics of the field is assumed to be sta-
tionary and ergodic, so the time-averaged values of the ob-
served quantities can be described in terms of a quantum
statistical ensemble. In this casek¯l=Trsr¯d, wherer is
the polarization density operator.

III. METHODS OF MEASUREMENT

What does it mean to measure the unknown state(2)?
From the experimental point of view, it means that the ex-
perimentalist has to measure a complete set of real param-
eters(moments) determining the state. To do this the state
must be subject to a set of unitary polarization transforma-
tions and projective measurements. By doing this one picks
out the outcomes, which are proportional to the correspond-
ing moments(12) and (13) or their linear combination. This
procedure is known as quantum tomography. The quantum
state can be represented using either the wave function, den-
sity matrix, or quasiprobability function(Wigner function).
Probably the correct way to use the term “quantum tomog-
raphy” is only for the reconstruction of the quasiprobability
function because it gives the graphical representation of the
state as a 3D plot. Nevertheless the term “quantum tomogra-
phy” is also used for a general procedure of complete state
reconstruction.
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The methods of quantum tomography relate closely to the
procedure of the classical tomography[26]. In [27] the tech-
nique of quantum tomography for the Wigner function based
on the Radon transformation was suggested. A quantum-state
reconstruction using the least-squares method was performed
in [28]. The strategy of the maximal-likelihood method was
suggested in Refs.[29,30]. Note that the maximal-likelihood
method in the form which automatically recovers the density
matrices for a physical state(a density matrix must be Her-
mitian, positive, and semidefinite and have the unity trace)
was developed in[31,32]. For a brief review among the pa-
pers where this procedure was realized experimentally, let us
mention Refs.[33–35] related to states defined by continuous
variables. For states characterized by discrete variables, such
as two polarization-spatial qubits, quantum tomography was
realized in[18–21]. Recently quantum tomography has been
performed for orbital angular momentum entangled qutrits
[10], etc.

The physical idea behind the tomography procedure is
performing measurements of appropriately complete set of
observables called quorum[37] or just “looking” at the state
from different positions. The minimal number of such posi-
tions might be the number of real parameters determining the
state.

According to Bohr’s complementarity principle, it is im-
possible to measure all moments(12) and (13) simulta-
neously, operating with a single qutrit only. So to perform a
complete set of measurements one needs to generate a lot of
representatives of a quantum ensemble.

First of all, let us mention that, at present, the only real-
istic way to register single-mode biphoton field is using the
Brown-Twiss scheme. This scheme consists of a beam split-
ter followed by a pair of detectors connected with the coin-
cidence circuit. It means that registration of a single bipho-
ton, which carries the state(2), can give only a single event
at the output of the experimental setup with some probability.
So the statistical treatment of the outcomes becomes ex-
tremely important. For studying correlations between polar-
ization degrees of freedom, which is essential in the case
under consideration, the Brown-Twiss scheme must be ac-
complished with polarization filters introduced into each
arm.

A. Qutrit tomography protocols

We proposed two methods to perform polarization recon-
struction of a biphoton qutrit stateucinl.

1. Protocol 1

The idea of the first method is splitting the stateucinl into
two spatial modes and performing transformations over two
photons independently(Fig. 3). These transformations can be
done using polarization filters placed in front of detectors.
Each filter consists of a sequence of quarter- and half-wave
plates and a polarization prism, which picks out definite lin-
ear polarization—for example, the vertical one. A narrow-
band filter centered at the doubled pump wavelengthl
=2lp serves to make biphotons emitted from different
sources indistinguishable in frequency as well as to reduce

the background noise. An event is considered to be detected,
if a pulse appears at the output of the coincidence circuit.
Approximately in half of trials, one of the photons(signal,
by convention) forming a biphoton is going to one of the
detectors, while the other one(idler) is going to the other
detector. In the remaining cases, both photons appear in the
same output beam-splitter arm, and these events are not se-
lected because they do not contribute to coincidences.

In the Heisenberg representation the polarization transfor-
mation for each beam-splitter output port is given by

Sa8†

b8†D = S0 0

0 1
DDl/2sd = p/2,ud 3 Dl/4sd = p/4,xd

31
1
Î2

0

0
1
Î2
2Sa†

b†D . s17d

Four 232 matrixes in the right-hand side of Eq.(17) de-
scribe the action of the nonpolarizing beam splitter,l /4 and
l /2 plates, and vertical polarization prism on the state vector
of the signal(idler) photon:

Dl/2,l/4 = S t r

− r* t*
D ,

wherer andt are the coefficients introduced in Eq.(8), so for
a l /4 platesd=p /4d,

tl/4 =
1
Î2

s1 + i cos 2xd, rl/4 =
i

Î2
sin 2x, s18ad

and for al /2 platesd=p /2d,

tl/2 = i coss2ud, rl/2 = i sins2ud. s18bd

Thus, there are four real parameters(two for each chan-
nel) that determine polarization transformations. Namely,
these parameters are orientation angles for two pairs of wave
plates:u1,x1,u2,x2.

FIG. 3. Measurement block for protocol 1. The Brown-Twiss
scheme for measuring intensity correlation between two polariza-
tion modes. After spatial separation at the nonpolarizing beam split-
ter (BS), signal ssd and idler sid photons propagate through the
quarter- and half wave plates, polarizing prismssVd, focusing
lensessFd, and interference filterssIFd in two channels. Finally,
photons are registered by detectorssDd. The coincidence rate from
the output of the coincidence circuitsCCd is proportional to the
fourth moment in the fieldkRsil.
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As was mentioned above, the output of the Brown-Twiss
scheme is the coincidence rate of the pulses coming from
two detectorsDs andDi. The corresponding moment of the
fourth order in the field has the following structure:

Rs,i ~ kbs8
†bi8

†bs8bi8l = Rsu1,x1,u2,x2d. s19d

In the most general case this moment contains a linear com-
bination of six moments(12) and(13) forming the matrixK4.
So the main purpose of the quantum tomography procedure
is extracting these six moments from the setup outcomes by
varying the four parameters of the polarization Brown-Twiss
scheme.

Consider some special examples, which give the corre-
sponding lines in the complete protocol introduced below
(Table I).

First of all, it is obvious that for measuring real moments
(12) one needs to make polarization filters transmit both pho-
tons with horizontal polarizations to measureA, both photons
with vertical polarization to measureB, and one photon with
vertical and another one with horizontal polarizations to
measureC. To do this all quarter-wave plates should be ori-
ented at zero degrees, then to install both half-wave plates at
zero degrees for measuringB; at us=45° andui =45° for
measuringA; and atus=0°, ui =45° for measuringC. These
settings pick out the squared modulus of corresponding am-
plitudesc3, c1, andc2.

The next example shows how to measure one of the com-
plex moments(13). To measure the real part of the moment
D, let us set the wave plates in the Brown-Twiss scheme in
the following way.

The idler channel:

l/4: xi = 0°, Dl/4 =
1
Î2

S1 + i 0

0 1 − i
D;

l/2: ui = 45°, Dl/2 = S0 i

i 0
D.

The signal channel:

l/4: xs = 45°, Dl/4 =
1
Î2

S1 i

i 1
D;

l/2: us = 22.5°, Dl/2 =
1
Î2

S i i

i − i
D.

Substituting these matrices into Eq.(17) and taking into
account the commutation rules for the creation and annihila-
tion operators it is easy to get the final moment to be mea-
sured:

R= kcubs
†bi

†bsbiucl =
1

8
sA + C − 2 ReDd.

A complete set of the measurements called the tomography
protocol is presented in Table I. Each row corresponds to the
setting of the plates to measure the moment placed in the
sixth column. The last one corresponds to the amplitude of
the process(see below).

This protocol was suggested and developed in[14–16]. A
similar protocol was considered in detail earlier[36] for es-
timating the polarization state of a biphoton field, generated
in a frequency-degenerate noncollinear mode. In this case the
biphoton field is represented as a pair of polarization qubits.

Before describing the second method of state measure-
ment let us make some remarks.

(i) We assume that the source generating qutrits is sta-
tionary. Since each measurement eliminates a qutrit, one has
to be sure that there are a lot of copies of the initial state;
each copy must be prepared in the same quantum state. Such
an ensemble approachguarantees that the experimentalist
deals with the same quantum state in all trials. In other
words, the outcomes provide him with information about the
same quantum state and elimination of a particular state does
not affect the rest.

(ii ) The outcomes of the setup are numbers related to the
corresponding moments(19). Usually this number is the co-
incidence counting rate or the number of coincidences in a
fixed time interval. Due to the necessity of a proper normal-
ization of the state under investigation, the number of inde-

TABLE I. Protocol 1. Each line contains the orientation of the half-sus,id and quarter-sxs,id wave plates
in the measurement block. The last two columns show the corresponding momentRn and the process
amplitudeMv sv=1, . . . ,9d.

Parameters of the experimental setup Moments to be measured Amplitude of the process

n xs us xi ui Rs,i Mn

1 0 45° 0 −45° A/4 c1/Î2

2 0 45° 0 0 C/4 c2/2

3 0 0 0 0 B/4 c3/Î2

4 45° 0 0 0 1
8sB+C+2 Im Fd 1

2Î2
c2− i

2c3

5 45° 22.5° 0 0 1
8sB+C−2 ReFd 1

2Î2
c2− 1

2c3

6 45° 22.5° 0 −45° 1
8sA+C−2 ReDd 1

2c1− 1
2Î2

c2

7 45° 0 0 −45° 1
8sA+C+2 Im Dd 1

2c1− i

2Î2
c2

8 −45° 11.25° −45° 11.25° 1
16sA+B−2 Im Ed 1

2Î2
c1+ i

2Î2
c3

9 45° 22.5° −45° 22.5° 1
16sA+B−2 ReEd 1

2Î2
c1− 1

2Î2
c3
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pendent real parameters grows up. The normalization is ob-
tained from the measurement of momentsA, B, and C.
Furthermore, only the cosine and sine of the phasesw12 and
w13 can be measured in experiment as there is no way to
measure the phases directly. That is why the final number of
real parameters to be measured in experiment is 7 for a pure
qutrit state and 9 for a mixed state.

(iii ) To minimize the errors caused by independent statis-
tical fluctuations of the outcomes, the number of moments
(12) and (13) entering in Eq.(19) should be minimal.

2. Protocol 2

In the second method of quantum tomography, a biphoton
qutrit being measured is first subject to a sequence of unitary
transformations and, for each of such transformation, it is fed
to the Brown-Twiss scheme settled for measuring a fixed
moment. Using a wave plate with arbitrary optical thickness,
one can achieve the quorum varying the orientation of the
platem.

In the most general case the coincidence counting rate in
this protocol is a periodic function ofm; moreover, its Fou-
rier expansion contains nine harmonics ofm: coss0md,
coss2md, sins2md, coss4md, sins4md, coss6md, sins6md,
coss8md, and sins8md. These harmonics depend linearly on
the nine momentsA, B, C, ReD, Im D, ReE, Im E, ReF,
and ImF. In other words, there is a 939 matrixT that links
these nine harmonics to the nine moments as shown below:

1
cos 0m

cos 2m

sin 2m

cos 4m

sin 4m

cos 6m

sin 6m

cos 8m

sin 8m

2 = T1
A

B

C

Re F

Im F

Re D

Im D

Re E

Im E

2 .

Unfortunately, the inverse matrix does not always exist. To
simplify the problem we put only a single wave plate with
fixed optical thicknesssds=p /2 ,di =p /4d and fixed orienta-
tion xs,ui in each channel of the Brown-Twiss scheme. In
order to make sure the inverse matrix exists one needs to
maximize the determinant of the matrixT over the orienta-
tions of the platesxs,ui. After accomplishing this procedure
we obtainxs<−28.5°,ui <19° (Fig. 4).

Instead of finding the links between the harmonics and
moments, there is a more elegant method to reconstruct the
quantum state using the second protocol(see Sec. III D).
This method is considered in the present work.

B. Experimental implementation: Protocol 1

The experimental setup for the quantum tomography of
qutrits using protocol 1 is shown in Fig. 5. Thepreparation
block includes a 2-mm BBO crystal with either type-I or
type-II degenerate and collinear phase matching, which is

pumped with cw argon laser operated at 351 nm wavelength.
In the case of type-II phase matching, an additional quartz
compensator is introduced right after the crystal. The state
C3= u0,2l (for type I) or C2= u1,1l (for type II) generated in
the crystal is fed to thetransformation block. This block
consists of the quartz plate with fixed optical thicknessd
=0.9046 and variable orientationa. So the state, which is to
be measured, is determined by the parametera. The mea-
surement blockis a Brown-Twiss scheme equipped with po-
larization filters placed in both arms(Fig. 3). Pulses coming
from a couple of single-photon modules(EG&G SPCM-
AQR) were fed to the counter through a standard time-to-
amplitude converter.

In our experiments the exposure time for measuring each
moment is 5 sec. This time is an important experimental pa-
rameter. Each measurement consists of 30 runs, after which
the scheme is reset. Namely each measurement is performed
by setting the angles of wave platesx j and u j in both arms
according to the tomographic protocol(Table I). After 30
runs, a new set of angles is selected and the next moment is
measured in the same way. The output data of the setup are
the mean coincidence counting rates. Examples of behavior
for some momentssA,B,C,ReF , Im Fd versus the orienta-
tion of the plate QP1 are plotted in Fig. 6.

C. Experimental implementation: Protocol 2

For the second method we used Ti:Sa laser with pulse
duration about 250 fsec, operating at 800 nm. After fre-
quency doubling, the UV radiation with 400 nm wavelength
was sent into the same setup as described above. For this
protocol we used 2-mm BBO crystal cut for collinear degen-

FIG. 4. Measurement block for protocol 2. An additional control
quartz platesQP2d serves as the stateucinl tomography transformer.
Only a single wave plate is introduced in each channel.

FIG. 5. Scheme of qutrits tomograph, consisting of three blocks.
Preparation block includes pump laser(s) and nonlinear crystal(s).
Transformation block is the quartz platesQP1d which orientation
anglea determines the final state to be measured. The measurement
block depends on the protocol to be used(see Figs. 3 and 4).
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erate type-I phase matching. A quartz plate with the optical
thicknessd=0.656 is placed after the BBO crystal to prepare
the qutrit state to be measured. The measurement part of the
setup was slightly changed(Fig. 4). An additional control
quartz plate introduced in front of the beam splitter accom-
plishes the protocol. Its orientation anglem is a parameter
defining the measurement process. The control plate is ro-
tated with 5° steps from 0 up to 360° so that protocol 2
consists of 72 measurements. Each arm of the Brown-Twiss
scheme contains either a quarter- or half-wave plate with
fixed orientation. The orientations arex1=18.8° for the
quarter-wave plate in the first channel andu2=−28.5° for the
half-wave plate in the second channel. Protocol 2 is easier to
implement since only a single parameterm is changed
whereas fourx1,2,u1,2 parameters are varied in protocol 1. In
perspective, this kind of protocol allows one to automate the
quantum tomography procedure: the control plate can be ro-
tated continuously and reconstruction of the quantum state
can be based on analysis of coincidence rates corresponding
to the respective values ofmi si =1, . . . ,72d.

D. Statistical reconstruction of biphoton-field qutrits from the
outcomes of mutually complementary measurements

Each of the nine processes from protocol 1 as well as of
the 72 processes from protocol 2 is described by its ampli-
tude Mn. From the statistical point of view, the squared
modulus of the process amplitude specifies the intensity of
the event generation:

Rn = Mn
*Mn. s20d

The considered processes are examples of mutually comple-
mentary sets of measurements in the sense of Bohr’s comple-
mentarity principle. The event-generation intensitiesRn for
both protocols are the main quantities accessible from the
measurement. Making the bridge between statistical and
physical description of the process the quantitiesRn coincide
with the fourth moments in the field introduced above in Eq.
(19). Their dimension is the frequency unit(Hz). The number
of events occurring within any given time interval obeys the
Poisson distribution. Therefore, the quantitiesRn specify the
intensities of the corresponding mutually complementary
Poisson processes and serve as estimates of the Poisson pa-
rametersln (see below).

Although the amplitudes of the processes cannot be mea-
sured directly, they are of the greatest interest as these quan-
tities describe fundamental relationships in quantum physics.
It follows from the superposition principle that the ampli-
tudes are linearly related to the state-vector components. So
the main purpose of quantum tomography is the reproduction
of the amplitudes and state vectors, which are hidden from
direct observation.

The linear transformation of the state vectorc
=hc1,c2,c3j into the amplitude of the processM is described
by a certain matrixX. For example, considering the first
protocol this matrix can be easily obtained from Table I(last
column in Table I):

X =1
1/Î2 0 0

0 1/2 0

0 0 1/Î2

0 1/s2Î2d − i/2

0 1/s2Î2d − 1/2

1/2 − 1/s2Î2d 0

1/2 − i/s2Î2d 0

1/s2Î2d 0 i/s2Î2d

1/s2Î2d 0 − 1/s2Î2d

2 . s21d

Using the matrixX the complete set of nine amplitudes of the
processes can be expressed by a single equation

Xc= M . s22d

The matrixX is an instrumental matrix for a set of mutually
complementary measurements, by analogy with the conven-
tional instrumental function. The implementation of the
method to the first protocol has been considered in[15].

Consider an algorithm allowing one to calculate the in-
strumental matrixX for protocol 2. The matrix consists of 72
rows (the number of control plate orientations) and 3 col-
umns(the dimension of Hilbert space for qutrits). Each row
is formed in the following way. Using the coefficients the
tss,id andr ss,id of the wave plates introduced to the signal and
idler channels of the Brown-Twiss scheme(18a) and (18b)
the three-element row, which defines the process amplitude
right after the control plate, can be written in the form

FIG. 6. Some components of the matrixK4 versus the orienta-
tion of the quartz plate QP1. Different angles of the plate corre-
spond to different states sent to the measurement block. The plot at
the top corresponds to measured real momentsA (squares), B
(circles), and C (triangles) and theoretical predictionsAs−d ,
Bs−−d ,andCs−°−d. The plot at the bottom shows measured com-
plex moment ReF (squares) and ImF (triangles), and theoretical
predictions ReF (short-dashed line) and ImF (long-dashed line).
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l = Frl/2
ssd rl/4

sid 1
Î2

srl/2
ssd tl/4

sid + rl/4
sid tl/2

ssd d tl/2
ssd tl/4

sid G . s23d

The unitary matrixG is defined by the control plate accord-
ing to Eqs.(7) and(8), with a replacementa→m, wherem is
the control plate orientation(it takes 72 values from 0° to
355°). We chose the control plate to be a quarter-wave plate,
so d=p /4. Finally,

G = Gsmid, i = 1,2, . . . ,72. s24d

Each row of the instrumental matrixX (72 rows, 3 columns)
is defined by the product of the rowl (which is the same for
any process) and the matrixG (which is defined by the con-
trol plate orientation angle):

Xi = lGsmid, i = 1,2, . . . ,72, s25d

whereXi is the ith row of the matrixX.

IV. METHODS OF QUANTUM-STATE RECONSTRUCTION

In the simplest case the density matrix can be estimated
directly from the measurements. Since the set of experimen-
tal data is limited in this case, the reconstructed density ma-
trix may have nonphysical properties like negative eigenval-
ues. But in the general case ofs-dimensional systems the
problem of density matrix reconstruction using the direct re-
sults of measurements cannot be solved since the corre-
sponding inverse problem is ill posed.

When analyzing the experimental data, we use the so-
called root estimator of quantum states[17]. This approach is
designed specially for the analysis of mutually complemen-
tary measurements(in the sense of Bohr’s complementarity
principle). The advantage of this approach consists of the
possibility of reconstructing states in a high-dimensional Hil-
bert space and reaching the accuracy of reconstruction of an
unknown quantum state close to its fundamental limit. Below
we consider two methods of quantum-state root estimation
that give similar results. They are the least-squares method
(LSM) and maximum-likelihood method(MLM ).

A. Least-squares method

In statistical terms, Eq.(22) is a linear regression equa-
tion. A distinctive feature of the problem is that only the
absolute value of the process amplitudeM is measured in the
experiment. The estimate of the absolute value of the ampli-
tude is given by the square root of the corresponding experi-
mentally measured coincidence rate:

uMnuexpt= Îkn/t, s26d

wherekn is the number of events(coincidences) detected in
the nth process during the measurement timet.

It is worth noting that, by the action of the root-square
procedure on a Poissonian random value, one gets the ran-
dom variable with a uniform variance—i.e., at the variance
stabilization[38]. Note also, since we do not deal with event
probabilities but with their rates or intensities, it is conve-
nient to use un-normalized state vectors. These vectors allow
the coincidence counting rate(event-generation intensities)

to be derived directly from Eqs.(20) and(22) without intro-
ducing coefficients related to the biphoton generation rate,
detector efficiencies, etc. The dimensionality of the vector
state obtained in such a way is 1/Îtime. The final state vec-
tor obtained by the reconstruction procedure, nevertheless,
should be normalized to unity.

Assuming that the variances of differentuMnuexpt are inde-
pendent and identical, one can apply the standard least-
squares estimate to Eq.(22) [39]:

c = sX†Xd−1X†M . s27d

Unlike the traditional least-squares method, Eq.(27) cannot
be used for an explicit estimation of the state vectorc, be-
cause it is to be solved by the iteration method. The absolute
value of M is known from the experimentsuMnu= uMnuexptd.
We assume that the phase of vectorXc at the ith iteration
step determines the phase of the vectorM at thesi +1dth step.
In other words, the phase is determined by the iteration pro-
cedure.

It turns out that, for the Gaussian approximation of Pois-
son’s quantities, this least-squares estimate coincides with a
more exact and rigorous maximum-likelihood estimate con-
sidered below.

B. Maximum-likelihood method

The likelihood function is defined by the product of Pois-
sonian probabilities:

L = p
i

slitidki

ki!
e−liti , s28d

whereki is the number of coincidences observed in theith
process during the measurement timeti, and li are the un-
known theoretical event-generation intensities(expected
number of coincidences proportional to the moments in the
field), whose estimation is the subject of this section.

The logarithm of the likelihood function is, if we omit an
insignificant constant,

ln L = o
i

fkilnslitid − litig. s29d

Let us introduce the matrices with the elements defined by
the following formulas:

I js = o
i

tiXij
* Xis, s30d

Jjs = o
i

ki

li
Xij

* Xis, j ,s= 1,2,3. s31d

The matrix I is determined from the experimental protocol
and, thus, is knowna priori (before the experiment). This is
the Hermitian matrix of Fisher’s information. The matrixJ is
determined by the experimental values ofki and by the un-
known event-generation intensitiesli. This is the empirical
matrix of Fisher’s information(see also the Appendix).

In terms of these matrices, the condition for the extremum
of the function(29) can be written as
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Ic = Jc. s32d

Hence, it follows that

I−1Jc= c. s33d

The latest relationship is known as the likelihood equation.
This is a nonlinear equation, becauseli depends on the un-
known state vectorc. Because of the simple quasilinear
structure, this equation can easily be solved by the iteration
method [17]. The quasi-identity operatorI−1J acts as the
identical operator upon only a single vector in the Hilbert
space—namely, on the vector corresponding to the solution
of Eq. (33) and representing the maximum possible likeli-
hood estimate for the state vector. The condition for the ex-
istence of the matrixI−1 is a condition imposed on the initial
experimental protocol. The resulting set of equations auto-
matically includes the normalization condition, which is
written as

o
i

ki = o
i

slitid. s34d

This condition implies that, for all processes, the total num-
ber of detected events is equal to the sum of the products of
event detection frequencies during the measurement time.

C. Analysis of the experimental data

1. Pure-state reconstruction

The examples of qutrit state reconstruction using both the
least-squares and maximum-likelihood methods are given in
Table II.

The value of the fidelity parameterF is defined as

F = ukctheoryucexptlu2. s35d

It gives a conventional measure of the correspondence be-
tween the theoretical and experimental state vectors.

TABLE II. Results of the state reconstruction. The left column indicates the orientation of the quartz plate
QP1, determining the state to be measured. Values of the optical thickness of QP1 ared=0.656 for the pulsed
regime(protocols 1 and 2) andd=0.9046 for the cw regime(protocol 1). Theoretical state vectors are placed
in the right column. The table contains the amplitudes of the reconstructed statessc1,c2,c3d as well as their
fidelities, calculated by least-squares(LSM) and maximum-likelihood(MLM ) methods.

Pulsed regime,d=0.656, protocol 1

a Fidelity State vector: experiment State vector: theory

LSM MLM LSM MLM sc1,c2,c3dtheory

0° 0.99981 0.99979 −0.0046+0.0040i −0.0065+0.0057i 0

−0.0050−0.0115i −0.0053−0.0102i 0

0.9999 0.9999 1

40° 0.9989 0.9989 −0.3669−0.0691i −0.3669−0.0687i −0.3482−0.0948i

−0.0657+0.6814i −0.0653+0.6815i −0.0900+0.6732i

0.6261 0.6261 0.6392

80° 0.9993 0.9993 −0.0088+0.0439i −0.0091+0.0439i −0.0136+0.0413i

0.1691+0.2587i 0.1697+0.259i 0.1691+0.2338i

0.9500 0.9498 0.9565

Pulsed regime,d=0.656, protocol 2

0° 0.99846 0.99847 −0.0071−0.0135i −0.0072−0.0135i 0

0.0359+0.0046i 0.0357+0.0046i 0

0.9992 0.9992 1

40° 0.9991 0.9991 −0.3442−0.1139i −0.3444−0.1142i −0.3482−0.0948i

−0.0987+0.6546i −0.0990+0.6545i −0.0900+0.6732i

0.6560 0.6559 0.6392

80° 0.9981 0.9981 −0.0093+0.0430i −0.0094+0.0430i −0.0136+0.0413i

0.2122+0.2408i 0.2121+0.2408i 0.1691+0.2338i

0.9461 0.9461 0.9565

cw regime,d=0.9046, protocol 1

0° 0.99325 0.99313 −0.0030−0.0512i −0.0028−0.0514i 0

0.9966 0.9966 1

−0.0015−0.0642i −0.0013−0.0649i 0

60° 0.9886 0.9799 0.7236 0.7244 0.7052

0.1165−0.1231i 0.1245−0.1210i 0.0392−0.0616i

0.2792+0.6080i 0.1694+0.6453i 0.2990+0.6387i
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The dependence of fidelity on the amount of experimental
data obtained is shown in Fig. 7. This figure shows the fidel-
ity achieved in the experiment in comparison with the theo-
retical range(see the Appendix for more details). The lower
boundary corresponds to 5% quantile of statistical distribu-
tion, while the upper to 95% quantile. It is clearly seen that
the fidelity value achieved experimentally for a small volume
of experimental data is completely within the limits of the
theoretical range, while it goes out for a higher volume. Such
behavior of fidelity is due to the existence of two different
error types arising under the reconstruction of quantum
states. Let us call them statistical and instrumental errors,
respectively. The statistical errors are caused by a finite num-
ber of quantum system representatives to be measured. As
the measurement time increases, the information about the
quantum state of interest progressively increases(see the Ap-
pendix). Accordingly, the statistical error becomes smaller.
The instrumental errors are caused by the researcher’s in-
complete knowledge of the system; i.e., more exact informa-
tion exists, in principle, but it is inaccessible to the experi-
menter. Thus, a comparison between the state reconstruction
result and the fundamental statistical level of accuracy can
serve as a guide for the parameter adjustment of the setup.

Thus, for a small volume of experimental data, statistical
errors prevail, whereas for large sample sizes, the setting
errors and the instability of protocol parameters dominate.
The number of events at which the statistical error becomes
smaller than the instrumental error can be called the coher-
ence volume. Numerically the coherence volume can be es-
timated as the intersection point between the experimental
fidelity and the lower theoretical fidelity curve. In our case
this value is about 25 000–30 000 events. Starting approxi-
mately from this value, fidelity is reaching saturation and
further growth of experimental data volume does not lead to
an increase in the precision of quantum system estimation.

Figure 7 relates to the state defined by the orientation
angle of the quartz plate QP1a=50° (for protocol 2). To plot
Fig. 7 we used the following technique for passing from
full-volume experiment to a partial-volume experiment. Let
us consider the parameter 0, f ø1, which characterizes the
volume of experimental data. Suppose thatf =1 for a full-
volume experiment. A partial-volume experiment may be in-

troduced considering the observation timetn8= ftn instead of
tn. Hence, performing a single full-volume experiment means
providing with a large(practically infinite) number of partial-
volume experiments.

For a given volume of experimental dataf each event
from the full-volume experiment is picked up with the prob-
ability f and rejected with the probability 1−f. Due to the
presence of statistical fluctuations, the equation for the num-
ber of observations,knstn8d= fknstnd, is violated. Therefore a
unique estimate of the state vector corresponds to every
partial-volume experiment. Figure 7 shows mean values and
standard deviations corresponding to volumesf
=0.01,0.04,0.1,0.25,0.5,1.0. For eachf ,1, ten experi-
ments were simulated.

The results of informational fidelity research, introduced
in the Appendix, are shown in Figs. 8 and 9. These figures
correspond to the same data set as shown in Fig. 7. The
distribution density of informational fidelity for a small
(compared to the coherence volume) sample size closely
agrees with the theoretical result given by Eq.(A14) (see
Fig. 8). In this case the instrumental error is negligibly small
compared to the statistical one. When the sample volume is
close to the coherence volume(Fig. 9) the influence of in-
strumental and statistical errors is about equal. In other

FIG. 7. Fidelity dependence on the sample size. Mean values
and standard deviations corresponding to the sample volumesf
=0.01,0.04,0.1,0.25,0.5,1.0.

FIG. 8. Informational x2 criterion for small sample sizes:
sample size=4400.

FIG. 9. Informationalx2 criterion for large sample sizes: sample
size=27 750. The disagreement between observations and theoreti-
cal curve for large sample sizes is due to the instrumental error.
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words, the informational losses caused by averaging over
instrumental errors are approximately equal to the losses
caused by statistical ones. Finally, if the sample size is
greater than the coherence volume, instrumental errors pre-
dominate. It means that the statistical informational errors
are negligibly small compared to the instrumental ones.

2. Mixture separation algorithm

Let us describe the algorithm for reconstructing a two-
component mixed state. This algorithm can be easily gener-
alized to an arbitrary number of components.

The total number of events observed in every process is
divided between the components proportional to the inten-
sity:

kn
s1d = kn

ln
s1d

ln
s1d + ln

s2d , kn
s2d = kn

ln
s2d

ln
s1d + ln

s2d , s36d

wheren=1,2, . . . ,nmax andnmax is the total number of pro-
cesses;ln

s1d and ln
s2d are the estimates of intensities of pro-

cesses for a given step of the iteration procedure.
At a certain iteration step, let us representkn as a sum of

two components:

kn = kn
s1d + kn

s2d. s37d

For each component, we can obtain the estimates for the
state vector, amplitudes, and intensity of the processes ac-
cording to the method of pure-state analysis described in the
previous section. Since we get new intensity estimates, let us
again split the total number of events in every process pro-
portionally to the intensities of the components. In such a
way, a new iteration is formed and the whole procedure is
repeated. The described process is called quasi-Bayesian al-
gorithm [17].

As a result, the iteration process converges to some(non-
normalized) componentscs1d and cs2d. Thus, the mixture
separation algorithm reduces to numerous estimations of
pure components according to the simple algorithm de-
scribed above in Sec. IV B. As a result of the whole algo-
rithm execution, the estimate for the density matrix of the
mixture appears:

r = cs1dcs1d† + cs2dcs2d†, s38d

r → r

Trsrd
. s39d

The last procedure is normalization of the density matrix.
A remarkable feature of the algorithm is that according to

numerical calculations, independent of zero-approximation
selection of the mixture components, the resulting density
matrix r is always the same. Of course, the componentscs1d

and cs2d are different for the random selection of the zero
approximation.

The mixed-state reconstruction accuracy is described by
the following fidelity:

F = fTrÎÎrs0drÎrs0dg2
, s40d

wherers0d andr are the exact and reconstructed density ma-
trices, respectively. For a pure statefr2=r ,srs0dd2=rs0dg fi-
delity (40) converts to Eq.(35).

Actually in the present work we did not intend to generate
a given mixed state of qutrits in experiment; it will be done
later [40]. Nevertheless, applying the described algorithm to
the data we can check whether the state produced in our
system is pure. For example, consider the case when the state
C2= u1,1l is fed to the quartz plate QP1(see Table II). This
state is the most interesting to be tested, sinceuH ,Vl and
uV,Hl are distinguishable due to the polarization dispersion
in BBO crystal. Namely, extraordinarily polarized photons
sHd propagate faster than ordinarysVd ones in the crystal.
Therefore a group velocity compensator has to be used for
making them indistinguishable[41]. Nonperfect compensa-
tion (we reached 95% visibility for polarization interference)
is the main reason why the fidelity reconstruction for these
states is not so high. The results of applying quasi-Bayesian
algorithm to the reconstructed state are in Table III. We
chose the state corresponding to the anglea=30°. It is
clearly seen that the weight of the first principal component
is much greater than that of the second one. Doing the same
procedure with theC1= u2,0l initial state, we have checked
that the estimator for a pure-state vector is extremely close to
the estimator of the major density matrix component.

TABLE III. Example of the mixture separation using quasi-
Bayesian algorithm for the given state. cw regime, protocol 1.

State vector: theory Density matrix: experiment

First principal Second principal

a=30° component component

d=0.9046 weight=0.9238 weight=0.0762

sc1,c2,c3dtheory sc1,c2,c3dexpt
1 sc1,c2,c3dexpt

2

0.7052 0.7019 −0.3027−0.2858i

−0.0392−0.0616i −0.0466−0.1325i −0.6529+0.3291i

0.2990−0.6387i 0.2245−0.6612i 0.5140−0.1668i

Fidelity=0.9916

TABLE IV. Analysis of the principal components of the density
matrix for the state(41) and (42): numerical simulation.

State vectorsc1,c2,c3d Fidelity

First principal component

Experiment weight =0.6188 Theory weight =0.6143

−0.3658−0.0448i −0.3668−0.0211i 0.9985

0.2085+0.4743i 0.2294+0.4934i

0.7718 0.7543

Second principal component

Experiment weight=0.3812 Theory weight=0.3857

−0.1208−0.2643i −0.1490−0.2382i 0.9979

−0.1659−0.8150i −0.1986−0.7942i

0.4731 0.5009
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To illustrate the quasi-Bayesian approach, let us consider
a result of reconstruction for a two-component mixture using
protocol 1. Suppose one has a mixture of two pure states
prepared fromu2,0l by quartz plates QP18 and QP19 ori-
ented at anglesa=−30° anda=50°, respectively. Let the

optical thickness of both plates bed=0.656. Ten thousand
events were generated(on the average) for every component.
The theoretical density matrix for the mixed state under con-
sideration is

rs0d = 1 0.1134 0.0263 + 0.0808i − 0.1987 − 0.0558i

0.0263 − 0.0808i 0.4404 0.0679 + 0.0752i

− 0.1987 + 0.0558i 0.0679 − 0.0752i 0.4462
2 . s41d

A typical example of a reconstructed density matrix is the following:

r = 1 0.1162 0.0294 + 0.0808i − 0.1965 − 0.0691i

0.0204 − 0.0808i 0.4298 0.0697 + 0.0796i

− 0.1965 + 0.0691i 0.0697 − 0.0796i 0.4540
2 . s42d

The reconstructed matrix fidelity isF=0.999 431. An analy-
sis of the principal components of density matrix is given in
Table IV.

This example shows a reasonably high accuracy of
mixed-state reconstruction. The statistical properties of the
proposed algorithm were studied by means of the Monte
Carlo method. One hundred numerical experiments were
conducted similar to the one described above. To verify the
reliability, the solution was found twice for each experiment
(with random zero-approximation selection). The solutions
appeared to be equal for all cases(within a negligibly small
computational error). The obtained statistical fidelity distri-
bution is shown in Fig. 10. Numerical research shows that
the fidelity distribution density is well described by theb
distribution.

V. CONCLUSION

The procedure of quantum-state measurement for a three-
state optical system formed by a frequency and spatially de-

generate two-photon field has been considered in this work.
A method of statistical estimation of the quantum state
through solving the likelihood equation and examining the
statistical properties of the resulting estimates has been de-
veloped. Based on the experimental data(fourth-order mo-
ments in the field) and the root method of estimating quan-
tum states, the initial wave function of qutrits has been
reconstructed.

Experimental data analysis is based on representing the
event-generation intensity for each one of mutually comple-
mentary quantum processes as a squared module of some
amplitude. A complete set of measured processes amplitudes
can be compactly described using the instrumental matrix. In
the framework of the formalism of a process amplitude one
can apply effective tools for the quantum state reconstruc-
tion: least-squares and maximum-likelihood methods.

The developed analysis tools provide the means of
quantum-state reconstruction from the experimental data
with high accuracy and reliability. The estimate accuracy is
determined by the concurrence of two types of errors: statis-
tical ones and instrumental ones. For smaller sample sizes
statistical errors are dominant, while for greater ones instru-
mental errors dominate.

Instrumental errors lead to fidelity saturation at less than
unity level. In the present work, fidelity for most of per-
formed experiments(more than 20) exceeded a level of
0.995. For many cases the level of 0.9998 was achieved.
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FIG. 10. Simulation of the fidelity between theoretical and re-
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APPENDIX: STATISTICAL FLUCTUATIONS
OF THE STATE VECTOR

As was already mentioned above, an un-normalized state
vector provides the most complete information about a quan-
tum system. The use of an un-normalized vector allows us to
remove an interaction constant in Eq.(22). The norm of the
vectorc, obtained as a result of quantum system reconstruc-
tion, provides one with information about the total intensity
of all the processes considered in the experiment. However,
the fluctuations of the quantum state(and norm fluctuations,
in particular) in a normally functioning quantum information
system should be within a certain range defined by the sta-
tistical theory. The present section is devoted to this problem.

The practical significance of accounting for statistical
fluctuations in a quantum system relates to developing meth-
ods of estimation and control of the precision and stability of
a quantum information system evolution, as well as methods
of detecting external interception(Eve’s attack on the quan-
tum channel between Alice and Bob).

The estimate of the un-normalized state vectorc, obtained
by the maximum-likelihood principle, differs from the exact
state vectorcs0d by the random valuesdc=cs0d−c. Let us
consider the statistical properties of the fluctuation vectordc
by expansion of the log-likelihood function near a stationary
point:

d ln L = − F1

2
sKsjdcsdcj + Ksj

* dcs
*dcj

*d + Isjdcs
*dcjG .

sA1d

Together with the Hermitian matrix of the Fisher information
I, Eq. (30), we define the symmetric Fisher information ma-
trix K, whose elements are defined by the following equa-
tion:

Ksj = o
n

kn

Mn
2XnsXn j , sA2d

whereMn is the amplitude of thenth process. In the general
case,K is a complex symmetric non-Hermitian matrix. From
all possible types of fluctuations, let us pick out the so-called
gauge fluctuations. Infinitesimal global gauge transforma-
tions of a state vector are as follows:

dcj = i«cj, j = 1,2, . . . ,s, sA3d

where« is an arbitrary small real number ands is the Hilbert
space dimension.

Evidently, for gauge transformations,d ln L=0. It means
that two state vectors that differ by a gauge transformation
are statistically equivalent; i.e., they have the same likeli-
hood. Such vectors are physically equivalent since the global
phase of the state vector is nonobservable. From a statistical
point of view, the set of mutually complementing measure-
ments should be chosen in such a way that for all other
fluctuations(except gauge fluctuations) d ln L,0. This in-
equality serves as the statistical completeness condition for
the set of mutually complementing measurements.

Let us derive some constructive criteria of the statistical
completeness of measurements. The complex fluctuation
vector dc is conveniently represented by a real vector of
double length. After extracting the real and imaginary parts
of the fluctuation vectordcj =dcj

s1d+ idcj
s2d we transfer from

the complex vectordc to the real onedj:

dc = 1dc1

A
dcs

2 → dj =1
dc1

s1d

A
dcs

s1d

dc1
s2d

A
dcs

s2d
2 . sA4d

In the particular case of qutritsss=3d this transition pro-
vides us with a six-component real vector instead of a three-
component complex vector.

In the new representation, Eq.(A1), becomes

d ln L = − Hsjdjsdj j = − kdjuHudjl, sA5d

where matrixH is the “complete information matrix” pos-
sessing the following block form:

H = SResI + Kd − ImsI + Kd
ImsI − Kd ResI − Kd

D . sA6d

The matrixH is real and symmetric. It is of double di-
mension, respectively, to the matricesI andK. For qutrits,I
andK are 333 matrices, whileH is 636.

Using matrixH it is easy to formulate the desired charac-
teristic completeness condition for a mutually complement-
ing set of measurements. For a set of measurements to be
statistically complete, it is necessary and sufficient that one
and only one eigenvalue of the complete information matrix
H is equal to zero, while the other ones are strictly positive.

We would like to stress that checking the condition one
not only verifies the statistical completeness of a measure-
ment protocol, but also ensures that the obtained extremum
is of maximum likelihood.

An eigenvector that has eigenvalue equal to zero corre-
sponds to gauge fluctuation direction. Such fluctuations do
not have a physical meaning as stated above. Eigenvectors
corresponding to the other eigenvalues specify the direction
of fluctuations in the Hilbert space.

The principal fluctuation variance is

s j
2 =

1

2hj
, j = 1, . . . ,2s− 1, sA7d

wherehj is the eigenvalue of the information matrixH, cor-
responding to thej th principal direction.

The most critical direction in the Hilbert space is the one
with the maximum variances j

2, while the corresponding ei-
genvaluehj is accordingly minimal. Knowledge of the nu-
merical dependence of statistical fluctuations allows one to
estimate distributions of various statistical characteristics.

The important information criterion that specifies the gen-
eral possible level of statistical fluctuations in a quantum
information system is thex2 criterion. It can be expressed as
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2kdjuHudjl ~ x2s2s− 1d, sA8d

wheres is the Hilbert space dimension
The left-hand side of Eq.(A8), which describes the level

of state vector information fluctuations, is ax2 distribution
with 2s−1 degrees of freedom.

The validity of the analytical expression(A8) is justified
by the results of numerical modeling and observed data.
Similarly to Eq.(A4), let us introduce the transformation of
a complex state vector to a real vector of double length:

c = 1c1

:

cs
2 → j =1

c1
s1d

:

cs
s1d

c1
s2d

:

cs
s2d
2 . sA9d

It can be shown that the information carried by a state vector
is equal to the doubled total number of observations in all
processes:

kjuHujl = 2n, sA10d

wheren=onkn.
Then, thex2 criterion can be expressed in a form invariant

to the state vector scale(let us recall that we consider a
non-normalized state vector):

kdjuHudjl
kjuHujl

~
x2s2s− 1d

4n
. sA11d

Relation(A11) describes the distribution of relative informa-
tion fluctuations. It shows that the relative information un-
certainty of a quantum state decreases with the number of
observations as 1/n.

The mean value of relative information fluctuations is

kdjuHudjl
kjuHujl

=
2s− 1

4n
. sA12d

The information fidelity may be introduced as a measure
of correspondence between the theoretical state vector and its
estimate:

FH = 1 −
kdjuHudjl

kjuHujl
. sA13d

Correspondingly, the value 1−FH is the information loss.
The convenience ofFH relies on its simpler statistical

properties compared to the conventional fidelityF. For a
system where statistical fluctuations dominate, fidelity is a
random value, based on thex2 distribution:

FH = 1 −
x2s2s− 1d

4n
, sA14d

where x2s2s−1d is a random value ofx2 type with 2s−1
degrees of freedom.

Information fidelity asymptotically tends to unity when
the sample size is growing up. Complementary to statistical
fluctuations noise leads to a decrease in the informational
fidelity level compared to the theoretical level(A14).
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