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We discuss a procedure of measurement followed by the reproduction of the quantum state of a three-level
optical system—a frequency—and spatially degenerate two-photon field. The method of statistical estimation
of the quantum state based on solving the likelihood equation and analyzing the statistical properties of the
obtained estimates is developed. Using the root approach of estimating quantum states, the initial two-photon
state vector is reproduced from the measured fourth moments in the field. The developed approach applied to
guantum-state reconstruction is based on the amplitudes of mutually complementary processes. The classical
algorithm of statistical estimation based on the Fisher information matrix is generalized to the case of quantum
systems obeying Bohr's complementarity principle. It has been experimentally proved that biphoton-quitrit
states can be reconstructed with the fidelity of 0.995-0.999 and higher.
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[. INTRODUCTION hopes are pinned on the three-level systems or qufitd]
rather than qubits.

The ability of measuring quantum states is of fundamental The present paper is devoted to state reconstruction for
interest because it provides a powerful tool for the analysishe optical three-level systems. The object under study is the
of basic concepts of quantum theory, such as the fundameipolarization state of a frequency and spatially degenerate bi-
tally statistical nature of its predictions, the superpositionphoton field[5,6].
principle, Bohr’'s complementarity principle, etc. To measure We should mention that there are other implementations
the quantum state one needs to perform some projectivef three-level optical systems. The most familiar ones deal
measurements on the state and then to apply some computith three-arm interferometerf7] and lower-order trans-
tion procedure to the data. The first step is a genuine mearse spatial modes of optical field, realized with holograms
surement consisting of a set of operations on the representt—10. Polarization-entangled four-photon fields, which are
tives of a quantum statisticgbure or mixed ensemble. As a equivalent to two entangled spin-1 particles, were studied in
result of such an operation an experimentalist acquires a set™!' . :
of frequencies at which particular events occur. In the second Al these implementations belong to the art of the modern
step a mathematical procedure is applied to the statistica]<P€imental technique and demonstrate the development of
data obtained in the previous step to reconstruct the quantu ose quantum information branches relating to the practice.

state. Obviously, the complexity of the whole reconstruction s c o note that successful manipulation with guantum
' y: piexity states implies the ability to control three important stages:

procedure depends directly on the minimal number of Meagi,e hrenaration, its transformation, and measurement. From
surements required for the reconstruction, which, in its U ig point of view, biphoton qutrits look quite promising
is given by the_ dimensionality of the state Hilbert space. since the mentioned stages are under the full control. The
The necessity of an adequate measurement of t_he StatesLmitary transformations of biphoton polarization states as
such systems is cgused not only by funda_mental interest bWeII as quantum ternary logic have been considereid &
also by some applications. For example, it has been showp,e 4 ation of arbitrary qutrits was realized receftl§], so
that th(_e securlty of the_key d|str_|but|or_1 In quantum cryptog-in the present paper we focus on the complete reconstruction
raphy lls ars]somated_ with thlf dmsnsmnaht;; qf the H”.bertof the biphoton qutrits. Although realistic tomographic pro-
space for the states in ugH. From this point of view certain o4y res for measuring such quantum states were suggested
earlier [14-14, this work includes the most advanced ap-
proach. Such an approach consists of statistical estimation of
*Electronic address: postmast@gqopt.phys.msu.su the experimental data based on solving the likelihood equa-
"Electronic address: Ickwek@nie.edu.sg tion, the so-called root estimation technidd€]. The advan-
*Electronic address: phyohch@nus.edu.sg, phyteymk@nus.edu.tgges of the root estimation method are based on the ability
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to reconstruct the states in the Hilbert space of high dimenefﬁcientFi;SJ;i is called the biphoton amplitud@3], because
sionality. The method is asymptotically effective, so it allowsits squared modulus gives a probability to register two pho-
olne to reconstruct the states Wlt_h an accuracy th_at is MOgt < in modesﬁs and Ei_

close to the accuracy achievable in principle. That is why the Let us consider the collinear and frequency-degenerate
formalism applied to the unknown quantum states allowed us L

to formulate and experimentally check the fundamental stat€gime, for whichks=k;, ws= »; and ws+ w;=w,, wherew,
tistical limits of the accuracy of state reconstruction. PractidS the laser pump frequency. We further restrict our discus-
cally, this is the first application of the root estimation to asion to biphotons that are indistinguishable in terms of spa-
large set of experimental data obtained in different regimedial, spectral, or temporal parameters. From the point of view
of biphoton-state generation, which are widely used in quanof polarization there are three natural states of biphotons:
tum optics and quantum information—namely, speakingl@mely,¥1=[2,0), ¥,=[1,1), and¥3=(0,2). Here the no-
about temporal regimes, the data under analysis related fgtion [2,00=[2,0,), for example, indicates that there are
continuous and short-pulsed biphoton sources. As to the pdwo photons in the horizontdH) polarization mode, while
larization regimes, we investigated both types of phasd&o photons are present in the orthogonal vertisal mode.
matching (type | and type I} for producing biphotons. These basic states can be generated using tyjoe-¥'; and
Among the works that closely relate to the subject of the¥s) and type-Il(for ¥,) phase matching. Since only two-
present paper and are devoted to state reconstruction, wahoton Fock states are considered, for the spata) the
would like to refer to the family of papers i{18-21, where  conditionm+n=2 must be satisfied.

guantum tomography of qubit pairs was developed. In these Any arbitrary pure polarization state of biphoton field can
works, a detailed analysis of the biphoton polarization statee expressed in terms of three complex amplitudgs,,
involved in a wide range of processes like decohering, uniandcs:
tary, etc., was implemented. The approach developed in these
wo)r/ks exploits th% noncolIinea(andpgegeneralafegi?ne for [©)=¢1/2,0 + ¢l 1, 1) +¢40,2), 2
the correlated photon source. Transition to the collifead  where c;=|c;lexplie} and zj?':l|cj|2:1_ The vector |c)
degenerateregime when biphotons propagate in the single=(c,,c,,c,) represents a three-state state or quirit.
beam rather than in two beams becomes crucial. We put great There is an important note concerning the state ve@or

emphasis on that fact because it makes possible to pass from principle, one can write the complete polarization state in
qubits to qutrits or to a new class of states with higher di-he form
mensionality(see Sec. )
The paper is organized as follows. In Sec. Il we discuss  [C) = €|2,00) + €| 1y, 1) + €5| 1y, 1) + €501, 20),  (3)

the main propertlles of qutrits based on the polar|.zat|on. Stat\?vhere the termdly, 1,) and |1y, 1) might be distinguish-
of the biphoton field. We focus on their preparation, visual ) . .

; . ! . able somehow, for example, if the photon with vertical po-
representation on a Poincaré sphere, and unitary transformre\-. : . . X :
. : larization comes first with respect to the photon with hori-
tion by phase plates. Then we consider the coherence matrix

which characterizes completely the properties of bilohotonzontal polarization. However, we consider a particular two-

qutrits in the fourth field moments. Section 1l is devoted to mode polarization state, so photons differ in polarization

the methods of biphoton-qutrit measurement; in particuIarggznaz?sagegiﬁtare no other parameters responsible for their
we introduce two quantum tomography protocols and discuss | g | Y- bi . d
in detail their experimental implementation. We conclude n general, to generate an arbitrary qutrit state one needs

. ) . - j . to put three nonlinear crystals separated in space into a com-
this part with an analysis of statistical reconstruction for X .

. mon pump and superpose the biphoton fields generated by
qutrits from the outcomes of mutually complementary Meas, - three crvstals coherently or incoherer@yg. 1)
surements. Section IV deals with the methods of quantum- y y e
state reconstruction. Namely, we consider the least-squares
and maximume-likelihood methods and apply these tools to  B. Representation of qutrits using the Poincaré sphere
analysis of the data obtained in quantum tomography. In the
Appendix we explore the problem of statistical fluctuations
of the state vector which is important for estimation and

control of the precision and stability of quantum information.

Sometimes it is very convenient to use a visual represen-
tation of the state. For example, a single-photon pure polar-
ization statgqubit) may be mapped onto the Poincaré sphere
[three-dimensional3D) Euclidian sphere A (pure qubit

Il. QUTRITS BASED ON BIPHOTONS state is determined by polar and azimuthal angigsp) in
_ spherical coordinates. Any unitary polarization transforma-
A. Preparation tion of the qubit is represented by the corresponding rotation
Biphoton field is a coherent mixture of two-photon Fock of the sphere. Thus, in order to learn the final transformed
states and the vacuum stdg?]: state one just has to apply the rotation operation using certain
rules.
¥ =|vag + }E FioklLi, 1), (1 It would be helpful to use the same visual representation
2 T ' of a qutrit using the Poincaré sphere. Although generalization

o ) ) ) of the Poincaré sphere for qutrits has been discussed earlier
L 1) denotes the state with omelgnabaphoton N [24] we suggest an alternative approach, which allows us to
the modek, and one(idler) photon in the modés. The co- manipulate with qutrits in natural 3D space rather than in

where
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FIG. 1. Preparation of an arbitrary qutrit based on biphotons, in
principle. Three nonlinear crystals placed in the common pump
generate biphotons with typefl, 3) and type-11(2) phase match-
ing. Three attenuator§lc;|?,|cy?,|cg|?) and three phase shifters  F|G. 2. Representation of a qutrit using the Poincaré spkexe.
(¢1,92,¢3) allow one to control three complex amplitudes C2,  (b), and(c) show three basic states forming superpositidn (d)
andcs. represents the state of an arbitrary quitrit.

(1

)

sophisticated 8D space. Let us map the pure polarizatiogor the second stateV,, two points are positioned at the

state of a biphoton into a pair of points on the sphéret  opposite sides of the sphere; that is wB§2==/2 and P,
this is not the two-qubit case since the stadsV) and =q.

[V,H) are indistinguishabbe In this representation each pho-
ton forming the biphoton is plotted as a single point on the

Poincaré sphere, so the qutrit-state vector is represented by C. Transformation
o= [al(®, p)al (9", ') + (8, p)al(9, ¢')]vag Experimentally a unitary transformation of the polariza-
I[al(9, p)al (9", ¢") + &l (9, p)al(d’,¢")]vad)||’ tion state(2) can be achieved by placing any retardation

4) plates, rotators, etc., into the biphoton beam. The action of
such elements on the sta® is described by the matri} 2]
wherea'(9;, ¢,) anda’(9s, ¢ are the creation operators in
idler and signal polarization modes and'(d,,, ¢

=cogd,,/2)a’+e&?msin(d,,/2)b", m=i,s. Note that opera- t2 vatr r2

tors a'=al,,b’=al, are creation operators foH- and G=|-Varr [t2-|r2 V2t |, (7)
V-polarized photons. 9 s v %0
: r —yatr t
It is well known that the number of real parameters char-

acterizing a quantum state is determined by the dimension of

the Hilbert spaces). For a pure state, where
Npyre=25- 2, (53

and for mixed states, t=cosé+isindcos 2y, r=isindsin2a, (8)
Nrmixed= -1 (5b)

According to Egs(5a) and(5b), four real parameters de- 9= m(n, _ne)h/)_\ Is the optlc_al th|ckqess qf the plates its
) . . geometrical thickness, andis the orientation angle between
termine completely the pure state of a qutrit, so in the . X .
. . ; . “the optical axis of the plate and one of the basis—for ex-
Poincaré sphere representation these parameters are S|mgll¥] le. the vertical direction
the four spherical angle@9;, ¢;; Js, ). The links between p'e, '

. . Let us consider the action of thd 2 plate on a particular
the angles(d;, ¢;; Js, ¢9) and the amplitudes;=|c;lexpig; (11> - e
are derived in[6]. As an example three basic statdy state¥, =(1/y2)(|2,0-|0,2)), when the plate is oriented at

=[2,0, W,=|1,1), and¥,=|0,2) are shown in Fig. 2. It can 22.5°. For the statél | there are two nonzero amplitudes

be shown that the polarization degree of a qutAt Cl:c3:1/\‘s’2. and there is only one relative phage;= ¢,
— e |cs+ 2+ GocaP [6] has a clear geometrical — Q3= Tak_mg into account that fora/2_ plate6:77{2,the
mear11ing' ?t is défiaedz t)3y the angfe between the pair of corresponding transmission and reflection coefficients are

points on the Poincaré sphere as seen from its center:
_ 2codpl2)
T 1+cod(pl2)’

For the stated’; andV; the polarization degree takes values
P, 3=1, since two points coincide on the sphere @wl0.  Thus the matrixG has the form

(6) t=r=—r. )
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1 1 1 A D E
2y 2 K,=|D" C F (11)
1 1 E F B
G=| -5 0 3 (10 . :
V2 V2 The diagonal elements are formed by real moments, which
1 1 1 characterize the intensity correlation in two polarization
5 _E 5 modesH andV:
N

A=(3'%%, B=(b'DH?), Cc=(a'b'ab). (12

Nondiagonal moments are complex:

Hence, acting by matrixc on the statel, we get

of 0
GV, =— 0 |=[-1]=w,.

D=(a'%ab), E=(@"?, F=@Eb'?d). (13
Vel 1 0 Three real moment&l2) and three complex ong43) com-
pletely determine the state under consideration. The elements
Note that such kind of transformations cannot change th@f the matrix(11) are expressed through the elements of the
polarization degree of a qutrit. For the stale, chosen polarization density matrix. The normalization condition
?Sbg;/reo, as well as for the stafle,, the polarization degreE A+B+2C=2 (14)

In the experiment described below we used a simpler wayeduces the number of independent real parameters, so for a
to generate qutrits. Biphotons were produced via collineamixed state we get eight parameters as expected. In the spe-
frequency-degenerate spontaneous parametric downconveial case of a pure biphoton state, taking the average in Egs.
sion in a nonlinear crysta(BBO, type-l or type-Il phase (12) and(13) over the stat€2), we obtain the matrix com-
matching. For type-l phase matching the polarization of ponents in the following form:
both created photons was vertical; i.e., the statevas gen-

— 2 — 2 — 2
erated. Then, this state was transformed using a quartz plate A=2cl% B=2cd* C=lc)” (19
with a fixed optical thickness. By changing the angle of the _ —
plate, the stat&V;=|0y,2,) is transformed according to the D=\2cic,, E=2cic;, F=12cc;. (16)

formula|c;,)=GW,. For the case of type-Il phase matching

the final state idc, )=GW,. Of course, the stale;,) does not So the links between the polarization density matrix and the

involve all possible qutrit states because the transformatioff X (11) can be found comparlrlg the cor*rfaspondmg com-
given by matrix(7) preserves the polarization degree. Any- POnents of(Ka)mi and of p=|c)cl; pmi=CmCiMk=1,2,3
way, using such a transformation, we select some subset 8" @ pure state angy,=cnCy for a mixed state where the
qutrits to work with. averaging, as usual,_ is taken over th.e classical probability
Such a simple method of state preparation and transfoglstnbunon. The statistics of .the field is assumed to be sta-
mation was chosen in order to be able to compare the resulfnary and ergodic, so the time-averaged values of the ob-
of reconstruction with the parameters of the input statesServed quantities can be described in terms of a quantum
which should be known with a high accuracy. The purpose oftatistical ensemble. In this cage-)=Tr(p --), wherep is

this work is the reconstruction of the initial state,). the polarization density operator.
We would like to emphasize that only pure qutrit states
are accessible by this method. To create a mixed state, some IIl. METHODS OF MEASUREMENT

more complicated method is to be used. This method allows
one to create arbitrary qutrit states and it implies a possibility What does it mean to measure the unknown s(dje
to introduce controlled delay between three fundamentaFrom the experimental point of view, it means that the ex-
states forming the qutrit which could exceed the coherenc@erimentalist has to measure a complete set of real param-
length of the laser pumpl3]. eters(moment$ determining the state. To do this the state
must be subject to a set of unitary polarization transforma-
tions and projective measurements. By doing this one picks
out the outcomes, which are proportional to the correspond-
We introduced only qualitative description of the qutrits ing momentg12) and(13) or their linear combination. This
based on biphotons so far. The quantitative measure charagrocedure is known as quantum tomography. The quantum
terizing the polarization properties of any single-mode statestate can be represented using either the wave function, den-
in the fourth moment in the fieldincluding the biphoton sity matrix, or quasiprobability functiodWigner function.
statg was proposed by Klyshkf®25]. It is a matrix consisting Probably the correct way to use the term “quantum tomog-
of six fourth-order moments of the electromagnetic field. Anraphy” is only for the reconstruction of the quasiprobability
ordered set of such moments can be obtained using the direfttnction because it gives the graphical representation of the
product of 22 coherence matrixes for both qubits. After state as a 3D plot. Nevertheless the term “quantum tomogra-
normal ordering, averaging, and crossing out the redundarghy” is also used for a general procedure of complete state
row and column the matrix takes the following form: reconstruction.

D. Coherence matrix
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The methods of quantum tomography relate closely to the BS w4 A2V FIFD
procedure of the classical tomograpl®g]. In [27] the tech-
nigue of quantum tomography for the Wigner function based
on the Radon transformation was suggested. A quantum-state
reconstruction using the least-squares method was performed
in [28]. The strategy of the maximal-likelihood method was
suggested in Ref$29,30. Note that the maximal-likelihood
method in the form which automatically recovers the density
matrices for a physical stata density matrix must be Her-
mitian, positive, and semidefinite and have the unity trace
was developed ifi31,323. For a brief review among the pa-

pers where this procedure was realized experimentally, let us F!G- 3. Measurement block for protocol 1. The Brown-Twiss
mention Refs[33—3 related to states defined by continuous scheme for measuring intensity correlation between two polariza-
'Hn modes. After spatial separation at the nonpolarizing beam split-

variables. For states characterized by discrete variables, su ; . )
as two polarization-spatial qubits, quantum tomography was " (BS), signal (s) and idler (i) photons propagate through the

. . quarter- and half wave plates, polarizing prisif\), focusing
realized in[18-21. Recently quantum tomography has beenIenses(F), and interference filter¢lF) in two channels. Finally,

performed for orbital angular momentum entangled qUtrItS‘photons are registered by detect@s. The coincidence rate from

[10), etc. . . i .the output of the coincidence circuiCC) is proportional to the
The physical idea behind the tomography procedure i$,,rth moment in the fieldRy).

performing measurements of appropriately complete set of

observables called quoruf7] or just “looking” at the state . . .
from different positions. The minimal number of such posi-.the background noise. An event is conS|der§d to be det'ect('ad,
a pulse appears at the output of the coincidence circuit.

tions might be the number of real parameters determining th pproximately in half of trials, one of the photorsignal,

state. b on formi bioh . ) £ th
According to Bohr’s complementarity principle, it is im- dgtggtr;\:gns\(/)rzleoihméngtr?er fr(g;l(::) IiSS g(z)lirr]19 tt% (t)rT: (())th:are
possible to measure all moment$2) and (13) simulta- detect ’I th o b thg h % o th
neously, operating with a single qutrit only. So to perform a etector. In he remalrll.lng cases, bo hp otons appear In the
complete set of measurements one needs to generate a Iotﬁ?fme output beam-splitter arm, ?”d these e."e.”ts are not se-
representatives of a quantum ensemble. ected becal_Jse they do not cont_rlbute to commdences.
In the Heisenberg representation the polarization transfor-

First of all, let us mention that, at present, the only real—mation for each beam-solitter outout bort is given b
istic way to register single-mode biphoton field is using the P put p 9 y

Brown-Twiss scheme. This scheme consists of a beam split- a'l _ (O
ter followed by a pair of detectors connected with the coin- 't~
cidence circuit. It means that registration of a single bipho-

0
0 1)D)\/2(5: 77/2,0) X D}\/4(5: ’7T/4,X)

ton, which carries the stat®), can give only a single event 1

at the output of the experimental setup with some probability. V2 at

So the statistical treatment of the outcomes becomes ex- X + (17)
. . : 1 b

tremely important. For studying correlations between polar- 0 —

ization degrees of freedom, which is essential in the case V2

under consideration, the Brown-Twiss scheme must be ag=

complished with polarization filters introduced into each our 22 matrixes in the right-hand side of EdL7) de

scribe the action of the nonpolarizing beam splitte4 and

arm. \/2 plates, and vertical polarization prism on the state vector
of the signal(idler) photon:
A. Quitrit tomography protocols t ot
We proposed two methods to perform polarization recon- Dz = (_ o )

struction of a biphoton qutrit state;,).
wherer andt are the coefficients introduced in E&), so for
1. Protocol 1 aN/4 plate(é=mwl/4),

The idea of the first method is splitting the statg) into
two spatial modes and performing transformations over two
photons independentlyig. 3). These transformations can be
done using polarization filters placed in front of detectors.and for ax/2 plate(é=/2),
Each filter consists of a sequence of quarter- and half-wave . oo
plates and a polarization prcilsm, whichqpicks out definite lin- tuz =1 COL26), 1y =1 SIN26). (18b)
ear polarization—for example, the vertical one. A narrow- Thus, there are four real parametétwo for each chan-
band filter centered at the doubled pump wavelength nel) that determine polarization transformations. Namely,
=2\, serves to make biphotons emitted from differentthese parameters are orientation angles for two pairs of wave
sources indistinguishable in frequency as well as to reducplates: 6y, x1, 65, x>

1 i
tya=—=(1+icos ), ry,=-=sin2, (183
V2 V2
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TABLE |. Protocol 1. Each line contains the orientation of the hédf;) and quarter{xs;) wave plates
in the measurement block. The last two columns show the corresponding m&nemtd the process
amplitudeM, (v=1,...,9.

Parameters of the experimental setup Moments to be measured Amplitude of the process

v Xs Os Xi 6 Rei M,

1 0 45° 0 -45° Al4 c1/\2

2 0 45° 0 0 C/4 Cy/2

3 0 0 0 0 B/4 ca/\2

4 45° 0 0 0 Y(B+C+2ImF) 55C2—5C3

5 45° 22.5° 0 0 $(B+C-2 ReF) 55C2=3C

6 45° 22.5° 0 -45° 5(A+C-2 ReD) 5C1=55C

7 45° 0 0 -45° t(A+C+21ImD) 5C1-55C2

8 -45° 11.25° -45° 11.25° L(A+B-2 ImE) S5C1+555C3

9 45° 22.5° -45° 22.5° L (A+B-2 ReE) 55C1—55C3

As was mentioned above, the output of the Brown-Twiss i 1/(1 i

scheme is the coincidence rate of the pulses coming from M4: xs=45, DA/FT(. ):
two detectordDg and D;. The corresponding moment of the vaii 1

fourth order in the field has the following structure:
1(1 1
Rei = (b b)) = R(Oxs,box). (19) N2: 62225, Dyo= 3(. i )

In the most general case this moment contains a linear com- Substituting these matrices into Ed.7) and taking into
bination of six momentsl2) and(13) forming the matrix<,.  account the commutation rules for the creation and annihila-
So the main purpose of the quantum tomography proceduréon operators it is easy to get the final moment to be mea-
is extracting these six moments from the setup outcomes byured:
varying the four parameters of the polarization Brown-Twiss
scheme.

Consider some special examples, which give the corre-

sponding lines in the complete protocol introduced below
(Table ). A complete set of the measurements called the tomography

First of all, it is obvious that for measuring real momentsProtocol is presented in Table I. Each row corresponds to the
(12) one needs to make polarization filters transmit both phoSetting of the plates to measure the moment placed in the
tons with horizontal polarizations to measureboth photons sixth column. The last one corresponds to the amplitude of
with vertical polarization to measuf& and one photon with the procesgsee below. .
vertical and another one with horizontal polarizations to NS protocol was suggested and developefl#-16. A
measureC. To do this all quarter-wave plates should be ori- Similar protocol was considered in detail earlj8g] for es-
ented at zero degrees, then to install both half-wave plates 4fnating the polarization state of a biphoton field, generated
zero degrees for measurirg at 9,=45° and 6=45° for 1N& frequency-degenerate noncollinear mode. In this case the
measuringA; and atf.=0°, 6 =45° fsor measurinlg: These DPiphoton field is represented as a pair of polarization qubits.

y s y Ui . S
settings pick out the squared modulus of corresponding am- Before describing the second method of state measure-
plitudescs, c;, andc,. ment let us make some remarks. _ o

The next example shows how to measure one of the com- (1) We assume that the source generating qutrits is sta-
plex momentg13). To measure the real part of the moment ionary. Since each measurement eliminates a qutrit, one has
D, let us set the wave plates in the Brown-Twiss scheme ifo be sure that there are a lot of copies of the initial state;

1
R=(c|b!b/bdbi|c) = §(A+ C-2 ReD).

the following way. each copy must be prepared in the same quantum state. _Such
The idler channel: an ensemble approaclguarantees that the experimentalist
deals with the same quantum state in all trials. In other

1+i 0 words, the outcomes provide him with information about the
0 1-i ); same quantum state and elimination of a particular state does
not affect the rest.
(i) The outcomes of the setup are numbers related to the
i corresponding moment49). Usually this number is the co-
0)- incidence counting rate or the number of coincidences in a
fixed time interval. Due to the necessity of a proper normal-
The signal channel: ization of the state under investigation, the number of inde-

. 1
)\/4:Xi:0, D)\/4:?<
V2

. 0
N2: 6= 45, Dm:(i
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pendent real parameters grows up. The normalization is ob- |
tained from the measurement of momerts B, and C.
Furthermore, only the cosine and sine of the phasgand
¢13 can be measured in experiment as there is no way to
measure the phases directly. That is why the final number of
real parameters to be measured in experiment is 7 for a pure
qutrit state and 9 for a mixed state.

(iii) To minimize the errors caused by independent statis-
tical fluctuations of the outcomes, the number of moments (RS,N
(12) and(13) entering in Eq(19) should be minimal.

) QP2 BS M2 V FIFD

C,

in

FIG. 4. Measurement block for protocol 2. An additional control
2. Protocol 2 quartz platg QP2 serves as the stale,,) tomography transformer.

. Onl ingl late is introduced i h ch l.
In the second method of quantum tomography, a biphoton Y & single wave plate IS Introduiced in each channe

qutrit being measured is first subject to a sequence of unitary ,

transformations and, for each of such transformation, it is fedUMpPed with cw argon laser operated at 351 nm wavelength.
to the Brown-Twiss scheme settled for measuring a fixed" the case of type-Il phase matching, an additional quartz
moment. Using a wave plate with arbitrary optical thickness Compensator is introduced right after the crystal. The.state
one can achieve the quorum varying the orientation of theVs=|0.2) (for type ) or W,=|1,1) (for type Il) generated in
plate u. the crystal is fed to thdransformation block This block

In the most general case the coincidence counting rate iRONSists of the quartz plate with fixed optical thicknebs
this protocol is a periodic function qi; moreover, its Fou- =0.9046 and variable orientatian So the state, which is to

rier expansion contains nine harmonics pf coOuw), be measured, is determmed. by the paramqteThe mea-
co2u), Sin2u), coddu), sin4u), codbu), sin6pw), surem_ent t_)locks a Brovyn-TW|ss schgme equipped W|th po-
cog8u), and siit8u). These harmonics depend linearly on larization filters placgad in both arni&ig. 3). Pulses coming
the nine momentd, B, C, ReD, Im D, ReE, Im E, ReF, from a couple of single-photon moduléEG&G SPCM—
and ImF. In other words, there is aX@9 matrix T that links AQR) were fed to the counter through a standard time-to-

these nine harmonics to the nine moments as shown belovﬂmp“tUde conv_erter. . .
In our experiments the exposure time for measuring each

cos Qu A moment is 5 sec. This time is an important experimental pa-
rameter. Each measurement consists of 30 runs, after which

COS 2u B . .

) the scheme is reset. Namely each measurement is performed
sin Zu C by setting the angles of wave platgsand 6, in both arms
cos ReF according to the tomographic protoc@rlable ). After 30

g grapnic p

sindu |=T| mF |. runs, a new set of angles is selected and the next moment is

measured in the same way. The output data of the setup are

cos Gu ReD the mean coincidence counting rates. Examples of behavior
sin 6u Im D for some moment$A,B,C,ReF,Im F) versus the orienta-
cos & ReE tion of the plate QP1 are plotted in Fig. 6.

sin 8u Im E

C. Experimental implementation: Protocol 2
Unfortunately, the inverse matrix does not always exist. To
simplify the problem we put only a single wave plate with
fixed optical thicknes$ds=7/2,6=mx/4) and fixed orienta-
tion xs, 6; in each channel of the Brown-Twiss scheme. In
order to make sure the inverse matrix exists one needs
maximize the determinant of the matrixover the orienta-
tions of the plateys, 6. After accomplishing this procedure
we obtainys~-28.5°, 6,~19° (Fig. 4).

Instead of finding the links between the harmonics and —
moments, there is a more elegant method to reconstruct the \
quantum state using the second protocs#e Sec. Il D.
This method is considered in the present work.

For the second method we used Ti:Sa laser with pulse
duration about 250 fsec, operating at 800 nm. After fre-
quency doubling, the UV radiation with 400 nm wavelength
was sent into the same setup as described above. For this
t8rot0c0| we used 2-mm BBO crystal cut for collinear degen-

Measurement Transformation Preparation

>0 e

Protocol 2 / QPl BBO Pump laser

B. Experimental implementation: Protocol 1 . o
FIG. 5. Scheme of qutrits tomograph, consisting of three blocks.

The experimental setup for the quantum tomography obreparation block includes pump la@rand nonlinear crystés).
qutrits using protocol 1 is shown in Fig. 5. Tipeeparation  Transformation block is the quartz plat®P1) which orientation
block includes a 2-mm BBO crystal with either type-l or anglea determines the final state to be measured. The measurement
type-ll degenerate and collinear phase matching, which islock depends on the protocol to be ugede Figs. 3 and)4
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20 PE R,=M M,. (20
1.54 \‘\ The considered processes are examples of mutually comple-
@) " mentary sets of measurements in the sense of Bohr’s comple-
o 1.0 B .~ mentarity principle. The event-generation intensitiesfor
< bt both protocols are the main quantities accessible from the
0.5 measurement. Making the bridge between statistical and
physical description of the process the quantiRegoincide
0.04—= with the fourth moments in the field introduced above in Eq.
0 20 40 60 80 (19). Their dimension is the frequency uiz). The number
04 of events occurring within any given time interval obeys the
02 _Poissc_)r_l distribution. Therefore_, the quantitiRsspecify the
intensities of the corresponding mutually complementary
E 0.0 Poisson processes and serve as estimates of the Poisson pa-
021 rameters\, (see below.
BT Although the amplitudes of the processes cannot be mea-
A 04 sured directly, they are of the greatest interest as these quan-
06 .- tities describe fundamental relationships in quantum physics.
0.0 LATTUSITE PEEE e P .
‘ , , ( It follows from the superposition principle that the ampli-
0 20 40 60 80 tudes are linearly related to the state-vector components. So
Orientation of the quartz plate QP1, ¢ (deg). the main purpose of quantum tomography is the reproduction

of the amplitudes and state vectors, which are hidden from
FIG. 6. Some components of the matiy versus the orienta- direct observation.
tion of the quartz plate QP1. Different angles of the plate corre- The linear transformation of the state vectar
spond to different states sent to the measurement block. The plot &t{¢c, , c,,c5} into the amplitude of the process is described
the top corresponds to measured real momehtesquares B py g certain matrixX. For example, considering the first

(circles, and C (triangleg and theoretical predictionsA(-),  protocol this matrix can be easily obtained from Tabieast
B(--),andC(-°-). The plot at the bottom shows measured COM- ~lumn in Table J:

plex moment Ré (squaresand ImF (triangley, and theoretical

predictions Re~ (short-dashed lineand ImF (long-dashed ling 1/\5 0 0

. . . 1/2 0
erate type-l phase matching. A quartz plate with the optical —
thickness6=0.656 is placed after the BBO crystal to prepare 0 0 1N2
the qutrit state to be measured. The measurement part of the 0 1/(2\5) —-i/2
setup was slightly change@drig. 4). An additional control =
quartz plate introduced in front of the beam splitter accom- X= 0 1/(2V22 -1z . (21)
plishes the protocol. Its orientation angleis a parameter 12 -1/2\2) 0
defining the measurement process. The control plate is ro- 1/2 —i/(2\s“'§) 0
tated with 5° steps from O up to 360° so that protocol 2 _ -
consists of 72 measurements. Each arm of the Brown-Twiss 1/(2v2) 0 i1(2v2)
scheme contains either a quarter- or half-wave plate with 1/(242) 0 - 1/2\2)

fixed orientation. The orientations arg,=18.8° for the

quarter-wave plate in the first channel afje-—28.5° for the  Using the matrixX the complete set of nine amplitudes of the
half-wave plate in the second channel. Protocol 2 is easier tprocesses can be expressed by a single equation
implement since only a single parametgr is changed

whereas fouly; ,, 6; , parameters are varied in protocol 1. In Xc=M. (22)

perspective, this kind of protocol allows one to automate theI'he matrixX is an instrumental matrix for a set of mutuall
quantum tomography procedure: the control plate can be ro—Om lementary measurements. by analoav with the conv):en-
tated continuously and reconstruction of the quantum stat bie y . B 9y .

ignal instrumental function. The implementation of the

can be based on analysis of coincidence rates correspondi . .
y P ethod to the first protocol has been considereflLbj.

to the respective values g (i=1,...,72. Consider an algorithm allowing one to calculate the in-
strumental matrix for protocol 2. The matrix consists of 72
rows (the number of control plate orientationand 3 col-
umns(the dimension of Hilbert space for qutnit€ach row

Each of the nine processes from protocol 1 as well as ofs formed in the following way. Using the coefficients the
the 72 processes from protocol 2 is described by its amplits” andr(s) of the wave plates introduced to the signal and
tude M,. From the statistical point of view, the squared idler channels of the Brown-Twiss scher(i8g and (18b)
modulus of the process amplitude specifies the intensity ofhe three-element row, which defines the process amplitude
the event generation: right after the control plate, can be written in the form

D. Statistical reconstruction of biphoton-field qutrits from the
outcomes of mutually complementary measurements
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R P ) ©+0) to b_e deriveq Qirectly from Eq$20) ar_wd(22) without in_tro-
=] rare  Z(ztva + athz)  tztva |- (23) ducing coefficients related to the biphoton generation rate,
V2 .. . ) . .
detector efficiencies, etc. The dimensionality of the vector

The unitary matrixG is defined by the control plate accord- state obtained in such a way is\time. The final state vec-
ing to Eqgs.(7) and(8), with a replacement— u, wherew is  tor obtained by the reconstruction procedure, nevertheless,
the control plate orientatiofit takes 72 values from 0° to should be normalized to unity.
355°). We chose the control plate to be a quarter-wave plate, Assuming that the variances of differdM,|*** are inde-
so 6=/4. Finally, pendent and identical, one can apply the standard least-

squares estimate to E2) [39]:
G=G(w), i=12,...,72. 24 (R [39]

— (xTy) -1yt
Each row of the instrumental matri (72 rows, 3 columns ¢=(XXTXM. @7
is defined by the product of the rom(which is the same for Unlike the traditional least-squares method, E2y) cannot
any processand the matrixG (which is defined by the con- be used for an explicit estimation of the state veaobe-
trol plate orientation angje cause it is to be solved by the iteration method. The absolute
, value of M is known from the experimenM,|=|M |®*.
X=1G(w), 1=12,...,72, (29 We assume that the phase of veckir at theith iteration
whereX; is theith row of the matrixX. step determines the phase of the vedtioat the(i + 1)th step.
In other words, the phase is determined by the iteration pro-
IV. METHODS OF QUANTUM-STATE RECONSTRUCTION cedure. , o _
It turns out that, for the Gaussian approximation of Pois-
In the simplest case the density matrix can be estimategon’s quantities, this least-squares estimate coincides with a
directly from the measurements. Since the set of experimermore exact and rigorous maximum-likelihood estimate con-
tal data is limited in this case, the reconstructed density masidered below.
trix may have nonphysical properties like negative eigenval-
ues. But in the general case sfdimensional systems the

problem of density matrix reconstruction using the direct re- B. Maximum-likelihood method
sults of measurements cannot be solved since the corre- The likelihood function is defined by the product of Pois-
sponding inverse problem is ill posed. sonian probabilities:

When analyzing the experimental data, we use the so-
called root estimator of quantum stafé3]. This approach is L=]] (At oMt (29)
designed specially for the analysis of mutually complemen- sk '

tary measurement@n the sense of Bohr’'s complementarity
principle). The advantage of this approach consists of thevherek; is the number of coincidences observed in itre
possibility of reconstructing states in a high-dimensional Hil-process during the measurement titpeand \; are the un-
bert space and reaching the accuracy of reconstruction of athown theoretical event-generation intensitiésxpected
unknown quantum state close to its fundamental limit. Belownumber of coincidences proportional to the moments in the
we consider two methods of quantum-state root estimatiofield), whose estimation is the subject of this section.
that give similar results. They are the least-squares method The logarithm of the likelihood function is, if we omit an
(LSM) and maximum-likelihood methogMLM ). insignificant constant,
A. Least-squares method InL= EI [kin(Ait) = Adt]. (29)

In statistical terms, Eq(22) is a linear regression equa-
tion. A distinctive feature of the problem is that only the
absolute value of the process amplitidas measured in the
experimgnt. The estimate of the absolute value of.the ampli— lie= > tiXi*ins- (30)
tude is given by the square root of the corresponding experi- i
mentally measured coincidence rate:

Let us introduce the matrices with the elements defined by
the following formulas:

I ki« .
IM,|Pt= VK Jt, (26) =2 ;‘_xuxis, j,s=1,2,3. (31)
wherek,, is the number of eventcoincidencesdetected in P
the vth process during the measurement titne The matrix| is determined from the experimental protocol

It is worth noting that, by the action of the root-square and, thus, is knowm priori (before the experimentThis is
procedure on a Poissonian random value, one gets the ratie Hermitian matrix of Fisher’s information. The matdixs
dom variable with a uniform variance—i.e., at the variancedetermined by the experimental valueskofand by the un-
stabilization[38]. Note also, since we do not deal with event known event-generation intensitias This is the empirical
probabilities but with their rates or intensities, it is conve- matrix of Fisher’s informatior{see also the Appendix
nient to use un-normalized state vectors. These vectors allow In terms of these matrices, the condition for the extremum
the coincidence counting rai@vent-generation intensities of the function(29) can be written as
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TABLE II. Results of the state reconstruction. The left column indicates the orientation of the quartz plate
QP1, determining the state to be measured. Values of the optical thickness of Q0a866 for the pulsed
regime(protocols 1 and Rand §=0.9046 for the cw regim@rotocol 1. Theoretical state vectors are placed

in the right column. The table contains the amplitudes of the reconstructed @g®scs) as well as their
fidelities, calculated by least-squar@sM) and maximum-likelihoodMLM ) methods.

Pulsed regime$=0.656, protocol 1

a Fidelity State vector: experiment State vector: theory
LSM MLM LSM MLM (€1,€2,Ca)theory
0’ 0.99981 0.99979 -0.0046+0.0040 -0.0065+0.005i7 0
-0.0050-0.0115 -0.0053-0.0102 0
0.9999 0.9999 1
40 0.9989 0.9989 -0.3669-0.0691 -0.3669-0.0687 -0.3482-0.0948
-0.0657+0.6814 —-0.0653+0.6815 -0.0900+0.6732
0.6261 0.6261 0.6392
80 0.9993 0.9993 -0.0088+0.0439 -0.0091+0.0439 -0.0136+0.04113
0.1691+0.258i7 0.1697+0.25D 0.1691+0.2338
0.9500 0.9498 0.9565
Pulsed regime$=0.656, protocol 2
0 0.99846 0.99847 -0.0071-0.0135 -0.0072-0.0135 0
0.0359+0.0046 0.0357+0.0046 0
0.9992 0.9992 1
40 0.9991 0.9991 -0.3442-0.1139 -0.3444-0.1142 —-0.3482-0.0948
—-0.0987+0.654i6 —-0.0990+0.65456 -0.0900+0.6732
0.6560 0.6559 0.6392
80 0.9981 0.9981 —-0.0093+0.0430 -0.0094+0.0430 -0.0136+0.0413
0.2122+0.2408 0.2121+0.2408 0.1691+0.2338
0.9461 0.9461 0.9565
cw regime,5=0.9046, protocol 1
o) 0.99325 0.99313 -0.0030-0.0512 -0.0028-0.051¢4 0
0.9966 0.9966 1
-0.0015-0.0642 -0.0013-0.0640 0
60 0.9886 0.9799 0.7236 0.7244 0.7052
0.1165-0.1231 0.1245-0.1210 0.0392-0.0616
0.2792+0.6080 0.1694+0.6453 0.2990+0.638i7
le=Je (32) 2 k=2 N, (34)
Hence, it follows that ' '
This condition implies that, for all processes, the total num-
I"Jc=c. (33)  ber of detected events is equal to the sum of the products of

. o o .__event detection frequencies during the measurement time.
The latest relationship is known as the likelihood equation. g g

This is a nonlinear equation, becausedepends on the un-
known state vectorc. Because of the simple quasilinear
structure, this equation can easily be solved by the iteration
method [17]. The quasi-identity operatorJ) acts as the
identical operator upon only a single vector in the Hilbert ~The examples of qutrit state reconstruction using both the
space—namely, on the vector corresponding to the solutiolf@st-squares and maximum-likelihood methods are given in
of Eq. (33) and representing the maximum possible likeli- Table II.

hood estimate for the state vector. The condition for the ex- The value of the fidelity parametéris defined as

istence of the matrix ! is a condition imposed on the initial F=[ JCexpd? (35)
experimental protocol. The resulting set of equations auto- CineorylCexpt |

matically includes the normalization condition, which is It gives a conventional measure of the correspondence be-
written as tween the theoretical and experimental state vectors.

C. Analysis of the experimental data

1. Pure-state reconstruction
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FIG. 7. Fidelity dependence on the sample size. Mean values F|G. 8. Informational y? criterion for small sample sizes:
and standard deviations corresponding to the sample voldmes sample size=4400.
=0.01,0.04,0.1,0.25,0.5,1.0.

The dependence of fidelity on the amount of experimentajfoduced considering the observation tinje ft, instead of
data obtained is shown in Fig. 7. This figure shows the fidel!,- Hence, performing a single full-volume experiment means
ity achieved in the experiment in comparison with the theo-Providing with a larggpractically infinitg number of partial-
retical rangg(see the Appendix for more details'he lower ~ Volume experiments.
boundary corresponds to 5% quantile of statistical distribu- For a given volume of experimental dataeach event
tion, while the upper to 95% quantile. It is clearly seen thatfrom the full-volume experiment is picked up with the prob-
the fidelity value achieved experimentally for a small volumeability f and rejected with the probability if-Due to the
of experimental data is completely within the limits of the presence of statistical fluctuations, the equation for the num-
theoretical range, while it goes out for a higher volume. Suctber of observationsk,(t,)=fk,(t,), is violated. Therefore a
behavior of fidelity is due to the existence of two different unique estimate of the state vector corresponds to every
error types arising under the reconstruction of quantunpartial-volume experiment. Figure 7 shows mean values and
states. Let us call them statistical and instrumental errorsstandard deviations corresponding to volume$
respectively. The statistical errors are caused by a finite nun+0.01,0.04,0.1,0.25,0.5,1.0. For eatk'l, ten experi-
ber of quantum system representatives to be measured. Agents were simulated.
the measurement time increases, the information about the The results of informational fidelity research, introduced
quantum state of interest progressively incredses the Ap-  in the Appendix, are shown in Figs. 8 and 9. These figures
pendiy. Accordingly, the statistical error becomes smaller.correspond to the same data set as shown in Fig. 7. The
The instrumental errors are caused by the researcher’s ilistribution density of informational fidelity for a small
complete knowledge of the system; i.e., more exact informa¢compared to the coherence volumsample size closely
tion exists, in principle, but it is inaccessible to the experi-agrees with the theoretical result given by E414) (see
menter. Thus, a comparison between the state reconstructiéng. 8). In this case the instrumental error is negligibly small
result and the fundamental statistical level of accuracy cagompared to the statistical one. When the sample volume is
serve as a guide for the parameter adjustment of the setupclose to the coherence volunggig. 9) the influence of in-

Thus, for a small volume of experimental data, statisticalstrumental and statistical errors is about equal. In other
errors prevail, whereas for large sample sizes, the setting
errors and the instability of protocol parameters dominate. 3¢ Theory
The number of events at which the statistical error becomes \/\
smaller than the instrumental error can be called the coher 2
ence volume. Numerically the coherence volume can be es§ 20
timated as the intersection point between the experimentag
fidelity and the lower theoretical fidelity curve. In our case 2 s
this value is about 25 000—30 000 events. Starting approxi-=
mately from this value, fidelity is reaching saturation and ¥ 10
further growth of experimental data volume does not lead to§
an increase in the precision of quantum system estimation. “ s

Figure 7 relates to the state defined by the orientation
angle of the quartz plate QRi=50° (for protocol 2. To plot 099970 0.99975 009980 0.99985 0.99990 0.99995  1.00000
Fig. 7 we used t.he following t(_echmque for passing from Informational fidelity
full-volume experiment to a partial-volume experiment. Let
us consider the parametexd <1, which characterizes the  FIG. 9. Informational? criterion for large sample sizes: sample
volume of experimental data. Suppose thatl for a full-  size=27 750. The disagreement between observations and theoreti-
volume experiment. A partial-volume experiment may be in-cal curve for large sample sizes is due to the instrumental error.

Experiment
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TABLE I1ll. Example of the mixture separation using quasi-  TABLE IV. Analysis of the principal components of the density
Bayesian algorithm for the given state. cw regime, protocol 1. matrix for the stat€41) and(42): numerical simulation.

State vector: theory Density matrix: experiment State vectoKc,,C,,C3) Fidelity
First principal Second principal First principal component
a=30° component component Experiment weight =0.6188  Theory weight =0.6143
6=0.904 ight=0.92 ight=0.0762 . .
( 0-90 )6 ‘?’e'g ())19 38 (We'g )SO %2 _0.3658-0.0448 -0.3668-0.0211  0.9985
€12, Cltheory 1% Sexpt 1.2 Cexpt 0.2085+0.4743 0.2294-+0.4934
0.7052 0.7019 -0.3027-0.2858 0.7718 0.7543
-0.0392-0.0616 -0.0466-0.1325  -0.6529+0.32911 Second principal component
.2990-0.6387 .2245-0.6612 .5140-0.166i . . .
0.2990-0.638 0 >-066 0.5140-0.1668 Experiment weight=0.3812 Theory weight=0.3857
Fidelity=0.9916 ~0.1208-0.2643 ~0.1490-0.2382  0.9979
-0.1659-0.8150 -0.1986-0.7942
words, the informational losses caused by averaging ove-4731 0.5009

instrumental errors are approximately equal to the losses
caused by statistical ones. Finally, if the sample size is

greater than the coherence volume, instrumental errors pre- P
dominate. It means that the statistical informational errors P Tr(p)
are negligibly small compared to the instrumental ones.

(39

The last procedure is normalization of the density matrix.
2. Mixture separation algorithm A remarkable feature of the algorithm is that according to

Let us describe the algorithm for reconstructing a two-nNumerical calculations, independent of zero-approximation

component mixed state. This algorithm can be easily geneS€lection of the mixture components, the resulting density
alized to an arbitrary number of components. matrix p is always the same. Of course, the componefits

The total number of events observed in every process i€nd ¢ are different for the random selection of the zero
divided between the components proportional to the inten@PProximation. _ . .
The mixed-state reconstruction accuracy is described by

sity:
y the following fidelity:
@ )\(1) @ )\(2)
- 14 — v I 2
k' =kim e kb Tkim e (36) F=[Tr\pOppO ), (40

wherev=1,2, ... ymax and v is the total number of pro- wherep® andp are the exact and reconstructed density ma-
cesses™ and A2 are the estimates of intensities of pro- fices, respectively. For a pure stdig?=p, (p®)?=p(®] fi-

cesses for a given step of the iteration procedure. delity (40) converts to Eq(39). ' '
At a certain iteration Step, let us represkmas a sum of ACtUa”y N the pl’esent WOI’k we d|d not |ntend to generate
two components: a given mixed state of qutrits in experiment; it will be done
later [40]. Nevertheless, applying the described algorithm to
k, =k +K?. (37)  the data we can check whether the state produced in our

For each component, we can obtain the estimates for th stem is pure. For example, consider the case when the state

state vector, amplitudes, and intensity of the processes aci;t:eui,sl?chlz fﬁ%s it:tee r%i?irrfz ?LatgthS;iz Tzibhlf e\u/> -;hrlz
cording to the method of pure-state analysis described in trf/ 9 '
S

. . . . - - ,H) are distinguishable due to the polarization dispersion
previous section. Since we get new intensity estimates, let s Bl;O crystal.gNamer extraordina:i)ly polarized prl?otons
again split the total number of events in every process pro(H) propagate faster tha’m ordinaty) ones in the crystal,

portionally to the intensities of the components. In such aTherefore a group velocity compensator has to be used for

way, a new iteration is formed and the whole procedure is King th indistinauishablE1l. N foct

repeated. The described process is called quasi-Bayesian jaking them Indis |(|)1gu.|s. at BAl]. onpertect compensa-

gorithm [17]. tion (we rgached 95% VISIbI|It¥ for polarization mterfereﬂnce
is the main reason why the fidelity reconstruction for these

As a result, the iteration process converges to s@mae- . . ) . )
normalized componentsc? and ¢?. Thus, the mixture states is not so high. The results of applym_g guasi-Bayesian
' Igorithm to the reconstructed state are in Table Ill. We

separation algorithm reduces to numerous estimations ) .
b 9 chose the state corresponding to the angke30°. It is

pure components according to the simple algorithm de-

scribed above in Sec. IV B. As a result of the whole algo-f:learly seen that the weight of the first principal component

rithm execution, the estimate for the density matrix of the'S much gfe"’!‘er than that of'th.e' second one. Doing the same
mixture appears: procedure with thel;=|2,0) initial state, we have checked

that the estimator for a pure-state vector is extremely close to
p=cWcT 4+ 2@ (38)  the estimator of the major density matrix component.
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To illustrate the quasi-Bayesian approach, let us considesptical thickness of both plates b#=0.656. Ten thousand
a result of reconstruction for a two-component mixture usingevents were generat¢dn the averagefor every component.
protocol 1. Suppose one has a mixture of two pure state¥he theoretical density matrix for the mixed state under con-
prepared from2,0) by quartz plates QPland QPY ori-  sideration is
ented at anglegr=—30° anda=50°, respectively. Let the

0.1134 0.0263 +0.0808 - 0.1987 - 0.0558
p@=| 0.0263-0.0808 0.4404 0.0679 + 0.0752 |. (41)
-0.1987 +0.0558 0.0679 - 0.0752 0.4462

A typical example of a reconstructed density matrix is the following:

0.1162 0.0294 + 0.0808 - 0.1965 - 0.06911
p=| 0.0204 - 0.0808 0.4298 0.0697 + 0.0796 |. (42
—-0.1965 + 0.0691 0.0697 - 0.079%6 0.4540

The reconstructed matrix fidelity §=0.999 431. An analy- generate two-photon field has been considered in this work.
sis of the principal components of density matrix is given inA method of statistical estimation of the quantum state
Table IV. through solving the likelihood equation and examining the

This example shows a reasonably high accuracy ostatistical properties of the resulting estimates has been de-
mixed-state reconstruction. The statistical properties of theeloped. Based on the experimental détaurth-order mo-
proposed algorithm were studied by means of the Montenents in the fielgland the root method of estimating quan-
Carlo method. One hundred numerical experiments weréum states, the initial wave function of qutrits has been
conducted similar to the one described above. To verify theeconstructed.
reliability, the solution was found twice for each experiment Experimental data analysis is based on representing the
(with random zero-approximation selectjohe solutions event-generation intensity for each one of mutually comple-
appeared to be equal for all cag@sthin a negligibly small mentary quantum processes as a squared module of some
computational errgr The obtained statistical fidelity distri- amplitude. A complete set of measured processes amplitudes
bution is shown in Fig. 10. Numerical research shows thatan be compactly described using the instrumental matrix. In
the fidelity distribution density is well described by tie  the framework of the formalism of a process amplitude one
distribution. can apply effective tools for the quantum state reconstruc-
tion: least-squares and maximum-likelihood methods.

The developed analysis tools provide the means of
guantum-state reconstruction from the experimental data

The procedure of quantum-state measurement for a threaith high accuracy and reliability. The estimate accuracy is
state optical system formed by a frequency and spatially dedetermined by the concurrence of two types of errors: statis-

tical ones and instrumental ones. For smaller sample sizes
25 statistical errors are dominant, while for greater ones instru-
- distribution mental errors dominate. o .

Instrumental errors lead to fidelity saturation at less than
unity level. In the present work, fidelity for most of per-
formed experimentgmore than 2D exceeded a level of
0.995. For many cases the level of 0.9998 was achieved.

V. CONCLUSION
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APPENDIX: STATISTICAL FLUCTUATIONS Let us derive some constructive criteria of the statistical
OF THE STATE VECTOR completeness of measurements. The complex fluctuation

vector &c is conveniently represented by a real vector of

As was ‘?"feady mentioned aboye, an un—normal|zed stalgo ble length. After extracting the real and imaginary parts
vector provides the most complete information about a quan-

tum system. The use of an un-normalized vector allows us tg ¢ Huctuation vectowc; = 5c ' +i5c” we transfer from
y ; ; : e complex vectopc to the real ones¢:
remove an interaction constant in E&2). The norm of the

vectorc, obtained as a result of quantum system reconstruc- 60(11)
tion, provides one with information about the total intensity .
of all the processes considered in the experiment. However, 8¢, '(1)
the fluctuations of the quantum stgend norm fluctuations, . | ¢
. . . . . - 6c=| — O0é= . (A4)
in particulay in a normally functioning quantum information 5C(12>
system should be within a certain range defined by the sta- &Cs .
tistical theory. The present section is devoted to this problem.
The practical significance of accounting for statistical 5022)

fluctuations in a quantum system relates to developing meth- : e : -
S - - In the particular case of qutrits=3) this transition pro-
ods of estimation and control of the precision and stability of P quirits=3) P

. X . vides us with a six-component real vector instead of a three-
a quantum information system evolution, as well as methOdéomponent complex vector

?deectﬁ;m%eﬁ:f\,rvneaelr:rl{ﬁfeezﬂggoebs attack on the quan- In the new representation, EGA1), becomes
The estimate of the un-normalized state vectabtained 8 In L = - Hg0&0¢ = — (S¢H|58), (A5)
by the maximume-likelihood principle, differs from the exact . , , ,
state vectorc® by the random valuesc=c©@-c. Let us where matrixH is the “complete information matrix” pos-
consider the statistical properties of the fluctuation veétor S€Ssing the following block form:
by.e?pansion of the log-likelihood function near a stationary y <Re(| +K) —Im(l + K))
oint: = .
P Im(1-K) Re(l -K)
1 ook o * The matrixH is real and symmetric. It is of double di-
81n L=—| Z(Kgdcede + K5i8c,8C, ) + Ii0c, 8¢ | Y -
2( 510500 + Kgj o G; ) +15j6Cc 56, mension, respectively, to the matrideandK. For quitrits,|
(A1) andK are 3x 3 matrices, whileH is 6X 6.
Using matrixH it is easy to formulate the desired charac-
Together with the Hermitian matrix of the Fisher information teristic completeness condition for a mutually complement-
I, Eq. (30), we define the symmetric Fisher information ma-ing set of measurements. For a set of measurements to be
trix K, whose elements are defined by the following equastatistically complete, it is necessary and sufficient that one

(A6)

tion: and only one eigenvalue of the complete information matrix
H is equal to zero, while the other ones are strictly positive.

K, We would like to stress that checking the condition one
Ksj=2> M_zxvsxyja (A2)  not only verifies the statistical completeness of a measure-

ment protocol, but also ensures that the obtained extremum
. . is of maximum likelihood.
whereMV is the amplitude of Fhe/th Process. In the general An eigenvector that has eigenvalue equal to zero corre-
caseK is a complex symmetric non-Hermitian matrix. From . - :

; ) . ponds to gauge fluctuation direction. Such fluctuations do
all possible types of fluctuations, let us pick out the so-calle . ; :

. S hot have a physical meaning as stated above. Eigenvectors

gauge fluctuations. Infinitesimal global gauge transforma- . - . A
; . corresponding to the other eigenvalues specify the direction
tions of a state vector are as follows: : : :
of fluctuations in the Hilbert space.

The principal fluctuation variance is
. . N . 2 1
wheree is an arbitrary small real number ards the Hilbert 7= o
space dimension. ]
Evidently, for gauge transformation§,In L=0. It means ~ whereh; is the eigenvalue of the information matiik cor-

that two state vectors that differ by a gauge transformatiomesponding to thgth principal direction.

are statistically equivalent; i.e., they have the same likeli- The most critical direction in the Hilbert space is the one
hood. Such vectors are physically equivalent since the globalith the maximum variance]?, while the corresponding ei-
phase of the state vector is nonobservable. From a statisticgenvalueh; is accordingly minimal. Knowledge of the nu-
point of view, the set of mutually complementing measure-merical dependence of statistical fluctuations allows one to
ments should be chosen in such a way that for all otheestimate distributions of various statistical characteristics.

5Cj:igcj, i=1,2,...s, (A3)
ji=1,...,3-1, (A7)

fluctuations(except gauge fluctuations In L<<0. This in- The important information criterion that specifies the gen-
equality serves as the statistical completeness condition fafral possible level of statistical fluctuations in a quantum
the set of mutually complementing measurements. information system is thg? criterion. It can be expressed as
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2(8¢H|68) = x*(2s- 1), (A8) (oH|08)  x*(2s-1)

. _ o (&Hl8) 4n
wheres is the Hilbert space dimension . . . L
The left-hand side of EqA8), which describes the level Relation(A11) describes the distribution of relative informa-

of state vector information fluctuations, is)& distribution tion fluctuations. It shows that the relative information un-

with 2s-1 degrees of freedom cgrtalnty_of a quglntum state decreases with the number of
e - . Co observations as

by 1:[22 ﬁgﬂ'ﬁi O;ftzir?qgﬁlggf ?ngglriﬁzsg?‘d&c;; Sjgrs\fg';d data The mean value of relative information fluctuations is

Similarly to Eq.(A4), let us introduce the transformation of (SEH|5¢) _2s-1

a complex state vector to a real vector of double length: (gH|®  4n

(A11)

(A12)

The information fidelity may be introduced as a measure

(1)
C1 of correspondence between the theoretical state vector and its
: estimate:
C1 (1)
C 6¢H| 6
ezl |—e=| 5 | (A9) FHzl—M. (A13)
. cy (¢H[&)
S
: Correspondingly, the value I, is the information loss.
C(SZ) The convenience of relies on its simpler statistical

properties compared to the conventional fidelky For a

. . . ystem where statistical fluctuations dominate, fidelity is a
_It can be shown that the information carried by a state V.ECtOFandom value, based on th& distribution:
is equal to the doubled total number of observations in al
processes: X(2s-1)
4n

where y%(2s-1) is a random value of? type with Z-1

degrees of freedom.

wheren=x k,. Information fidelity asymptotically tends to unity when
Then, they? criterion can be expressed in a form invariantthe sample size is growing up. Complementary to statistical

to the state vector scal@et us recall that we consider a fluctuations noise leads to a decrease in the informational

Fy=1- (A14)

(¢H[&)=2n, (A10)

non-normalized state vecor fidelity level compared to the theoretical lev@14).
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