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Faithful teleportation with partially entangled states
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We write explicitly a general protocol for faithful teleportation ofdestate particlgqudit) via a partially
entangled pair ofpure) n-state particles. The classical communication ¢@$EC) of the protocol is log(nd)
bits, and it is implemented by @rojectivemeasurement performed by Alice, and a unitary operator performed
by Bob (after receiving from Alice the measurement reglt/e prove the optimality of our protocol by a
comparison with the concentrate and teleport strategy. We also show thamnif2, or if there is no residual
entanglement left after the faithful teleportation, the CC@uoy protocol is at least logind) bits. Furthermore,
we find a lower bound on the CCC in the process transforming one bipartite state to another by means of local
operation and classical communication.
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In the process of quantum teleportation, one party, called no__
Alice, transfers an unknown quantum state to a second par- IX)23= 2 VPulK)olK)3, (2)
ty's system, operated by Bob. There are two distinctive re- k=1

sources for the procesgt) The classical information trans-
mitted from one party to the othg2) The two parties share
an entangled state. In the original proto¢d], it has been

shown that the resources of 2 a bits of classical infor- The teleportation can be achieved by a protocol involving

mation and a pair ofl-state particles in a maximally en- just the following step$9]: Alice performs a single general-
tangled state are sufficient for a faithful teleportation of a g steps3]: P g€ g

d-state objector qudif. Since then, there were several en_|zed measurement on her systems 1 and 2, and then sends the
ate ob quan. o 98N esult to Bob, who performs a particular unitary operation on
eralizations for the original protocol with more general chan-, - . L
. ) ; his system 3, according to Alice’s message.
nels[2-5]. However, until now, faithful teleportation proto-

cols (i.e., with unit fidelity and unit probability of success There are two interesting questions to ask. First, what are

[6,7]) of a d-state object have not been considered for thethe condltlons that th_e Schmidt num_bgéps} must sat|_sfy in
Fder to achieve a faithful teleportatigne., with maximum

case when the entangled resource is a partially entangled . .

of puren-state particlg$with n>d). In thips papeyr, we ir?tro- P idelity, =1)? S_econ_d, what IS the lower bound gn the
duce aprotocolfor this scheme, and prove its optimality in a am_lc_)#nt of classical t?ltsf_that AI|ce.mu?t Ifend tdq BO?' f
restricted sense by showing that the classical communicatiolqielssn,intivgg:ef[ 1to]e alrrlfjt vegehsg\(/)en sSr:r\:]v;rizlersCitt%n rt?]rg
cost(CCC) in protocols that involve first concentration and followina theorem ’

then teleportation is at least lggd) bits (which is the CCC 0 ‘Iqh g e;)Fe 'tﬁf [ tel tation i ivle if. and onl
used in our protocgl Moreover, it is shown that il>n/2, f eorem L aithiul teleportation Is possible Il and only
or if there is no entanglement shared between Alice and Bob’
after Alice’s measurement, the CCCanfystrategy is at least Ed(|x)29) = - log, p,, = log, d, (3)
log,(nd) bits* We also find a lower bound on the classical

information required in the process of deterministic entanglewherepy,=maxp,}. That is, teleportation is possible if, and

where n=ScH|x),3) is the Schmidt numbe(we have in-
cluded in the sum only the nonzem’s). Thus, systems 1
and 2 belong to Alice’s lab, and system 3 to Bob'’s lab.

ment concentratiofs]. only if, none of the Schmidt coefficients are greater thaah 1/
In the following, the qudit which is faithfully teleported This also implies that the Schmidt numberis greater or
from Alice to Bob is denoted by equal tod.

The entanglement measure for faithful teleportation,
d Ei«(|x)29 (here called entanglement of teleportajiomas
1= > ammy, (1)  been defined earlief8] in the context ofdeterministicen-
m=1 tanglement concentration. If8], it has been showtiwith
) different notationsthat |y),5 can be transformetetermin-
and the entangled resource shared between Alice and Bob ji;cally) by local operations and classical communications
denoted by(not necessarily maximally entanged (LOCC) to a maximally entangled pair of qudits if, and only
if, condition (3) is satisfied. This provides a proof for Theo-
rem 1, since a maximally entangled pair of qudits can be
*Electronic address: gilgour@phys.ualberta.ca used for a teleportation of an unknown quiii.
'Here, we assume that Alice transmits her entire measurement In order to partially answer the second question, let us
outcome, or equivalently, that Alice and Bob do not discard any parfirst consider protocols that involve two steps: Alice and Bob
of their state at any time. concentrate their entangled resourg®ys, to adx d maxi-

1050-2947/2004/1@)/0423015)/$22.50 70042301-1 ©2004 The American Physical Society



GILAD GOUR PHYSICAL REVIEW A 70, 042301(2004)

mally entangled state and then teleport the sft#g® (using For example, consider the case in which the entanglement
the Bennettet al. [1] protoco). It follows from Theorem 2 resource shared between Alice and Bob is given by a product
(see below that for these protocols the CCC is at leastof two bell states, i.e.,

log,(nd) bits.

Theorem 2Let n; andn, (n;=n,) be the Schmidt num-
bers of two bipartite stateg™),5 and|x®),s, respectively.
If |x),5 can be transformed tp'?) by LOCC, then the 144y )
CCC of the transformation is at least §9g,/n,) bits. 2

Proof: Let us write the statefy'?),3 and|x?),3 in their  |f Alice wishes to teleport a qubit to Bob, she can do it with

N

|X)23=[Bell)pgBell oz = ~(|1,1)23+ 2,223+ (3,323

Schmidt decomposition, only two classical bits using one of the two Bell states. In
n this case, after the teleportation, there is a residual entangle-
X P)3= > VPLPK) ® K3, ment left. This simple example implies that the minimum
=1 amount of classical information that Alice must transmit to
Bob depends on the residual entanglement left after the tele-
ny portation has been accomplished.
|X(2)>23: 2 VDT%)|m>2® Im)s. (4) Let us denote b;eﬁd)(|)(>23) the maximumSchmidt en-
m=1 tanglementi.e., a logarithm of the Schmidt numbewhich

As we have mentioned earlier, the transformatigf’),s can remain after d state has been faithfully teleported from

—|x?),5 can be achieved by a single generalized measurée‘lice to Bob Via|X>23;j)N°te that if|x)s is a d-maximally
ment performed by Alice and a unitary operation performecentangled state, thef}”'(|x)29)=0. However, there are many
by Bob(see[9]). Let us describe Alice’s measurement by then-partially entangled state@=d) for which £(|x),9=0.
measurement operatorl@l,(j), wherej=1,2,...,s. That is, In particular, ford>n/2 the residual entanglemenf,ﬁd)
X (|x)22), must be zero.

The argument goes as follows: after the teleportation, the
final state of Alice’s and Bob’s systems can be written in the

form,

S
2 MOt D = , (5)
=1
wherel is the identity operator. Now, after Alice obtains the _
outcomej, the state of the system is proportional to [final)125= [RE}12, | #ig)b, (10)
Ny . , . .
S e (i whereb1 is the part of Bob’s system 3 that is entangled with
MDDy, 5= kzl VoD (RD1K),) @ [k (6)  Alice’s systems 1 and 2. Therefore, the SIRE) 5, repre-
- . sents the residual entanglement. The sydbeis the nonen-
Thus, after Bob performs a unitary operatidfl), the state of  tangled part consisting of the teleported state in Bob'’s system
the system|x'?),5, can be written as 3. Let us now denote the Schmidt number @Ehml by ng.
ny Since the dimension dj, is at leasing and the dimension of
@y = (Ni)"1/2 [n@ MIKY,) & (00K 7 b, is at leastd, the dimension of Bob’s system=nd. It is
X 2= (N) E‘pk ( Kz) @ @, @) therefore clear that il >n/2, thenng=1 (i.e., zero entangle-

P L . ) menY. Moreover,
whereN! is the normalization coefficient. By a comparison

of the above equation with the expression ffigf'),5 in Eq. E9(|x)29 = - log, ns=< log, n— log, d. (11
(4) we obtain
o Let us show now that iﬁid)(|)(>23):0, the lower bound on
YT A N ) the amount of classical bits that Alice must send to Bob is
MPk), = p(kl) m2:1 KOV mhap[m),. (8) given by log(nd).
R o Imagine teleporting gfull Schmidt numbey entangled
That is, the operatoM (as well asMWTMU)) projects the state corresponding to the system 0-1. Alice has the system
n, states|k),, into a n,-dimensional Hilbert space. Thus, 1, and O is the reference system. Alice and Bob share an
from the completeness equati¢®) it follows that sn,=n;, entangled statéy),s, corresponding to the system 2-3. Since
or equivalently, logs=log,(n;/ny) . Alice wants to teleport her state perfectly, she must com-
Note that according to Theorem 2, if Alice and Bob first pletely destroy the entanglement with the reference system 0.
transform the statdy),; to a dxd maximally entangled Thus, if we assumé'®(|x),3=0, she also needs to destroy
state, it will cost them at least lg@/d) classical bits. Add-  all entanglement with Bob’s system 3. The dimension of the
ing to it 2 log, d bits (see Bennetét al. [1]) will give a total ~ system 1-2 isnd, so to disentangle it from 0-3 requires a
of at least log(nd) classical bits for the concentrate and tele- measurement with at least linearly independent elements,
port strategy. The CCC of our protoo@lee the next section i.e., log(nd) classical bits.
is exactly log(nd) bits. Therefore, in this sense our protocol ~When n=d, our bound reduces to 2 lgd, which has
is optimal. This, however, does not mean that there are nbeen proposed in[1] when the teleportation of a
other strategies in which the CCC is less than(nd) bits.  d-dimensional state is performed with damaximally en-
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tangled statdi.e., with a Schmidt numbed). Forn>d the  puren-state particles that satisfy Eg®8) and(31) (see be-
bound is stronger, assuming there is no residual entangldew).
ment left. This means, that, if Alice and Bob have to afie The protocol presented below involvasd)? coefficients,
of their entanglement resource in order to teleport the qudit\/njq)k (where j=1,2,...,nd,;m=1,2,...,d; and
Alice will need to send at least lg@d) of classical bits. On  k=1,2 ... n), that satisfy the following two conditions:
the other hand, in the example abdgee Eq(9)] n=4, and d n
therefore log(nd)=3. That is, after Alice transmitted the two _ (/G
classical bits to Bob, if she wishes also to destroy the re- O = 22 Vink Vimic: (19
sidual entanglement she will need to perform one more mea-
surementthat is equivalent to one more classical)bit n

If d>n/2,€£d)(|X>23):0, and therefore Alice will need to Sy =NAY, kafJ;)rNrL)k- (16)
transmit Bob at least lggnd) bits of classical information. ' k=1
This result is very interesting. It shows, for example, that if
Alice and Bob share an-maximally entangled statewith
n<2d), Alice will have to send Bohlmoreclassical bits than
she would have to if they shareddamaximally entangled
state. This simple example emphasizes that an increment in
the entanglement of the resource will not necessarily reduce [125= [¥a)1lx)23- 17
the amount of classical bits that are indispensable for a faith-
ful teleportation of a qudit, but will more likely increase it.

Let us end this section by showing how the lower boun
of log,(nd) classical bits leads to another bound on the mini-

m=1 k=1

As we will see later, such coefficients can be found in many
cases. We write now the steps of the protocol in terms of
these coefficients.

(1) The initial state is

(2) Alice performs a joinprojectivemeasurement on sys-
tems 1 and 2; the corresponding projectod"
=MD, MP|(j=1,2,...,nd) are given in terms of the

i (1)
mal amount of classical communication that is required forcOefficientsVi,
the process ofleterministicentanglement concentratids] . d n
(for the original asymptotic entanglement concentration see IMDy 5= >0 > VI M), |k),. (19
[11]). In this process, Alice and Bob shareladimensional m=1 k=1

state| ) xg, Where|)ag is a partially entangled state with a Note that Eq.(15 tees that thed states M)
Schmidt numbed= Sch(|#)g). Suppose that by LOCC Al- orct)h%noa:ma(lq'( ) guarantees tha states|M )y are

ice and Bob transform the state into copies of the Bell (3) The state of the system after Alice obtained the mea-
states. Fron{8], it follows that this transformation is pos- surement (up to normalization

sible if, and only if,

d n
. — Sk .
m= nE(|{)ap)- (12 PUD125= 2 2 amVpVik IMD) 1K)

m=1 k=1
Therefore, if this condition is satisfied, after the transforma- d
tion, them copies of the Bell states could be used to teleport _ 1 0 A (i)
a 2"-dimensional state. Let us denote By the minimum B \fsmzzl BnlM ™12 @ 1M, (19
amount of classical bits that are required for the transforma-
tion |) 50— |Bell)®™, and byC, the amount that is required Where
for the teleportation. Using the Bennet al. protocol, we n -
find thatC,=2 log, 2™=2m. Now, since there is no residual D|my; = \fsz Vg); VpdK)s. (20)
entanglement left in this process, from our bound, it follows k=1

mAn )
that C, +C,=log,(2™d") and thus, Equation(16) guarantees that) (as defined in the above

Cy = nlog, d—m= nEse{|ag) — M, (13)  €quation is a unitary operator; its domain of definition can
be extended tall the n-dimensional Hilbert space of Bob
whereEgcf|#)ag) =108, ScH|i)ap) is the Schmidt entangle- (1),

ment. From Eq(12) it follows that the minimum bound is (4) After Bob performs on his system 3, the unitary op-
eration, 00", the final (normalized state is
C1= n[Escd|¥)ap) — Ed|¥)ap)]- (14) g
Note thatEsq|#)as) = E(| ) ag) With equality if, and only if, IF)125= 2 8 MD), @ (M= MDY, ® [ygds,  (22)
m=1

|)ag is @ maximally entangled state.

A general protocol for faithful teleportatiorLet us now \yhere the teleported qudityy)s, is given by[cf. Eq. (1)]
present a general protocol for teleportation of a qudit with g
maximum fidelity (f=1). The protocol consists of a projec- _
tive local measurement performed by Alice and a subsequent |tha)s = glak“()& (22
unitary local operation performed by Bob. The protocol is a -
general one, in the sense that Alice teleports a qudit to BopNote that although in the above slnnuns from 1 tod,H(gn)
via logy(nd) classical bits anény partially entangled pair of is ann-dimensional Hilbert spacén=d).] Thus, our proto-
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col works if there arénd)? parameters that satisfy both Egs. possible outcomes in the projective measurement performed
(15 and(16). by Alice. Three angles that satisfy E(4) are 6,=0 and
Let us first define the? parameters for the cass=2 and  6,=6;=m. Substituting these values fa in Egs.(25) and
n=2. This case represents a general faithful teleportation of26) gives
a qubit. It implies that teleportation of a qubit, if possible,
can always be implemented by a projective measurement Q) s L 2]
performed by Alice and a unitary operation performed by Vll‘Vzl‘\Tg ex 3 )
Bob. Furthermore, for the case=2 we will see below that
our protocol reduces to the original one givenii.

In the determination of the parametef%) we will make 1 4]
. ) k V =V = — exp —
use of the following notations: 2" s 3 )
First,
2T
= Fai A ) ) 1
o = ol 12| @9 Vij=-Vi= 29
wherek,k’=1,2,...,n (note thate,, is a unitary matrix.
Second, we defina anglesé,, 6,, ..., 6, such that for j=1,2,3, and forj=4,5,6,
n
o . . 1 2]
kglpkexp(u%—o. (24) V&J{:_Vg{:_?ex%?l),
\!
Such phase factors can always be found when all rthe
Schmidt probabilitiesp,=<1/2 [compare with Eq.(24) in T A
Ref. [12]]. According to Theorem 1, fod=2 we have Vh=Vh=—=exp — |,
E(|x)29 =1 and thereforep,<1/2 for allk=1,2,...,n v 3
With these definitions, the protocol fol=2 is given by
Vi="e, andVi)=e.expif), (25 Vii=Vvi=—=. (30
Vs Vs V6
for 1<j<n, and Thus, substitution of the above values in E¢8) and (20)

_ 1 1 yields the six orthonormal statd#!),,, and the six unitary

Vil =~ ek exp(=i6) and Vi) = 6k (260  operators,0". This determines the protocol explicitly. We
VS \s now present the more general scheme with gertera2 and

for n<j=<2n. It can be shown that thes8=4n? parameters N=d.

satisfy both Eqs(15) and (16), and thus define a general ~ We first defines=nd angles,é,, such that

protocol for faithful teleportation of a qubit.

Consider the case in which=2, and thusp;=p,=1/2.

Two angles that satisfy Eq24) are #,=0 and 6,=. With 2 P XHi (Brk= Oy ] = Sy (31

thIS ch0|ce Egs(25) and (26) yield V2=V/ 3) =Vi=v? k=1

=V =V V(242—1/2 where all the othei\/(”——llz The

four orthonormal measurement states are g|veris|arp Eq. general deterministic protocols for dense codihg]). It can

(18)] _ _ _ _ be shown that if such phase factors can be found, then

MDYy, =V|1)1]1), + V| 1)1]2), + VI)|2)1|1), + VI2)12),.  <1/d for all k=1,2,...,n. For d=2 andd=n such phase
(27) factors can always be found as long ag<1/d. For

2<d<n, in general, it is notalwayspossible to find such

After Bob receives the messagérom Alice’s measurement, phase factor$l14], but there are several cases in which one

he performs a unitary operation with matrix elementscan calculate them explicitf/Now, according to Theorem 1,

@M= \2V This protocol is identical to the Bennedt  E(|x)»39) =log,d, and therefore, py<1/d for all k

al. one [1],_ |f |l1),/T) in [1] are identified with =1,2,...n

(recently, these factors have been used in the construction of

(|11)1%[2)1)/42 and|],),|1,) are identified with|1),,|2),. With these notationgand with the assumption that the
Let us now consider another example, in which the statgphase factors in Eq31) can be foungithe protocol is given
shared between Alice and Bob is given by by

1 1 1 -
[X)23= \/; 1s|1); + \/;|2>1|2>2 + \/;|3>1|3>2- (28 ’For example, consider the case in which the set pfobabilities

{p} can be divided intod subgroups, such that the sum of the
According to Theorem 1, this state can be used for a telepoprobabilities in each subgroup is d./Then, f=2mx/d)ml if k
tation of a qubit. According to our protocol, there are six belongs to the subgrougl=1,2,...,d).
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h_ 1 ) 2 T share a partially entangled resource. The protocol requires no
Vitk= = explifmdexpl ij{ —=m+ k| |. (32 more classical communication than is conceivable with a
\S S n . . .
“concentrate and teleport” strategy. The next step in this di-
It can be shown that thes=(nd)? parameters satisfy both rection would be to find a protocol for teleportation using a
Egs. (15) and (16), and thus define a protocol for faithful mixedstate entangled resource.

teleportation of a qudit. . o .
In conclusion, we have found lower bounds on the The author would like to extend his sincere gratitude to

amount of classical information that is required for generalSam Braunstein, for reviewing this work in its preliminary
faithful teleportation schemes and a deterministic entanglestages, and for his excellent input regarding areas of im-
ment concentration. We have also found a specific protocaprovement. The author would also like to thank Aram Har-
for faithful teleportation of a qudit, which generalizes the row for useful comments and help. The author is grateful to
protocol given in[1] for the case in which Alice and Bob the Killam Trust for its financial support.
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