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We write explicitly a general protocol for faithful teleportation of ad-state particle(qudit) via a partially
entangled pair of(pure) n-state particles. The classical communication cost(CCC) of the protocol is log2sndd
bits, and it is implemented by aprojectivemeasurement performed by Alice, and a unitary operator performed
by Bob (after receiving from Alice the measurement result). We prove the optimality of our protocol by a
comparison with the concentrate and teleport strategy. We also show that ifd.n/2, or if there is no residual
entanglement left after the faithful teleportation, the CCC ofanyprotocol is at least log2sndd bits. Furthermore,
we find a lower bound on the CCC in the process transforming one bipartite state to another by means of local
operation and classical communication.
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In the process of quantum teleportation, one party, called
Alice, transfers an unknown quantum state to a second par-
ty’s system, operated by Bob. There are two distinctive re-
sources for the process:(1) The classical information trans-
mitted from one party to the other.(2) The two parties share
an entangled state. In the original protocol[1], it has been
shown that the resources of 2 log2 d bits of classical infor-
mation and a pair ofd-state particles in a maximally en-
tangled state are sufficient for a faithful teleportation of a
d-state object(or qudit). Since then, there were several gen-
eralizations for the original protocol with more general chan-
nels [2–5]. However, until now, faithful teleportation proto-
cols (i.e., with unit fidelity and unit probability of success
[6,7]) of a d-state object have not been considered for the
case when the entangled resource is a partially entangled pair
of puren-state particles(with n.d). In this paper, we intro-
duce aprotocol for this scheme, and prove its optimality in a
restricted sense by showing that the classical communication
cost (CCC) in protocols that involve first concentration and
then teleportation is at least log2sndd bits (which is the CCC
used in our protocol). Moreover, it is shown that ifd.n/2,
or if there is no entanglement shared between Alice and Bob
after Alice’s measurement, the CCC ofanystrategy is at least
log2sndd bits.1 We also find a lower bound on the classical
information required in the process of deterministic entangle-
ment concentration[8].

In the following, the qudit which is faithfully teleported
from Alice to Bob is denoted by

ucdl1 = o
m=1

d

amuml1, s1d

and the entangled resource shared between Alice and Bob is
denoted by(not necessarily maximally entangled)

uxl23 = o
k=1

n

Îpkukl2ukl3, s2d

where n=Schsuxl23ld is the Schmidt number(we have in-
cluded in the sum only the nonzeropk’s). Thus, systems 1
and 2 belong to Alice’s lab, and system 3 to Bob’s lab.

The teleportation can be achieved by a protocol involving
just the following steps[9]: Alice performs a single general-
ized measurement on her systems 1 and 2, and then sends the
result to Bob, who performs a particular unitary operation on
his system 3, according to Alice’s message.

There are two interesting questions to ask. First, what are
the conditions that the Schmidt numbershpkj must satisfy in
order to achieve a faithful teleportation(i.e., with maximum
fidelity, f =1)? Second, what is the lower bound on the
amount of classical bits that Alice must send to Bob?

The answer to the first question follows directly from
Nielsen’s theorem[10], and we have summarized it in the
following theorem.

Theorem 1: Faithful teleportation is possible if, and only
if,

Etsuxl23d ; − log2 pm ù log2 d, s3d

wherepm=maxhpkj. That is, teleportation is possible if, and
only if, none of the Schmidt coefficients are greater than 1/d.
This also implies that the Schmidt numbern is greater or
equal tod.

The entanglement measure for faithful teleportation,
Etsuxl23d (here called entanglement of teleportation), has
been defined earlier[8] in the context ofdeterministicen-
tanglement concentration. In[8], it has been shown(with
different notations) that uxl23 can be transformed(determin-
istically) by local operations and classical communications
(LOCC) to a maximally entangled pair of qudits if, and only
if, condition (3) is satisfied. This provides a proof for Theo-
rem 1, since a maximally entangled pair of qudits can be
used for a teleportation of an unknown qudit[1].

In order to partially answer the second question, let us
first consider protocols that involve two steps: Alice and Bob
concentrate their entangled resource,uxl23, to a d3d maxi-

*Electronic address: gilgour@phys.ualberta.ca
1Here, we assume that Alice transmits her entire measurement

outcome, or equivalently, that Alice and Bob do not discard any part
of their state at any time.
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mally entangled state and then teleport the stateucdl (using
the Bennettet al. [1] protocol). It follows from Theorem 2
(see below) that for these protocols the CCC is at least
log2sndd bits.

Theorem 2: Let n1 andn2 sn1ùn2d be the Schmidt num-
bers of two bipartite statesuxs1dl23 and uxs2dl23, respectively.
If uxs1dl23 can be transformed touxs2dl by LOCC, then the
CCC of the transformation is at least log2sn1/n2d bits.

Proof: Let us write the statesuxs1dl23 and uxs2dl23 in their
Schmidt decomposition,

uxs1dl23 = o
k=1

n1

Îpk
s1dukl2 ^ ukl3,

uxs2dl23 = o
m=1

n2

Îpm
s2duml2 ^ uml3. s4d

As we have mentioned earlier, the transformationuxs1dl23
→ uxs2dl23 can be achieved by a single generalized measure-
ment performed by Alice and a unitary operation performed
by Bob (see[9]). Let us describe Alice’s measurement by the

measurement operators,M̂s jd, where j =1,2,… ,s. That is,

o
j=1

s

M̂s jd†M̂s jd = I , s5d

whereI is the identity operator. Now, after Alice obtains the
outcomej , the state of the system is proportional to

M̂s jduxs1dl23 = o
k=1

n1

Îpk
s1dsM̂s jdukl2d ^ ukl3. s6d

Thus, after Bob performs a unitary operation,ûs jd, the state of
the system,uxs2dl23, can be written as

uxs2dl23 = sNjd−1/2o
k=1

n1

Îpk
s1dsM̂s jdukl2d ^ sûs jdukl3d, s7d

whereNj is the normalization coefficient. By a comparison
of the above equation with the expression foruxs2dl23 in Eq.
(4) we obtain

M̂s jdukl2 =Î Nj

pk
s1d o

m=1

n2

3kkuûs jd†uml3
Îpm

s2duml2. s8d

That is, the operatorM̂s jd (as well asM̂s jd†M̂s jd) projects the
n1 states ukl2, into a n2-dimensional Hilbert space. Thus,
from the completeness equation(5) it follows that sn2ùn1,
or equivalently, log2 sù log2sn1/n2d h.

Note that according to Theorem 2, if Alice and Bob first
transform the stateuxl23 to a d3d maximally entangled
state, it will cost them at least log2sn/dd classical bits. Add-
ing to it 2 log2 d bits (see Bennettet al. [1]) will give a total
of at least log2sndd classical bits for the concentrate and tele-
port strategy. The CCC of our protocol(see the next section)
is exactly log2sndd bits. Therefore, in this sense our protocol
is optimal. This, however, does not mean that there are no
other strategies in which the CCC is less than log2sndd bits.

For example, consider the case in which the entanglement
resource shared between Alice and Bob is given by a product
of two bell states, i.e.,

uxl23 = uBelll23uBelll23 ;
1

2
su1,1l23 + u2,2l23 + u3,3l23

+ u4,4l23d. s9d

If Alice wishes to teleport a qubit to Bob, she can do it with
only two classical bits using one of the two Bell states. In
this case, after the teleportation, there is a residual entangle-
ment left. This simple example implies that the minimum
amount of classical information that Alice must transmit to
Bob depends on the residual entanglement left after the tele-
portation has been accomplished.

Let us denote byEr
sddsuxl23d the maximumSchmidt en-

tanglement(i.e., a logarithm of the Schmidt number) which
can remain after ad state has been faithfully teleported from
Alice to Bob via uxl23. Note that if uxl23 is a d-maximally
entangled state, thenEr

sddsuxl23d=0. However, there are many
n-partially entangled statessnùdd for which Er

sddsuxl23d=0.
In particular, for d.n/2 the residual entanglement,Er

sdd

3suxl23d, must be zero.
The argument goes as follows: after the teleportation, the

final state of Alice’s and Bob’s systems can be written in the
form,

ufinall123= uREl12b1
ucdlb2

, s10d

whereb1 is the part of Bob’s system 3 that is entangled with
Alice’s systems 1 and 2. Therefore, the stateuREl12b1

repre-
sents the residual entanglement. The systemb2 is the nonen-
tangled part consisting of the teleported state in Bob’s system
3. Let us now denote the Schmidt number ofuREl12b1

by ns.
Since the dimension ofb1 is at leastns and the dimension of
b2 is at leastd, the dimension of Bob’s systemnùnsd. It is
therefore clear that ifd.n/2, thenns=1 (i.e., zero entangle-
ment). Moreover,

Er
sddsuxl23d = − log2 ns ø log2 n − log2 d. s11d

Let us show now that ifEr
sddsuxl23d=0, the lower bound on

the amount of classical bits that Alice must send to Bob is
given by log2sndd.

Imagine teleporting a(full Schmidt number) entangled
state corresponding to the system 0-1. Alice has the system
1, and 0 is the reference system. Alice and Bob share an
entangled state,uxl23, corresponding to the system 2-3. Since
Alice wants to teleport her state perfectly, she must com-
pletely destroy the entanglement with the reference system 0.
Thus, if we assumeEr

sddsuxl23d=0, she also needs to destroy
all entanglement with Bob’s system 3. The dimension of the
system 1-2 isnd, so to disentangle it from 0-3 requires a
measurement with at leastnd linearly independent elements,
i.e., log2sndd classical bits.

When n=d, our bound reduces to 2 log2 d, which has
been proposed in[1] when the teleportation of a
d-dimensional state is performed with ad-maximally en-
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tangled state(i.e., with a Schmidt numberd). For n.d the
bound is stronger, assuming there is no residual entangle-
ment left. This means, that, if Alice and Bob have to useall
of their entanglement resource in order to teleport the qudit,
Alice will need to send at least log2sndd of classical bits. On
the other hand, in the example above[see Eq.(9)] n=4, and
therefore log2sndd=3. That is, after Alice transmitted the two
classical bits to Bob, if she wishes also to destroy the re-
sidual entanglement she will need to perform one more mea-
surement(that is equivalent to one more classical bit).

If d.n/2 ,Er
sddsuxl23d=0, and therefore Alice will need to

transmit Bob at least log2sndd bits of classical information.
This result is very interesting. It shows, for example, that if
Alice and Bob share ann-maximally entangled state(with
n,2d), Alice will have to send Bobmoreclassical bits than
she would have to if they shared ad-maximally entangled
state. This simple example emphasizes that an increment in
the entanglement of the resource will not necessarily reduce
the amount of classical bits that are indispensable for a faith-
ful teleportation of a qudit, but will more likely increase it.

Let us end this section by showing how the lower bound
of log2sndd classical bits leads to another bound on the mini-
mal amount of classical communication that is required for
the process ofdeterministicentanglement concentration[8]
(for the original asymptotic entanglement concentration see
[11]). In this process, Alice and Bob share adn-dimensional
stateuclAB

^n, whereuclAB is a partially entangled state with a
Schmidt numberd;SchsuclABd. Suppose that by LOCC Al-
ice and Bob transform the state intom copies of the Bell
states. From[8], it follows that this transformation is pos-
sible if, and only if,

mø nEtsuclABd. s12d

Therefore, if this condition is satisfied, after the transforma-
tion, them copies of the Bell states could be used to teleport
a 2m-dimensional state. Let us denote byC1 the minimum
amount of classical bits that are required for the transforma-
tion uclAB

^n→ uBelll^m, and byC2 the amount that is required
for the teleportation. Using the Bennettet al. protocol, we
find thatC2=2 log2 2m=2m. Now, since there is no residual
entanglement left in this process, from our bound, it follows
that C1+C2ù log2s2mdnd and thus,

C1 ù n log2 d − m; nESchsuclABd − m, s13d

whereESchsuclABd=log2 SchsuclABd is the Schmidt entangle-
ment. From Eq.(12) it follows that the minimum bound is

C1 ù nfESchsuclABd − EtsuclABdg. s14d

Note thatESchsuclABdùEtsuclABd with equality if, and only if,
uclAB is a maximally entangled state.

A general protocol for faithful teleportation: Let us now
present a general protocol for teleportation of a qudit with
maximum fidelitysf =1d. The protocol consists of a projec-
tive local measurement performed by Alice and a subsequent
unitary local operation performed by Bob. The protocol is a
general one, in the sense that Alice teleports a qudit to Bob
via log2sndd classical bits andanypartially entangled pair of

pure n-state particles that satisfy Eqs.(3) and (31) (see be-
low).

The protocol presented below involvessndd2 coefficients,
Vmk

s jd (where j =1,2,… ,nd, ;m=1,2,… ,d; and
k=1,2,… ,n), that satisfy the following two conditions:

d j8 j = o
m=1

d

o
k=1

n

Vmk
s jd*Vmk

s j8d, s15d

dm,m8 = ndo
k=1

n

pkVm8k
s jd* Vmk

s jd . s16d

As we will see later, such coefficients can be found in many
cases. We write now the steps of the protocol in terms of
these coefficients.

(1) The initial state is

uIl123; ucdl1uxl23. s17d

(2) Alice performs a jointprojectivemeasurement on sys-
tems 1 and 2; the corresponding projectorsPs jd

;uMs jdl12 12kM
s jdus j =1,2,… ,ndd are given in terms of the

coefficientsVmk
s jd ,

uMs jdl12 = o
m=1

d

o
k=1

n

Vmk
s jd uml1ukl2. s18d

Note that Eq.s15d guarantees that thend statesuMs jdl12 are
orthonormal.

(3) The state of the system after Alice obtained the mea-
surementj (up to normalization),

Ps jduIl123= o
m=1

d

o
k=1

n

am
ÎpkVmk

s jd* uMs jdl12ukl3

;
1
Îs

o
m=1

d

amuMs jdl12 ^ ûs jduml3, s19d

where

ûs jduml3 ; Îso
k=1

n

Vmk
s jd*Îpkukl3. s20d

Equations16d guarantees thatûs jd sas defined in the above
equationd is a unitary operator; its domain of definition can
be extended toall the n-dimensional Hilbert space of Bob
sH3

sndd.
s4d After Bob performs on his system 3, the unitary op-

eration,ûs jd†, the final snormalizedd state is

uFl123= o
m=1

d

amuMs jdl12 ^ uml3 = uMs jdl12 ^ ucdl3, s21d

where the teleported qudit,ucdl3, is given byfcf. Eq. s1dg

ucdl3 = o
k=1

d

akukl3. s22d

fNote that although in the above sumk runs from 1 tod,H3
snd

is ann-dimensional Hilbert spacesnùdd.g Thus, our proto-
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col works if there aresndd2 parameters that satisfy both Eqs.
s15d and s16d.

Let us first define thes2 parameters for the cased=2 and
nù2. This case represents a general faithful teleportation of
a qubit. It implies that teleportation of a qubit, if possible,
can always be implemented by a projective measurement
performed by Alice and a unitary operation performed by
Bob. Furthermore, for the casen=2 we will see below that
our protocol reduces to the original one given in[1].

In the determination of the parametersVmk
s jd we will make

use of the following notations:
First,

ek,k8 ; expSi
2p

n
kk8D , s23d

wherek,k8=1,2,… ,n (note thatekk8 is a unitary matrix).
Second, we definen anglesu1,u2,… ,un such that

o
k=1

n

pk expsiukd = 0. s24d

Such phase factors can always be found when all then
Schmidt probabilitiespkø1/2 [compare with Eq.(24) in
Ref. [12]]. According to Theorem 1, ford=2 we have
Etsuxl23dù1 and thereforepkø1/2 for all k=1,2,… ,n.

With these definitions, the protocol ford=2 is given by

V1k
s jd =

1
Îs

ej ,k andV2k
s jd =

1
Îs

ej ,k expsiukd, s25d

for 1ø j øn, and

V1k
s jd = −

1
Îs

ej ,k exps− iukd andV2k
s jd =

1
Îs

ej ,k, s26d

for n, j ø2n. It can be shown that theses2=4n2 parameters
satisfy both Eqs.(15) and (16), and thus define a general
protocol for faithful teleportation of a qubit.

Consider the case in whichn=2, and thusp1=p2=1/2.
Two angles that satisfy Eq.(24) are u1=0 andu2=p. With
this choice, Eqs.(25) and (26) yield V11

s2d=V11
s3d=V12

s jd=V21
s2d

=V21
s4d=V22

s3d=V22
s4d=1/2, where all the otherVmk

s jd =−1/2. The
four orthonormal measurement states are given by[see Eq.
(18)]

uMs jdl12 = V11
s jdu1l1u1l2 + V12

s jdu1l1u2l2 + V21
s jdu2l1u1l2 + V22

s jdu2l1u2l2.

s27d

After Bob receives the messagej from Alice’s measurement,
he performs a unitary operation with matrix elements
sûs jd†dmk=Î2Vmk

s jd . This protocol is identical to the Bennettet
al. one [1], if u↓1l , u↑1l in [1] are identified with
su1l1± u2l1d /Î2 andu↓2l , u↑2l are identified withu1l2, u2l2.

Let us now consider another example, in which the state
shared between Alice and Bob is given by

uxl23 =Î1

2
u1l1u1l2 +Î1

3
u2l1u2l2 +Î1

6
u3l1u3l2. s28d

According to Theorem 1, this state can be used for a telepor-
tation of a qubit. According to our protocol, there are six

possible outcomes in the projective measurement performed
by Alice. Three angles that satisfy Eq.(24) are u1=0 and
u2=u3=p. Substituting these values foruk in Eqs. (25) and
(26) gives

V11
s jd = V21

s jd =
1
Î6

expS2p j

3
D ,

V12
s jd = − V22

s jd =
1
Î6

expS4p j

3
D ,

V13
s jd = − V23

s jd =
1
Î6

, s29d

for j =1,2,3, and forj =4,5,6,

V11
s jd = − V21

s jd = −
1
Î6

expS2p j

3
D ,

V12
s jd = V22

s jd =
1
Î6

expS4p j

3
D ,

V13
s jd = V23

s jd =
1
Î6

. s30d

Thus, substitution of the above values in Eqs.(18) and (20)
yields the six orthonormal states,uMs jdl12, and the six unitary
operators,ûs jd. This determines the protocol explicitly. We
now present the more general scheme with generaldù2 and
nùd.

We first defines=nd angles,umk, such that

o
k=1

n

pk expfisumk− um8kdg = dmm8 s31d

(recently, these factors have been used in the construction of
general deterministic protocols for dense coding[13]). It can
be shown that if such phase factors can be found, thenpk
ø1/d for all k=1,2,… ,n. For d=2 and d=n such phase
factors can always be found as long aspkø1/d. For
2,d,n, in general, it is notalwayspossible to find such
phase factors[14], but there are several cases in which one
can calculate them explicitly.2 Now, according to Theorem 1,
Etsuxl23dù log2 d, and therefore, pkø1/d for all k
=1,2,… ,n.

With these notations[and with the assumption that the
phase factors in Eq.(31) can be found] the protocol is given
by

2For example, consider the case in which the set ofn probabilities
hpkj can be divided intod subgroups, such that the sum of the
probabilities in each subgroup is 1/d. Then, umk=s2p /ddml if k
belongs to the subgrouplsl =1,2,… ,dd.
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Vmk
s jd =

1
Îs

expsiumkdexpFi jS2p

s
m+

2p

n
kDG . s32d

It can be shown that theses2=sndd2 parameters satisfy both
Eqs. (15) and (16), and thus define a protocol for faithful
teleportation of a qudit.

In conclusion, we have found lower bounds on the
amount of classical information that is required for general
faithful teleportation schemes and a deterministic entangle-
ment concentration. We have also found a specific protocol
for faithful teleportation of a qudit, which generalizes the
protocol given in[1] for the case in which Alice and Bob

share a partially entangled resource. The protocol requires no
more classical communication than is conceivable with a
“concentrate and teleport” strategy. The next step in this di-
rection would be to find a protocol for teleportation using a
mixedstate entangled resource.
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