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The embedding method. E. Inglesfield, J. Phys. @4, 3795(1981)] for computing bound states of the
Schrédinger equation is reformulated in terms of the Dirichlet-to-NeuniBtid) and Neumann-to-Dirichlet
(NtD) surface integral operators. Variational principles for energy, allowing the use of trial functions which are
discontinuous in values or derivatives, are employed. A method of constructing kernels of the DtN and NtD
operators from solutions to an auxiliary Stekl@tekloff) eigenproblem is presented. Numerical results illus-
trating the usefulness of the DtN and NtD embedding methods are provided. After necessary modifications, the
DtN-NtD formalism presented in this work may constitute the convenient framework for generalizing the
embedding method to bound states of the Dirac equation.
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[. INTRODUCTION IV and V the functional of Sec. Il and the integral operator
formalism of Sec. Il are used to formulate the DtN and NtD

bedsgilr:]erﬁ?r:z ;)?%’Olrzgljt?rf]'e[d]roprggi?segf%g‘gr']zagﬁg”&n_ variants of the embedding method. Problems with spherical
9 puting prop symmetry in the outer region are considered in Sec. VI. Sec-

tinuum states Of. a Schr(')'_dlnger pa_rtlc!e. Th_e method IS bas_et on VIl shows how the DtN and NtD variants of the embed-
on the observation that if a domain, in which the particle is

considered, is suitably divided into two subdomains, it isdlng method may be implemented practically, making use of

possible to reduce the original mathematical problem to the Rayleigh-Ritz linear trial functions. A numerical example

problem in one of the subdomains. Inglesfield and CO‘:jl‘llustratmg the usefulness of the method is presented in Sec.

workers [2] demonstrated that in many cases the reducetym'
problem may be easier to solve than the original f8]e IIl. VARIATIONAL PRINCIPLE FOR ENERGY ALLOWING
Zou [4] pointed out a close mathematical relationship be- THE USE OF DISCONTINUOUS TRIAL FUNCTIONS
tween the embedding method and the well-knd®¢matrix _ _
method widely used in quantum scattering theory. Zou In th|s.work we shall be concer_ned with the bounq—s_tate
showed that this relationship becomes evident when th&N€rgy eigenvalue problem constituted by the Schrédinger
R-matrix method is reformulated in the language of surfaceeduation
integral operators. An operator approach to fRenatrix - _ 3
thec?ry wag worked out in Féietail by c?r?e of the present authors H¥() =EB¥() (e R, 2.0
(at that time unaware of Zou’s papen a series of publica- together with the asymptotic condition
tions[5]. Inspired by Zou’s observation, in the present work .
we use the formalism of Ref5] to construct two variants of r(r) — 0. (2.2)
the embedding method for computing energies of bound
states of the Schrodinger equation#3. In many aspects, The Hamiltonian in Eq(2.1) has its usual Schrédinger form
results presented in this paper go beyond those contained in . 72
Refs.[1,4]. H=-—V?+V(r), (2.3
The structure of the paper is as follows. In Sec. Il we 2m
divide R® into a finite inner volume and an infinite remain- with the local, real potentiaV(r). We shall be assuming that

der. Then, we present a variational principle for energy althe potentiaM(r) is such that at least one bound-state eigen-
lowing the use of trial functions which are discontinuous orso|ytion to the problend2.1) and(2.2) does exist.

have discontinuous normal derivatives across the dividing | js well known that the eigenproblex2.1) and (2.2) is
interface; this variational principle will play an important gqyivalent to the variational principle
role in later considerations. In Sec. lll we define the
Dirichlet-to-Neumann (DtN) and Neumann-to-Dirichlet SF[W]=0, E=F[V], (2.9
(NtD) surface integral operators and show how their kernel%ith the Rayleigh functional
may be constructed from solutions of some auxiliary Steklov
(Stekloff) eigenvalue problem in the outer region. In Secs. _ <q_f|7}xﬂ>

Fl¥]=———. (2.5

*Corresponding author. Electronic address: radek@mif.pg.gda.pThe volume scalar product in E¢R.5) is defined as
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FIG. 1. Partitioning ofR® into the finite domainy, and the
infinite remainder);;, separated by the surfac® n(p) is the unit
vector normal to the surfacg at the pointp.

(P|D') = 3d3‘r<l>*(r)<1>’(r). (2.6)

R
It is implicit in the variational principle(2.4) and (2.5
that for any trial functioilf(r) used therein both the function
itself and its gradien¥W(r) are continuous throughout the

whole spacéi® and that, in analogy with Eq2.2), it holds
that

r—oo

r(r) — 0. (2.7
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<‘E|7:m_’|>| +<‘E||7A'f‘?u>u

FI¥ W=
SRS

_#2 @V, W +[1-alv W ¥ - )
2m <‘I_’||‘I_’|>| +<‘I_’|||‘I_’||>||

B2 -a]y +a Wy [V W -V W)
2m SRS
(2.10

possessing the property of being real for arbitrary trial func-
tions:
FIW, W= F %, %], (2.11

In the functional(2.10), a is an arbitrary complex constant
which is not subjected to variation,

V. Wy(p)=n(p) - VWy(r)|=, (2.12

is the normal derivative oﬁ_fx(r) at the surface poinp,

<‘1’|<1>’>x=f

Vx

dBrd* (r)d®’(r) (2.13

is the regional volume scalar product over the domiin
and

(@l®") =jg *p® ()P’ (p) (2.14
S

(with d?p denoting an infinitesimascalar surface element
around the poinp) is the surface scalar product ougr

In the principle(2.9) and(2.10), the trial function@x(r),

This does not mean, however, that discontinuous trial functogether with their gradients, have to be continuous through-
tions are not admissible in the variational approach to thgyyt the interiors of the relevant domains. In addition,

eigenproblem(2.1) and (2.2). Consider the situation when
the spaceR?® is artificially decomposed into a finite inner
domainV, and an infinite outer domaiw, =R3\V),, the two

domains being separated by a sufficiently smooth imagined

W, (r) has to obey

r—o

r¥,(r) — 0. (2.15

surfaceS (Fig. 1). [For convenience, throughout the paper aqowever, as opposed to the principi2.4) and (2.5), the

position vector for a point lying on the interface will be
denoted by instead ofr. A unit vector normal to the surface
S at the pointp, with sense fron, to V;;, will be denoted by
n(p).] If we denote

Yy(r)=W(r) (reVgX=LI) (2.8

and if \E(r) and \?”(r) are trial estimates of¥|(r) and
W, (r), respectively, then the variational principl2.4) and
(2.5 may be replaced by the more general ¢6k

5]:[\I’|,‘I'||]:O, E:.F[\Iﬁ,‘l'”], (29)

with the functional

principle (2.9) and (2.10 admits the use of such trial func-

tions Wy(r) which do not match at the interfac® i.e., such
that

W (p) # ¥, (p) (2.16

or

V. W (p) # V. W (p) (2.17)

[both discontinuity relation$2.16) and (2.17) may hold si-
multaneously. This advantage of the principl€2.9) and
(2.10 will be exploited in Secs. IV and V to construct two
variants of the embedding method.

IIl. DtN AND NtD SURFACE INTEGRAL OPERATORS

Let us denote byD,(€) a set{y(&,r)} of functions which
in the outer domainy,, are solutions to the Schrodinger
equation

042103-2
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HYET) =EWET) (1 e V) (3.1

[H is the Hamiltonian(2.3)] at somefixed value of the en-
ergy paramete€ € R [which neednot be in the spectrum of
the eigenprobleni2.1) and(2.2)] and, in addition, obey the
asymptotic condition

r—o0

ry(&,r) — 0. (3.2

We introduce two linear integral operato&{g) and R(€)
such that for any/(&,r) e D, (€) at the surfaceS it holds
that

V. HE.p) = BEVAE,p) (3.3
and
REV LUE,p) = YE,p). (3.4)

It follows from the above definitions that the two operators
are mutually reciprocal; i.e., it holds that

BER(E) =R(E)B(E) = Ts, (3.5

whereis is the unit integral operator of with the kernel
82(p-p'). The operator3(€), which, up to a numerical

constant, coincides with the embedding potential operator

defined in Eq(10) of Ref. [1], transforms the Dirichlet da-
tum (&, p) into the Neumann daturlW | (&, p) and there-
fore it is called the Dirichlet-to-Neumannoperator. The
termsthe surface impedanceperator andhe logarithmic
(log) derivativeoperator are also in use. In analogy, the op-
eratorR(€) is called theNeumann-to-Dirichlebperator or
the surface admittanceperator.

The operatorsB3(€) and R(£) are represented by their
integral kernelsB(&,p,p’) and R(E,p,p’), respectively, in
terms of which Eqs(3.3—«3.5) read

V.UEp) =§ &p'BE.p.p )Y WHEP),  (3.6)
S

¢(51p)2§ dzp,R(g7p1p’)VL¢(glp’)7 (37)
S

and

jg d*p"B(E,p.p")R(E.p".p")
S

:3§ Pp"R(E,p.p")BE.p".p")
S

= (p-p').

So far the operatoré(g) andf%(g) have been considered
as abstract objects. To provide explicit forms of their kernels
consider the Steklov eigensystdifi

(3.9

Hyn(EF) =EG(ET) (e V), (3.9

04210
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r—o

ryn(€,r) — 0, (3.10

VL 'ﬂn(g,l)) = bn(g)l/fn(gup) (311)

[cf. EQs.(3.1) and(3.2)], where€ e R is fixed andb,(€) is an
eigenvalue. Eigenfunctions to this systefw,(£,r)}, are
these particular solutions to the Schrédinger equata®) in

Vi, obeying the asymptotic conditio(8.10, which have
constant normal logarithmic derivativgSteklov eigenval-
ues {b,(&)} over the surfaces. [We shall be assuming that
all eigenvalues to the systef®.9—«3.11) are finite; i.e., none

of the eigenfunctions vanishes identically over the surface
This is not a serious restriction since in actual applications of
the embedding method there is always some degree of free-
dom in choosing the surfacgand this fact may be exploited
to ensure that the assumption is not violatepplying the
symmetric Green theorem to two arbitrary eigenfunctions
Yn(E,r) and iy (€,r) yields

. . hZ hZ
<'r//n‘Hl//n’>ll - <H§[fn|¢n’>ll - En((/fn|vil//n’) - %(VLdlnwfn’)-

(3.12

In virtue of Eq.(3.9), the left-hand side of Eq.3.12 van-
ishes; hence,

(¢n|VJ_ ) = (VL¢n|¢n’) =0 (3.13
and further, after employing E@3.11),
[0 (€) = b(E) 1l ) = 0. (3.14

In the particular case whep,/(€,r) coincides withy,(E,r),
Eq. (3.14) becomes

[b(E) = br(E) () = O; (3.15

hence, one infers that eigenvalues to the syq@®)—(3.11)
are real:

bn(E) = by (). (3.19

Combining this with Eq(3.14) implies that eigenfunctions
belonging to different eigenvalues are orthogonal with re-
spect to the surface scalar prody2t14):

(Wl ) =0 [0n(E) # b (E)]. (3.17)

In what follows, we shall be assuming that all eigenfunctions
to the systent3.9—(3.11) have been normalized according to

(nli) =1 (3.18

and that eigenfunctions associated with degenerate eigenval-
ues (if there are any have been also orthogonalized with
respect to the scalar produ@.14). Then it holds that

(¢n|¢n') = S - (3.19

Moreover, we shall be assuming that the surface functions
{¢n(€,p)} form a complete set in the space of single-valued
square-integrable functions defined Srand therefore obey
the closure relation

3-3
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2 U EPn(Ep) =88 (p-p).  (3.20 R(Ep.p) =2 d(EPBEUEP). (323
n n
_ It follows from the definition(3.3) of the DN operator |t is evident from Eqs(3.22 and(3.23 that the two kernels
B(&) and from Eq.(3.1)) that it holds that obey
BE)Yn(E.p) = bo(E)Yn(E.p). (3.2 B p,p')=B(&p',p), (3.29
Equation (3.21) may be interpreted that surface parts
{(E,p)} of the eigenfunctions{i,(E,r)} of the system REp.p)=R (Ep'.p); (3.29

(3.9—3.1)) are eigenfunctions of the operatB(E) with the
logarithmic derivativegb,(€)} being associated eigenvalues. i-€-, the operator$(&) andR () are Hermitian.
Consequently, taking into account the orthonormality rela-

tion (3.19 and the closure relatio(8.20), and invoking the IV. DtN EMBEDDING METHOD
theory of integral operators, one finds that the DtN kernel _ o
B(E,p,p’) has the spectral expansion If the trial functionsW,(r) and ¥, (r) used in the func-

, fo tional (2.10 are constrained to match at the interfate
BE.p.p') =2 Ynl€P0AEUEP) (322
n

, ) Vi(p) =¥, (p), 4.1
and that the spectral expansion of the reciprocal NtD kernel
R(E,p,p’)is the functional becomes

.F(D)[\I_f,,‘ﬁ,] _ <‘I_'||7:f‘1_’|>| + <€lm_\l_r”>” *’_77(‘_['_||V¢‘?| - Vl\?ll) 4.2
(W [W )+ (P )

[cf. Eq. (4) of Ref. [1]], where, for convenience, we have defined

ﬁZ
n= E‘] (4.3)

Notice that, as opposed to the unconstrained functi@hdl), the functional(4.2) does not contain the free parameter
Consider now the particular case when the trial functign(r) in the functional(4.2) is

V()= gOEr) (reWy, (4.9

where /P)(£,r) is some function fronD,,(€) which remainsundeterminedat this stage. In virtue of Eq4.4), (3.3), and
(4.2), at the interfaceS we have

V., W, (p) = BEW(p). (4.5

Exploiting Egs.(4.4), (3.1), and (4.5 and omitting henceforth the subscriptat the trial function in)), transforms the
functional (4.2) into

FO[Y, /0] = (W[FW), + EP Oy + W]V ¥ - qu) 4.9

(W), + (PO,

The functional(4.6) depends on the functiog'®(&,r) eliminate this term, we differentiate E@3.1) [obeyed by
only through the volume scalar produc#®|¢®)),. To  ¢P)(&,r)] with respect taS, obtaining

042103-4
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JOEr) It may be verified that the functiong¥.15 retains the
. (47 property of the starting functiongR.10) to be real for any

trial function W (r):

~aYP(Er) d
-7 7 _ (D) _r 7
[y pEEN+E IE

premultiply Eq.(4.7) by /2(€,r) and the complex conju-

gate of Eq.(3.1) by 9y/P(£,r)/dE, and subtract. This yields FO[§] = FO[¥]. (4.16
ayP(Er)  ayPET) We shall seek the functio#®)(r) (r € }),), which makes
— D) 2 2,/(D)* D,
7" (EnNV se T ge Vi) the functional(4.15) stationary:
=y EnNYPIEr). (4.8 SFOY®]=0, (4.17)

Integration of Eq.(4.8) over the volume)),, followed by
application of the symmetric Green’s theorem, after som
rearrangement, gives

(POy®y, = 7]( P

g he corresponding stationary value

E®@ = FO[y©)] (4.18

[which, by virtue of Eq.(4.16), is real is an estimate of
some eigenenergy of the original spectral probi@ix) and
(4.9 (2.2.[ltis to be noticed that botE® and ¥®)(r) depend

Evidently, Eq.(4.9) may be rewritten in the form parametrically or£.] To find equations determining® and
vO)(r), we rewrite Eq(4.15 as

€ &

(D) D)
Vlalp )“ﬂ(vﬂﬁﬂj) alﬂ( )

D)[ /D) o9y 0 o) | ¢~
WONyPhy = | o EVM/ -9 V. ¢ e ) 0B
Oyl (pa V| = | | = (v
.10 FOL]| (W), + n(‘l’ , g“’) (W[H ),
hence, after employing E@3.3), we find _ . 9B—
+y| V|V, V-BY+E—V (4.19
J - - mp(D)) aE
(D)[,/(D)y = O —ByP | - ol BHP | ——
WO n(«/f agw‘)n(w‘ E N
(4.11) and vary theral (r) around¥®)(r). By virtue of Eqs.(4.17)
' and(4.18), this results in
or, equivalently,
. SW|[H - ECTWO), + (wO|[H - EC]sW
o og o (SW[[H = ECTY ), + (¥ [ H - EP W)
WOV =\ @ | —2y® |+ g B ) 0B
+ | sV |V, WO - BP0 +[g-EP]—y
(D) &
By | 2Y
- | By e ) (4.12 i
) + n(«lr(D) VLé\If—Bé\IfﬂS—E(D)]—&P) =0.
Since B(€) is Hermitian, the second and third terms on the J&
right-hand side of Eq(4.12 cancel and we arrive at (4.20
0B Applying the symmetric Green’s theorem to the second term
POl = 77( Yo E‘W(D))- (4.13 on the left-hand side of Eq4.20 and utilizing the fact that

] o B(€) and B(€)/ € are Hermitian gives
Finally, application of Eqs(4.4) and (4.1) transforms Eq.

(413 Into (SW|[F - EOTWO), + ([F - EPTW )| 5,
| aB— “
<‘%D)|¢(D)>II = 77(\1’ E‘I’) (4.14 + 7](5\1; VL‘I’(D) - BYD 4 [€- E(D)]Z_ZS\P(D))

[cf. Eq. (15 of Ref. [1]], which allows us to rewrite the -
functional (4.6) in the following suitable form: + n(VLq;(D) - BPD +[£- E(D)]i_l;\p(m 5\1;) -0

FOpF] = (PIHW), +_7i\I'|VL\I'_— Bilf+€[ib’/a€]‘lf) (4.21)

(W[W) + n(¥|[o Blo ET¥) : :
hence, one infers the eigensystem
(4.15

[cf. Eq.(16) of Ref. [1]]. HYO(r) =EPWO(r) (r V), (4.22)

042103-5
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R JB(&) YP(E,p) =¥ P(p) (4.26
V., -BE)+E wO(p)
€ [cf. Egs.(4.4) and(4.1)], leads finally to
F oD = (W), (4.27)
0 y0 pes), @23

€
V. NtD EMBEDDING METHOD

obeyed byW®(r) andE® [cf. Eq. (17) of Ref. [1]]. It is It is tempting to investigate what happens when the

worth emphasizing that this eigensystem is of a nonstandarghatching conditior4.1) is replaced by the weaker constraint
character since the eigenvall€® appears both in the

Schrodinger equatio.22) and in the boundary condition Vﬁi(p) :VL\E,(p). (5.7
(4.23.

Once the function?®)(r), approximating¥(r) in V,, has Evidently, this results in the following simplification of the

been determined, the functiog®(£,r), approximating functional (2.10:

W(r) in V,, may be found.[We recall that thus far ]:(N)[q_/l q_,”]

yP)(E,r) has played only the auxiliary role and has re- o o o L

mained undeterminedTo this end, we expang®(&,r) in (W HY D), + Oy [ H O = (V[P = Ty)

the Steklov basi$y,(€,r)}: = — = — — :
! (W W)y + (W [y

POEN=2cPyEr) (reVy). (4.29 (5.2
" Consider the trial function

The expansion coefficients in E¢4.24 may be found by

=
shifting the pointr to the surfaceS, projecting the resulting () =yNED) (r e V), (5.3
equation onto the Steklov eigenfunctions, and exploiting thgyhere 4N)(¢ 1), at this stage undetermined, is fray, ().
orthonormality relation(3.19). This yields By virtue of Egs.(5.3), (3.4), and(5.1), one has

P = (), (4.25 W, (p) = R(EV W (p) (5.4)
which, after making use of the fact that at the surféc# and, omitting henceforth the inddxat the trial function in
holds that V), the functional(5.2) becomes

(WIHW), + EGPN[ YNy, + 5V WIRY W - W)

FO[W, N = —— (5.5
Wy, + (N gVy,
A reasoning similar to that leading to E@l.14) yields
R —
(PN == n(VfIf EVL\IJ : (5.6)

and this allows us to transform the functiori&l5) into the functional

FN[F] = (V|H W), * niVL\IfIR V.- i«:[a RIGEIV ¥ - ) 57
(VW) -V, W[aRIIEIV V)

[cf. Eq. (4.15)], with the property SFN[wN]=0, (5.9

o - and the corresponding refdf. Eq. (5.8)] stationary value
FN W] =FN[w]. (5.9

Proceeding as in Sec. IV, we find that the function
WMN(r) (r € V), which makes the functiongb.7) stationary,  [approximating the eigenvaliin Eq.(2.1)] are solutions to
i.e., the nonstandard eigensystem

EN = FN[wN] (5.10

042103-6
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ﬁllf(N)(r) =ENYN() (r e V) (5.11) sider the case when in the regidh exterior toS, the po-
Vo ' tential V(r) is central:

s IRE | o V=V (1> p). (6.
Ts=REV, +E € Vo [V Then the Schrédinger equati@B.9) in V), is separable in

spherical coordinates and possesses particular solutions, sat-

IR(E isfying the asymptotic conditio(B.10), of the form
e Dy ) pes. 1z VN9 ©19
. . )= Y, . 2
Evidently, bothE™ and¥™)(r) depend parametrically of im(€:1) pfi(E,p) im() 6.2
To facilitate comparison of the boundary conditidhl2) . _ .
with that in Eq.(4.23, we operate on the former from the He€®  Ym(), — with —n=r/r, TeN —and m
e{0,+1,+2,...,4}, is a normalized spherical harmonic

left with B(€) and make use of Eq3.5), obtaining andf|(&,r) is that solution to the radial Schrédinger equation

R . IR(E) #2 R R2I(1+1)
vV, - - —V, v e - =
1= B(&) - EBE) b V4 (p) oot om 12 +V(r) - E|rfi(E=0 (r>p),
. AR (6.3
- _—gN) 7 (N)
=-ENB(E) PY; V. ¥%p) (pes). (5.13 which obeys
This still may be transformed since from the reciprocity re- f, (€ r):xo (6.4)
| L - .

lation (3.5) it follows that

- A It is evident that at the surfaes, it holds that
IR(E) B &B(g)fz

B(&) oe T gz ). (5.14 Yim(E.P) = p Y (D) (6.9
Hence, after some rearrangement, the boundary conditio?’\nd
(5.12 becomes dpfi(E,p)
~ Vllplml(&l’) = f (g ) Y|m|(np), (66)
v, -8©+e59% v, |ww e
1 (&) 9E &V, (p) where
- afi(Er)
IB(E) ~ _ 20 .
= E(N)%R(E)VL‘P(N)(;)) (pes. (5.15 ShER= = (6.7
=p
Comparison of Eqs4.23 and(5.15 shows that theyliffer ~ hence, it follows that
in the terms containing the derivative8(&)/ €. Vllﬁ,ml(é’,p) = b,(é’)w,ml(&p), (6.9

Hitherto, the functiony™(&,r), approximating®(r) in _
Vi1, has remained undetermined. It may be found after moveWith
ments analogous to these presented at the end of Sec. IV for a.f(E.p)
JP)(&,r). One arrives at the expansion b(€) = fp(g o)
i,

— (N)
PNEN =2 luEn) (reV), (518 Consequently, for the problem at hand the functithg) are
" eigenfunctions to the syste3.9—3.11) and the numbers

(6.9

with the coefficients (6.9) are associated redRl + 1)-fold degenerate, Steklov ei-
N) _ -1 N) genvalues. It follows from Eq6.5 and from the orthonor-
G = by () (i V ¥ TY). (5.17) mality and completeness of the spherical harmonics on the

In general the DIN and NtD embedding methods will unit sphere that the functiorié.2) form the orthonormal and

yield differentestimates of eigensolutions to the sysighi) ~ cOmplete set on the sphe; i.e., it holds that
and (2.2). Differences between these estimates will provide (Wi | W) = 81 S (6.10
some information about their quality. e T

0 |
EP) i (E,p)=8%(p-p) (6.1
VI. PROBLEMS WITH SPHERICAL SYMMETRY Z’) m,g_| Vim (€:)m (£.") ‘Sp(p ) (610
IN THE OUTER REGION
[cf. Egs.(3.19 and(3.20)].
Assume that the surfacgis a spherical shelf, of radius Since the function$6.2) and the number€5.9) are eigen-

p. Locate the coordinate origin at the centerfand con-  solutions to the systert8.9—3.11), in accordance with Egs.
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(3.22 and(3.23 one finds that in the case considered here

the DtN and NtD kernels are given by

o |

BEp.p)=p?2 2 B(E)Yim(N,)Yin(n)) (6.12

=0 m|:—l
and

REP.P)=p 2 2 B HEYim(N,y)Yim(N)),
1=0

m|=—I

(6.13

respectively. On employing the well-known summation for-

mula for the spherical harmonics, E¢6.12 and(6.13 may
be rewritten as

BE,p.p') = (4mp) 2 (21 + DB (EPI(n, -0y,
=0

(6.14)

R(Ep.p') = (4mp?) X (2 + D {E)P(n, -n)),
1=0

(6.15

with P;(¢) denoting the Legendre polynomial.
In the particular case when in the region exterioSfahe
potential vanishes,

V(ir)=0 (r>p), (6.16

nontrivial solutions to the problerf2.1) and(2.2) may exist
only for E<0. Therefore we choose

<0

2mé
K= —7.

With Eqg.(6.16), a solution to the radial equati@6.3), obey-
ing the condition(6.4), is

(6.17

and define

(6.18

fi(&,r) = k(Kr), (6.19
where
1d \'exp-
k(=7 Dl(Zd_g) expé 4 6.20

is the spherical Macdonald functiotmodified spherical
Bessel function of the third kind[8]. On employing the
relation

d I
) = (0 -0,

one finds that in the particular cag&16) the Steklov eigen-
values(6.9) are

(6.21)

0,(8) = - - Ka(Ke)
p

() (6.22
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VII. APPLICATION OF RAYLEIGH-RITZ
TRIAL FUNCTIONS

In practical applications of the DtN and NtD embedding
methods it may be extremely difficult, or even impossible, to
solve the differential eigensystems4.22),(4.23 and
(5.11),(5.12 exactly. However, the variational principle
(4.17), (4.18, and(4.15 and the variational principlé5.9),
(5.10, and(5.7) offer the possibility to solve these eigensys-
tems approximately.

Let {¢,(r)}, (u=1,... M), be a set of functions defined
in V,. Consider the Rayleigh-Ritz trial function

M
V) =d(r) =D a,p,) (reV), (7.
n=1

approximating some eigenfunction of the eigensystéra2
and (4.23), with the coefficientda,} to be optimized. Sub-
stitution of this trial function into the function&.15) yields
the Rayleigh quotient
a'APa
(D) == -

in which ais anM-component column vector with elements
{a,} and @ is its Hermitian adjoint, whileA®® andA® are
M X M Hermitian matrices with elements

n %2 - “
A2 = DulH N+ S (DY L6, = B, + E[IBIIE)b,)

(7.3

and

h? -
Ap =B+ o (BlloBIoEND), (T4
respectively. We shall denote ByPaandd®'' these particu-
lar vectors aand @, for which the functiona(7.2) is station-
ary with respect to variations in their components:

SFORPT 3] =0. (7.5

Defining
E@ = OO 30, (7.9

from Egs. (7.5 and (7.2 one obtains the generalized
[weighted algebraic eigensystem

ADIR(D) ZE(D)A D50 7.7

and its Hermitian conjugate. In general, the eigensystem
(7.7) hasM® <M pairs of eigensolutions. The eigenvalues
{E@)} are second-order variational estimates of eigenvalues
of the differential eigensysteii#.22 and(4.23, while com-
ponents of the associated eigenvecl{'él‘yg)} may be used in
Eq. (7.1) to construct the Rayleigh-Ritz functions

M
DPN=23Pp, 1 (e, (7.9
m=1

which are first-order variational estimates of eigenfunctions

of the system4.22 and(4.23.
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Proceeding in the analogous manner and using the trial S
function (7.1) in the functional(5.7) leads one to the gener- P
alized matrix eigensystem

ANZN ZENANZN (7.9

(and its Hermitian matrix conjugatewhere AN and AN
areM X M Hermitian matrices with elements
N R
AN =(p,lH ),
K2 ~ ~
+ En(Vl ¢,¢L|RVL ¢V - 5[& Rl g]VL ¢V - ¢V)

(7.10
d
an VII

h? ~
N) —
Afw) = <¢M|¢V>| - %(VL¢M|[F7R/F75]VL¢V)- (7.19 FIG. 2. Geometry of the system used in the numerical illustra-
tion. In the inner regiorV, (the sphere of radiug) the potential is
respectively. Its eigenvalue[E(N)} are second-order varia- & su_perpo_smon of_ thgt due to a three-dlmenspnal isotropic har-
tional estimates of eigenvalues of the differential eigensysmon'c oscillator, with its center located at the paigt and that of

tem(5.11) and(5.12), while use of components of the eigen- a spherical potential well. In the outer regid® the potential

vectors{é(ym} in Eq. (7.1) yields the functions vanishes.
N _EM:~(N> Y 71 A= (8.3
y ()= 1al,wam(lr) (reW), (7.12 = :
M:
which are first-order variational estimates of eigenfunctions, L9(g) is the generalized Laguerre polynomijal. (The
N .

of the systent5.11) an.d (5'13)@ — D) o origin of the spherical coordinate system has been chosen at

In general, the estimat& "} and{®."(r)} will differ  the center of the spherg and the polar axis is along.)
from the estimate$E(yN)} and{® (yN)(r)}, Oncem, has been chosen and fixéd. the preceding para-

graph, a relevant variational basis is formed from the func-

tions (8.2) with |m| <I<l, and O<n=n,,, the upper
VIIl. NUMERICAL ILLUSTRATION limits |, @and Npay, cONstraining the basis dimension, may
be varied to test convergence of variational results.

_The natural units in whichm=A=w=1 have been used.
The length parameters characterizing the potential have been
chosen to bey=1, p=2. We shall report only results for the
ground state with the symmetiy=0; they are representa-

As an example illustrating the utility of the two variants
of the embedding method presented above, we have consi
ered the problem of computing variationally bound-state en
ergies of a particle moving in the potentidig. 2)

1 1 tive for all cases whenever bound states in the pote(&i&
TRt - ro - Smap+ro? (Ir| < p), - Pote(@)
V(r)=142 2 exist.
Three series of calculations have been performed.
0 (r[>p). In the first series, the truncated ba&s2) has been used

(8.1 in the Rayleigh principlg2.4) and (2.5). The resulting en-
ergy estimates for four existing bound states are presented in
Table | for several basis dimensions. One observes slow con-
vergence which may be attributed to difficulty in spanning

L the regionr > p, where exact eigenfunctions decay exponen-
try around the axis directed along the vectgt Conse- g P g y exp

e oo . tially, with the aid of the function$8.2) possessing Gaussian
quently, the pariicle’s Hamiltonian does commuiie with th(.atails. The best energy estimates, computed by using the basis

projection of the angular momentum operator onto this aXiS b |~ 40 andn....=40 (whi - :
. max— max=40 (which means working with 1681
and the magnetic quantum numbrey may be used to label basis functions are seen to be still markedly higher than

energy Iev_els_. . . corresponding converged DtN-NtD results.

The variational bases used in our calculations have been In the second and third series, the truncated h&s2 has
constructed from unnormalized three-dimensional isotropig, ..\ ;sed in the variational DtN and NtD methods, respec-
oscillator eigenfunctions tively, in the way described in Sec. VII. To obtain the best

Prim (1) =r'exp(- )\r2/2)Lﬂ+1/2)(>\r2)Y|m|(nr), (8.2  energy estimates, calculations have been carried out itera-
tively. In the first step, the generalized algebraic eigensys-
where tems(7.7) and(7.9) have been solved with chosen to co-

Herer is a fixed vector of lengthg<p. The regions/, and
V), are the sphere of radiys and its exterior, respectively.
Evidently, the potentia{8.1) exhibits the rotational symme-
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TABLE |. Variational estimates of energies of four bound states withO symmetry for a particle in the
potential(8.1) with ry=1, p=2 (the units in whichm=%=w=1 are usefl The results have been obtained by
employing the basis function®.2) with 0<I=<I,,,, and Osn=n,,, in the Rayleigh principlg2.4) and
(2.5). For comparison, exa¢thosen as the best converged DtN-IN#hergies, which should be attained in
the limit (ImaxNmaxY — (°2,%), are provided in the last row.

(R) (R) (R) (R)
(Imaxs Nmax) El m=0 E2 m=0 E3,m|:0 E4 m=0
(3,3 —2.448 328 759 -1.337 158 078 -0.181 740 074 -0.108 515116
(10,10 —2.449 192 886 -1.339 700 783 -0.188 543 764 -0.143 283 542
(25,25 —2.449 409 244 —-1.340 437 430 -0.189572 108 —0.146 245 353
(40,40 —2.449 450 730 —-1.340 551 206 —-0.189 816 256 —0.146 496 060
DtN-NtD —2.449 494 339 -1.340681 212 —0.190 019 496 —0.146 705 753
incide with the (3,3) Rayleigh estimate E(erf1 = seems to be worth to pursue. We work on these subjects and
1~

~2.448 328 759cf. Table ) of the lowest energy. The result- Progress will be reported in future publications.

ing eigenvalueE %O’ N€), i=1,...,4, have replacedl in
the repeated calculatlor(q;)erformed henceforth separately
for eachi) and the procedure has been iterateih the fixed We are grateful to Mr. M. Gruchowski for useful discus-
basis dimensionuntil convergence in the eigenenergies hassions. R.Sz. acknowledges the support rendered by the Alex-
been achieved. Convergence rate of this iterative procedutgnder von Humboldt Foundation.
for the DtN and NtD methods is illustrated, in the case of the
lowest eigenenergy, by data provided in Tables Il and Ill, \ppgp)x: NONVARIATIONAL APPROACH TO THE DN
respectively. Finally, converged DtN and NtD energy esti- AND NtD EMBEDDING METHODS
mates for four existing bound states are presented in Table
IV. It is seen that, at least for the problem at hand, the DIN In Secs. IV and V we have derived the generalized eigen-
and NtD results are of comparable quality. Moreover, comsystemg4.22),(4.23 and(5.11),(5.12), respectively, by em-
parison with entries of Table | shows that when the basiploying methods of variational calculus. A purpose of this
dimension increases, the DtN and NtD estimates converge @ppendix is to show that one may arrive at these two eigen-
exact eigenenergies much faster than their counterparts obystems following still another, though less elegant, proce-
tained in the calculations exploiting the Rayleigh principledure.
(2.4 and(2.5). Consider at first the DtN case. The starting point is an
observation that, with the aid of the DtN opera8(E), one
may transfer the boundary conditi¢2.2) from infinity to the
surfacesS, thus replacing the original eigensystétl) and
There are at least three directions in which the current2.2) in R® by the following equivalent one in the domalitx
work may be continued. First, it would be desirable to extend
present results to many-body systems. Second, it might be
advantageous to reformulate in the DtN-NtD language also
t1[1r(]a_ embeddmg methoq f«non_tmu_umSchrodmger stated]. v, W(p) = BE)¥(p)
ird, our preliminary investigations show that, after neces-
sary modifications, the DtN-NtD formalism may be the con-The price one has to pay for shrinking the domain is that in
venient framework for extending the embedding method tahe new eigenproblerfAl) and (A2) the energy eigenvalue
systems described by the Dirac equation; this thread alsB enters not only the differential equatiqAl) [which is

ACKNOWLEDGMENTS

IX. CONCLUSIONS

HYM)=EV() (re))), (A1)

(ped). (A2)

TABLE II. Convergence rate of the DtN variational estimates of the lowgstO eigenenergy for a particle in the potental1) with
ro=1, p=2 (the units in whichm=A=w=1 are usefl The basis function3.2) with 0=<I=1,,,c and 0< n=< n,,, have been employed. The
input for the iteration procedure has be&n-2.448 328 759, which is th@, 3) Rayleigh estimatE(er)n o Of the lowest energycf. Table ).

(D)

Iteration Elm=0
(ImaX! nmax)
(3.3 (4,4 (5,9 (6,6) (7.7 (10,10
1 —-2.449 482 118 —2.449 493 904 —2.449 494 324 —2.449 494 335 —2.449 494 335 —2.449 494 335
—2.449 482 122 —2.449 493 907 —2.449 494 328 —2.449 494 338 —-2.449 494 339 —2.449 494 339
3 —2.449 482 122 —2.449 493 907 —2.449 494 328 —2.449 494 338 —2.449 494 339 —2.449 494 339
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TABLE lll. Convergence rate of the NtD variational estimates of the lowgstO eigenenergy for a particle in the potentiall) with
ro=1, p=2 (the units in whichm=%2=w=1 are usefl The basis function€8.2) with 0<|=<I,,, and 0<n<n,, have been employed. The
input for the iteration procedure has be&n-2.448 328 759, which is the,3) Rayleigh estimat&™) __ of the lowest energycf. Table .

1,m=0
Iteration E(li,“n)qﬁo
(Ima>o nma>a
(3.3 (4,9 (5,9 (6,6) (7,7 (10,10
1 —2.449 459 158 —2.449 493 456 —2.449 494 311 —2.449 494 329 —2.449 494 329 —2.449 494 329
2 —2.449 459 167 —2.449 493 465 —2.449 494 321 —2.449 494 338 —2.449 494 339 —2.449 494 339
3 —2.449 459 167 —2.449 493 465 —2.449 494 321 —2.449 494 338 —2.449 494 339 —2.449 494 339
. . . RN .
seen to be_z identical with |_ts counterpé2tl) in R°], but also_,_ HYO(r) = EOWO(r)  (r e ), (A5)
in fact — in a very complicated way, the boundary condition
(A2). Assume now that, guided by some premises or simply A
by intuition, we choose some real enegys a zeroth-order A IB(E
: : P vV, -B&)+ 5J O (p)
estimate ofE. Then, by Taylor’s theorem, faB(E) we have 0E
. . JB(&)
A [E-£&]"0"B(&) = E®) (D) S A6
B(E):E Y P (A3) 9E P (Pped), (A6)
n=0 .

identical with that in Eqs(4.22) and(4.23.
We turn to the NtD case. The boundary conditi@®)
may be equivalently rewritten in the form

provided the series on the right-hand side convergesS.isf
in the vicinity of the eigenvalud€, we may approximate

B(E) by the first two terms in the expansigA3): .
Y(p)=R(E)V, ¥(p) (peS). (A7)

aB(E)
9E '

Truncating the Taylor’'s expansion

B(E) = B(&) +[E- €] (A4)

e - i [E-£"9"R(E)
i.e., by the expression which is linearfn This suggests that = &
one may consider to approximate eigensolutions to the sys-
tem (Al) and(A2) by solutions to the eigensystem after the term linear irkE leads to the approximation

(A8)

TABLE IV. Converged DtN and NtD variational estimates of energies of four bound statesnwywith
symmetry for a particle in the potentié8.1) with ry=1, p=2 (the units in whichm=A=w=1 are usejl The
basis functiong8.2) with 0<I=<l,,x and O<n=<np,, have been employed. The input for the iteration
procedure has beefh=-2.448 328 759, which is th@, 3) Rayleigh estimat€™ __of the lowest energycf.

1,m=0
Table ).
(Imase M) S S Eym-o Elrm=0
Elmeo Epmeo Egmeo Egmeo
(3,3 —-2.449 482 122 -1.340 675 393 -0.190 018 190 -0.146 679 158
-2.449 459 167 -1.340 667 882 -0.190 016 882 -0.146 638 303
4,9 -2.449 493 907 -1.340 681 069 -0.190 019 474 -0.146 705 173
-2.449 493 465 -1.340 680 953 -0.190 019 458 -0.146 704 638
(5,5 —-2.449 494 328 -1.340 681 209 -0.190 019 496 -0.146 705 743
-2.449 494 321 -1.340 681 208 -0.190 019 496 -0.146 705 737
(6,6 -2.449 494 338 -1.340 681 212 -0.190 019 496 -0.146 705 753
-2.449 494 338 -1.340 681 212 -0.190 019 496 -0.146 705 753
(7,7 -2.449 494 339 -1.340 681 212 -0.190 019 496 -0.146 705 753
-2.449 494 339 -1.340 681 212 -0.190 019 496 -0.146 705 753
(10,10 -2.449 494 339 -1.340 681 212 -0.190 019 496 -0.146 705 753
—-2.449 494 339 -1.340 681 212 -0.190 019 496 -0.146 705 753
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IR(E)

R(E) = R(E) +[E-E]—

(A9)

Replacing the operatdk (E) in the boundary conditiofA7)
by the expression on the right-hand side of E49) and
leaving the differential equatiofAl) unchanged results in
the eigensystem

HEN () =ENYN(E) (e V), (A10)

PHYSICAL REVIEW A70, 042103(2004

IR(E)

v, e
9 1 (p)

Ts—REV, +E

IR(E)
9E

(N)

VL‘P(N)(P)

(pes), (A11)

identical with that in Eqs(5.11) and(5.12).
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