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The embedding method[J. E. Inglesfield, J. Phys. C14, 3795 (1981)] for computing bound states of the
Schrödinger equation is reformulated in terms of the Dirichlet-to-Neumann(DtN) and Neumann-to-Dirichlet
(NtD) surface integral operators. Variational principles for energy, allowing the use of trial functions which are
discontinuous in values or derivatives, are employed. A method of constructing kernels of the DtN and NtD
operators from solutions to an auxiliary Steklov(Stekloff) eigenproblem is presented. Numerical results illus-
trating the usefulness of the DtN and NtD embedding methods are provided. After necessary modifications, the
DtN-NtD formalism presented in this work may constitute the convenient framework for generalizing the
embedding method to bound states of the Dirac equation.
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I. INTRODUCTION

Some years ago, Inglesfield[1] proposed a so-calledem-
bedding methodfor computing properties of bound and con-
tinuum states of a Schrödinger particle. The method is based
on the observation that if a domain, in which the particle is
considered, is suitably divided into two subdomains, it is
possible to reduce the original mathematical problem to a
problem in one of the subdomains. Inglesfield and co-
workers [2] demonstrated that in many cases the reduced
problem may be easier to solve than the original one[3].

Zou [4] pointed out a close mathematical relationship be-
tween the embedding method and the well-knownR-matrix
method widely used in quantum scattering theory. Zou
showed that this relationship becomes evident when the
R-matrix method is reformulated in the language of surface
integral operators. An operator approach to theR-matrix
theory was worked out in detail by one of the present authors
(at that time unaware of Zou’s paper) in a series of publica-
tions [5]. Inspired by Zou’s observation, in the present work
we use the formalism of Ref.[5] to construct two variants of
the embedding method for computing energies of bound
states of the Schrödinger equation inR3. In many aspects,
results presented in this paper go beyond those contained in
Refs.[1,4].

The structure of the paper is as follows. In Sec. II we
divide R3 into a finite inner volume and an infinite remain-
der. Then, we present a variational principle for energy al-
lowing the use of trial functions which are discontinuous or
have discontinuous normal derivatives across the dividing
interface; this variational principle will play an important
role in later considerations. In Sec. III we define the
Dirichlet-to-Neumann (DtN) and Neumann-to-Dirichlet
(NtD) surface integral operators and show how their kernels
may be constructed from solutions of some auxiliary Steklov
(Stekloff) eigenvalue problem in the outer region. In Secs.

IV and V the functional of Sec. II and the integral operator
formalism of Sec. III are used to formulate the DtN and NtD
variants of the embedding method. Problems with spherical
symmetry in the outer region are considered in Sec. VI. Sec-
tion VII shows how the DtN and NtD variants of the embed-
ding method may be implemented practically, making use of
the Rayleigh-Ritz linear trial functions. A numerical example
illustrating the usefulness of the method is presented in Sec.
VIII.

II. VARIATIONAL PRINCIPLE FOR ENERGY ALLOWING
THE USE OF DISCONTINUOUS TRIAL FUNCTIONS

In this work we shall be concerned with the bound-state
energy eigenvalue problem constituted by the Schrödinger
equation

ĤCsr d = ECsr d sr P R3d, s2.1d

together with the asymptotic condition

rCsr d →
r→`

0. s2.2d

The Hamiltonian in Eq.(2.1) has its usual Schrödinger form

Ĥ = −
"2

2m
=2 + Vsr d, s2.3d

with the local, real potentialVsr d. We shall be assuming that
the potentialVsr d is such that at least one bound-state eigen-
solution to the problem(2.1) and (2.2) does exist.

It is well known that the eigenproblem(2.1) and (2.2) is
equivalent to the variational principle

dF fCg = 0, E = F fCg, s2.4d

with the Rayleigh functional

F fC̄g =
kC̄uĤC̄l

kC̄uC̄l
. s2.5d

The volume scalar product in Eq.(2.5) is defined as*Corresponding author. Electronic address: radek@mif.pg.gda.pl
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kFuF8l =E
R3

d3rF*sr dF8sr d. s2.6d

It is implicit in the variational principle(2.4) and (2.5)
that for any trial functionC̄sr d used therein both the function

itself and its gradient=C̄sr d are continuous throughout the
whole spaceR3 and that, in analogy with Eq.(2.2), it holds
that

rC̄sr d →
r→`

0. s2.7d

This does not mean, however, that discontinuous trial func-
tions are not admissible in the variational approach to the
eigenproblem(2.1) and (2.2). Consider the situation when
the spaceR3 is artificially decomposed into a finite inner
domainVI and an infinite outer domainVII =R3\VI, the two
domains being separated by a sufficiently smooth imagined
surfaceS (Fig. 1). [For convenience, throughout the paper a
position vector for a point lying on the interfaceS will be
denoted byr instead ofr . A unit vector normal to the surface
S at the pointr, with sense fromVI to VII , will be denoted by
nsrd.] If we denote

CXsr d = Csr d sr P VX;X = I,II d s2.8d

and if C̄Isr d and C̄IIsr d are trial estimates ofCIsr d and
CIIsr d, respectively, then the variational principle(2.4) and
(2.5) may be replaced by the more general one[6]

dF fCI,CIIg = 0, E = F fCI,CIIg, s2.9d

with the functional

F fC̄I,C̄IIg =
kC̄IuĤC̄IlI + kC̄II uĤC̄IIlII

kC̄IuC̄IlI + kC̄II uC̄IIlII

−
"2

2m

sa¹'C̄I + f1 − ag¹'C̄II uC̄I − C̄IId

kC̄IuC̄IlI + kC̄II uC̄IIlII

+
"2

2m

sf1 − a*gC̄I + a*C̄II u¹'C̄I − ¹'C̄IId

kC̄IuC̄IlI + kC̄II uC̄IIlII

s2.10d

possessing the property of being real for arbitrary trial func-
tions:

F fC̄I,C̄IIg = F*fC̄I,C̄IIg. s2.11d

In the functional(2.10), a is an arbitrary complex constant
which is not subjected to variation,

¹'C̄Xsrd = nsrd · = C̄Xsr dur=r s2.12d

is the normal derivative ofC̄Xsr d at the surface pointr,

kFuF8lX =E
VX

d3rF*sr dF8sr d s2.13d

is the regional volume scalar product over the domainVX,
and

sFuF8d =R
S

d2rF*srdF8srd s2.14d

(with d2r denoting an infinitesimalscalar surface element
around the pointr) is the surface scalar product overS.

In the principle(2.9) and(2.10), the trial functionsC̄Xsr d,
together with their gradients, have to be continuous through-
out the interiors of the relevant domainsVX. In addition,

C̄IIsr d has to obey

rC̄IIsr d →
r→`

0. s2.15d

However, as opposed to the principle(2.4) and (2.5), the
principle (2.9) and (2.10) admits the use of such trial func-

tions C̄Xsr d which do not match at the interfaceS; i.e., such
that

C̄Isrd Þ C̄IIsrd s2.16d

or

¹'C̄Isrd Þ ¹'C̄IIsrd s2.17d

[both discontinuity relations(2.16) and (2.17) may hold si-
multaneously]. This advantage of the principle(2.9) and
(2.10) will be exploited in Secs. IV and V to construct two
variants of the embedding method.

III. DtN AND NtD SURFACE INTEGRAL OPERATORS

Let us denote byDIIsEd a sethcsE ,r dj of functions which
in the outer domainVII are solutions to the Schrödinger
equation

FIG. 1. Partitioning ofR3 into the finite domainVI and the
infinite remainderVII , separated by the surfaceS; nsrd is the unit
vector normal to the surfaceS at the pointr.

R. SZMYTKOWSKI AND S. BIELSKI PHYSICAL REVIEW A 70, 042103(2004)

042103-2



ĤcsE,r d = EcsE,r d sr P VIId s3.1d

[Ĥ is the Hamiltonian(2.3)] at somefixed value of the en-
ergy parameterEPR [which neednot be in the spectrum of
the eigenproblem(2.1) and (2.2)] and, in addition, obey the
asymptotic condition

rcsE,r d →
r→`

0. s3.2d

We introduce two linear integral operatorsB̂sEd and R̂sEd
such that for anycsE ,r dPDIIsEd at the surfaceS it holds
that

¹'csE,rd = B̂sEdcsE,rd s3.3d

and

R̂sEd¹'csE,rd = csE,rd. s3.4d

It follows from the above definitions that the two operators
are mutually reciprocal; i.e., it holds that

B̂sEdR̂sEd = R̂sEdB̂sEd = ÎS, s3.5d

where ÎS is the unit integral operator onS with the kernel

dS
s2dsr−r8d. The operatorB̂sEd, which, up to a numerical

constant, coincides with the embedding potential operator
defined in Eq.(10) of Ref. [1], transforms the Dirichlet da-
tum csE ,rd into the Neumann datum¹'csE ,rd and there-
fore it is called the Dirichlet-to-Neumannoperator. The
terms the surface impedanceoperator andthe logarithmic
(log) derivativeoperator are also in use. In analogy, the op-

eratorR̂sEd is called theNeumann-to-Dirichletoperator or
the surface admittanceoperator.

The operatorsB̂sEd and R̂sEd are represented by their
integral kernelsBsE ,r ,r8d and RsE ,r ,r8d, respectively, in
terms of which Eqs.(3.3)–(3.5) read

¹'csE,rd =R
S

d2r8BsE,r,r8dcsE,r8d, s3.6d

csE,rd =R
S

d2r8RsE,r,r8d¹'csE,r8d, s3.7d

and

R
S

d2r9BsE,r,r9dRsE,r9,r8d

=R
S

d2r9RsE,r,r9dBsE,r9,r8d

= dS
s2dsr − r8d. s3.8d

So far the operatorsB̂sEd andR̂sEd have been considered
as abstract objects. To provide explicit forms of their kernels,
consider the Steklov eigensystem[7]

ĤcnsE,r d = EcnsE,r d sr P VIId, s3.9d

rcnsE,r d →
r→`

0, s3.10d

¹'cnsE,rd = bnsEdcnsE,rd s3.11d

[cf. Eqs.(3.1) and(3.2)], whereEPR is fixed andbnsEd is an
eigenvalue. Eigenfunctions to this system,hcnsE ,r dj, are
these particular solutions to the Schrödinger equation(3.9) in
VII , obeying the asymptotic condition(3.10), which have
constant normal logarithmic derivatives(Steklov eigenval-
ues) hbnsEdj over the surfaceS. [We shall be assuming that
all eigenvalues to the system(3.9)–(3.11) are finite; i.e., none
of the eigenfunctions vanishes identically over the surfaceS.
This is not a serious restriction since in actual applications of
the embedding method there is always some degree of free-
dom in choosing the surfaceS and this fact may be exploited
to ensure that the assumption is not violated.] Applying the
symmetric Green theorem to two arbitrary eigenfunctions
cnsE ,r d andcn8sE ,r d yields

kcnuĤcn8lII − kĤcnucn8lII =
"2

2m
scnu¹'cn8d −

"2

2m
s¹'cnucn8d.

s3.12d

In virtue of Eq. (3.9), the left-hand side of Eq.(3.12) van-
ishes; hence,

scnu¹'cn8d − s¹'cnucn8d = 0 s3.13d

and further, after employing Eq.(3.11),

fbn8sEd − bn
*sEdgscnucn8d = 0. s3.14d

In the particular case whencn8sE ,r d coincides withcnsE ,r d,
Eq. (3.14) becomes

fbnsEd − bn
*sEdgscnucnd = 0; s3.15d

hence, one infers that eigenvalues to the system(3.9)–(3.11)
are real:

bnsEd = bn
*sEd. s3.16d

Combining this with Eq.(3.14) implies that eigenfunctions
belonging to different eigenvalues are orthogonal with re-
spect to the surface scalar product(2.14):

scnucn8d = 0 fbnsEd Þ bn8sEdg. s3.17d

In what follows, we shall be assuming that all eigenfunctions
to the system(3.9)–(3.11) have been normalized according to

scnucnd = 1 s3.18d

and that eigenfunctions associated with degenerate eigenval-
ues (if there are any) have been also orthogonalized with
respect to the scalar product(2.14). Then it holds that

scnucn8d = dnn8. s3.19d

Moreover, we shall be assuming that the surface functions
hcnsE ,rdj form a complete set in the space of single-valued
square-integrable functions defined onS and therefore obey
the closure relation
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o
n

cnsE,rdcn
*sE,r8d = d S

s2dsr − r8d. s3.20d

It follows from the definition(3.3) of the DtN operator
B̂sEd and from Eq.(3.11) that it holds that

B̂sEdcnsE,rd = bnsEdcnsE,rd. s3.21d

Equation (3.21) may be interpreted that surface parts
hcnsE ,rdj of the eigenfunctionshcnsE ,r dj of the system

(3.9)–(3.11) are eigenfunctions of the operatorB̂sEd with the
logarithmic derivativeshbnsEdj being associated eigenvalues.
Consequently, taking into account the orthonormality rela-
tion (3.19) and the closure relation(3.20), and invoking the
theory of integral operators, one finds that the DtN kernel
BsE ,r ,r8d has the spectral expansion

BsE,r,r8d = o
n

cnsE,rdbnsEdcn
*sE,r8d s3.22d

and that the spectral expansion of the reciprocal NtD kernel
RsE ,r ,r8d is

RsE,r,r8d = o
n

cnsE,rdbn
−1sEdcn

*sE,r8d. s3.23d

It is evident from Eqs.(3.22) and(3.23) that the two kernels
obey

BsE,r,r8d = B*sE,r8,rd, s3.24d

RsE,r,r8d = R*sE,r8,rd; s3.25d

i.e., the operatorsB̂sEd andR̂sEd are Hermitian.

IV. DtN EMBEDDING METHOD

If the trial functionsC̄Isr d and C̄IIsr d used in the func-
tional (2.10) are constrained to match at the interfaceS,

C̄Isrd = C̄IIsrd, s4.1d

the functional becomes

F sDdfC̄I,C̄IIg =
kC̄IuĤC̄IlI + kC̄II uĤC̄IIlII + hsC̄Iu¹'C̄I − ¹'C̄IId

kC̄IuC̄IlI + kC̄II uC̄IIlII

s4.2d

[cf. Eq. (4) of Ref. [1]], where, for convenience, we have defined

h =
"2

2m
. s4.3d

Notice that, as opposed to the unconstrained functional(2.10), the functional(4.2) does not contain the free parametera.

Consider now the particular case when the trial functionC̄IIsr d in the functional(4.2) is

C̄IIsr d = csDdsE,r d sr P VIId, s4.4d

wherecsDdsE ,r d is some function fromDIIsEd which remainsundeterminedat this stage. In virtue of Eqs.(4.4), (3.3), and
(4.1), at the interfaceS we have

¹'C̄IIsrd = B̂sEdC̄Isrd. s4.5d

Exploiting Eqs.(4.4), (3.1), and (4.5) and omitting henceforth the subscriptI at the trial function inVI, transforms the
functional (4.2) into

F sDdfC̄,csDdg =
kC̄uĤC̄lI + EkcsDducsDdlII + hsC̄u¹'C̄ − B̂C̄d

kC̄uC̄lI + kcsDducsDdlII

. s4.6d

The functional(4.6) depends on the functioncsDdsE ,r d
only through the volume scalar productkcsDd ucsDdlII . To

eliminate this term, we differentiate Eq.(3.1) [obeyed by
csDdsE ,r d] with respect toE, obtaining
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Ĥ] csDdsE,r d
] E = csDdsE,r d + E] csDdsE,r d

] E , s4.7d

premultiply Eq.(4.7) by csDd*sE ,r d and the complex conju-
gate of Eq.(3.1) by ]csDdsE ,r d /]E, and subtract. This yields

− hcsDd*sE,r d=2
] csDdsE,r d

] E + h
] csDdsE,r d

] E =2csDd*sE,r d

= csDd*sE,r dcsDdsE,r d. s4.8d

Integration of Eq.(4.8) over the volumeVII , followed by
application of the symmetric Green’s theorem, after some
rearrangement, gives

kcsDducsDdlII = hScsDdU¹'

] csDd

] E D − hS¹'csDdU ] csDd

] E D .

s4.9d

Evidently, Eq.(4.9) may be rewritten in the form

kcsDducsDdlII = hScsDdU ]

] E¹'csDdD − hS¹'csDdU ] csDd

] E D;

s4.10d

hence, after employing Eq.(3.3), we find

kcsDducsDdlII = hScsDdU ]

] EB̂csDdD − hSB̂csDdU ] csDd

] E D
s4.11d

or, equivalently,

kcsDducsDdlII = hScsDdU ] B̂
] E csDdD + hScsDdUB̂] csDd

] E D
− hSB̂csDdU ] csDd

] E D . s4.12d

SinceB̂sEd is Hermitian, the second and third terms on the
right-hand side of Eq.(4.12) cancel and we arrive at

kcsDducsDdlII = hScsDdU ] B̂
] E csDdD . s4.13d

Finally, application of Eqs.(4.4) and (4.1) transforms Eq.
(4.13) into

kcsDducsDdlII = hSC̄U ] B̂
] E C̄D s4.14d

[cf. Eq. (15) of Ref. [1]], which allows us to rewrite the
functional (4.6) in the following suitable form:

F sDdfC̄g =
kC̄uĤC̄lI + hsC̄u¹'C̄ − B̂C̄ + Ef] B̂/] EgC̄d

kC̄uC̄lI + hsC̄uf] B̂/] EgC̄d

s4.15d

[cf. Eq. (16) of Ref. [1]].

It may be verified that the functional(4.15) retains the
property of the starting functional(2.10) to be real for any

trial function C̄sr d:

F sDd*fC̄g = F sDdfC̄g. s4.16d

We shall seek the functionCsDdsr d sr PVId, which makes
the functional(4.15) stationary:

dF sDdfCsDdg = 0. s4.17d

The corresponding stationary value

EsDd = FsDdfCsDdg s4.18d

[which, by virtue of Eq.(4.16), is real] is an estimate of
some eigenenergy of the original spectral problem(2.1) and
(2.2). [It is to be noticed that bothEsDd andCsDdsr d depend
parametrically onE.] To find equations determiningEsDd and
CsDdsr d, we rewrite Eq.(4.15) as

F sDdfC̄gFkC̄uC̄lI + hSC̄U ] B̂
] E C̄DG = kC̄uĤC̄lI

+ hSC̄U¹'C̄ − B̂C̄ + E] B̂
] E C̄D s4.19d

and vary thereC̄sr d aroundCsDdsr d. By virtue of Eqs.(4.17)
and (4.18), this results in

kd CufĤ − EsDdgCsDdlI + kCsDdufĤ − EsDdgd ClI

+ hSd CU¹'CsDd − B̂CsDd + fE − EsDdg
] B̂
] E CsDdD

+ hSCsDdU¹'d C − B̂d C + fE − EsDdg
] B̂
] E d CD = 0.

s4.20d

Applying the symmetric Green’s theorem to the second term
on the left-hand side of Eq.(4.20) and utilizing the fact that

B̂sEd and]B̂sEd /]E are Hermitian gives

kd CufĤ − EsDdgCsDdlI + kfĤ − EsDdgCsDdud ClI

+ hSdCU¹'CsDd − B̂CsDd + fE − EsDdg
] B̂
] E CsDdD

+ hS¹'CsDd − B̂CsDd + fE − EsDdg
] B̂
] E CsDdUdCD = 0;

s4.21d

hence, one infers the eigensystem

ĤCsDdsr d = EsDdCsDdsr d sr P VId, s4.22d
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F¹' − B̂sEd + E] B̂sEd
] E GCsDdsrd

= EsDd] B̂sEd
] E CsDdsrd sr P Sd, s4.23d

obeyed byCsDdsr d and EsDd [cf. Eq. (17) of Ref. [1]]. It is
worth emphasizing that this eigensystem is of a nonstandard
character since the eigenvalueEsDd appears both in the
Schrödinger equation(4.22) and in the boundary condition
(4.23).

Once the functionCsDdsr d, approximatingCsr d in VI, has
been determined, the functioncsDdsE ,r d, approximating
Csr d in VII , may be found. [We recall that thus far
csDdsE ,r d has played only the auxiliary role and has re-
mained undetermined.] To this end, we expandcsDdsE ,r d in
the Steklov basishcnsE ,r dj:

csDdsE,r d = o
n

cn
sDdcnsE,r d sr P VIId. s4.24d

The expansion coefficients in Eq.(4.24) may be found by
shifting the pointr to the surfaceS, projecting the resulting
equation onto the Steklov eigenfunctions, and exploiting the
orthonormality relation(3.19). This yields

cn
sDd = scnucsDdd, s4.25d

which, after making use of the fact that at the surfaceS it
holds that

csDdsE,rd = CsDdsrd s4.26d

[cf. Eqs.(4.4) and (4.1)], leads finally to

cn
sDd = scnuCsDdd. s4.27d

V. NtD EMBEDDING METHOD

It is tempting to investigate what happens when the
matching condition(4.1) is replaced by the weaker constraint

¹'C̄Isrd = ¹'C̄IIsrd. s5.1d

Evidently, this results in the following simplification of the
functional (2.10):

F sNdfC̄I,C̄IIg

=
kC̄IuĤC̄IlI + kC̄II uĤC̄IIlII − hs¹'C̄IuC̄I − C̄IId

kC̄IuC̄IlI + kC̄II uC̄IIlII

.

s5.2d

Consider the trial function

C̄IIsr d = csNdsE,r d sr P VIId, s5.3d

wherecsNdsE ,r d, at this stage undetermined, is fromDIIsEd.
By virtue of Eqs.(5.3), (3.4), and(5.1), one has

C̄IIsrd = R̂sEd¹'C̄Isrd s5.4d

and, omitting henceforth the indexI at the trial function in
VI, the functional(5.2) becomes

F sNdfC̄,csNdg =
kC̄uĤC̄lI + EkcsNducsNdlII + hs¹'C̄uR̂¹'C̄ − C̄d

kC̄uC̄lI + kcsNducsNdlII

. s5.5d

A reasoning similar to that leading to Eq.(4.14) yields

kcsNducsNdlII = − hS¹'C̄U ] R̂
] E ¹'C̄D , s5.6d

and this allows us to transform the functional(5.5) into the functional

F sNdfC̄g =
kC̄uĤuC̄lI + hs¹'C̄uR̂u¹'C̄ − Ef] R̂/] Eg¹'C̄ − C̄d

kuC̄uC̄lI − hsu¹'C̄uf] R̂/] Eg¹'C̄d
s5.7d

[cf. Eq. (4.15)], with the property

F sNd*fC̄g = F sNdfC̄g. s5.8d

Proceeding as in Sec. IV, we find that the function
CsNdsr d (r PVI), which makes the functional(5.7) stationary,
i.e.,

dF sNdfCsNdg = 0, s5.9d

and the corresponding real[cf. Eq. (5.8)] stationary value

EsNd = FsNdfCsNdg s5.10d

[approximating the eigenvalueE in Eq. (2.1)] are solutions to
the nonstandard eigensystem
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ĤCsNdsr d = EsNdCsNdsr d sr P VId, s5.11d

FÎS − R̂sEd¹' + E] R̂sEd
] E ¹'GCsNdsrd

= EsNd] R̂sEd
] E ¹'CsNdsrd sr P Sd. s5.12d

Evidently, bothEsNd andCsNdsr d depend parametrically onE.
To facilitate comparison of the boundary condition(5.12)

with that in Eq.(4.23), we operate on the former from the

left with B̂sEd and make use of Eq.(3.5), obtaining

F¹' − B̂sEd − EB̂sEd
] R̂sEd

] E ¹'GCsNdsrd

= − EsNdB̂sEd
] R̂sEd

] E ¹'CsNdsrd sr P Sd. s5.13d

This still may be transformed since from the reciprocity re-
lation (3.5) it follows that

B̂sEd
] R̂sEd

] E = −
] B̂sEd

] E R̂sEd. s5.14d

Hence, after some rearrangement, the boundary condition
(5.12) becomes

F¹' − B̂sEd + E] B̂sEd
] E R̂sEd¹'GCsNdsrd

= EsNd] B̂sEd
] E R̂sEd¹'CsNdsrd sr P Sd. s5.15d

Comparison of Eqs.(4.23) and (5.15) shows that theydiffer

in the terms containing the derivatives]B̂sEd /]E.
Hitherto, the functioncsNdsE ,r d, approximatingCsr d in

VII , has remained undetermined. It may be found after move-
ments analogous to these presented at the end of Sec. IV for
csDdsE ,r d. One arrives at the expansion

csNdsE,r d = o
n

cn
sNdcnsE,r d sr P VIId, s5.16d

with the coefficients

cn
sNd = bn

−1sEdscnu¹'CsNdd. s5.17d

In general the DtN and NtD embedding methods will
yield differentestimates of eigensolutions to the system(2.1)
and (2.2). Differences between these estimates will provide
some information about their quality.

VI. PROBLEMS WITH SPHERICAL SYMMETRY
IN THE OUTER REGION

Assume that the surfaceS is a spherical shellSr of radius
r. Locate the coordinate origin at the center ofSr and con-

sider the case when in the regionVII exterior toSr the po-
tential Vsr d is central:

Vsr d = Vsrd sr . rd. s6.1d

Then the Schrödinger equation(3.9) in VII is separable in
spherical coordinates and possesses particular solutions, sat-
isfying the asymptotic condition(3.10), of the form

clml
sE,r d =

f lsE,rd
rf lsE,rd

Ylml
snrd. s6.2d

Here Ylml
snrd, with nr =r / r, l PN and ml

P h0, ±1, ±2, . . . , ±lj, is a normalized spherical harmonic
and f lsE ,rd is that solution to the radial Schrödinger equation

F−
"2

2m

]2

] r2 +
"2

2m

lsl + 1d
r2 + Vsrd − EGrf lsE,rd = 0 sr . rd,

s6.3d

which obeys

rf lsE,rd →
r→`

0. s6.4d

It is evident that at the surfaceSr it holds that

clml
sE,rd = r−1Ylml

snrd s6.5d

and

¹'clml
sE,rd =

]rf lsE,rd
rf lsE,rd

Ylml
snrd, s6.6d

where

]rf lsE,rd = U ] f lsE,rd
] r

U
r =r

; s6.7d

hence, it follows that

¹'clml
sE,rd = blsEdclml

sE,rd, s6.8d

with

blsEd =
]rf lsE,rd
f lsE,rd

. s6.9d

Consequently, for the problem at hand the functions(6.2) are
eigenfunctions to the system(3.9)–(3.11) and the numbers
(6.9) are associated real,s2l +1d-fold degenerate, Steklov ei-
genvalues. It follows from Eq.(6.5) and from the orthonor-
mality and completeness of the spherical harmonics on the
unit sphere that the functions(6.2) form the orthonormal and
complete set on the sphereSr; i.e., it holds that

sclml
ucl8ml8

d = dll8dmlml8
, s6.10d

o
l=0

`

o
ml=−l

l

clml
sE,rdclml

* sE,r8d = d Sr

s2dsr − r8d s6.11d

[cf. Eqs.(3.19) and (3.20)].
Since the functions(6.2) and the numbers(6.9) are eigen-

solutions to the system(3.9)–(3.11), in accordance with Eqs.
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(3.22) and (3.23) one finds that in the case considered here
the DtN and NtD kernels are given by

BsE,r,r8d = r−2o
l=0

`

o
ml=−l

l

blsEdYlml
snrdYlml

* snr8d s6.12d

and

RsE,r,r8d = r−2o
l=0

`

o
ml=−l

l

bl
−1sEdYlml

snrdYlml

* snr8d,

s6.13d

respectively. On employing the well-known summation for-
mula for the spherical harmonics, Eqs.(6.12) and(6.13) may
be rewritten as

BsE,r,r8d = s4pr2d−1o
l=0

`

s2l + 1dblsEdPlsnr ·nr8d,

s6.14d

RsE,r,r8d = s4pr2d−1o
l=0

`

s2l + 1dbl
−1sEdPlsnr ·nr8d,

s6.15d

with Plsjd denoting the Legendre polynomial.
In the particular case when in the region exterior toSr the

potential vanishes,

Vsrd ; 0 sr . rd, s6.16d

nontrivial solutions to the problem(2.1) and(2.2) may exist
only for E,0. Therefore we choose

E , 0 s6.17d

and define

K =Î−
2mE
"2 . s6.18d

With Eq. (6.16), a solution to the radial equation(6.3), obey-
ing the condition(6.4), is

f lsE,rd = klsKrd, s6.19d

where

klszd =
p

2
s− zdlS1

z

d

dz
Dl exps− zd

z
s6.20d

is the spherical Macdonald function(modified spherical
Bessel function of the third kind) [8]. On employing the
relation

dklszd
dz

=
l

z
klszd − kl+1szd, s6.21d

one finds that in the particular case(6.16) the Steklov eigen-
values(6.9) are

blsEd =
l

r
− K

kl+1sKrd
klsKrd

. s6.22d

VII. APPLICATION OF RAYLEIGH-RITZ
TRIAL FUNCTIONS

In practical applications of the DtN and NtD embedding
methods it may be extremely difficult, or even impossible, to
solve the differential eigensystems(4.22),(4.23) and
(5.11),(5.12) exactly. However, the variational principle
(4.17), (4.18), and(4.15) and the variational principle(5.9),
(5.10), and(5.7) offer the possibility to solve these eigensys-
tems approximately.

Let hfmsr dj, sm=1, . . . ,Md, be a set of functions defined
in VI. Consider the Rayleigh-Ritz trial function

C̄sr d ; F̄sr d = o
m=1

M

āmfmsr d sr P VId, s7.1d

approximating some eigenfunction of the eigensystem(4.22)
and (4.23), with the coefficientshāmj to be optimized. Sub-
stitution of this trial function into the functional(4.15) yields
the Rayleigh quotient

FsDdfā†,āg =
ā†LsDdā

ā†DsDdā
, s7.2d

in which ā is anM-component column vector with elements
hāmj and ā† is its Hermitian adjoint, whileLsDd andDsDd are
M 3M Hermitian matrices with elements

Lmn
sDd = kfmuĤfnlI +

"2

2m
sfmu¹'fn − B̂fn + Ef] B̂/] Egfnd

s7.3d

and

Dmn
sDd = kfmufnlI +

"2

2m
sfmuf] B̂/] Egfnd, s7.4d

respectively. We shall denote by a˜ sDd and ãsDd† these particu-
lar vectors āand ā†, for which the functional(7.2) is station-
ary with respect to variations in their components:

dFsDdfãsDd†,ãsDdg = 0. s7.5d

Defining

Ẽ sDd = FsDdfãsDd†,ãsDdg, s7.6d

from Eqs. (7.5) and (7.2) one obtains the generalized
[weighted] algebraic eigensystem

LsDdãsDd = Ẽ sDdDsDdãsDd s7.7d

and its Hermitian conjugate. In general, the eigensystem
(7.7) hasMsDdøM pairs of eigensolutions. The eigenvalues

hẼg
sDdj are second-order variational estimates of eigenvalues

of the differential eigensystem(4.22) and(4.23), while com-
ponents of the associated eigenvectorshãg

sDdj may be used in
Eq. (7.1) to construct the Rayleigh-Ritz functions

F̃ g
sDdsr d = o

m=1

M

ãmg
sDdfmsr d sr P VId, s7.8d

which are first-order variational estimates of eigenfunctions
of the system(4.22) and (4.23).
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Proceeding in the analogous manner and using the trial
function (7.1) in the functional(5.7) leads one to the gener-
alized matrix eigensystem

LsNdãsNd = Ẽ sNdDsNdãsNd s7.9d

(and its Hermitian matrix conjugate), whereLsNd and DsNd

areM 3M Hermitian matrices with elements

Lmn
sNd = kfmuĤfnlI

+
"2

2m
s¹'fmuR̂¹'fn − Ef] R̂/] Eg¹'fn − fnd

s7.10d

and

Dmn
sNd = kfmufnlI −

"2

2m
s¹'fmuf] R̂/] Eg¹'fnd, s7.11d

respectively. Its eigenvalueshẼg
sNdj are second-order varia-

tional estimates of eigenvalues of the differential eigensys-
tem (5.11) and(5.12), while use of components of the eigen-
vectorshãg

sNdj in Eq. (7.1) yields the functions

F̃ g
sNdsr d = o

m=1

M

ãmg
sNdfmsr d sr P VId, s7.12d

which are first-order variational estimates of eigenfunctions
of the system(5.11) and (5.12).

In general, the estimateshẼg
sDdj and hF̃ g

sDdsr dj will differ

from the estimateshẼg
sNdj and hF̃ g

sNdsr dj.

VIII. NUMERICAL ILLUSTRATION

As an example illustrating the utility of the two variants
of the embedding method presented above, we have consid-
ered the problem of computing variationally bound-state en-
ergies of a particle moving in the potential(Fig. 2)

Vsr d = 51

2
mv2sr − r 0d2 −

1

2
mv2sr + r0d2 sur u , rd,

0 sur u . rd.

s8.1d

Herer 0 is a fixed vector of lengthr0,r. The regionsVI and
VII are the sphere of radiusr and its exterior, respectively.
Evidently, the potential(8.1) exhibits the rotational symme-
try around the axis directed along the vectorr 0. Conse-
quently, the particle’s Hamiltonian does commute with the
projection of the angular momentum operator onto this axis
and the magnetic quantum numberml may be used to label
energy levels.

The variational bases used in our calculations have been
constructed from unnormalized three-dimensional isotropic
oscillator eigenfunctions

fnlml
sr d = r l exps− lr2/2dLn

sl+1/2dslr2dYlml
snrd, s8.2d

where

l =
mv

"
s8.3d

andLn
sadsjd is the generalized Laguerre polynomial[9]. (The

origin of the spherical coordinate system has been chosen at
the center of the sphereVI and the polar axis is alongr 0.)
Onceml has been chosen and fixed(cf. the preceding para-
graph), a relevant variational basis is formed from the func-
tions (8.2) with uml u ø l ø lmax and 0ønønmax; the upper
limits lmax and nmax, constraining the basis dimension, may
be varied to test convergence of variational results.

The natural units in whichm="=v=1 have been used.
The length parameters characterizing the potential have been
chosen to ber0=1, r=2. We shall report only results for the
ground state with the symmetryml =0; they are representa-
tive for all cases whenever bound states in the potential(8.1)
exist.

Three series of calculations have been performed.
In the first series, the truncated basis(8.2) has been used

in the Rayleigh principle(2.4) and (2.5). The resulting en-
ergy estimates for four existing bound states are presented in
Table I for several basis dimensions. One observes slow con-
vergence which may be attributed to difficulty in spanning
the regionr .r, where exact eigenfunctions decay exponen-
tially, with the aid of the functions(8.2) possessing Gaussian
tails. The best energy estimates, computed by using the basis
with lmax=40 andnmax=40 (which means working with 1681
basis functions), are seen to be still markedly higher than
corresponding converged DtN-NtD results.

In the second and third series, the truncated basis(8.2) has
been used in the variational DtN and NtD methods, respec-
tively, in the way described in Sec. VII. To obtain the best
energy estimates, calculations have been carried out itera-
tively. In the first step, the generalized algebraic eigensys-
tems(7.7) and (7.9) have been solved withE chosen to co-

FIG. 2. Geometry of the system used in the numerical illustra-
tion. In the inner regionVI (the sphere of radiusr) the potential is
a superposition of that due to a three-dimensional isotropic har-
monic oscillator, with its center located at the pointr 0, and that of
a spherical potential well. In the outer regionVII the potential
vanishes.
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incide with the s3,3d Rayleigh estimate E1,ml=0
sRd =

−2.448 328 759(cf. Table I) of the lowest energy. The result-

ing eigenvaluesẼi,ml=0
sD or NdsEd, i =1, . . . ,4, have replacedE in

the repeated calculations(performed henceforth separately
for eachi) and the procedure has been iterated(with the fixed
basis dimension) until convergence in the eigenenergies has
been achieved. Convergence rate of this iterative procedure
for the DtN and NtD methods is illustrated, in the case of the
lowest eigenenergy, by data provided in Tables II and III,
respectively. Finally, converged DtN and NtD energy esti-
mates for four existing bound states are presented in Table
IV. It is seen that, at least for the problem at hand, the DtN
and NtD results are of comparable quality. Moreover, com-
parison with entries of Table I shows that when the basis
dimension increases, the DtN and NtD estimates converge to
exact eigenenergies much faster than their counterparts ob-
tained in the calculations exploiting the Rayleigh principle
(2.4) and (2.5).

IX. CONCLUSIONS

There are at least three directions in which the current
work may be continued. First, it would be desirable to extend
present results to many-body systems. Second, it might be
advantageous to reformulate in the DtN-NtD language also
the embedding method forcontinuumSchrödinger states[1].
Third, our preliminary investigations show that, after neces-
sary modifications, the DtN-NtD formalism may be the con-
venient framework for extending the embedding method to
systems described by the Dirac equation; this thread also

seems to be worth to pursue. We work on these subjects and
progress will be reported in future publications.
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APPENDIX: NONVARIATIONAL APPROACH TO THE DtN
AND NtD EMBEDDING METHODS

In Secs. IV and V we have derived the generalized eigen-
systems(4.22),(4.23) and (5.11),(5.12), respectively, by em-
ploying methods of variational calculus. A purpose of this
appendix is to show that one may arrive at these two eigen-
systems following still another, though less elegant, proce-
dure.

Consider at first the DtN case. The starting point is an

observation that, with the aid of the DtN operatorB̂sEd, one
may transfer the boundary condition(2.2) from infinity to the
surfaceS, thus replacing the original eigensystem(2.1) and
(2.2) in R3 by the following equivalent one in the domainVI:

ĤCsr d = ECsr d sr P VId, sA1d

¹'Csrd = B̂sEdCsrd sr P Sd. sA2d

The price one has to pay for shrinking the domain is that in
the new eigenproblem(A1) and (A2) the energy eigenvalue
E enters not only the differential equation(A1) [which is

TABLE II. Convergence rate of the DtN variational estimates of the lowestml =0 eigenenergy for a particle in the potential(8.1) with
r0=1, r=2 (the units in whichm="=v=1 are used). The basis functions(8.2) with 0ø l ø lmax and 0ønønmax have been employed. The
input for the iteration procedure has beenE=−2.448 328 759, which is thes3,3d Rayleigh estimateE1,ml=0

sRd of the lowest energy(cf. Table I).

Iteration E1,ml=0
sDd

slmax,nmaxd
s3,3d s4,4d s5,5d s6,6d s7,7d s10,10d

1 −2.449 482 118 −2.449 493 904 −2.449 494 324 −2.449 494 335 −2.449 494 335 −2.449 494 335

2 −2.449 482 122 −2.449 493 907 −2.449 494 328 −2.449 494 338 −2.449 494 339 −2.449 494 339

3 −2.449 482 122 −2.449 493 907 −2.449 494 328 −2.449 494 338 −2.449 494 339 −2.449 494 339

TABLE I. Variational estimates of energies of four bound states withml =0 symmetry for a particle in the
potential(8.1) with r0=1, r=2 (the units in whichm="=v=1 are used). The results have been obtained by
employing the basis functions(8.2) with 0ø l ø lmax and 0ønønmax in the Rayleigh principle(2.4) and
(2.5). For comparison, exact(chosen as the best converged DtN-NtD) energies, which should be attained in
the limit slmax,nmaxd→ s` ,`d, are provided in the last row.

slmax,nmaxd E1,ml=0
sRd E2,ml=0

sRd E3,ml=0
sRd E4,ml=0

sRd

s3,3d −2.448 328 759 −1.337 158 078 −0.181 740 074 −0.108 515 116

s10,10d −2.449 192 886 −1.339 700 783 −0.188 543 764 −0.143 283 542

s25,25d −2.449 409 244 −1.340 437 430 −0.189 572 108 −0.146 245 353

s40,40d −2.449 450 730 −1.340 551 206 −0.189 816 256 −0.146 496 060

DtN-NtD −2.449 494 339 −1.340 681 212 −0.190 019 496 −0.146 705 753
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seen to be identical with its counterpart(2.1) in R3], but also,
in fact — in a very complicated way, the boundary condition
(A2). Assume now that, guided by some premises or simply
by intuition, we choose some real energyE as a zeroth-order

estimate ofE. Then, by Taylor’s theorem, forB̂sEd we have

B̂sEd = o
n=0

` fE − Egn

n!

] nB̂sEd
] En , sA3d

provided the series on the right-hand side converges. IfE is
in the vicinity of the eigenvalueE, we may approximate

B̂sEd by the first two terms in the expansion(A3):

B̂sEd . B̂sEd + fE − Eg
] B̂sEd

] E , sA4d

i.e., by the expression which is linear inE. This suggests that
one may consider to approximate eigensolutions to the sys-
tem (A1) and (A2) by solutions to the eigensystem

ĤCsDdsr d = EsDdCsDdsr d sr P VId, sA5d

F¹' − B̂sEd + E] B̂sEd
] E GCsDdsrd

= EsDd] B̂sEd
] E CsDdsrd sr P Sd, sA6d

identical with that in Eqs.(4.22) and (4.23).
We turn to the NtD case. The boundary condition(A2)

may be equivalently rewritten in the form

Csrd = R̂sEd¹'Csrd sr P Sd. sA7d

Truncating the Taylor’s expansion

R̂sEd = o
n=0

` fE − Egn

n!

] nR̂sEd
] En sA8d

after the term linear inE leads to the approximation

TABLE III. Convergence rate of the NtD variational estimates of the lowestml =0 eigenenergy for a particle in the potential(8.1) with
r0=1, r=2 (the units in whichm="=v=1 are used). The basis functions(8.2) with 0ø l ø lmax and 0ønønmax have been employed. The
input for the iteration procedure has beenE=−2.448 328 759, which is thes3,3d Rayleigh estimateE1,ml=0

sRd of the lowest energy(cf. Table I).

Iteration E1,ml=0
sNd

slmax,nmaxd
s3,3d s4,4d s5,5d s6,6d s7,7d s10,10d

1 −2.449 459 158 −2.449 493 456 −2.449 494 311 −2.449 494 329 −2.449 494 329 −2.449 494 329

2 −2.449 459 167 −2.449 493 465 −2.449 494 321 −2.449 494 338 −2.449 494 339 −2.449 494 339

3 −2.449 459 167 −2.449 493 465 −2.449 494 321 −2.449 494 338 −2.449 494 339 −2.449 494 339

TABLE IV. Converged DtN and NtD variational estimates of energies of four bound states withml =0
symmetry for a particle in the potential(8.1) with r0=1, r=2 (the units in whichm="=v=1 are used). The
basis functions(8.2) with 0ø l ø lmax and 0ønønmax have been employed. The input for the iteration
procedure has beenE=−2.448 328 759, which is thes3,3d Rayleigh estimateE1,ml=0

sRd of the lowest energy(cf.
Table I).

slmax,nmaxd E1,ml=0
sDd E2,ml=0

sDd E3,ml=0
sDd E4,ml=0

sDd

E1,ml=0
sNd E2,ml=0

sNd E3,ml=0
sNd E4,ml=0

sNd

s3,3d −2.449 482 122 −1.340 675 393 −0.190 018 190 −0.146 679 158

−2.449 459 167 −1.340 667 882 −0.190 016 882 −0.146 638 303

s4,4d −2.449 493 907 −1.340 681 069 −0.190 019 474 −0.146 705 173

−2.449 493 465 −1.340 680 953 −0.190 019 458 −0.146 704 638

s5,5d −2.449 494 328 −1.340 681 209 −0.190 019 496 −0.146 705 743

−2.449 494 321 −1.340 681 208 −0.190 019 496 −0.146 705 737

s6,6d −2.449 494 338 −1.340 681 212 −0.190 019 496 −0.146 705 753

−2.449 494 338 −1.340 681 212 −0.190 019 496 −0.146 705 753

s7,7d −2.449 494 339 −1.340 681 212 −0.190 019 496 −0.146 705 753

−2.449 494 339 −1.340 681 212 −0.190 019 496 −0.146 705 753

s10,10d −2.449 494 339 −1.340 681 212 −0.190 019 496 −0.146 705 753

−2.449 494 339 −1.340 681 212 −0.190 019 496 −0.146 705 753
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R̂sEd . R̂sEd + fE − Eg
] R̂sEd

] E . sA9d

Replacing the operatorR̂sEd in the boundary condition(A7)
by the expression on the right-hand side of Eq.(A9) and
leaving the differential equation(A1) unchanged results in
the eigensystem

ĤCsNdsr d = EsNdCsNdsr d sr P VId, sA10d

FÎS − R̂sEd¹' + E] R̂sEd
] E ¹'GCsNdsrd

= EsNd] R̂sEd
] E ¹'CsNdsrd sr P Sd, sA11d

identical with that in Eqs.(5.11) and (5.12).
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