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Differences between the Tonks regimes in the continuum and on the lattice
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Motivated by recent experiments, we compare the Tanhks hard-core boson gasegime achieved in an
optical lattice with the Tonks regime of a one-dimensional Bose gas in the continuum. For the lattice gas, we
compute the locali.e., on-sit¢ two-body correlations as a function of temperature and the filling of the lattice.
It is found that this function saturates to a constant value with increasing temperature. Furthermore, the
parameter that characterizes the long-distance correlations in the lattice Tonks regime is also obtained, showing
that on the lattice the long-distance correlations enter the Tonks regime more rapidly than in the continuum.
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Strongly interacting gases of bosons in one dimensiore reached by increasing the ratp=U/J at any value of
have been recently realized using optical lattifgs3]. By  the filling f,. For low temperatures and fillingge., fo<<1)
loading a Bose-Einstein condensate into a deep twothe two Tonks regimes coincide since the Lieb-Liniger model
dimensional optical lattice, an array of one-dimensionalemerges as a low-density limit of the Bose-Hubbard model
atomic systemstubeg was created3,4]. Strong correlations (see, e.g., Ref9]). However, in[9] it was shown that, pro-
among the bosons were subsequently induced by turning orided one hast mostone particle per sité.e., n,<1) and
a third lattice along the axis of the tubes, which further de-U>J, the Bose-Hubbard model can be effectively replaced
creases the ratio of kinetic to interaction enefty?]. These by the following interacting fermion model:
anisotropic optical lattices exhibit a rich phase diagfars|. 3
In particular, by making the third lattice deeper and reducing He=—=> (¢, 1Cm+ H.C) + Hy + Hy, (3)
the filling of the lattice below one particle per site, the Tonks 2
regime, where the bosons effectively become hardcore and
behave in many respects like fermions, was reached in the _J
experiments reported in Ref2]. Time of flight measure- Hl_i)\lzm: (ChysalnCm-1+ H.C), (4)
ments of the momentum distribution showed good agreement
with a fermionization approach which accounted for finite
temperature, finite size, and trap effef23. Hp= _‘J)‘ZE Nmms 1 (5)

The achievement of the Tonks regime in an optical lattice "
raises a number of questions about the equivalence of thiEhe couplings\;=\,=v;*=J/U are small, and the fermions
system with the continuum Tonks regime. Mathematicallyare “almost” noninteracting. In this sense, therefore, one can
speaking, the two types of Tonks gases correspond to thepeak of “fermionization” of bosons. In this paper, we con-
strongly interacting limit of two physically different models. sider the regime wherg or y, are large, which should be of
The lattice Tonks gaglLTG) is obtained from the Bose- interest for curren{1-3] and future experiments exploring
Hubbard mode(m=1, ... My), these correlated systems.

] ! The physical differences between the Tonks regimes of
_ Y + v 12/ \2 the Lieb-Liniger and Bose-Hubbard models can only be ad-
Har = 2% (Bry; b+ H.C) + 2% (Br)“(br) @ dressed by an explicit calculation of their correlation proper-
ties. These fall into two classes: short distance correlations
in the regime wherey =U/J>1 [6] and the filling of the  are nonuniversal(i.e., model dependentand therefore are
lattice fo=No/My<1 (Ng being the number of atoms aMi,  expected to be different in the LTG and the CTG regimes.
the number of lattice sit¢sHowever, the continuum Tonks On the other hand, long-distan¢er small momentumcor-
gas(CTG) regime is obtained from the Lieb-Liniger model relations are characterized by the same power Evestly at
[7], the Tonks limit: y or y — +o. Thus, for instance, in the
thermodynamic limit at zero temperature, the momentum
52 g distributionn(p) ~ p™2 for p< po [10-13. Nevertheless, for
H = f dx—|a P (x)|?+ =(¥T(x)?(¥(x))?> (2) finite values ofy or v, long-distance correlations are char-
2M 2 acterized by the Luttinger-liquid paramet&r [e.g., n(p)
~ pY2=11 which is nonuniversal13]. Precisely, these non-
when the parametey=Mg/%2p,> 1 [7,8]. The presence of universal features in the two Tonks regimes are what inter-
the densitypo=No/L in this parameter is a distinct feature of ests us here. In this regard, it is important to notice that for
the continuum model. It means that the CTG regime can béhe Bose-Hubbard model there is no exdce., Bethe-
reached either by increasing the interaction coup§ray by = Ansat? solution availablg14], and thereforeanalytical re-
decreasing the density,. By contrast, the LTG regime can sults for nonuniversal properties are scarce. In what follows,
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2.5 T T T T T T USIUF = 1 - 47[1(f0 COSWfO)a (8)
f =06
/ ’ where the Fermi velocityg=Jasin wfy/#. Thus we con-
20 [ i clude that the Tonks regime is more easily reached, as far as
— ; / long distance correlations are concerned, on the lattice than
t f,=05 in the continuum. To see this, consider for instance a half-
—15: 15 F £=04 1 filled lattice (fy=1/2). Using the above formula foy, =10,
K=1.13, whereas for the Lieb-Liniger mod§l3] K=1
,; [ ————t 02 +4/_y:1.4 for _y:y,_zlo (indeed, y=10 seems harder to
‘ achieve experimentally than, =10). The fact that long-
Lo ] distance correlations rapidly become Tonks-like for rela-
tively shallow lattices justifies the fermionization treatment
used in Ref[2].
ey Y Y Y Y Next, we provide further details on the derivation of the

above results. The key point is to notice that for temperatures
T/J T<U and filling less than one particle per site, the Bose-
Hubbard model, Eq(l), can be effectively replaced by the
fermionic model of Eq.(3), Hg. In particular, the replace-
ment can be made for computing tlew-temperaturgpar-
tition function of (1)

FIG. 1. Local two-body correlation functiongg(T,fo)
=fyX(b)2(by)? (times the square ofy =U/J>1) in the lattice
Tonks regime, as a function of temperatlira units of the hopping
J, for several lattice fillingsfo<1. At temperature3 > J, g5(T, fo)
saturates to the value at half filling, which is temperature indepen- _ ~B(Hgy-xN) — ~IB(doth)Hi(0)
dent. This behavior should be contrasted with the monotonic in- z=Tre =Z(Teo a2 ©)
crease at high temperatures of the corresponding function for thghere B=1/T and H,,=H,+H, [cf. Egs.(4) and (5)]. In
continuum(i.e., Lieb-Linige) model: g,(T) = pgX((x))2(¥ (x))?) the second expressionZy=TreAHouN) and (---)

T Refs[9,15]). The dashed li d to the l[dw- : _ B(Ho—
«T (see Refs[9,15)) e dashed lines correspond to the ldow =Trpo(i, B)...], with po(,T)=€ B(Ho “N)/ZO, and Ho=Hg

analytical approximation, Ed15). —Hi,. We can now expand to the the lowest order iry[l
) , and obtair{16], l0g(Z/Zy)=—B(Hix)+O(¥ ). Thus we need
we have summarized our results: In the LTG regime we havci—: compute the thermal averagekdf,, which can be readily
obtained the temperature and filling-fraction dependence o one with the help of Wick's theo,rem The result can be
the on-site two-body correlation functiong5(T,fo) written as follows: '
=f5%(b)?(b,)?). This is the lattice counterpart of the con-
tinuum modelg,(T)=pX (¥ T(x))4(W¥(x))?). Both functions (Hing = 3AIMo[ fo(Fap+ F_p) = (F2, + F2))]
vanish fory, y, — +«, that is, when fermionization is com- AIM[ 2= Fogf ] (10)
plete. Whereag),(T) was computed in Refl15] for all y 22Molo T+1i-1h
values, to the best of our knowledge no results existed fovhere we have denotgdi=0,+1, +
g5(T,fo). For 1 >1 and temperatureE<U, we find
1 .
fi(T) = (Chutm = T2 € Pn(eg(p),2), (1D
L _ .2 fo(T) -3 Mo P
gz(Tyfo) = 27|_ 1- f_ + O(7|_ ), (6)
0 the functionn(e,z)=[zte’+1]™! is the Fermi-Dirac distri-
. - bution for a fermion gas of fugacityz=e"*; ey(p)=
—/at 0
WherEfZ,(T)_<Cm+ZCm> (sge below fo.r d_Eta')_SAt half filling, . =Jcodpa) is the single-particle dispersion. Interestingly, all
the noninteracting fermion system is invariant under particleyo apove results follow from this simple expression, Eq
hole symmetryc,,— (-1)™c', which implies that,(T)=0 at (10). T
all temperatures. Thus we obtain the result tggtT, o We begin by describing the calculation gi(T, o). In an
=1/2)=2v", independent ofl. Results for arbitrary tem-  5n510g0us manner to the continuum cg&@s, this function

g5(T,fo) is not directly related to the photoassociatii) ,
2652 g

rate in the lattice because of the overlap between the Wannier L
orbitals at different sites, it should be experimentally acces- 92(T.fo) = - Wg@ Inz 12
sible by suddenly ramping up the optical lattice before PA is
performed in a time scale shorter than the atom tunneling 0 ((H )
time. After a substantial increase of lattice depth, overlap :2f(‘)2—<i> +O('y[3)_ (13
between the Wannier orbitals should become negligible. U\ Mo

We have obtained the Luttinger-liquid paramet&rand

. _ _ _l . . . .
v, for fillings f,<1 to leading order iny[l By setting A;=N,=7v" in (10), and assuming periodic

boundary condition§17] so thatf,=f_,, one obtains the first
. result given above, Eq6). An alternative expression for
K=1+4y " sinafy/m, ) g5(T,fo) can be obtained after recasting
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fo(T) = fO[ZJ‘Z?(T, 2 - 1], (14) the former this symmetry is broken by the lattice. By inspec-
_ o . tion of Eq.(10) it can be seen that the terms responsible for

where  €(T,2)=f;"[de€’g(e)n(e, 2), being  g(e)  the violation, that is, for the renormalization of away from

=1/myJ* - € the single-particle density of states. The advan+,_ are those those coming froht,. Thus, the renormaliza-
tage of this form Oﬂz(T) is that the Sommerfeld expansion tion of U3 becomes manifest after noticing ﬂ‘[a-tl,nm] 7&0,
can be used to extract the low-temperature behavior: and therefore one expects a nonzero contribution to the co-
4 (TII)? " efficient of 4,j(x,t) (j(x,t) being the long wavelength part of
ﬁm +0(y°), (15 the current densityin the coarse-grained continuity equation
Lol o [18]. This is one notable feature éfg, which is obtained by
andgs(T=0,fo) =2y 1-sin2mfy)/ 2afo). It is worth notic- ~ Projecting on a low-energy subspace whegg<1 [9], in
ing that in the low-filling limitf,— 0 one recovers, from the what may be regarded as a first step of the renormalization
above expression, the asymptotic expression for the Liebdroup. . .
Liniger gas obtained in Ref15] (see alsq9]), provided one To sum up, we have shown that the Tonks regimes in the
makes the following identifications between the parameter§ontinuum and on the lattice are not, strictly speaking,

of both models,M —#2/J& (i.e., the effective magsg €duivalent. The local two-body correlations of the system on
—Ua, po— fola (see[9)). a lattice saturate with increasing temperature while for the

Finally, let us discuss some interesting properties offOnks regime of the continuum model are known to increase
fo(T,2) andf,(T,z) defined in(11), and their implications for mMonotonically[9,15. Furthermore, the parametr charac-
9.(T, o). The first property is a consequence of the particle{€rizing the decay of long-distance correlatios,18, is
hole symmetry of the noninteracting spectrum, which im-More easily tuned to the Tonks limit on the lattice than in the
plies thatfy(T,2)+fo(T,z5)=1, and hence that the fugacity continuum. Finally, our results can also be extended to the
for filling 1-f, is the inverse of the fugacity for fillindo. calculation of corrections to the internal energy and entropy
Likewise, one can show that(T,2)+f,(T,z %) =0, which of the lattice gag19]. However, the distinct behavior of the
implies t,hat in practice it sufﬁcés to co;nputg(T’,z) for two Tpnk; limits is well displayed by the properties consid-
fillings f,<1/2. The other property of these functions ex- ered in this work, and we shall not pursue this task here.
plains the saturation af(T,fo) with increasing temperature  This research has been supported by a grant from the
observed in Fig. 1: forT>J, it can be shown thaz  Gipuzkoako Foru Aldundi&und.

—fo/(1-fy) andf,(T,z) — 0; hence the local two-body cor-

relation functiong,(T,fy) — go(T,fp=1/2) at all f<1. In

the end, this is a consequence of the finite number of degrees APPENDIX: ON THE EQUIVALENCE OF THE FIRST
of freedom available on the lattice. AND SECOND QUANTIZATION APPROACHES

We finally consider the nonuniversal aspects of long- TO FERMIONIZATION

distgnce .correlations, which  are parametrized. by the The connection between fermionization in the wave-
Luttinger-liquid parameterk andvs. In order to obtain the function formalism and its second quantization version,

latter, it is convenient to work with the density and phaseWhiCh leads to effective Hamiltonians like EB), has not

glé(T!fO) = g:_(T = OrfO) +

stiffness[13]: been sufficiently emphasized in previous treatments e.g.,
_ M ga PEq(No) _ Moa,92|50(¢:0) Ref.. [9]. For_ completenesg we include a proof of their
Vit T 9¢? ¢:O, UN= T N2 No. equivalence in this appendix.

In their pioneering 1928 paper on second quantization of
(16) fermion fields, Jordan and Wigng2Q] introduced a transfor-
mation from hard-core bosor{sr Pauli matricesto fermi-

The angle¢ corresponds to a twist in the boundary condi-Ons

tions: Cruw,=€%c, This makesf (T=0)# f,(T=0) for |
#0, and an explicit evaluation at finite size and zero tem-

perature yields b= K by = S K, (A1)
e'?Mo  sin7lf,
W(T=0.¢)= Mg sin(ml/Mg)’ (7 Km=exp[iw2 n|] =T @a-2n). (A2)
I<m I<m

Using thatk=\v;/vy andvg= \m [13,18 and, to leading
order in ¥, Eg=(G|H,G)+(G|H;,JG), where |G) is the  The operatorK,, (often referred to as the Jordan-Wigner
ground state ofH,, along with(16), in the My—« Egs.(7)  string) turns the(hard-corg boson operatob,, into the fer-
and(8) are obtainedthe same expressions were also derivedmionic c,, by attaching to it a phase factor which is deter-
by carefully taking the field-theoretic continuum limit bz~ mined by the number of particles to the left of site The
[19]). trick converts the commutation relations of this at differ-
Before concluding, an important difference between theent sites into the anticommutation relations of t'e In this
Bose-Hubbard and Lieb-Liniger models is worth discussingappendix, it is shown that the same trick yields the celebrated
whereas the latter displays Galilean invariance, which imBose-Fermi mapping due to Girardef1]. Let us consider
plies thatv; must be equal to the Fermi velocity [13], in  the N-particle bra
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{Mo} el vooch 10V = A, - .. X )bE - bl 10y, (AB)
|DY= D DX, ... Xm)Ch oCh [0),  (A3) Mo ™ T TN
1 N 1 N . .
m=1, where the fully antisymmetric prefactoA(Xy,, ... Xm )

= i< f0m m) =TT, Sgr{Xn —Xp ). Introducing the last ex-

where |0) is the empty state. The wave function pression intaA3), the bra can be rewritten as

Dp(Xq, ... ,Xy) is antisymmetric under exchange of any pair

of coordinates as a result of the anticommutation ofdke {Mo}
This may lead us to think that the above bra describes a |®) = E CDB(xml, ,me)bInl---b;N|O>, (A6)
system ofN fermions. However, by noticing tha(;lsz, (=1,
we can inverf(Al) and write the product
where
Cr, "+ G JO) = by Kiy <+ by K [0). (A4)

Pg(Xmy, - - - X)) =A(xml, ,me)CDF(xml, ,me)

Next we shift all the string operators to the right and use that (A7)
K/0)=|0) (sincen,|0)=0 for allI) every time a string opera-

tor hits the empty state. Nevertheless, when commuting & a symmetric function which vanishesx'gfxmj fori#j.
string operator with a creation operator one must take care dh other words®y is the wave function of a system of hard-

a phase factorl(nb;:e“Tﬁ("n‘X"?bTmKn [where #(0)=0 is as- core bosons. If the wave functiabyg is the ground state, then
sumed. After shifting all the string operators to the right, a the above expression reducesd®g@=|®g|. This proves the
factor like this one appears for each pair of particles, andquivalence of the first and second quantization approaches

therefore, to fermionization.
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