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Motivated by recent experiments, we compare the Tonks(i.e., hard-core boson gas) regime achieved in an
optical lattice with the Tonks regime of a one-dimensional Bose gas in the continuum. For the lattice gas, we
compute the local(i.e., on-site) two-body correlations as a function of temperature and the filling of the lattice.
It is found that this function saturates to a constant value with increasing temperature. Furthermore, the
parameter that characterizes the long-distance correlations in the lattice Tonks regime is also obtained, showing
that on the lattice the long-distance correlations enter the Tonks regime more rapidly than in the continuum.
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Strongly interacting gases of bosons in one dimension
have been recently realized using optical lattices[1–3]. By
loading a Bose-Einstein condensate into a deep two-
dimensional optical lattice, an array of one-dimensional
atomic systems(tubes) was created[3,4]. Strong correlations
among the bosons were subsequently induced by turning on
a third lattice along the axis of the tubes, which further de-
creases the ratio of kinetic to interaction energy[1,2]. These
anisotropic optical lattices exhibit a rich phase diagram[1,5].
In particular, by making the third lattice deeper and reducing
the filling of the lattice below one particle per site, the Tonks
regime, where the bosons effectively become hardcore and
behave in many respects like fermions, was reached in the
experiments reported in Ref.[2]. Time of flight measure-
ments of the momentum distribution showed good agreement
with a fermionization approach which accounted for finite
temperature, finite size, and trap effects[2].

The achievement of the Tonks regime in an optical lattice
raises a number of questions about the equivalence of this
system with the continuum Tonks regime. Mathematically
speaking, the two types of Tonks gases correspond to the
strongly interacting limit of two physically different models.
The lattice Tonks gas(LTG) is obtained from the Bose-
Hubbard modelsm=1, . . . ,M0d,

HBH = −
J

2o
m

sbm+1
† bm + H.c.d +

U

2 o
m

sbm
† d2sbmd2 s1d

in the regime wheregL;U /J@1 [6] and the filling of the
lattice f0=N0/M0,1 (N0 being the number of atoms andM0
the number of lattice sites). However, the continuum Tonks
gas(CTG) regime is obtained from the Lieb-Liniger model
[7],

HLL =E
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2
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when the parameterg;Mg/"2r0@1 [7,8]. The presence of
the densityr0=N0/L in this parameter is a distinct feature of
the continuum model. It means that the CTG regime can be
reached either by increasing the interaction couplingg or by
decreasing the density,r0. By contrast, the LTG regime can

be reached by increasing the ratiogL=U /J at any value of
the filling f0. For low temperatures and fillings(i.e., f0!1)
the two Tonks regimes coincide since the Lieb-Liniger model
emerges as a low-density limit of the Bose-Hubbard model
(see, e.g., Ref.[9]). However, in[9] it was shown that, pro-
vided one hasat mostone particle per site(i.e., nmø1) and
U@J, the Bose-Hubbard model can be effectively replaced
by the following interacting fermion model:

HF = −
J

2o
m

scm+1
† cm + H.c.d + H1 + H2, s3d

H1 =
J

2
l1o

m

scm+1
† nmcm−1 + H.c.d, s4d

H2 = − Jl2o
m

nmnm+1. s5d

The couplingsl1=l2=gL
−1=J/U are small, and the fermions

are “almost” noninteracting. In this sense, therefore, one can
speak of “fermionization” of bosons. In this paper, we con-
sider the regime whereg or gL are large, which should be of
interest for current[1–3] and future experiments exploring
these correlated systems.

The physical differences between the Tonks regimes of
the Lieb-Liniger and Bose-Hubbard models can only be ad-
dressed by an explicit calculation of their correlation proper-
ties. These fall into two classes: short distance correlations
are nonuniversal(i.e., model dependent), and therefore are
expected to be different in the LTG and the CTG regimes.
On the other hand, long-distance(or small momentum) cor-
relations are characterized by the same power lawsexactly at
the Tonks limit: g or gL→ +`. Thus, for instance, in the
thermodynamic limit at zero temperature, the momentum
distributionnspd,p−1/2 for p!r0 [10–12]. Nevertheless, for
finite values ofg or gL, long-distance correlations are char-
acterized by the Luttinger-liquid parameterK [e.g., nspd
,p1/2K−1], which is nonuniversal[13]. Precisely, these non-
universal features in the two Tonks regimes are what inter-
ests us here. In this regard, it is important to notice that for
the Bose-Hubbard model there is no exact(i.e., Bethe-
Ansatz) solution available[14], and thereforeanalytical re-
sults for nonuniversal properties are scarce. In what follows,
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we have summarized our results: In the LTG regime we have
obtained the temperature and filling-fraction dependence of
the on-site two-body correlation functiong2

LsT, f0d
= f0

−2ksbm
† d2sbmd2l. This is the lattice counterpart of the con-

tinuum modelg2sTd=r0
−2k(C†sxd)2(Csxd)2l. Both functions

vanish forg ,gL→ +`, that is, when fermionization is com-
plete. Whereasg2sTd was computed in Ref.[15] for all g
values, to the best of our knowledge no results existed for
g2

LsT, f0d. For gL@1 and temperaturesT!U, we find

g2
LsT, f0d = 2gL

−2F1 −
f2sTd

f0
G + OsgL

−3d, s6d

wheref2sTd=kcm+2
† cml (see below for details). At half filling,

the noninteracting fermion system is invariant under particle-
hole symmetry:cm→ s−1dmcm

† , which implies thatf2sTd=0 at
all temperatures. Thus we obtain the result thatg2

LsT, f0

=1/2d=2gL
−2, independent ofT. Results for arbitrary tem-

peratures and several fillings are shown in Fig. 1. Although
g2

LsT, f0d is not directly related to the photoassociation(PA)
rate in the lattice because of the overlap between the Wannier
orbitals at different sites, it should be experimentally acces-
sible by suddenly ramping up the optical lattice before PA is
performed in a time scale shorter than the atom tunneling
time. After a substantial increase of lattice depth, overlap
between the Wannier orbitals should become negligible.

We have obtained the Luttinger-liquid parametersK and
vs for fillings f0,1 to leading order ingL

−1

K . 1 + 4gL
−1 sinpf0/p, s7d

vs/vF . 1 − 4gL
−1sf0 cospf0d, s8d

where the Fermi velocityvF=Jasinpf0/". Thus we con-
clude that the Tonks regime is more easily reached, as far as
long distance correlations are concerned, on the lattice than
in the continuum. To see this, consider for instance a half-
filled lattice sf0=1/2d. Using the above formula forgL=10,
K.1.13, whereas for the Lieb-Liniger model[13] K.1
+4/g=1.4 for g=gL=10 (indeed, g=10 seems harder to
achieve experimentally thangL=10). The fact that long-
distance correlations rapidly become Tonks-like for rela-
tively shallow lattices justifies the fermionization treatment
used in Ref.[2].

Next, we provide further details on the derivation of the
above results. The key point is to notice that for temperatures
T!U and filling less than one particle per site, the Bose-
Hubbard model, Eq.(1), can be effectively replaced by the
fermionic model of Eq.(3), HF. In particular, the replace-
ment can be made for computing the(low-temperature) par-
tition function of (1)

Z = Tr e−bsHBH−mNd = Z0kTe−e0
"bsds/"dHintssdl, s9d

where b=1/T and Hint=H1+H2 [cf. Eqs. (4) and (5)]. In
the second expressionZ0=Tr e−bsH0−mNd and k¯l
=Trfr0sm ,bd. . .g, with r0sm ,Td=e−bsH0−mNd /Z0, and H0=HF

−Hint. We can now expandZ to the the lowest order ingL
−1

and obtain[16], logsZ/Z0d=−bkHintl+OsgL
−2d. Thus we need

to compute the thermal average ofHint, which can be readily
done with the help of Wick’s theorem. The result can be
written as follows:

kHintl = 1
2l1JM0ff0sf+2 + f−2d − sf+1

2 + f−1
2 dg

− l2JM0ff0
2 − f+1f−1g, s10d

where we have denotedsl =0, ±1, ±2d

f lsTd = kcm+l
† cml =

1

M0
o
p

e−iplan„e0spd,z…, s11d

the functionnse ,zd=fz−1ebe+1g−1 is the Fermi-Dirac distri-
bution for a fermion gas of fugacityz;ebm; e0spd=
−J cosspad is the single-particle dispersion. Interestingly, all
the above results follow from this simple expression, Eq.
(10).

We begin by describing the calculation ofg2
LsT, f0d. In an

analogous manner to the continuum case[9,15], this function
can be obtained using the Hellmann-Feynman theorem

g2
LsT, f0d = −

2f0
−2

M0b

]

]U
ln Z s12d

=2f0
−2 ]

]U
S kHintl

M0
D + OsgL

−3d. s13d

By setting l1=l2=gL
−1 in (10), and assuming periodic

boundary conditions[17] so thatf l = f−l, one obtains the first
result given above, Eq.(6). An alternative expression for
g2

LsT, f0d can be obtained after recasting

FIG. 1. Local two-body correlation functiong2
LsT, f0d

= f0
−2ksbm

† d2sbmd2l (times the square ofgL;U /J@1) in the lattice
Tonks regime, as a function of temperatureT in units of the hopping
J, for several lattice fillingsf0,1. At temperaturesT@J, g2

LsT, f0d
saturates to the value at half filling, which is temperature indepen-
dent. This behavior should be contrasted with the monotonic in-
crease at high temperatures of the corresponding function for the
continuum(i.e., Lieb-Liniger) model: g2sTd=r0

−2k(C†sxd)2(Csxd)2l
~T (see Refs.[9,15]). The dashed lines correspond to the low-T
analytical approximation, Eq.(15).
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f2sTd = f0f2J−2e2sT,zd − 1g, s14d

where e2sT,zd= f0
−1edee2gsednse ,zd, being gsed

=1/pÎJ2−e2 the single-particle density of states. The advan-
tage of this form off2sTd is that the Sommerfeld expansion
can be used to extract the low-temperature behavior:

g2
LsT, f0d = gl

LsT = 0,f0d +
4p

3gL
2

sT/Jd2

f0 tanpf0
+ OsgL

−3d, s15d

andg2
LsT=0,f0d=2gL

−2f1−sins2pf0d /2pf0g. It is worth notic-
ing that in the low-filling limit f0→0 one recovers, from the
above expression, the asymptotic expression for the Lieb-
Liniger gas obtained in Ref.[15] (see also[9]), provided one
makes the following identifications between the parameters
of both models,M→"2/Ja2 (i.e., the effective mass), g
→Ua, r0→ f0/a (see[9]).

Finally, let us discuss some interesting properties of
f0sT,zd and f2sT,zd defined in(11), and their implications for
g2sT, f0d. The first property is a consequence of the particle-
hole symmetry of the noninteracting spectrum, which im-
plies that f0sT,zd+ f0sT,z−1d=1, and hence that the fugacity
for filling 1− f0 is the inverse of the fugacity for fillingf0.
Likewise, one can show thatf2sT,zd+ f2sT,z−1d=0, which
implies that in practice it suffices to computef2sT,zd for
fillings f0ø1/2. The other property of these functions ex-
plains the saturation ofg2

LsT, f0d with increasing temperature
observed in Fig. 1: forT@J, it can be shown thatz
→ f0/ s1− f0d and f2sT,zd→0; hence the local two-body cor-
relation functiong2sT, f0d→g2sT, f0=1/2d at all f0,1. In
the end, this is a consequence of the finite number of degrees
of freedom available on the lattice.

We finally consider the nonuniversal aspects of long-
distance correlations, which are parametrized by the
Luttinger-liquid parametersK andvs. In order to obtain the
latter, it is convenient to work with the density and phase
stiffness[13]:

vJ = UpM0a

"

]2E0sN0d
]f2 U

f=0
, vN = UM0a

p"

]2E0sf = 0d
]N2 U

N0

.

s16d

The anglef corresponds to a twist in the boundary condi-
tions: cm+M0

=eifcm. This makesf−lsT=0dÞ f lsT=0d for l
Þ0, and an explicit evaluation at finite size and zero tem-
perature yields

f lsT = 0,fd =
e−ifl/M0

M0

sinpl f 0

sinspl/M0d
. s17d

Using thatK=ÎvJ/vN andvs=ÎvNvJ [13,18] and, to leading
order in gL

−1, E0=kGuH0uGl+kGuHintuGl, where uGl is the
ground state ofH0, along with(16), in the M0→` Eqs.(7)
and(8) are obtained(the same expressions were also derived
by carefully taking the field-theoretic continuum limit ofHF
[19]).

Before concluding, an important difference between the
Bose-Hubbard and Lieb-Liniger models is worth discussing:
whereas the latter displays Galilean invariance, which im-
plies thatvJ must be equal to the Fermi velocityvF [13], in

the former this symmetry is broken by the lattice. By inspec-
tion of Eq. (10) it can be seen that the terms responsible for
the violation, that is, for the renormalization ofvJ away from
vF are those those coming fromH1. Thus, the renormaliza-
tion of vJ becomes manifest after noticing thatfH1,nmgÞ0,
and therefore one expects a nonzero contribution to the co-
efficient of]xjsx,td (jsx,td being the long wavelength part of
the current density) in the coarse-grained continuity equation
[18]. This is one notable feature ofHF, which is obtained by
projecting on a low-energy subspace wherenmø1 [9], in
what may be regarded as a first step of the renormalization
group.

To sum up, we have shown that the Tonks regimes in the
continuum and on the lattice are not, strictly speaking,
equivalent. The local two-body correlations of the system on
a lattice saturate with increasing temperature while for the
Tonks regime of the continuum model are known to increase
monotonically[9,15]. Furthermore, the parameterK, charac-
terizing the decay of long-distance correlations[13,18], is
more easily tuned to the Tonks limit on the lattice than in the
continuum. Finally, our results can also be extended to the
calculation of corrections to the internal energy and entropy
of the lattice gas[19]. However, the distinct behavior of the
two Tonks limits is well displayed by the properties consid-
ered in this work, and we shall not pursue this task here.

This research has been supported by a grant from the
Gipuzkoako Foru AldundiaFund.

APPENDIX: ON THE EQUIVALENCE OF THE FIRST
AND SECOND QUANTIZATION APPROACHES

TO FERMIONIZATION

The connection between fermionization in the wave-
function formalism and its second quantization version,
which leads to effective Hamiltonians like Eq.(3), has not
been sufficiently emphasized in previous treatments e.g.,
Ref. [9]. For completeness, we include a proof of their
equivalence in this appendix.

In their pioneering 1928 paper on second quantization of
fermion fields, Jordan and Wigner[20] introduced a transfor-
mation from hard-core bosons(or Pauli matrices) to fermi-
ons

bm = Kmcm bm
† = cm

† Km, sA1d

Km = expFipo
l,m

nlG = p
l,m

s1 − 2nld. sA2d

The operatorKm (often referred to as the Jordan-Wigner
string) turns the(hard-core) boson operatorbm into the fer-
mionic cm by attaching to it a phase factor which is deter-
mined by the number of particles to the left of sitem. The
trick converts the commutation relations of theb’s at differ-
ent sites into the anticommutation relations of thec’s. In this
appendix, it is shown that the same trick yields the celebrated
Bose-Fermi mapping due to Girardeau[21]. Let us consider
the N-particle bra
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uFl = o
hmi = 1ji=1

N

hM0j

FFsxm1
, . . . ,xmN

dcm1

†
¯ cmN

† u0l, sA3d

where u0l is the empty state. The wave function
FFsx1, . . . ,xNd is antisymmetric under exchange of any pair
of coordinates as a result of the anticommutation of thec’s.
This may lead us to think that the above bra describes a
system ofN fermions. However, by noticing thatKm

−1=Km,
we can invert(A1) and write the product

cm1

†
¯ cmN

† u0l = bm1

† Km1
¯ bmN

† KmN
u0l. sA4d

Next we shift all the string operators to the right and use that
Kmu0l= u0l (sincenlu0l=0 for all l) every time a string opera-
tor hits the empty state. Nevertheless, when commuting a
string operator with a creation operator one must take care of
a phase factor,Knbm

† =eipusxn−xmdbm
† Kn [where us0d=0 is as-

sumed]. After shifting all the string operators to the right, a
factor like this one appears for each pair of particles, and
therefore,

cm1

†
¯ cmN

† u0l = Asxm1
, . . . ,xmN

dbm1

†
¯ bmN

† u0l, sA5d

where the fully antisymmetric prefactorAsxm1
, . . . ,xmN

d
=eipoi, jusxmi

−xmj
d=Pi, j sgnsxmi

−xmj
d. Introducing the last ex-

pression into(A3), the bra can be rewritten as

uFl = o
hmi = 1ji=1

N

hM0j

FBsxm1
, . . . ,xmN

dbm1

†
¯ bmN

† u0l, sA6d

where

FBsxm1
, . . . ,xmN

d = Asxm1
, . . . ,xmN

dFFsxm1
, . . . ,xmN

d

sA7d

is a symmetric function which vanishes ifxmi
=xmj

for i Þ j .
In other words,FB is the wave function of a system of hard-
core bosons. If the wave functionFB is the ground state, then
the above expression reduces toFB= uFFu. This proves the
equivalence of the first and second quantization approaches
to fermionization.
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