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We present a method for creating fields that couple to neutral atoms in the same way that electromagnetic
fields couple to charged particles. We show that this technique opens the door for a range of neutral atom
experiments, including probing the interplay between periodic potentials and quantum Hall effects. Further-
more, we propose, and analyze, seemingly paradoxical geometries which can be engineered through these
techniques. For example, we show how to create a ring of sites where an atom continuously reduces its
potential energy by moving in a clockwise direction.
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Recently, many researchers have expressed interest in us-
ing ultracold alkali atoms as analog quantum computers to
simulate properties of solid state systems[1]. For example,
the leading model of high-temperature superconductivity, the
Hubbard model, can be studied by placing alkali atoms in an
optical lattice—a periodic potential formed by interfering
several laser beams. Experimental realizations of the Hub-
bard model could show whether it captures the phenomena
of high-temperature superconductivity. Similarly, cold gases
provide an ideal setting for studying models of quantum Hall
effects[2] and exotic phase transitions[3].

A major impediment to studying some of these models,
such as those describing quantum Hall effects, is the lack of
fields that couple to the neutral atoms in the same way that
the electric and magnetic fields couple to charged particles.
Here, we show how to create these artificial electromagnetic
fields. Since these fields are only analogies of the real elec-
tric and magnetic fields, they do not obey Maxwell’s equa-
tions. One can therefore create unphysical and counterintui-
tive field configurations that lead to a set of as-yet unstudied
behavior. Among our examples of these seemingly impos-
sible field configurations, we describe an “Escher staircase”
setup where atoms can move around a closed path, continu-
ally reducing their potential energy.

The literature already contains several, somewhat limited,
implementations of electrical and magnetic fields for neutral
atoms. Experimentalists routinely use the Earth’s gravita-
tional field as an analog of a uniform electric field[4]. They
also study systems in noninertial frames: uniform accelera-
tion is equivalent to a constant electric field[5], while circu-
lar motion corresponds to a uniform magnetic field[6]. Re-

cently, Jaksch and Zoller[7] described a method where an
effective magnetic field can be applied to two-state atoms in
an appropriately designed optical lattice in the presence of an
external “electric field.” Our approach is an elaboration of
Jaksch’s, where the two-state atoms are replaced by three-
state atoms. This allows us to overcome the major deficiency
of Jaksch and Zoller’s scheme: we do not need an external
electric field to generate the magnetic field. This improve-
ment comes at the cost of more complicated laser configura-
tions.

As in these prior analogs of electromagnetism, our artifi-
cial fields contain no dynamical degrees of freedom. There-
fore, they neither give rise to analogs of Coulomb interac-
tions between the neutral atoms, nor do they support analogs
of light.

Subsequent to the preparation of this manuscript, another
scheme for generating analogs of electromagnetic fields was
suggested by Sorensen, Demler, and Lukin[8]. That work
uses time-dependent hopping matrix elements along with a
large oscillating quadrupolar potential. Compared to our ap-
proach, Sorensenet al. use a much simpler laser configura-
tion, however there are nontrivial technical issues involved
with the stability of the oscillating potential.

Basic setup.Our approach relies upon creating an optical
lattice with three distinct sets of minima. Each of these
minima trap a different internal state of the neutral atoms.
The internal states will be labeled “A,” “B,” and “C,” and the
minima will be labeled by their location and by the state that
is trapped at that location. For example, Fig. 1(a) shows a
one-dimensional(1D) array labeled as . . .-A1-B2-C3-A4-
B5-C6-A7-B8-. . . . Importantly, this setting breaks parity
symmetry.

FIG. 1. (Color online) Lattices of three types of sites:(a) 1D chain,(b) square,(c) ring, and(d) triangular.
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Looking at this 1D chain, an atom in state A, sitting in site
A4, is immobile. The atom cannot hop to site B5 or C3,
because it would need some mechanism for changing its in-
ternal state. The probability of tunneling by three sites to A1
or A7 is astronomically small.

We turn on hopping between site A4 and B5 by introduc-
ing a laser with the following properties:(i) the laser fre-
quencyvAB is close to the energy difference between the
internal states A and B(i.e., vAB ,EA −EB); (ii ) the laser
polarization is chosen so that the transition from internal
state A to B is allowed;(iii ) the laser cannot induce transi-
tions from states A to C or from B to C, either because the
transition is forbidden, or because the detuning is too great.
One does not have to use a single laser to drive this transition
but can instead use a Raman transition, which involves mul-
tiple lasers and the virtual occupation of one or more inter-
mediate state.

In the presence of this laser field, the atom can explore a
two-state Hilbert space. In the rotating wave approximation,
the time-dependent Schrödinger equation is

i]tScA4

cB5

D = HstdScA4

cB5

D ,

Hstd = S EA − VABe−isvABt+fd

− VABeisvABt+fd EB
D . s1d

The quantum mechanical amplitude for the particle being in
state A(B) on site A4 sB5d is cA4

scB5
d. The energy of the

internal states A/B areEA/B. The Rabi frequencyVAB is pro-
portional to the product of the laser amplitude and the over-
lap between the states trapped in A4 and B5. We takeVAB to
be real, and introduce a phasef, which is related to the
phase of the coupling laser. In particular, if we translated the
entire lattice by some distancer , the phasef would change
by f→f+q ·r , whereq is the wave vector of the coupling
laser[9].

This and future Hamiltonians are more compactly written
in a second quantized notation,

H = EAĉA4

† ĉA4
+ EBĉB5

† ĉB5
− VABfe−isvABt+fdĉA4

† ĉB5

+ eisvABt+fAdĉB5

† ĉA4
g, s2d

where, for example, creation and annihilation operatorsĉA4
†

and ĉA4 add and remove a particle from site A4 in internal

state A. In the noninteracting system, the operatorsĉ obey
the same equations of motion as the wave functionc in (1).
At the single-particle level it does not matter whether we use
bosonic or fermionic commutation relations. Where no con-
fusion will result, we may neglect the letter A, which denotes
the internal state.

We apply time-dependent canonical transformations of

the form ĉ j →eif stdĉ j, ĉ j
†→e−i f stdĉ j

†. As is readily verified
from the equations of motion(1), under this transformation

the Hamiltonian becomesH→H− f8stdĉ j
†ĉ j. In particular we

can construct a time-independent Hamiltonian by transform-
ing into the rotating frame,

ĉA4 → e−isEAt−fdĉA4, s3d

ĉB5
→ e−isEBt+DABdĉB5

, s4d

H = − tsĉ4
†c5 + ĉ5

†c4d + Dc5
†c5, s5d

wheret=VAB andD=vAB −sEA −EBd.
Introducing two more lasers, coupling states B-C, and

C-A with appropriately chosen intensities and detunings, this
same procedure yields the Hamiltonian

H = o
j

f jDsĉ j
†ĉ jd − tsĉ j

†ĉ j+1 + ĉ j+1
† ĉ jdg, s6d

corresponding to a one-dimensional chain of sites in a uni-
form electric field. As is shown below, this same approach
can produce electric fields in higher dimensions. In this case,
momentum transfer from the lasers will generate an effective
magnetic field.

Higher dimensions.In more complicated geometries there
may not be a canonical transformation which leads to a time-
independent Hamiltonian. However, the time dependence
takes a simple form if one transforms

ĉm j j
→ e−iEm j

tĉm j j
, s7d

wherej labels the site located atr j , andm j =A,B,C gives the
internal state that is trapped at that site. The Hamiltonian
then becomes

H = − o
ki j l

tmim j
seiqmim j

·Rij e−iDmim j
tcmi i

† cm j j
+ H.c.d. s8d

The sum includes all nearest-neighbor siteski j l. The internal
state trapped at sitei is mi. The bond position isRij =sr i
+r jd /2. The hopping istmn=Vmn for mÞn, andtmm=t0. The
parametert0 is given by the overlap of the wave functions on
neighboring sites. The wave vector of the laser coupling state
m to n is qmn (so qmm=0). The detuning isDmn=vmn−sEm

−End when mÞn, and Dmm=0. The letters H.c. denote the
Hermitian conjugate of the previous term.

If all of the laser intensities are adjusted so thattmn=t0
for all m, n, then Eq.(8) is formally the equation of motion
of a particle with chargee in a vector potential defined on the
bonds by

e

c
AsRij d · r ij = qmim j

·Rij − Dmim j
t, s9d

wherer ij =r i −r j .
Using this mapping to a vector potential, we can construct

many interesting field configurations. For example, consider
a lattice with the striped geometry shown in Fig. 1(b), where
as one moves in thex̂ direction, one encounters alternating
rows of sites A, B, and C. With this geometry, only thex
component of the vector potential,Ax, will be nonzero. In the
simplest case, where each of the three coupling lasers have
the same wave vectorq and detuningD, the vector potential
is Asr d= x̂sc/eddsq ·r −Dtd, where d is the lattice spacing.
This corresponds to a uniform electric fieldE=−x̂Dc/edand
a uniform magnetic fieldB= x̂Ãqsc/edd. By changing the
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relative angle betweenq and thex̂ axis, one can control the
strength of the magnetic field. Since the recoil momentumq
can be made comparable to the inverse lattice spacing, one
should be able to construct extremely large fields, where flux
through a unit cell of the lattice exceeds the magnetic flux
quantumF0=2pc/e.

If q is aligned with the hopping direction, then the effec-
tive magnetic field vanishes, resulting in an electric field
without a magnetic field.

Applications. Earlier we introduced some interesting
problems that could be addressed by applying effective elec-
tric and magnetic fields to a system of particles on a lattice.
Here we discuss further possibilities.

At moderate values of the effective magnetic field, experi-
ments could explore how the periodic potential affects vortex
structures in a Bose condensate[10]. One could also study
vortex physics near “pairing transitions” where the structure
of vortices change[11].

At much larger fieldssF,F0d Jaksch and Zoller[7] re-
cently discussed the exciting idea of using neutral atoms to
study the fractal energy spectrum that Hofstadter[12] pre-
dicted for noninteracting charged particles on a lattice in a
magnetic field. The spectral gaps would be observable as
plateaus in the density of noninteracting harmonically
trapped fermions. It would be even more exciting to explore
an interacting system in this same regime, and study frac-
tional quantum Hall physics, and the interplay between quan-
tum Hall effects, Mott insulating physics, and this fractal
single-particle spectrum[13]. The simplest such experiment
would use the geometry in Fig. 1(b), and allow the system to
equilibrate with D=0. All single particle observables are
measurable through imaging, while photoassociation pro-
vides access to the short-range pair correlation function[2].
Some transport measurements are possible by detuning the
lasers so thatDÞ0.

Several authors have shown that for filling fractions
1/2,n,6, bosons with short-range interactions in a strong
magnetic field will form nontrivial many-body states[2].
Fermions are more tricky, ass-wave interactions(which
dominate at low temperatures) cannot lead to fractional
quantum Hall effects in fermions. However, resonantly en-
hancedp-wave interactions can lead to such correlated states
[14].

Previous proposals for creating analogs of quantum Hall
states in cold atoms relied upon rotation to provide the ef-
fective vector potential. Such schemes are made difficult by
the need to carefully balance the centripetal force, which
maintains rotation, and the harmonic trapping potential. The
window of rotation speeds for finding strongly correlated
physics falls off with the inverse of the number of particles.
The present approach does not require this delicate balancing
of forces, and therefore allows one to study these effects in a
macroscopic system.

Not only are magnetic fields of interest, but so are large
electric fields. For example, Sachdevet al. [15] have dis-
cussed the intricate Mott-insulator states that are found when
the voltage difference between neighboring wells is compa-
rable to the onsite repulsion. The method presented here is a
powerful tool for studying such states.

Unphysical fields.We once again emphasize that although

A couples to the neutral atoms as if it were a vector potential,
it does not obey Maxwell’s equations. Consequently, one can
engineer seemingly paradoxical geometries. Consider, for in-
stance, the ring of sites illustrated in Fig. 1(c), with all de-
tunings set equal. According to Eq.(9), there is a uniform
electric field pointing along the chain. Thus a particle can
move around the ring, continuously moving to a lower po-
tential energy, returning to the starting point, but(by conser-
vation of energy) having gained a great deal of kinetic en-
ergy. One can repeat the processad infinitum; the maximum
velocity is limited only by umklapp processes. That is, when
the particle’s deBroglie wave vector coincides with the inter-
site distance, the matterwave is Bragg reflected off the lat-
tice, and reverses direction. If the chain was not bent in a
circle, this reflection would lead to the familiar Bloch oscil-
lations. No conservation laws are violated by this continuous
acceleration, as the lasers provide a source of energy and
momentum.

This bizarre situation—where a particle can reduce its po-
tential energy by moving in a closed path—is reminiscent of
the optical illusion in M.C. Escher’s print “Ascending and
Descending,” where a staircase forms a continuously de-
scending closed loop. The quantum mechanical properties of
a particle in such a chain ofN sites are ascertained by noting
that the Hamiltonian, H=−to j=1

N seidtc j
†c j+1+e−idtc j+1

† c jd,
with cN+1;c1, is translationally invariant, and therefore ex-
traordinarily simple in momentum space. In terms of opera-
tors ak=o je

−2pi jk/Nc j /ÎN, the Hamiltonian is diagonal,H
=okEkstdak

†ak. The eigenvaluesEkstd=−2t coss2pk/N+dtd
are time dependent, reflecting the nonequilibrium nature of
the system. The motion of a wave packet is determined by
the instantaneous phase velocity

v =
dN

2p

]Ek

]k
= 2td sins2pk/N + dtd, s10d

which oscillates as a function of time. The factor ofdN/2p,
where d is the intersite spacing, converts the velocity into
physical units. This oscillation is exactly the Bragg diffrac-
tion previously mentioned. During one period of oscillation,
the particle moves around the ring approximately 2t / sNdd
times.

A more complicated geometry with similar paradoxical
properties is illustrated in Fig. 1(d). In this structure, a trian-
gular lattice is formed from three interpenetrating sublattices
with wells of type A, B, and C. Here, a constant detuning
yields a very intricate unphysical electric field configuration:
arrows depict directions in which hopping reduces the poten-
tial energy. Upon traversing alternate plaquettes, a particle
can continuously increase, or decrease its potential energy.
To understand the behavior of a particle in this lattice, one
once again relies upon translational invariance, and intro-
duces operatorsak=orcre

−ik·r, wherek lies in the first Bril-
louin zone(BZ) of the triangular lattice, and the sum is over
all lattice sites. The Hamiltonian is then
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H = − to
r
FeidtSo

j=1

3

cr
†cr+r jD + H.c.G s11d

=− 2tE
BZ

d2k

V
ak

†ako
j=1

3

cossk · r j + dtd. s12d

The lattice generatorshr 1,r 2,r 3j connect nearest-neighbor
sites, and are illustrated by arrows in Fig. 1(d). Only two of
these generators are linearly independentsr 1+r 2+r 3=0d.
The area of the first Brillouin zone isV=8p2/Î3d2, whered
is the lattice spacing. Again, the group velocity of a wave
packet is simply the gradient of the energyEk
=−2to j cossk ·r j +dtd. Of particular note is the fact that at
the zone centersk=0d the group velocity is alway zero. Thus
a stationary packet remains stationary. This result is not sur-
prising, since there is nothing in the geometry that picks out
a direction in which the packet could start to move.

More surprising is the fact that the effective mass, related
to the curvature ofEk is oscillatory atk=0, spending equal
amounts of time positive and negative. When the effective
mass is negative, quantum diffusion acts opposite to its nor-
mal behavior, and wave packets become sharper. Thus local-
ization occurs: the wave packet’s size oscillates periodically,
rather than continually growing. Similarly, if the packet has a

small momentum withuku!2p /d, then the particle does not
simply propagate ballistically, but its velocity oscillates sinu-
soidally aboutv=0, and the particle is trapped near its initial
location.

Physical realization.There are many ways to engineer the
three-state lattices described above. The difficult task is to
produce the confinement and Raman couplings with a small
number of lasers in a geometry which can be easily imple-
mented. A detailed analysis of the various configurations
goes beyond the scope of this paper, and a more comprehen-
sive article is in preparation.

A key idea is that if the internal states are related by
symmetries(e.g., a spin-1 multiplet), then the various traps
can be created by the same lasers, and the(A-B) and (B-C)
Raman transitions can use the same drive. Driving transitions
with microwave or rf fields, rather than lasers, will reduce
the need for optical access[16].

An alternative approach is to note that one can create
analogs of electromagnetic fields even if the sites A, B, and
C, trap atoms in the same state. One can instead rely on a
superlattice structure, where the energies of the three sites
differ by large amounts[17]. Hopping is only possible if a
Raman laser supplies the missing energy; detuning and recoil
give the same effects as in the case with different internal
states.
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