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We experimentally investigate the atom-opticald-kicked harmonic oscillator for the case of nonlinearity due
to collisional interactions present in a Bose-Einstein condensate. A Bose condensate of rubidium atoms tightly
confined in a static harmonic magnetic trap is exposed to a one-dimensional optical standing-wave potential
that is pulsed on periodically. We focus on the quantum antiresonance case for which the classical periodic
behavior is simple and well understood. We show that after a small number of kicks the dynamics are
dominated by dephasing of matter wave interference due to the finite width of the condensate’s initial momen-
tum distribution. In addition, we demonstrate that the nonlinear mean-field interaction in a typical harmonically
confined Bose condensate is not sufficient to give rise to chaotic behavior.
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The d-kicked rotor is an extensively investigated system
in the field of classical chaos theory. During the last decade
great progress has been achieved in understanding quantum
dynamics of a classically chaotic system using atom-optical
techniques and cold atoms. From an experimental point of
view, cold atoms in optical potentials[1–5] provide an ideal
environment to explore quantum dynamics. To date, all ex-
perimental work has focused on linear atomic systems(see,
for example[6–9], and references therein) where the quan-
tum dynamics are stable due to the linearity of the
Schrödinger equation. In stark contrast to the chaotic behav-
ior of classical dynamics, the linear quantum systems exhibit
antiresonance(periodic motion), dynamical localization
(quasiperiodic motion), or resonant dynamics[10,11].

Recently, theoretical investigations have considered how
the nonlinearity due to many-body(collisional) interactions
in a Bose-Einstein condensate(BEC) modifies the behavior
of the atom-optical kicked rotor system, providing a route to
chaotic dynamics. Gardineret al.developed a theoretical for-
malism to treat the one-dimensional nonlinear kicked har-
monic oscillator(a particular manifestation of the generic
d-kicked rotor) using Gross-Pitaevskii and Liouville-type
equations to describe the dynamics of a Bose-Einstein con-
densate, and estimated the growth rate in the number of non-
condensate particles[12]. Zhanget al. investigated the gen-
eralized quantum kicked rotor by considering a periodically
kicked Bose condensate confined in a ring potential for the
case of quantum antiresonance[13]. As opposed to the fa-
miliar periodic behavior exhibited by a corresponding linear
system, they predicted quasiperiodic variation in energy for a
weak-interaction strength and chaotic behavior for strong in-
teractions.

In this work we investigate the nonlineard-kicked har-
monic oscillator by performing experiments on Bose-
Einstein condensates in a harmonic potential. A Bose con-
densate of rubidium atoms tightly confined in a static
harmonic magnetic trap is exposed to a periodically pulsed
one-dimensional optical standing-wave potential. Our focus
is on the particular case of quantum antiresonance for which
the linear behavior is simple and well understood[14]. The

finite width of the initial condensate momentum distribution
is shown to have a profound effect on the dynamics. After a
small number of kicks the behavior is dominated by dephas-
ing of matter wave interference. We present numerical solu-
tions of the Gross-Pitaevskii equation which match the ob-
served behavior and confirm our interpretation.

In the atom-optical kicked harmonic oscillator, the effec-
tive Planck’s constantk- can be adjusted, in a sense, to make
the system “more” or “less” quantum mechanical. At specific
values ofk-—in particular, wherek- is a rational multiple of
2p—quite remarkable phenomena can occur in the form of
so-called quantum resonances and antiresonances[6,15–20].
In this work we focus our attention on the case of thek-

=2p antiresonance at which the energy of a linear system
exhibits simple periodic behavior. This antiresonance re-
quires a particular initial momentum state which evolves in
such a way that during the period of free evolution in be-
tween kicks, the different components of the state vector of
the system experience a phase shift that alternates in sign
from one momentum component to the next, so that the sys-
tem returns identically to its initial state after every second
kick. The underlying physics of linear atom-optical kicking
at antiresonance has already been neatly described, albeit in a
different context[14]. In the short pulse(thin grating) limit
the first kick imprints a sinusoidal phase profile onto the
plane matter wave, thereby populating a number of momen-
tum states(diffraction orders), and the phase evolution of the
nth state is proportional ton2 so that after free evolution
(between kicks) corresponding to half the Talbot time[TT
=h/4Er, where the recoil energyEr =s"kd2/2m,k is the wave
vector andm is the atomic mass] the second pulse cancels
the spatial variation induced by the first. For multiple pulses
this process repeats so that the initial plane-wave state is
reconstructed after every second pulse.

Bose condensate evolution in an optical standing wave, or
lattice, has previously been well described by the Gross-
Pitaevskii equation(GPE) (see, for example[21]), and con-
densate behavior in a kicked harmonic potential can be de-
scribed in this formalism using the one-dimensional GPE
along the direction of the kicking beams,
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where csx,td is the condensate wave function andk
=ErVTtp/" is the classical stochasticity parameter(or kick
strength) for the effective Rabi frequencyV. Here fst−nTd
represents a square pulse, such thatfst−nTd=1 for 0, t
−nT,tp, wheretp is the pulse length. The length scale is the
characteristic harmonic oscillator lengthÎ" /2mvt, and the
temporal scale is the effective trapping frequencyvt along
the axis of the kicking beams. The nonlinear strengthC
=s8m /3d3/2 is calculated such that the one-dimensional
chemical potentialm is equal to the chemical potential of the
three-dimensional condensate, in the Thomas–Fermi ap-
proximation. Optimization techniques developed by Blakie
and Ballagh[21] are used to calculate the condensate ground
state and the GPE is evolved using a Runge-Kutta fourth-
order interaction picture algorithm[22].

The energy of the system is calculated using
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which is evaluated after each kick to make a direct compari-
son with experiment.

Note that in this formalism any noncondensate particles
are not accounted for. Previous theoretical papers[12,13]
have investigated the proliferation of noncondensate par-
ticles, and for our nonlinearity, kicking strength, and number
of kicks, this is predicted to be negligible. Starting with a
pure Bose condensate, we do not observe any formation of
noncondensate particles.

Bose-Einstein condensates with up to 105 87Rb atoms are
created in theF=2,mF=2 hyperfine state with no discernible
thermal component. A description of the BEC apparatus was
given previously[23], but there have been some modifica-
tions. We now use injection-seeded diode lasers to drive the
two magneto-optical traps, and atoms are transferred con-
tinuously between the traps using a focused resonant laser
beam. Condensates are formed in the static harmonic poten-
tial of a quadrupole-Ioffe-configuration trap[24], character-
ized by radial and axial oscillation frequencies ofvr /2p
=164 Hz and vz/2p=14 Hz, respectively. A condensate,
while confined in the magnetic trap, is then exposed to a

pulsed optical standing wave generated by two counterpropa-
gating laser beams with parallel linear polarizations derived
from a single beam which is detuned 1.48 GHz from the
5S1/2,F=2→5P3/2,F8=3 transition. Each beam has an in-
tensity of 1052 W/m2 and intercepts the condensate at an
angle of 27° to the radial direction. A double-pass acoustic-
optic modulator is used in each beam for switching the op-
tical potential on and off. The pulse length is 796 ns, which
is much less than the minimum classical oscillation period of
130 µs, so that the kicking potential is well described as a
thin phase grating[25]. Following the kicks, the momentum
distribution is determined from a time-of-flight absorption
image after a free expansion period of 29 ms, by which time
the momentum components have separated. The energy of
the atomic sample is determined by calculatingsep2dpd /2m,
then dividing by the total number of atoms. The kicking
period is 33.16µs to match the condition for the quantum

antiresonance atk- =8ErT/"vt=2p (corresponding to half the
Talbot time), whereT is the pulse period in units of 1/vt.
The beam detuning and intensity were chosen to give a rela-
tively strong kicking strength while maintaining a negligible
spontaneous emission rates,34 s−1d. Up to 25 kicks were
delivered to the condensate for each experimental run. For
each number of kicks, the energy measurement was repeated
six times, and the mean value is plotted in Fig. 1.

Figure 1 shows an experimental and theoretical plot of
energy versus kick number. The theoretical calculation uses
tp=6.9686310−4, T=0.029, andC=50 in correspondence
with the experimental conditions. The height of the optical
potential has been adjustedsk=8.25d so that the energy after
the first kick is consistent with the experimental value. Ini-
tially, periodic behavior is observed, but after several kicks
the oscillation in the energy of the system damps away to an
average value(to within our experimental uncertainty). The
theoretical points indicate that this average value gradually
increases, but no further significant oscillation is expected.
This steady increase occurs because in the time between
kicks, atoms moving in the harmonic potential gain a small
amount of potential energy.

The damping in the oscillation of the energy is due to
dephasing associated with the finite width of the conden-
sate’s initial momentum distribution. The initial momentum
state is not perfectly reconstructed after each free evolution
period, because different momentum components of the ini-
tial distribution have a slightly different Talbot time(associ-
ated with their slightly different phase evolution). This is
illustrated in Fig. 2. The rate of coupling between momen-
tum states is not uniform across the momentum distribution
of the condensate. The central(zero momentum) region of
the initial condensate momentum distribution couples to the
higher-order momentum states at a slower rate than the non-
zero wings of the condensate wave function. This causes, for
example, the development of the double-peaked structure in
the first-order diffraction components. As time evolves, the
cycling between momentum states for different components
of the initial distribution become progressively out of phase.

This process of dephasing occurs even in the absence of
collisions. Figure 3 illustrates the results of theoretical simu-
lations, showing the energy dynamics with and without in-
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teractions. For the experimental condition ofC=50 [Fig.
3(b)], the behavior is essentially the same as the collisionless
case[Fig. 3(a)], although dephasing occurs on a longer time
scale. This is due to the fact that the initial condensate mo-
mentum width decreases with increasing collisional interac-
tions [26].

After a significant time one might expect a rephasing of
the condensate wave function, leading to quasiperiodic dy-
namics. While we have not observed this, our numerical
simulations indicate that some rephasing is possible for the
collisionless case, but this is highly sensitive to noise and we
predict that rephasing will not occur in the nonlinear regime.

In Fig. 3(c) the nonlinear termC in our calculation is a
factor of 20 times larger than that corresponding to our ex-
periment, and the behavior is no longer dominated by the

damped oscillations. We begin to predict what appears to be
unstable behavior similar to that predicted by Zhanget al.
[13], and this is consistent with our values of kick strength
and nonlinearity. Experimentally, this is attainable with con-
densates of.107 atoms(which is beyond our reach), or by
increasing thes-wave scattering length via a Feshbach reso-
nance[27]. Although Feshbach resonances have not been
observed in the magnetically trapped states of87Rb, and one
would therefore need to use other spin states confined in an
optical dipole trap, this is a particularly appealing method for
controlling the strength of the nonlinearity. Another possibil-
ity for reaching the chaotic regime is by using a much lower
kick strength. We repeated our measurements for a kick
strengthk=4.125 and observed similar features to those pre-
sented in Fig. 1, with the main difference being a smaller
amplitude of the energy oscillations. We estimate that we
would have to reduce our kick strength by a factor of 100 to
enter the chaotic regime predicted by Zhanget al. [13].
While it may seem straightforward to simply further reduce
the intensity of the kicking beams, this reduces the energy of
the system to the point where shot-to-shot variations exceed
the predicted signal. For a kick strength lower thank<4 the
signal to noise is compromised and the energy of our system
becomes immeasurable.

In summary, we experimentally investigated the possibil-
ity of using nonlinear collisional interactions in a typical
Bose-Einstein condensate to observe chaotic dynamics in the
quantum-kicked harmonic oscillator system. We applied a
pulsed, far-detuned, optical standing wave to a rubidium
Bose condensate, and measured the system energy as a func-
tion of kick number for the case of the quantum antireso-

nance condition atk- =2p. We found that, even in the pres-
ence of nonlinear interactions, our system exhibits the well-
known periodic behavior associated with the linear system.
Using numerical solutions to the Gross-Pitaevskii equation,

FIG. 1. Energy plotted vs kick number for the quantum antireso-

nance condition,k- =2p with mean-field interactions. The solid
circles are the measured mean energies and the error bars include
shot-to-shot variation and systematic uncertainty in the calculation
of the energy. The open circles are the corresponding theoretical
values computed using Eq.(2) and the solid line is to guide the eye.

FIG. 2. Momentum distribution vs kick number for the numeri-
cal simulation in Fig. 1

FIG. 3. Numerical simulations of energy vs kick number for the

quantum antiresonance condition,k- =2p. (a) No collisional interac-
tion sC=0d, (b) collisional interaction corresponding to the experi-
ment sC=50d, and(c) strong collisional interactionsC=1000d.
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we showed that observed dephasing of the oscillations is due
to the finite width of the condensate’s initial momentum dis-
tribution. This severely limits the possibility of observing an
extended period of chaotic behavior in the energy of the
system.
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