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We study dynamical decoupling of a qubit from non-Gaussian quantum noise due to discrete sources, as
bistable fluctuators and 1/f noise. We obtain analytic and numerical results for generic operating points. For
very large pulse frequency, where dynamic decoupling compensates decoherence, we found universal behavior.
At intermediate frequencies noise can be compensated or enhanced, depending on the nature of the fluctuators
and on the operating point. Our technique can be applied to a larger class of non-Gaussian environments.
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Controlling the dynamics of a complex quantum system is
at the heart of quantum information[1]. However, in any real
device the computational variables entangle with the envi-
ronment leading to decoherence[2]. Bang-bang(BB) control
techniques have been proposed as a way to achieve an effec-
tive decoupling from the environment[3,4]. They may be
operated by a sequence of strong external pulses separated
by a time Dt [3]. For Dt→0 full decoupling [3,4] of the
unwanted interactions is achieved. The physics in this limit is
a manifestation of the quantum Zeno effect[3,5].

In practiceDt is finite especially when full-power pulses
are used. This imperfect decoupling is still well described by
the Zeno limit if Dt!g−1, the typical time scale of the envi-
ronment[3,4]. If g is large one may argue that BB chops
noise and frequenciesv,1/Dt,g are averaged out. This
optimistic scenario could foresee applications to solid state
coherent devices, where low-frequency noise[6] is the major
problem for quantum state processing[7–9]. Investigation of
this point is one of the topics of this communication, where
we study environments of dissipative quantum bistable fluc-
tuators[7].

Recently, decoupling from classical random telegraph
noise (RTN) was studied in the Zeno limit,Dt!g−1 [10].
Gaussian noise with 1/f spectrum has also been studied[11]
and decoupling for decreasingDt was found. On the other
hand, in echo protocols, details of the structure and of the
dynamics of a solid-state discrete environment[12] may be-
come important if the conditionDt!g−1 is not met.

We consider a qubitfHQ=−s« /2dsz−sD /2dsxg coupled to
an impurity. The Hamiltonian is

H = HQ −
1

2
szÊ + HE + Vstd. s1d

The environment HamiltonianHE=Hd+HT+HB describes
an impurity level occupied by a localized electron,Hd
=«cd

†d, tunneling with amplitudesTk sHT=okTkck
†d+H.c.d

to a fermionic band, described byHB=ok«kck
†ck. The charge

in the impurity is coupled to the qubit,Ê=v d†d. Control is
operated as in Ref.[3], the external fieldVstd being a se-
quence ofp pulses aboutx̂. This model may describe charge
noise due to impurities close to a solid-state qubit
[7,8,14,15]. The characteristic scale of the impurity is the

switching rateg=2pNsecd uTu2 (N is the density of states of
the fermionic banduTku2<uTu2).

This environment is non-Gaussian[6], a key feature to
explain recent observations in Josephson qubits(splitting of
spectroscopic peaks, beats in the coherent oscillations[16])
due to individual impurities close to the device. The ob-
served 1/f noise is due to a set of such impurities[9]. We
find that decoupling of this environment is sensitive to de-
tails of its dynamics. If pulses are not very frequent it shows
a rich variety of behaviors, suggesting that BB may also be
used for spectroscopy.

We operate with instantaneous pulses, which do not
modify the environment, the corresponding evolution opera-
tor beingSP< isx ^ 1E. The evolution operator of the Hamil-
tonian (1) is fSPSg2N, whereS=exps−iHDtdwith Vstd=0 is
the evolution between pulses. Echo corresponds toN=1. The
reduced density matrix(RDM) of the qubit is obtained by
tracing out the environment

rstd = TrEhfSPSg2NWs0dfS†SP
†g2Nj = Etfrs0dg, s2d

whereWstd is the full density matrix andEtf·g is the quantum
map [1] associated with the reduced dynamics starting from
a factorized state,Ws0d=rs0d ^ wE [17].

We may try to approximate Eq.(2) by a Bloch-Redfield
master equation[18]. In this framework the environment re-
mains in equilibrium and the map for the RDM in the firstDt
has the Lindblad formEDtfrs0dg<expsLDtdrs0d. The factor-
ized structure ofWstd is preserved if we apply pulses, so
subsequentDt can be treated in the same way. Aftert
=2NDt we get

rstd < fPeLDtg2Nrs0d, s3d

whereP is the superoperator of the pulses. This approxima-
tion, which is correct for a weakly coupled and fast environ-
ment, yields that BB does not affect the decay of the coher-
ence. Of course, BB decoupling is effective only in situations
where memory effects are paramount, and the trace in Eq.(2)
mustbe taken at the end of the protocol. In these cases we
should go beyond the approximation Eq.(3). The possibility
we explore is to treat part of the environment on the same
footing of the system[7]. We denote withrstd the RDM of
the qubit plus localized level. The system is now described
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by HQ−s1/2dszÊ+Hd and we use the same steps leading to
Eq. (3). The maprst+Dtd=eLDtrstd is evaluated by a master
equation[7], with HT being the interaction andHB the bath.
The RDM of the qubitrQ=Trdfrstdg is obtained by tracing
out the localized levelat the endof the protocol.

We expressrstd in the basisuun
±l= uun±lunl, where unl sn

=0,1d are eigenstates ofd†d and uun±l are the two eigen-
states of HQ−sv /2dnsz, their energy splitting beingVn

=Îs«+nvd2+D2. We denoteual;uu0
+l, ubl;uu0

−l, ucl;uu1
+l

and udl;uu1
−l. In Ref. [7] it was found that the impurity

remains in an unpolarized state, TrQhrstdj=on=0,1pnstdunlknu,
if initially this was the case. This simplifies the dynamics of
ri j : the only nonvanishing entries are the four populations
and the coherencesrabstd and rcdstd (with the conjugates).
Thus, we should diagonalize an 838 submatrix ofL. Using
the representation ofP, this is enough to find the approxi-
mate map Eq.(3) for a BB protocol, at all times.

If D=0, the calculation can be carried out analytically. In
the absence of pulsesfH ,szg=0, the populations of the
qubit do not relax while its coherences are given by
ku0+uTrdfrstdguu0−l=rabstd+rcdstd. This holds true also for
an evennumber of pulses. This symmetry further simplifies
L leading to independent evolutions of populations(sub-
script p) and coherencessfd

eLt ; SeLpt 0

0 eLft D, eLft ; SeGft 0

0 eGf
* tD , s4d

whereLp/f are 434 matrices, whereasGf is a 232 matrix
acting on the vectorrf;srab,rcdd. The pulseP is also di-
agonal in thep-f indexes. In thef subspace it is given by
I ^ sx, which allows one to obtain the map for coherences
srf ,rf* d in an echo procedure

fPeLfDtg2 ; SeGf
* DteGfDt 0

0 eGfDteGf
* Dt
D .

The “diagonal form” implies that the game reduces to the

two-component maprfstd=feGf
*

DteGfDtgNrfs0d. This can be
cast in a convenient form if the map expsGftd found in Refs.
[7] is represented in SUs2d

rfstd = fD/uau2gNe−gNDt+NxsD̂rfs0d. s5d

Here a=fs1−iwd2−2idpeqg−g2g1/2 determines the rates of
the multiexponential reduced dynamics of the qubit, the pa-
rameterg=sV1−V0d /g quantifies non-Gaussianity[7], dpeq

is the equilibrium population difference of the fluctuator, and
w is related to the energy shifts produced by the band. Fi-

nally, DW sDtd;sDx,Dy,Dzd and the quantitiesDisDtd are eas-
ily found from the results in Refs.[7] [e.g., D0sDtd
= uau2ucoshsgaDt /2du2+s1+g2+w2d usinhsgaDt /2du2] and de-

termine DsDtd=fD0− uDW u2g1/2, xsDtd=arctanhsuDW u /D0d, and

sD̂=sW ·DW / uDu.
Equation (5) allows one to discuss the dynamic decou-

pling of a quantum bistable fluctuator. We expect a rich phys-
ics, since this environment has distinctive features depending
critically on g [7]. Fast impuritiessg,1d behave as an

equivalent environment of harmonic oscillators in dephasing
the qubit, whereas forg.1 a different physics emerges,
dominated by memory effects, and decoherence depends
strongly on details of the protocols. We present(Fig. 1) the
decay of the qubit coherencesGNstd=ln u frabstd
+rcdstdg / frabs0d+rcds0dgu in the limit of no back action of
the qubit on the impurity. This is obtained by lettingw=0
[7]. At any fixed t̄=2NDt, uGNst̄du decreases monotonically
when the pulse frequency 1/Dt increases, which shows that
BB effectively suppresses RTN. For large frequencies,
1/Dt@g (or 2N@gt), uGNst̄du shows universal behavior, scal-
ing with g2. On the other hand, for 2N!gt qualitative dif-
ferences in the behavior are apparent forg,1 and g.1.
Notice that for intermediate frequencies 1/Dt&g, the regime
of experimental interest, BB is still able to cancel part of the
noise due to a fast fluctuatorsg,1d. For a slow fluctuator
sg.1d BB cancels the beats[minima in G0std, inset of Fig.
1] in the coherent dynamics[16], but besides this, it is
weakly effective against slow RTN, despite of the semiclas-
sical arguments, because there is not much to cancel. Classi-
cal RTN causes also a systematic phase error which BB does
not cancel[19], but can be compensated otherwise. Notice
that the limit we discuss is the exact result for classical RTN,
but Eq.(5) contains also thequantumdynamics of the fluc-
tuators, including the back action of the qubit. These results
will be presented elsewhere[19].

The physics forDÞ0 is even richer. We study the purity
S=ln TrsrQd2, which gives deviations from unitary dynamics
of the qubit [1]. Efficient decoupling,S=0, corresponds to
localization in a “Zeno subspace”[5], which is a pure state.
We study BB forgeneric tandDt by diagonalizing expsLtd.
The results(Fig. 2) show that for frequent pulses decoupling

FIG. 1. For a fixedt̄=10g−1 we plotGNst̄d /g2 for BB procedures
with N echo pair of pulses. The parameter isg;v /g. N=0 corre-
sponds to free-induction decay(FID) [8,9]. A Gaussian environment
with the same power spectrum would give, for arbitraryg, the curve
here labeled withg=0.1, sinceGNstd~g2 [3]. Inset: GNstd for g
=1.1 for differentDt (lines with dots,gDt=5,2,0.2) are compared
with the FID G0std (thick line) and with results obtained by a sto-
chastic Schrödinger equation(crosses) simulated with a very effi-
cient piecewise deterministic algorithm[2,19]. Simulations are not
accurate at relatively long times and in general they require large
statistics for the process(we used 106 realizations).
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is achieved,S<0. This agrees with the results of Ref.[10]
for a g,1 impurity. However decoupling slower impurities
g.1, requires comparatively largeN. Universal behavior,
S,g2 is again found. Instead, for a smallerN it may happen,
especially forg.1 thatS is not monotonic withN, including
the possibility that the qubit decaysfasterthan in the absence
of pulses[3]. This is reminiscent of theinverseZeno effect
[13], and it is due to the complex coupled dynamics of qubit
and impurity forg.1.

In order to treat 1/f noise we now extend our formalism
to a “multimode” environment. We generalize the results at
D=0 of Ref.[3], to an arbitrary(non-Gaussian) environment.
The Hamiltonian is of the general form Eq.(1). For the evo-
lution between two pulses att1 andt2 we usefH ,szg=0 and
following the steps of Ref.[3] we obtain the evolution
operator at t=2NDt for a BB protocol, S2Nstd
=fe−isHE+1/2szÊdDte−isHE−1/2szÊdDtgN. In the overall BB proce-
duresz is conserved, so we need only off-diagonal entries of
the RDM of the qubit, in thesz basis

rss8
Q std = rss8

Q s0dTrEhS2NstusdwES2N
† stus8dj, s6d

where we assumed factorized initial conditions. Here
S2Nst usd=ksuS2Nstdusl expresses the conditional evolution
of the environment under a well defined sequence ofs
= ±1. The trace in Eq.(6) factorizes if the environment is

made of noninteracting “modes,” ifÊ are additive and if the
initial wE is factorized. If modes are oscillators, one obtains
the result of Ref.[3], which has been applied to aGaussian
environment with 1/f spectral density[11]. This model may
have limitations[7,10] in describing discrete noise sources of
the solid state, so we study a more realistic model, the mul-
timode version of the Hamiltonian Eq.(1), HE→ohHEh and
vd†d→ohvhdh

†dh [7]. Each “mode” is now a single impurity

and we take a distribution~g−1 of the individual switching
rates to produce 1/f noise[6,7].

The contribution of each impurity to the suppression fac-
tor in Eq. (6) is calculated using the map Eq.(2). The decay
of the coherences isGNstd=ohln u frab

shdstd+rcd
shdstdg / frabs0d

+rcds0dgu, where eachri j
shdstd is given by Eq.(5). The results

in Fig. 3 show that frequent pulses(curves with many sym-
bols) suppress decoherence. Under pulsed controlGNstd
changes from~t2 to ~t, i.e., it is described by a rate depend-
ing on Dt, as in the Zeno effect. For noise levels typical of
experiments with charge qubits(Fig. 3) the pulse rate for
substantial recovery is practically independent onv. Thus the
criterion for efficient decoupling proposed in Ref.[20] is not
effective in this regime. The situation may change if a broad
distribution of couplings is considered[12]. The physics is
richer for DÞ0 [19,20] and compensation of 1/f noise is
nonmonotonic for decreasingDt, as for a single impurity.

BB suppression of noise(RTN and 1/f) due to quantum
fluctuators is an example of general situations where a
“structured” environment is involved. Indeed the qubit inter-
acts mainly with the impurity, which is a “quantum filter”
modulating the noise from the band. We treat this filter on
the same footing of the qubit.

Universal behavior in terms of the scaling parameterg for
very frequent pulsessDt!g−1d indicates that when decou-
pling is effective, details of the environment are unimportant.
Instead, in the experimentally relevant case of finiteN sDt
*g−1d, the different physics of slowsg.1d and fastsg,1d
fluctuators manifests itself, and may give rise to decoupling
and/or to enhancement of decoherence. This picture, unex-
pected in the naive description of BB, is reminiscent of the
inverse Zeno effect[13]. The BB scheme we discussed pre-

FIG. 2. The purityS=lnfTrsrQd2g at fixed t̄=8g−1 for protocols
with N echo pair of pulses. The parameter isg=sV1−V0d /g. We
take «=D, v /V=0.2 and start from an eigenstate ofsx. For g=2
(slow fluctuator), S is nonmonotonic withN. Fast fluctuators(g
=0.5 andg=0.1) show a more regular behavior. Inset:Sscales asg2

for N@1. This regime of efficient decoupling is not easily met for
slow fluctuators(g=2 requiresDt&g−1/25).

FIG. 3. BB control of 1/f noise forD=0. The analyticGNstd at
t=2NDt (symbols-lines are guides for the eye) is compared with the
evolution with no pulses(thick solid line). Noise is generated with
Nfl fluctuators with ratesgi distributed from 104 to 1010 Hz. Slower
fluctuators are ineffective[7]. Noise level~v2Nfl is fixedat a value
typical of experiments in charge qubits: it is realized with coupling
v=9.23310q Hz, for q=6 (full triangles), 7 (circles), and 8
(squares), with Nfl =631017–2q scaled accordingly. Points forq=6
coincide with results for Gaussian noise with 1/f power spectrum.
Crosses are stochastic Schrödinger simulations with 105 realizations
of the 1/f process, forq=7.
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vents decoherence but freezes part of the dynamics. More
complicated schemes may also allow one to perform compu-
tation [21]. The rich physics we find suggests that BB may
be used to extract informations on the environment, e.g., for
1/ f noise at otherwise inaccessible frequencies. Results dis-
cussed here are exact for classical RTN and 1/f noise, but
the formulas we presented have a broader validity: we also
studied[19] the back action of the qubit on the fluctuator and

1/ f noise at general bias point, confirming the qualitative
picture of this work. We finally stress that our results apply
to other sources of discrete noise, as flux or critical current
noise in flux qubits.
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