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The Einstein-Podolsky-Rosen paradox and quantum entanglement are at the heart of quantum mechanics.
Here we show that single-pass traveling-wave second-harmonic generation can be used to demonstrate both
entanglement and the paradox with continuous variables that are analogous to the position and momentum of
the original proposal.
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I. INTRODUCTION

The early days of quantum mechanics saw many debates
about the applicability of classical concepts, such as position
and momentum. Two of the main protagonists were Einstein
and Bohr, with Einstein, Podolsky, and Rosen(EPR) publish-
ing a famous paper in 1935[1], setting out what became
known as the Einstein-Podolsky-Rosen paradox, and claim-
ing that quantum mechanics was incomplete. Bohr replied
with a paper arguing that EPR did not establish this incom-
pleteness, but rather showed the inapplicability of classical
descriptions in the quantum domain[2]. Although Bell sug-
gested a set of inequalities that could be violated by quantum
mechanics, but not by local hidden variable theories[3], a
direct and feasible demonstration of the EPR paradox with
continuous variables was first suggested by Reid[4]. The
proposal was for an optical demonstration of the paradox via
quadrature phase amplitudes, using nondegenerate paramet-
ric amplification(also known as the OPA), and was closely
related to the original version, which considered position and
momentum. The essential step in the EPR argument is to
introduce correlated(entangled) states of at least two par-
ticles which persist even when the particles become spatially
separated. According to EPR, depending on which property
of one group of particles that we choose to measure, we can
predict with some certainty the values of physical quantities
of the other group of particles. If these properties are repre-
sented by noncommuting operators(such as position and
momentum, or quadrature amplitudes), we may seemingly
violate the Heisenberg uncertainty principle. The EPR con-
clusion was therefore that the description of physical reality
given by quantum mechanics is not complete.

Quantum optics was one of the first areas of physics
which allowed for simple investigations of some of these
fundamental mysteries and paradoxes of quantum mechanics
[5]. Among the simplest possible quantum optical systems
which can exhibit nonclassical behaviour are traveling-wave
second-harmonic generation(SHG) and parametric down-
conversion. The process of traveling-wave downconversion
has been of special interest because it allows for many ex-
periments concerned with the fundamentals of quantum me-
chanics, among these violations of Bell’s inequalities[6–8]

and the closely related topic of preparation of Einstein-
Podolsky-Rosen states[4,9]. Intracavity second-harmonic
generation with transverse degrees of freedom has also been
suggested as a source of EPR correlations[10]. What we will
demonstrate in this article is that the experimentally simple
system of traveling-wave SHG is also a good candidate for a
demonstration of the EPR paradox.

II. THE SYSTEM AND EQUATIONS OF MOTION

The system of interest couples two electromagnetic fields
via a nonlinear medium(normally a crystal), with a second-
order susceptibility represented byxs2d. The medium is
pumped with a continuous wave laser at a frequencyv1,
which interacts to produce a field at frequencyv2s=2v1d. We
follow the approach of Huttneret al. [11], quantizing the two
interacting fields in terms of the photon fluxes rather than in
terms of energy densities. As stated in Ref.[11], this ap-
proach avoids problems which could arise, especially with
the quantization volume, if we were to work with the normal
Hamiltonian approach. With the appropriate momentum-
space operators, we use the well-known mapping onto sto-
chastic differential equations in the positive-P representation
[12] to calculate the development of the fields as they
traverse the medium. We consider here the case of one di-
mensional propagation, which is valid for the case of colin-
ear pumping.

In this approach, the operator

N̂sz0,vmd ; â†sz0,vmdâsz0,vmd, s1d

for example, is the number operator for photons at frequency
vm which pass through a plane atz=z0 during a chosen time
interval. The bosonic operatorsâ†sz,vmd and âsz,vmd obey
spatial commutation relations(see also Caves and Crouch
[13]), fâsz,vid ,â†sz8 ,v jdg=di jdsz−z8d. This approach allows
us to define the linear free-space momentum operator,

Ĝlszd = o
m

"kmâ†sz,vmdâsz,vmd, s2d

where km=vm/c is the free space wave vector. The above
operator represents the number of photons times their indi-
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vidual momentum, thus giving the total momentum of the
field passing through the plane during the period of time
considered.

Inside the medium, with second order susceptibilityxs2d,
and assuming phase-matching at the central frequencies of
the two fields, the nonlinear momentum operator is

Ĝnlszd = i"kfâ2sz,v1db̂†sz,v2d − â†2sz,v1db̂sz,v2dg, s3d

where

k =
xs2d

2e0c
F v1v2

nsv1dnsv2dG1/2

, s4d

with the nsv jd being the refractive indices at each frequency
ande0 andc having their usual meanings.

As shown by Shen[14], we can write an equation of
motion for the density matrix of the system,

i"
] rszd

] z
= frszd,Ĝnlszdg, s5d

which allows for the calculation of steady-state propagation,
exactly as required for continuous pumping. Physically, the
density matrix,rszd, describes an ensemble of steady-state
systems which has all the statistical properties of the fields at
point z. Equation(5) provides a full description of the inter-
acting fields, but is extremely difficult to solve directly. A
commonly used method is to linearize the equations around
the semiclassical mean values of the operators, and solve the
resulting c-number equations. This has previously been
shown to have limited validity for this system, giving erro-
neous results after a certain interaction length[15,16], but
does allow for analytical expressions, which we can compare
with the full solutions.

We proceed by mapping the master equation onto a set of
stochastic differential equations via the Fokker-Planck equa-
tion for the positive-P pseudoprobability distribution of the
system. Following the usual methods[17], and making the

correspondencessâ,â†,b̂,b̂†d↔ sa ,a+,b ,b+d, we find

da

dz
= ka+b + Îkb h1szd,

da+

dz
= kab+ + Îkb+ h2szd,

db

dz
= −

k

2
a2,

db+

dz
= −

k

2
a+2, s6d

where thehi are real Gaussian noise terms with the correla-
tions hiszdh jsz8d=di jdsz−z8d. As always with the positive-P,
the pairs of field variables(a and a+ for example) are not
complex conjugate except in the mean of a large number of
integrated trajectories.

III. QUANTUM CORRELATIONS

A demonstration of the EPR paradox using a nondegener-
ate OPA has been outlined by Reid[4], and an entanglement
criterion for optical quadratures has been outlined by
Dechoumet al. [18] which follows from inseparabilty crite-
ria developed by Duanet al. [19]. We will briefly outline
these criteria here and then apply them to our system. In this

approach the quadrature operatorsX̂a,b and Ŷa,b, where X̂a

= â+ â† andŶa=−isâ− â†d, take the place of the position and
momentum considered in the original treatment[1]. Note
that these quadratures have the same mathematical properties
as the canonical position and momentum operators for the
harmonic oscillator, but correspond physically to the real and
imaginary parts of the electromagnetic field, not its position
and momentum. As shown by Reid, we can make linear es-
timates of the quadrature variances, which are minimized to
give the inferred variances,

VinfsX̂ad = VsX̂ad −
fVsX̂a,X̂bdg2

VsX̂bd
,

VinfsŶad = VsŶad −
fVsŶa,Ŷbdg2

VsŶbd
,

VinfsX̂bd = VsX̂bd −
fVsX̂a,X̂bdg2

VsX̂ad
,

VinfsŶbd = VsŶbd −
fVsŶa,Ŷbdg2

VsŶad
, s7d

whereVsA,Bd=kABl−kAlkBl. As the X̂ and Ŷ operators for
the same field do not commute, the products of the variances

obey a Heisenberg uncertainty relation, withVsX̂dVsŶdù1.
Hence we find a demonstration of the EPR paradox when-
ever

VinfsX̂dVinfsŶd ø 1. s8d

Entanglement between the modes can be shown using the
criterion of Duanet al. [19], based on the inseparability of

the density matrix. Defining the combined quadraturesX̂−

=X̂a−X̂b and Ŷ+=Ŷa+Ŷb, entanglement is guaranteed pro-
vided that

VsX̂−d + VsŶ+d , 4. s9d

With the quadrature definitions used here, one of these vari-
ances individually being less than two signifies two-mode

squeezing of the field. For theX̂− quadrature, this was previ-
ously demonstrated by Olsen and Horowicz, using a normal-
ization such that a value of less than one signified two-mode
squeezing[20].

IV. RESULTS

We begin by giving linearized results for the criteria de-
fined in the previous section. Assuming a real input coherent
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state,as0d, with bs0d=0, we follow the approach used by Ou
[21], and also in Ref.[20]. We define a dimensionless inter-
action length,j= uas0dukz/Î2, and fluctuation operators such

that dX̂=X̂−kX̂l anddŶ=Ŷ−kŶl, so that, for example, in the

linearized approximation,VsX̂d=d 2X̂. The solutions for these
fluctuation operators are known[21],

dX̂asjd = s1 − j tanhjddX̂as0dsechj

+ Î2dX̂bs0dtanhj sechj,

dX̂bsjd = −
1
Î2

stanhj + j sech2jddX̂as0d + dX̂bs0dsech2j,

dŶasjd = dŶas0dsechj +
1
Î2

ssinh j + j sechjddŶbs0d,

dŶbsjd = − Î2dŶas0dtanhj + s1 − j tanhjddŶbs0d,

s10d

along with the input correlations,

kdX̂is0ddX̂js0dl = kdŶis0ddŶjs0dl = di j ,

kdX̂is0ddŶjs0dl = kdŶis0ddX̂js0dl = 0,

kdX̂is0ddŶis0dl + kdŶis0ddX̂is0dl = 0, s11d

which provides all the information needed to calculate the
desired correlations.

To express the inferred variances in their linearized form,
we use

VlinsX̂ad = s1 − j tanhjd2 sech2j + 2 tanh2j sech2j,

VlinsX̂bd =
1

2
stanhj + j sech2jd2 + sech4j,

VlinsŶad = sech2j +
1

2
ssinh j + j sechjd2,

VlinsŶbd = 2 tanh2j + s1 − j tanhjd2,

VlinsX̂a,X̂bd = −
1
Î2

s1 − j tanhjdstanhj + j sech2jdsechj

+ Î2 tanhj sech2j,

VlinsŶa,Ŷbd = − Î2 tanhj sechj +
1
Î2

s1 − j tanhjdssinh j

+ j sechjd. s12d

Noting that VsX̂−d=VsX̂ad+VsX̂bd−2VsX̂a,X̂bd, and that

VsŶ+d=VsŶad+VsŶbd+2VsŶa,Ŷbd, we have all that we need
to calculate the linearized expressions necessary to demon-

strate entanglement and the EPR paradox. However, these
expressions get rather bulky and are not very enlightening,
so we will plot them for comparison with the results of sto-
chastic integration of the full positive-P equations.

The positive-P representation equations(6) were inte-
grated numerically using a three-step predictor corrector
method, for parametersas0d=103, bs0d=0 and k=0.01,
with the results being averaged over 1.0293107 trajectories.

In Fig. 1, we show the results forVsX̂ad andVsX̂bd, demon-
strating that the linearized approximation loses its validity
after a certain interaction length. Note that results for these
quantities have been shown previously, in Refs.[15,16,20].
The variances in the twoŶ quadratures always exhibit excess
noise forj.0.

In Fig. 2 we compare the positive-P representation pre-
dictions for the inferred variances with the linearized predic-
tions. Again the two methods agree up to a certain interaction
length, but the linearized results predict a monotonically in-
creasing inferred violation of the uncertainty principle, while
the stochastic prediction shows that the violation eventually

disappears. As with the increase ofVsX̂bd shown in Fig. 1,
this begins to happen at the point where downconversion of
the harmonic field begins to be important. As this is initially
a spontaneous process, the nonclassical correlations are de-
graded, with the EPR criteria being more sensitive than the
individual variances.

Finally, in Fig. 3, we examine entanglement between the
modes, using the criterion of Duanet al. In this case the
stochastic and linearized predictions are identical over the
interaction range shown. We find that there is a range of

interaction strength over whichVsX̂−d+VsŶ+d,4, thus meet-
ing the criterion. None of the other quadrature combinations
investigated gave values of less than 4. We note here that the

result forVsX̂−d, has been given previously, in Ref.[20], but
was not investigated in the context of entanglement. What is

FIG. 1. Variances in theX̂a and X̂b quadratures. The solid lines
are the stochastic predictions and the dashed lines are the linearized
solutions. All quantities plotted in this and subsequent graphs are
dimensionless.
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unusual here by comparison with the OPA is that onlyVsX̂−d
demonstrates squeezing, withVsŶ+d always being anti-
squeezed. In the OPA, both these variances are predicted to
be equal and both go to zero in the undepleted pump ap-
proximation. Entanglement is found in the present case only

because the squeezing inX̂− is stronger than the antisqueez-

ing in Ŷ+. What is also interesting here is that, comparing
Fig. 2 and Fig. 3, we see that the EPR paradox is predicted
over a greater range of interaction strength than is entangle-
ment.

V. CONCLUSION

In conclusion, we have performed a fully quantum analy-
sis of continuous-wave single-pass second-harmonic genera-
tion and compared it with a semiclassical linearized analysis.
These analyses show that this simple system may be a good
candidate for experimental demonstrations of both quantum
entanglement and the Einstein-Podolsky-Rosen paradox with
continuous variables. Suggestions as to how these correla-
tions may be measured are given in the literature, for ex-
ample, in Ref.[4]. We believe that a demonstration should be
possible with lasers and nonlinear crystals which are pres-
ently available.
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FIG. 2. Products of the inferred variances, giving a clear dem-
onstration of the EPR paradox. The irregular solid line is

VinfsX̂adVinfsŶad, the dash-dotted line isVinfsX̂bdVinfsŶbd, and the
smooth solid line shows the linearized predictions for these two
products. The irregularity in the stochastic predictions is the result
of averaging over a finite number of stochastic trajectories.

FIG. 3. Variances of the combined quadratures,X̂− and Ŷ+, and
the sum of these. The line at a value of 4 is a guide to the eye.
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