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We propose a scheme for realizing the Deutsch-Jozsa algorithm in cavity QED. The scheme is based on the
resonant interaction of atoms with a cavity mode. The required experimental techniques are within the scope of
what can be obtained in the microwave cavity QED setup. The experimental implementation of the scheme
would be an important step toward more complex quantum computation in cavity QED.
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The Deutsch-Jozsa algorithm is a simple quantum algo-
rithm, designed to distinguish between the constant and bal-
anced functions[1,2] on 2n inputs. The value of the function
fsxd for each input is either 0 or 1. For the constant function,
the function values are constant for all 2n inputs. On the
other hand, for the balanced function, the function values are
equal to 1 for half of all the possible inputs, and 0 for the
other half. At worst, a classical algorithm will need 2n/2+1
queries to unambiguously determine whether the function is
constant or balanced since there may be 2n/2 0’s before fi-
nally a 1 appears, showing that the function is balanced.

In contrast, the Deutsch-Jozsa algorithm requires only one
query. We consider here the two-qubit Deutsch-Jozsa algo-
rithm. The input query qubit is initially prepared in the su-
perposition states1/Î2dsu0li + u1lid, while the auxiliary work-
ing qubit is prepared in the states1/Î2dsu0l j − u1l jd. The state
of the whole system is

1

2
su0li + u1lidsu0l j − u1l jd. s1d

Next, the functionfsxd is characterized by the unitary map-
ping transformationUf,

ux,yl → ux,y % fsxdl, s2d

where% indicates addition modulo 2. This unitary mapping
function is specific to each of the functionsfsxd, resulting in

1

2
fs− 1d fs0du0li + s− 1d fs1du1ligsu0l j − u1l jd. s3d

There are four possible transformations:(i) Uf,1 correspond-
ing to fs0d= fs1d=0; (ii ) Uf,2 corresponding tofs0d= fs1d
=1; (iii ) Uf,3 corresponding tofs0d=0 and fs1d=1; (iv) Uf,4

corresponding tofs0d=1 and fs1d=0. Then a Hadamard
transformation is performed on the query qubit,

u0li →
1
Î2

su0li + u1lid, s4d

u1li →
1
Î2

su0li − u1lid.

After the transformation, the state of qubiti becomesufs0d
% fs1dl. If fsxd is constant, the state of qubiti becomesu0li.
On the other hand, iffsxd is balanced, the state of qubiti
becomesu1li. Therefore, a measurement on qubiti yields the
desired information whether the functionfsxd is constant or
balanced, while the classical algorithm requires two queries.
The Deutsch-Jozsa algorithm has been experimentally real-
ized in the nuclear magnetic resonance system[3,4], ion trap
[5], and the linear optical system[6].

On the other hand, cavity QED is another qualified system
for realizing a quantum processor. A two-qubit phase gate
has been experimentally realized with resonant interaction of
a two-level atom with a cavity mode[7]. Schemes have been
proposed for realizing a quantum discrete Fourier transform
[8] and a Grover search algorithm in cavity QED[9]. How-
ever, none of these schemes have been experimentally real-
ized. In this paper, we propose a scheme for implementing
the Deutsch-Jozsa algorithm in cavity QED. As far as we
know, this is the first scheme for the implementation of this
algorithm in cavity QED. Our scheme only involves two
atoms sequentially interacting with a resonant cavity mode.
The resonant interaction of two or three atoms with a cavity
mode has been demonstrated in recent experiments[7,10].
Therefore, our scheme might be experimentally realizable
with presently available techniques. The experimental imple-
mentation of the scheme would be an important step toward
a more complex quantum algorithm with cavity QED tech-
niques, serving to illustrate the power of cavity QED for
quantum-information processing. The aim of the following
section is to show that the four operationsUf,1, Uf,2, Uf,3,
and Uf,4 of Eq. (2) can be realized with a cavity QED sys-
tem.

Here we use a ladder-type three-level atom, whose states
are denoted byuil, ugl, and uel. The transition frequency be-
tween the statesugl and uel is resonant with the cavity fre-
quency, while the transition frequency between the statesugl
and uil is highly detuned from the cavity frequency and thus
the stateuil is not affected during the atom-cavity interaction.
The quantum information is stored in the statesugl and uil.
Assume that the atom acts as the query qubit and the cavity
acts as the auxiliary working qubit.*Email address: sbzheng@pub5.fz.fj.cn
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We should first prepare the cavity in the required state. In
order to do so, we send a preparing atom through the single-
mode cavity. Assume the atom is initially in the excited state
uela and the cavity mode is in the vacuum stateu0lc. In the
interaction picture, the atom-cavity interaction is described
by the Jaynes-Cummings Hamiltonian,

HI = igsa†S− − aS+d, s5d

wherea† anda are the creation and annihilation operators for
the cavity field,S+ and S− are the raising and lowering op-
erators for the atom, andg is the atom-field coupling con-
stant. After an interaction timet, the state of the system is
given by

ucl = cossgtduelau0lc + sinsgtduglau1lc, s6d

wheret is the interaction time. With the choicet=p /2g, the
cavity is prepared in the one-photon stateu1lc with the atom
left in the stateugla.

Then we send a second atom(the query qubit) through the
cavity. This atom is initially in the state

uflb =
1
Î2

suglb + uilbd. s7d

The system combined by the second atom and the cavity is in
the state

uFl1 =
1

2
suglb + uilbdu1lc. s8d

We can rewrite this state as

uFl1 =
1

2
su0li + u1lidsu0l j ,r − u1l j ,rd, s9d

where

u0li = uilb,

u1li = uglb,

s10d

u0l j ,r =
1
Î2

su0lc + u1lcd,

u1l j ,r =
1
Î2

su0lc − u1lcd.

Therefore, with respect to the rotated basis statesu0l j ,r and
u1l j ,r, the stateuFl1 has the same form as Eq.(1).

For the casefs0d= fs1d=0, the atom is tuned far off-
resonant with the cavity mode through the Stark effect and
thus the atom-cavity evolution is freezing. Then the system
remains in the stateuFl1.

For the casefs0d= fs1d=1, the atom interacts with the
cavity mode for a timet8, leading to

uilbu1lc → uilbu1lc,

uglbu1lc → cosgt8uglbu1lc − singt8uelbu0lc. s11d

With the choicet8=p /g, we have

uilbu1lc → uilbu1lc,

s12d
uglbu1lc → − uglbu1lc.

In the rotated basis, this corresponds to a controlled-NOT

gate,

u0liu0l j ,r → u0liu0l j ,r ,

u0liu1l j ,r → u0liu1l j ,r ,

s13d
u1liu0l j ,r → u1liu1l j ,r ,

u1liu1l j ,r → u1liu0l j ,r .

Next, we perform the single-qubit transformation on the
atom,

u0li → u1li, u1li → − u0li . s14d

This transformation can be achieved by using ap-Ramsey
pulse. Then we repeat the controlled-NOT operation and per-
form the transformation

u0li → − u1li, u1li → u0li . s15d

This transformation can be achieved by using another
p-Ramsey pulse with a phase differencep relative to the
first Ramsey pulse. This leads to

uFl2 =
1

2
su0li + u1lidsu0 % 1l j ,r − u1 % 1l j ,rd

=
1

2
s− u0li − u1lidsu0l j ,r − u1l j ,rd. s16d

For the case fs0d=0 and fs1d=1, we perform the
controlled-NOT operation of Eq.(13). Then the atom-cavity
system evolves to

uFl3 =
1

2
fu0lisu0l j ,r − u1l j ,rd + u1lisu0 % 1l j ,r − u1 % 1l j ,rdg

=
1

2
su0li − u1lidsu0l j ,r − u1l j ,rd. s17d

For the casefs0d=1 and fs1d=0, we first perform the
single-qubit transformation of Eq.(14). Then we perform the
controlled-NOT operation of Eq.(13). Finally we perform the
single-qubit transformation of Eq.(15). This leads to

uFl4 =
1

2
fu0lisu0 % 1l j ,r − u1 % 1l j ,rd + u1lisu0l j ,r − u1l j ,rdg

=
1

2
s− u0li + u1lidsu0l j ,r − u1l j ,rd. s18d

In this way we obtain the unitary mapping transformation
Uf of Eq. (2), which leads to

1

2
fs− 1d fs0du0li + s− 1d fs1du1lidsu0l j ,r − u1l j ,rd. s19d

After the Hadamard transformation on the atom, iffsxd is
constant, the state of the atom becomesu0li. If fsxd is bal-
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anced, the state of the atom becomesu1li. Thus, a single
measurement of the atomic state is sufficient to determine
whether the functionfsxd is constant or balanced.

Finally we briefly address the experimental feasibility of
the proposed scheme. For the Rydberg atoms with principal
quantum numbers 50 and 51, the radiative time isTr =3
310−2 s, and the coupling constant isg=2p325 kHz
[7,10,11]. Thus the interaction time of the atom with the
cavity field is 2p /g=4.0310−5 s. Then the time required to
complete the procedure can be assumed to be 4.0310−4 s,
much shorter thanTr. In recent experiments, the decay time
of the cavity wasTc.1.0310−3 s [7,10,11], longer than the

required time. Therefore, based on cavity QED techniques
presently available, the proposed scheme might be realizable.
The experimental implementation of the scheme may serve
to be an intermediate step for more complex quantum-
information processing in cavity QED.
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