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We investigate the evolution of a quantum system under the influence of sequential measurements. The
measurement scheme distinguishes whether or not the system is in a specified stateufnl at thenth step, where
ufnl varies withn. Dark evolution corresponds to the situation when all measurements give negative results. We
show that dark evolution is unitary in the continuous measurement limit. We derive the effective Hamiltonian,
and indicate howufnl controls quantum state transport.
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I. INTRODUCTION

The influence of measurements on quantum systems has
been an important subject since the discovery of quantum
mechanics. One of the most intriguing measurement-induced
phenomena is the quantum Zeno effect(QZE), in which the
time evolution of a system may be frozen under very fre-
quent observations of the initial state[1–3]. The QZE is un-
derstood as a consequence of the projection postulate and the
quadratic behavior of the survival probability at short times.
Experimental observations of the QZE in atomic systems
have been reported[4,5]. Recently, Facchiet al.analyzed the
Zeno problem with a more general approach[6,7]. They in-
dicated that quantum evolution can occur in a restricted Hil-
bert space(Zeno subspace) defined by measurement projec-
tion operators. Such a Zeno subspace serves as a basis of
useful applications, such as quantum state engineering[8]
and decoherence control[9,10].

The QZE has been discussed mainly in situations where
the same state or observable is frequently monitored. Since
the corresponding measurement projection operators are con-
stant in time, the underlying Zeno subspace is stationary. A
natural extension is the inclusion of time-varying observa-
tions[7,11]. This involves sequential measurements such that
different states are monitored at different times. Such a time-
dependent problem has been studied in a two-level system
[11]. Although it should be expected that time-varying pro-
jections would lead to interesting behavior[12], the detailed
dynamics has not been fully explored.

In this paper we investigate this problem in anN-level
system(Nù3 in general). The system is subjected to a pre-
scribed sequence of measurements, such that thenth mea-
surement detects whether the system is in the stateufnl or
not. ufnl changes withn, and so the Zeno subspace is time
dependent. The measuring apparatus is designed such that it
can interact withufnl only at thenth step. Each measurement
simply gives a “yes” or “no” answer, and it does not provide
any further information about the system. An interesting
question is how the system evolves if all measurements give
negativeresults, i.e., “no” for alln. This corresponds to what
we will call dark evolution in this paper. Such an evolution is
driven by measurements, and it occurs even if the Hamil-
tonian of the measured system is zero.

Early examples of negative result experiments were dis-
cussed by Renninger[13] and Dicke [14], who indicated

possible modifications of the measured system if the detector
does not detect anything. Since the state of the detector is not
affected by the measured system, negative result experiments
are sometimes known as interaction-free measurements[15].
In this regard, the measurement scheme that we will examine
is a form of interaction-free measurement generalized to
time-dependent situations. In order to determine the quantum
dynamics, we will present a Hamiltonian formalism of the
problem. In particular, we will show that dark evolution is
unitary and it is governed by an effective Schrödinger equa-
tion in the frequent measurement limit. Some of the main
features of quantum state transport will be discussed.

II. DARK EVOLUTION

Let uCnl be the state of the system immediately after the
nth measurement. The initial stateuC0l is prepared such that
it is orthogonal touf1l. If any step in the measurement yields
a “yes” answer, we have to reset the system to the initial
condition and restart the experiment. This ensures dark evo-
lution in a single run, and hence the system state remains
pure, assuming that decoherence effects are negligible.

Dark evolution is described by the relations"=1d

uCnl = s1 − ufnlkfnude−iHtuCn−1l, s1d

whereH is the Hamiltonian(assumed time independent) of
the unmeasured system, andt is the time interval between
measurements. AfterM measurements, the system state is
given by

uCMl = PMe−iHtPM−1e
−iHt · · ·P2e

−iHtP1e
−iHtuC0l s2d

where Pn=1−ufnlkfnu is the projection operator. Note that
uCMl in Eq. (2) has not been normalized. It is understood that
ukCM uCMlu2 corresponds to the probability of realizing a run
of the experiment involvingM measurements with negative
results.

At time t=nt, we write uCstdl= uCnl and ufstdl= ufnl.
Assuming ufstdl and its derivatives are continuous, Eq.(1)
gives: uCst+tdl− uCstdl=fPst+tde−iHt−1guCstdl=fPstd
+ Ṗstdt− itPstdH−1guCstdl+Ost2d, where Ṗstd=dPstd /dt is
the time derivative of the projection operator. In the frequent
measurement limitt→0, we have
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i
d

dt
uCstdl = fPstdHPstd + iṖstdguCstdl, s3d

where the identityPstd uCstdl= uCstdl has been employed.
We remark that there are subtle relations between pulsed
observations and continuous observations in realistic systems
[11]. Here thet→0 limit is taken for idealized situations.
However, we will show that dark evolution exists in more
general situations(Sec. III), and projection measurements are
not crucial.

Eqation(3) describes the system evolution under the ini-
tial condition kfs0d uCs0dl=0. It is easy to show that

dkf uCl /dt=−kf u ḟlkf uCl, and sokfstd uCstdl=0 because of
the initial condition. ThereforeuCstdl remains orthogonal to
ufstdl at any later time. With this result, Eq.(3) further gives

kCstd uĊstdl+kĊstd uCstdl=0. This shows that the norm

kCstduCstdl = 1 s4d

is preserved, i.e., dark evolution is unitary in the frequent
measurement limit.

A. Effective Hamiltonians

To learn how the system evolves for a givenufstdl, it is
useful to cast Eq.(3) in the form of a Schrödinger equation,

i
duCl

dt
= HDuCl, s5d

whereHD (D refers to dark evolution) is an effective Hamil-
tonian. We point out that Eq.(3) is not a Schrödinger equa-

tion because theiṖstd term is not Hermitian. This problem
can be overcome by making use of the fact thatkfstd uCstdl
=0 shown above. We can add any termuXlkfstdu (whereuXl is
arbitrary) inside the brackets on the right side of Eq.(3)
without changing the evolution ofuCl. By choosing uXl
=2i u ḟstdl, we obtain the effective Hamiltonian

HDstd = PstdHPstd + ifu ḟstdlkfstdu − ufstdlk ḟstdug, s6d

which is controlled byufstdl.
The specification ofufstdl can be made from the unitary

operator that generates the motion ofufstdl. We assume that
ufstdl=e−iKtufs0dl, whereK is a time-independent Hermitian
operator. To see the effects ofK, we go to a comoving frame
in which ufstdl is stationary. This corresponds to a unitary

transformation uC̃stdl=eiKtuCstdl. The corresponding

Schrödinger equation readsi uC̃˙ stdl=H̃DstduC̃stdl, where the

transformed effective HamiltonianH̃D is given by

H̃Dstd = Ps0dseiKtHe−iKt − KdPs0d. s7d

This relation indicates the explicit role ofK in the effective
Hamiltonian. In deriving Eq.(7), we have made use of the

relation kfs0d uC̃stdl=0.

B. Formal solutions

The formal solution ofuCstdl is given by

uCstdl = e−iKtTexpF− iE
0

t

dt8H̃Dst8dGuCs0dl, s8d

whereT is the time ordering operator. Further simplification

can be made ifK and H commute. In this caseH̃D=Ps0d
3sH−KdPs0d is time independent, Eq.(8) becomes

uCstdl = e−iKte−iH̃DtuCs0dl. s9d

Note that K and H̃D do not commute with each other in
general, we may need to solve the eigenvalue problem

H̃Duukl = vkuukl s10d

in order to obtain the explicit form ofuCstdl. The general
solution can then be expressed in the expansion

uCstdl = o
k=1

N−1

cke
−ivktuvkstdl, s11d

where uvkstdl;e−iKtuukl and the coefficientsck are deter-
mined by the initial state.

Equation(11) reveals the basic structure of the solution
when fK ,Hg=0. Initially, huvks0dlj corresponds to the set of

eigenvectors ofH̃D. As time increases, eachuvkstdl evolves
unitarily according toe−iKt, the same operator that generates
the evolution ofufstdl. Therefore, alluvkstdl remain orthogo-
nal to ufstdl. These eigenvectors are treated as a natural set of
(time-evolving) basis vectors of the system. A remarkable
feature is the emergence of “new” eigen-frequenciesvk as-
sociated with these time-varying basis vectors. These fre-
quencies are eigenvalues of neitherH nor K.

We illustrate the intricate coupling betweenvk and ufstdl
in a three-level system withH=0. Let ufstdl be a coherent
superposition: ufstdl=a1e

−iV1tuk1l+a2e
−iV2tuk2l+a3e

−iV3tuk3l,
whereV j and ukjl s j =1,2,3d are the eigenvalues and eigen-

vectors ofK. In this case,H̃D=Ps0dKPs0d is a 232 matrix;
the calculation of its two eigenvaluesv± gives v±
=sj±Îj2−4hd /2, where j=V1+V2+V3− ua1u2V1− ua2u2V2

− ua3u2V3 and h= ua1u2V2V3+ ua2u2V1V3+ ua3u2V1V2. We see
that v± depend onaj andV j nontrivially. The situations can
become more complicated for higher-dimensional systems.

As a general remark, we note that ifK has commensurate
eigenvalues thenufstdl is cyclic with a certain periodT. This
meanse−iKT=1 and hence

uCsTdl = o
k=1

N−1

cke
−ivkTuvks0dl s12d

according to Eq.(11). SinceK andH̃D generally do not share
the same spectrum, we havee−ivkTÞ1. Therefore the system
in general does not return to the initial state for a cyclic
ufstdl.

C. Quantum state transport

For the purpose of quantum state transport, a relevant
problem is to find anufstdl such that the system evolves in a
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prescribed function of time. Such an inverse problem has a
simple solution. It follows from Eq.(3) that HuCstdl
− i uĊstdl andufstdl must be parallel. This impliesufstdl in the
form

ufstdl = N ffHuCstdl − i uĊstdlg, s13d

whereN f is a factor that can be time dependent. This factor
is determined by the normalization conditionkfstd u fstdl=1,
which gives

N f
−2 = kĊstduĊstdl + kCstduH2uCstdl. s14d

Equation(13) indicates how the measurement stateufstdl is
designed in order to steer the system state to evolve in a
specified way. However, it is important to remark thatuCstdl
cannot be arbitrary becausekCstd u fstdl=0 must be satisfied.
A direct calculation of the inner productkCstd u fstdl in Eq.
(13) leads to the condition

ikCstduĊstdl = kCstduHuCstdl. s15d

This is a fundamental restriction that alluCstdl must obey in
dark evolution.

Let us discussH=0 systems that highlight the pure influ-
ence of time-varying projective measurements. Physical ex-
amples ofH=0 systems may be found in the degenerate
Zeeman levels of an atom, andufstdl corresponds to a coher-
ent superposition of these levels. ForH=0, Eq.(15) implies

kCstd uĊstdl=0, which corresponds to the condition ofpar-
allel transport. It means thatuCst+dtdl and uCstdl share the
same quantum phase to first order indt, i.e., the local phase
change argfkCstd uCst+dtdlg<0. However, as the system
evolves, there is an overall phase accumulated by the system.
Such an accumulated phase is purely geometrical under the
parallel transport condition[16].

For H=0 systems, Eq. (13) indicates that ufstdl
=N fuĊstdl. To provide an explicit example, supposeuCstdl is
prescribed by

uCstdl = o
j=1

N

Îpje
−in j tu jl, s16d

where pj and n j are real constants so thato j=1
N pjn j =0 is

satisfied for the parallel transport condition. The required
ufstdl is given by

ufstdl = N fo
j=1

N

Îpjn je
−in j tu jl. s17d

We note that the possibility of steering ansH=0d system
into an arbitrary state via suitably designed continuous mea-
surements was noticed by von Neumann many years ago[1].
This is usually understood in “bright” measurement configu-
rations, i.e., “yes” detection answers leading to a complete
state reduction[17]. In contrast, our approach exploits the
dark Zeno subspace from which the detector cannot extract
any information(except for two-level systems in which dark
and bright measurements are equivalent). Finally, we remark
that our mechanism of transporting quantum states should be

distinguished from adiabatic passage[18], a technique that is
commonly employed for state preparation. Here dark evolu-
tion is guided by projections onto a Zeno subspace, and adia-
batic changes of energy eigenstates are not necessarily re-
quired.

III. DISCUSSION AND SUMMARY

Our formulation so far is based on state projections trig-
gered by measurements. In essence, dark evolution is due to
the existence of a time-varying stateufstdl that the system
cannot access. As long asufstdl can be “simulated” in the
system, dark evolution will occurwithout involving any
measurements. One possible mechanism is to shift the en-
ergy of ufstdl by a large amount relative to the energies of all
other states. Because of energy constraint, a system is for-
bidden to reachufstdl, if the initial state is orthogonal to
ufs0dl.

To elaborate the idea, let us consider a system with a
model Hamiltonian

H = Eufstdlkfstdu. s18d

By writing the system state vectorucsstdl as ucsstdl= uCstdl
+astdufstdl, where uCstdl is orthogonal to ufstdl, the

Schrödinger equationHucsl= i uċsl gives

uĊl + ȧufl + au ḟl = − iaEufl s19d

andastd obeys the equationiȧ=sE− ik ḟ u flda− ikf uĊl. When

E is sufficiently large such thatE@ kf uĊl ,kf u ḟl, we have

ȧstd<0 and astd< ikfstd uĊstdl /E as an adiabatic solution
(where terms with fast oscillatory phases are neglected). This
allows us to recover Eq.(3) (H=0 case) from Eq. (19) by

keeping the leading terms and usingkfstd uĊstdl
=−k ḟstd uCstdl. The idea of applying a large coupling term to
generate Zeno dynamics was suggested in Ref. 10. The
above discussion provides a generalization in time-varying
situations. In particular, we indicate the required conditions
on the large parameterE and the speed ofufstdl.

To summarize, we show how a nonconstant sequence of
projections would force a measured system to evolve. In par-
ticular, we introduce the notion of dark evolution caused by
negative result measurements in the context of the QZE. By
varying ufstdl with time, dark evolution enables quantum
state transport under certain basic constraints. Since the state
of the detector is unaffected, quantum coherence of the mea-
sured system is preserved in the Zeno subspace. Our study
provides a Hamiltonian formalism to determine the quantum
dynamics in the continuous measurement limit.
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