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Dark evolution in time-varying Zeno subspace
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We investigate the evolution of a quantum system under the influence of sequential measurements. The
measurement scheme distinguishes whether or not the system is in a specifi¢il)statthenth step, where
|f.) varies withn. Dark evolution corresponds to the situation when all measurements give negative results. We
show that dark evolution is unitary in the continuous measurement limit. We derive the effective Hamiltonian,
and indicate howf,) controls quantum state transport.
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I. INTRODUCTION possible modifications of the measured system if the detector

The influence of measurements on quantum systems h&9€s not detect anything. Since the state of the detector is not
been an important subject since the discovery of quantur@ifected by the measured system, negative result experiments
mechanics. One of the most intriguing measurement-induce@® sometimes known as interaction-free measurenfigbls
phenomena is the quantum Zeno effé@ZE), in which the In this regard, the measurement scheme that we will examine
time evolution of a system may be frozen under very fre-is a form of interaction-free measurement generalized to
guent observations of the initial statt-3]. The QZE is un- time-dependent situations. In order to determine the quantum
derstood as a consequence of the projection postulate and tHgnamics, we will present a Hamiltonian formalism of the
quadratic behavior of the survival probability at short times.problem. In particular, we will show that dark evolution is
Experimental observations of the QZE in atomic systemginitary and it is governed by an effective Schrodinger equa-
have been reportdd,5]. Recently, Facchét al. analyzed the tion in the frequent measurement limit. Some of the main
Zeno problem with a more general approd6t¥]. They in-  features of quantum state transport will be discussed.
dicated that quantum evolution can occur in a restricted Hil-

bert spacgZeno subspagedefined by measurement projec- Il. DARK EVOLUTION

tion operators. Such a Zeno subspace serves as a basis of

useful applications, such as quantum state enginedBhg Let |7, be the state of the system immediately after the
and decoherence contrf,10]. nth measurement. The initial stgté,) is prepared such that

The QZE has been discussed mainly in situations wheré is orthogonal tdf,). If any step in the measurement yields
the same state or observable is frequently monitored. Sinca “yes” answer, we have to reset the system to the initial
the corresponding measurement projection operators are coeendition and restart the experiment. This ensures dark evo-
stant in time, the underlying Zeno subspace is stationary. Aution in a single run, and hence the system state remains
natural extension is the inclusion of time-varying observa{ure, assuming that decoherence effects are negligible.
tions[7,11]. This involves sequential measurements such that Dark evolution is described by the relatiofi=1)
different states are monitored at different times. Such a time- _
dependent problem has been studied in a two-level system (W) = (L= [fXfDe™ Wy, (1)

[11]. Although it should be expected that time-varying pro- ) — L
jections would lead to interesting behavijd?], the detailed WhereH is the Hamiltonian@@ssumed time independgruf
dynamics has not been fully explored. the unmeasured system, amds the time interval between

In this paper we investigate this problem in hHevel measurements. AfteM measurements, the system state is

system(N=3 in general. The system is subjected to a pre- 91V€n by
scribed sequence of measurements, such thanhtthenea- _ iy it e it
surement detects whether the system is in the sfgteor (W) = Pue™ Py 7 - PP W) (2)

not. |f,) changes witm, and so the Zeno subspace is timevv_here P,=1-|f,)f,| is the projection operator. Note that

dependent. The measuring apparatus is designed such thal ; : .
can interact witHf,) only at thenth step. Each measurement HIM) In Eq.(2) has not been normalized. Itis understood that

¢ : s ST G ¢ (¥ W w|? corresponds to the probability of realizing a run
simply gives a "yes" or "no” answer, and it does not provide of the experiment involvind measurements with negative
any further information about the system. An interesting P 9

question is how the system evolves if all measurements givEeSUltS'

negativeresults, i.e., “no” for alln. This corresponds to what A At t!meft=nr, ;V? m:jntg |qf.(t)>:|xp”> anq [f(0)=Ifw.
we will call dark evolution in this paper. Such an evolution is ssuming|f(t)) and its derivatives are continuous, Hd)

driven by measurements, and it occurs even if the Hamil9'V€S: [W(t+7) - [W (D) =[P(t+ne™ = 1][¥(1)=[P()
tonian of the measured system is zero. +P(t) r—i7P(t)H-1]|W(t))+O(7?), where P(t)=dP(t)/dt is

Early examples of negative result experiments were disthe time derivative of the projection operator. In the frequent
cussed by Renningdrl3] and Dicke[14], who indicated measurement limit— 0, we have
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d : . vt
id—tI‘I’(t)>=[P(t)HP(t) +iP®IW (), 3 I‘I’(t)>=e"KtTeXp[-iJ dt’HD(t’)]I‘I’(O)% (8)

0

where the identityP(t)[ W (t))=[¥(t)) has been employed. \yhereT's the time ordering operator. Further simplification
We remark that there are subtle relations between pulsed, | po made ik and H commute. In this casgiDzP(O)

observations and continuous observations in realistic syste - S
[11]. Here ther— 0 limit is taken for idealized situations. nQ(H K)P(0) is time independent, Eq8) becomes

However, we will show that dark evolution exists in more |\P(t))=e‘iKte“ﬁDt|\If(0)) 9)
general situationgSec. Ill), and projection measurements are '
not crucial. _Note thatk and Hp do not commute with each other in

tial condition (f(0)|¥(0))=0. It is easy to show that B
d(f| W)/ dt=—(f| f)(f| W), and so(f(t)|¥(t))=0 because of Hplu = ayfu (10)
the initial conditior_1. Thergforé_klf(t)) remains orthogonal 10 in order to obtain the explicit form of’(t)). The general
[f(t)) aft any IaFer time. With this result, E) further gives  gq ution can then be expressed in the expansion
(P(1)| (1)) +(¥(t)|¥(t))=0. This shows that the norm No1

WOIPD) =1 (4) W (1) = k21 e K1), (11)
is preserved, i.e., dark evolution is unitary in the frequent y -
me%surement limit. y g where |vk(t)>E_e_ '_Kt|uk> and the coefficients, are deter-

mined by the initial state.

A. Effective Hamiltonians Equation(11) reveals the basic structure of the solution

To learn how the system evolves for a giviitt)), it is vv_hen[K,H]:O. Initially, {|v(0))} corresponds to the set of

useful to cast Eq3) in the form of a Schrodinger equation, €igenvectors oHp. As time increases, eadhy(t)) evolves
| unitarily according tee™ !, the same operator that generates
dv)

| = Ho W) 5) the evolution of|f(t)). Therefore, allv,(t)) remain orthogo-
gt~ P nal to|f(t)). These eigenvectors are treated as a natural set of
- . . time-evolving basis vectors of the system. A remarkable
whereHp (D refers to dark evolutionis an effective Hamil- ( 9 y

ian. W ; hat Eq3) i Schrodi feature is the emergence of “new” eigen-frequencigsas-
tonian. We point out that Eq3) is nota Schrodinger equa-  giated with these time-varying basis vectors. These fre-

tion because thé&>(t) term is not Hermitian. This problem guencies are eigenvalues of neittv&nor K.
can be overcome by making use of the fact ttfét) | W (t)) We illustrate the intricate coupling between and |[f(t))
=0 shown above. We can add any teixf(t)| (where|X)is  in a three-level system withi=0. Let|f(t)) be a coherent
arbitrary) inside the brackets on the right side of E&)  superposition: |f(t))=a;e71Yk,)+a,e7 2! k,) +age™ 3 ky),
without changing the evolution of¥). By choosing|X)  whereQ; and|k;) (j=1,2,3 are the eigenvalues and eigen-
=2ilf(1)), we obtain the effective Hamiltonian vectors ofK. In this caseHp=P(0)KP(0) is a 2x 2 matrix;
L . the calculation of its two eigenvalues, gives w,
Hp(t) = P(OHP() +i[[fO)XFO)] = [fOXFO[],  (6) =(£+\8-47)12, where £=Q,+Q,+ 05— |a,20;-|a,2,
which is controlled bylf(1)). ~[ag*Qs and 7=ay* 0505 +(2520; Qs + |3 20,0, We see
The specification off(t)) can be made from the unitary that@. depend ore; and{); nontrivially. The situations can
operator that generates the motion|if)). We assume that become more complicated for higher-dimensional systems.
[f(t))=e7Kf(0)), whereK is a time-independent Hermitian . As a general remark, we note thakifhas commensurate
operator. To see the effects l§f we go to a comoving frame elgenva_liuKis thetf(t)) is cyclic with a certain period. This
in which [f(t)) is stationary. This corresponds to a unitary meanse™™'=1 and hence

transformation |[W(t))=éX{W(t)). The corresponding N ;
o . e ~ [W(T) = 2 ce ' |oy(0)) (12
Schrédinger equation readsV (t))=Hp(t)[W(t)), where the 1

transformed effective HamiltoniaH is given b . . ~
DiSg Y according to Eq(11). SinceK andHy generally do not share

F'D(t) = P(0)(€XtHe ! - K)P(0). 7) the same spectrum, we hagé«’ # 1. Therefore the system
in general does not return to the initial state for a cyclic
This relation indicates the explicit role &f in the effective |f(1)).
Hamiltonian. In deriving Eq(7), we have made use of the
relation (f(0)| ¥ (t))=0.
C. Quantum state transport

B. Formal solutions For the purpose of quantum state transport, a relevant

The formal solution of W'(t)) is given by problem is to find anf(t)) such that the system evolves in a
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prescribed function of time. Such an inverse problem has distinguished from adiabatic passgdé], a technique that is
simple solution. It follows from Eq.(3) that H|W(t)) commonly employed for state preparation. Here dark evolu-

—i|W(t)) and|f(t)) must be parallel. This implieg(t)) in the  tion is guided by projections onto a Zeno subspace, and adia-

form batic changes of energy eigenstates are not necessarily re-
. quired.
() = N{{HIW (1)) = i[¥(1)], (13
whereA; is a factor that can be time dependent. This factor I1l. DISCUSSION AND SUMMARY
is determined by the normalization conditi¢fi(t)|f(t))=1,
which gives Our formulation so far is based on state projections trig-
o gered by measurements. In essence, dark evolution is due to
N2= (PP (1) + (P (1) HAW (1)), (14)  the existence of a time-varying staét)) that the system

cannot access. As long 4ft)) can be “simulated” in the
system, dark evolution will occuwithout involving any

. L fheasurements. One possible mechanism is to shift the en-
specified way. However, it is important to remark thitt)) ergy of|f(t)) by a large amount relative to the energies of all

cannot be arbitrary becau@(tﬂf(t)):o must be satisfied.  oiher states. Because of energy constraint, a system is for-
A direct calculation of the inner produ¢t(t)|f(t)) in EQ.  pidden to reacHf(t)), if the initial state is orthogonal to
(13) leads to the condition |£(0)).

i<1[f(t)|\i'(t)>=<\If(t)|H|\If(t)>. (15) moLZIeILZ?r?irI?;ﬁi;rrze idea, let us consider a system with a

Equation(13) indicates how the measurement stHte)) is
designed in order to steer the system state to evolve in

g;;i |esvzl1;utir:)dna.tmental restriction that &lf(t)) must obey in H = ElfOXF)]. (19
Let us discus$i=0 systems that highlight the pure influ- By writing the system state vectdw(t)) as|wd(t))=| (1))

ence of time-varying projective measurements. Physical exz 4(1)|f(t)), where |¥(t)) is orthogonal to [f(t)), the

amples ofH=0 systems may be found in the degenerateS hrédi tioh| S>:.|-S> .

Zeeman levels of an atom, affdt)) corresponds to a coher- chrodinger equatiohlijy =ljis) gives

ent superposition of these levels. For0, Eq.(15) implies |\i’> +offy + am = —iaE[f) (19)

(P(t)|W(t))=0, which corresponds to the condition pér- ) ]

allel transport It means thatW(t+&t)) and|W(t)) share the anda(t) obeys the equatiorv=(E—-i(f|f))a—i(f|¥). When

same quantum phase to first orderdni.e., the local phase E is sufficiently large such thaE> (f|W),(f|f), we have

change arffw(t)|(t+&))]~0. However, as the system a(t)=0 and a(t)zi(f(t)W(t))/E as an adiabatic solution

evolves, there is an overall ph?se accumulated by the syste where terms with fast oscillatory phases are neglgcidus
Such an accumulated phase is purely geometrical under t

parallel transport conditiofil6]. eflows us to recover. Eq3) (H=0 caseg from Eq. (19 by
For H=0 systems, Eq.(13) indicates that|f(t)) keeping the leading terms and usingf(t)[¥ (1)

:Nf|q,(t)>_ To provide an explicit example, suppdge(t)) is :—<f(t) | W(t)). The idea of applying a large coupling term to
prescribed by generate Zeno dynamics was suggested in Ref. 10. The
N above discussion provides a generalization in time-varying
_ vt situations. In particular, we indicate the required conditions
(1) = ng vpe g (16) on the large parameté& and the speed df(t)).

_ To summarize, we show how a nonconstant sequence of
where p; and »; are real constants so th_éﬁ\':l pi»=0is  projections would force a measured system to evolve. In par-
satisfied for the parallel transport condition. The requiredicular, we introduce the notion of dark evolution caused by

|f(1)) is given by negative result measurements in the context of the QZE. By
N varying |f(t)) with time, dark evolution enables quantum
f(t) = N} > \““'Pj e i j). (17)  state transport under certain basic constraints. Since the state
=1 of the detector is unaffected, quantum coherence of the mea-

sured system is preserved in the Zeno subspace. Our study

, We note' that the pos'S|b|I|.ty of steerlng (aH:O). system provides a Hamiltonian formalism to determine the quantum
into an arbitrary state via suitably designed continuous Me3q4ynamics in the continuous measurement limit.

surements was noticed by von Neumann many yeargHgo

This is usually understood in “bright” measurement configu-

rations, i.e., “yes” detection answers leading to a complete ACKNOWLEDGEMENTS
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