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The interaction of nonrelativistic matter with the quantized electromagnetic field is investigated in the
classical limit of large photon numbers. Quantization of both matter, say an atom, and the field results in a
time-independent Schrédinger equat{@tSE). However, for very strong fieldguantum mechanically, large
photon numbensthis is impractical to solve. The standard approach then is simply to replace the quantized
field by a classical field to give a time-dependent Schrédinger equ@iidS8E) for the atom alone. Here we
show how this TDSE can be derived from the TISE for atom plus field, illustrating at each stage the approxi-
mations that are necessary to treat the field classically. An important difficulty at the semiclassical stage is a
breakdown of the approximation at classical turning points. We show how the use of coherent field states can
circumvent this problem. In the limit that the field can be treated classically, time emerges from the Maxwell
equations and a TDSE for the atom alone results.
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I. INTRODUCTION energy greatly exceeds atomic transition energies. This con-
dition is necessary, since in the approximation of the TDSE,
The development of lasers has reached the stage wheggergy is not conserved. Rather, the beam is considered to
the field strengths and the pulse lengtlastosecondsare  have a fixed energy which in zeroth order is unchanged by
approaching those attainable with heavy-ion beams. Indeeghe interaction, i.e., there is no back coupling of the atom on
the similarity between particle and laser beams in their actiothe beam.
on matter is being emphasized increasingly. In the first year Since Mott's work, the transition from an exact descrip-
of quantum mechanics it was not known how to quantize dion of a particle beam interacting with a quantum system via
particle beam or the electromagnetic field. Hence inthe TISE to the approximate description of a classical beam
Schrédinger’s 1926 papégf] on the interaction of an atom Via the TDSE has been studied in great detail and precise
with light, the electromagnetic field was treated as an exterconditions have been given for the validity of each step of
nal classical field coupled to the atom, i.e., in this first appli-the reductior{6]. Quite generally, it has been shown recently
cation of the time-dependent Schrodinger equatkDSE) it how t_he full TI_SE for a quantum system interacting with a
was recognized that the time-dependence arises from clasguantized environment reduces to the TDSE for the system
cal equationgthe Maxwell equationsand in this sense the " the presence of a qlassmal environment, in the limit that
TDSE is a mixed classical-quantum equation. Similarly, inthe energy of the environment is large on a quantum scale

ihe famous Eor, Heisenberg, and Jordan pgeboh an 1) THie detvllon was gen n detal for the partil bear
external (_alectromagnetlc field and an externaparticle .sketched out. The aim of the present paper is to give this

rivation of the TDSE for laser-matter interactions in detail
by enumerating the conditions that must be obtained in order
9% treat the electromagnetie.m) field classically. The ex-
tension to quantized fields is nontrivial since plainly the
treatment of the field involves oscillatory motion. Then the
emiclassical approximation breaks down at turning points
and the derivation given in Reff7] is invalid. Here we show
by use of coherent states that, nevertheless, a continuous

) . - i classical time variable can be defined. In the Appendix it is
by the time-independent Schrodinger equatitse) with a gy explicitly that the conditions for validity enumerated

quan;ized _beam reduces to the p_roblem_of_ a TDSE with & e saisfied in the limit of large photon numbers by treating
classical, time-dependent beam, in the limit that the bearg . Jaynes-CummingSC) model[9] as an example.

In 1927 Dirac showed how the electromagnetic fieldrfor
photons can be quantized in the occupation number represen-
*Electronic address: braun@tqd1.physik.uni-freiburg.de tation [8]. When coupled to a quantum system, say an atom,
TPermanent address. the field-atom system obeys a TISE in which energy is ex-

(Maxwell's or Newton’s equations, respectivglyalid when
the corresponding energy can be regarded as infinitely lar
compared with that of the atom.

In the case of a particle beam, Born’s collision thef8y
showed how the beam could be quantized, in the simple
approximation as a plane wave. Already by 1931, following
work by Frame, Brinkmann, and Kramge and, above all,
Mott [5], it was known that the collision problem described
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changed between field and atom but total energy is consponding to field energies much greater than atomic transi-
served. For fields of few photons, e.g., in cavity QED experi-tion energies, is given in the text and in more detail for the
ments, it is practical to solve the TISE and this procedure isimple JC model in the Appendix. We begin by considering
exact. However, clearly this is not feasible for very high-the time-independent problem of a quantum system, with a
power, short-pulse lasers involving extremely large numbergiamiltonian Hg(p,X), interacting with a boson field with
of photons. Then the laser field is treated classically, the fieltHamiltonianH(P, Q) via a couplingH,(x,Q), to give a total
strength is considered as fixed, and energy is not conservegamiltonian
in the interaction with the atom.

Below we present a derivation of the TDSE for the atom H =Hsg(p,x) + He(P,Q) + H,(x,Q). (1)

in a time-dependent classical field and emphasise the apierex, Q are position operators aqg P the corresponding

proximations necessary at each stage of the reduction. A k&omentum operators. The boson field will be taken as a sum
step along the way is the “single-channel approximation” forgyer field modes with Hamiltonian

the full quantum state of field and atom, which amounts, in a

certain sense, to an approximate dlsentangl_emgnt of the field He(P,Q) = > %(p§+ wEQE) (2)
state from the state of the atom. Then the limit is taken that k

the field energy becomes large enough that the field can be

treated classically and also large enough that the classic

state of the field is impervious to changes in the state of the 9

quantum system. In fact, it was shoWr that not the clas- Py=- 'ﬁﬁ- 3
sical but only the semiclassical approximation for beam par- K

ticles is necessary to derive the TDSE from the full TISE.It is more usual in quantum optigd0] to write the Hamil-
Here the same will be shown to be true in the case of photonian in terms of annihilation and creation operators,
tons. However, as mentioned above, since the classical limit

in the photon case is that of oscillatory motion, a more care- =% ecici+ >, Ek<alak+ l) » giijiTCj(aI +ay),
ful treatment of the semiclassical approximation is required. i k ijk

Hence we discuss in some detail the problem of the semi- ()
classical limit in the vicinity of turning points. The latter

are points of zero velocit@(t)=0 of the position variable Where the coupling constangg are proportional to the di-
Q(t). An approach based on a position representation of th0le matrix elementéd;| -l ¢;). Here the|¢;) are eigen-
degree of freedom whose classical limit is to be taken break¥ectors ofHs with eigenenergies;, and we denote the po-
down at turning points. Away from turning points, the posi- larization vector of the corresponding field mode wit

tion representation can be used to derive a time-dependeMfe have assumed the usual dipole approximation for the

Schrodinger equation sind@(t)>0 at all times. There is interaction, often valid in both atom-photon and electron-
. ._phonon interactions. However, this specification is made for

thus a one-to-one corre_spondence between_posmon and ti o purposes of illustration only and the general faghn

Howgver, at turning po_lnts where the velocity goes to Z€10t0uld be retained, as is shown explicifigg. (30) below] in

the time cannot be defined in terms of the position. an approach usin,g field quadratures '

.Here we .ShO\.N explicitly that th? probllem of turning In Eq. (4) the operatoral ay creaté and annihilate pho-
points emerging in the harmonic motion of field quadraturestons of .energye o and’ the atomic operators axé
may be overcome by replacing the positiafias quadratw)e =g¢'>(¢ |, so that:(:-Tc~=|k¢->(¢-\ A simplification studied in a
representation by a coherent state representation. We are thus”/*" %" AN

naturally led to introduce coherent states, known to be th argetnumbetr of ﬁapersl |?Wd|\|/ers? fields is thzt_ wr;ere th_e
field states describing the classical limit of the quantized e, mguantum Systém has only two levels, corresponding to a spin

field. This new derivation is also useful since it is not basecJﬂIahc system an_d thg field has one mode only. Then @&j.

on field quadraturegsimilar to the particle beam caseut is can also be written in the form

couched in the language of second quantization using cre- L 1

ation and annihilation operators, obviously a language more H=3(e.—€e)o,+ e<aTa+ E) +hg@’+aoy, (5

familiar in quantum optics. We will also discuss the similari-

ties and differences, with respect to their interaction withand oy, o, are Pauli 2< 2 spin matrices, related in the usual

matter, between the transition of a quantized particle beam tway to the atomic operators, see Ref[10] and the Appen-

classical status and the same transition of a quantized fielddix. In what follows the limit will be taken that the energy in
the field, corresponding tblg, is much greater than the en-
ergy changes in the quantum system, or in the cougtng

II. INTERACTION OF A QUANTUM SYSTEM WITH A Then it is convenient to emphasize the respective energies by
BOSON FIELD defining
In the following we will first enumerate, step by step, the _a - a'
conditions that must be obtained if a TDSE is to be a good b= \@ b'= \H (6)

approximation to the TISE. The proof that these approxima-
tions do hold in the limit of large photon numbers, corre-where(n) is the mean photon number. In E®), this gives
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1 — h? &
H= %ﬁw00'2+ <n>€< b'b + m) + fL\"’<n>g(bJr +b)a,. % <_
(7

Then we note tha¢n)e is just the mean total energy of the
field, whereasiwy=(€,—€_) is the transition energy of the
two-level system. In the optical caﬁe\mg is proportional
to the Rabi-broadening energy. In the following we will con- These are “close-coupled” equations for the The off-
sider the case where diagonal terms cause changes in the state of the e.m. field
Iy due to changes in the state of the quantum system. Neglect-
(nye>hwg and(me > A(ng. ®) ing all of thegse coupling terms giveqs a single-)i:hannel e(gqua-
In the general equatio®), the renormalization of the field tion for the statey; of the field when the quantum system is

1
E&_QE+5wiQi>XJ+E<¢J|HS+ Hildixi
2<<¢J| 2|¢'> <d)l| |¢|>ﬁ2 Q) i:EXj-

(15

2 oQ¢

operators according to E¢) gives in the stateg;, i.e.,
1 2 2
H:Ee-cTc-+E<n)e(bb +—) _ﬁ_&_ 1 22 _
i e Kk KK\ Pk 2< k> % 2 aQ§+2kak +E](Q) E XJ
+ 1.2 \(nagiclci(b + by )
ik e ﬁzE (@il |¢, (16)

Note that wher{n,) becomes large the zero-point energy can
be neglected as in the classical limit. Further, with

b b 10 n? &

bll= 15 10 EQ=(gHst H-Z 5o le). a7

so that{n)—« gives the classical limit, corresponding to

% — 0 for the commutator The diagonak ¢;|a/ 9Q,|¢;) terms on the right-hand side of
[Qu P =i (11) Eq. (16) are zero for real; and otherwise can be eliminated

ok by a (Berry) phase transformation of;. In addition, since

of the field operator®,, Q,. Hence we will consider in the first-order derivatives with respect @y are neglected, it is

following the separate but connected limitsthat(n,)—,  consistent to neglect the second-order derivatives in the ex-

allowing the field to be treated classically, afiij the limits ~ pression fork;. Hence Eq(16) reduces to

(8) under which the total field energy far exceeds any energy

- 2 &1
changes in the quantum system. {2 (_ EE + zkak> +E(Q) - E:|Xj(Q) -0
Ill. SEMICLASSICAL LIMIT K K

Without loss of generality the solution of the Schrodinger (18)

equation the defining equation for the state of the field when the quan-

H-BE)¥=0 (120  tum system is in the state described dy
For the complete independence of the figdgecified ex-
ternal field from the quantum system it is clearly necessary

x,Q) = E xi(Q) ¢i(x,Q). (13) that E;(Q) be replaced by some fixed average poter&i&)
i and correspondingly;(Q) by some “mean”-field statg(Q).
This is achieved by writing

with H in the form(1) can be written

This form of expansion is exact if the; are a complete
orthonormal set of functions in the space. The particular _
form of the right-hand side is chosen since it is the quantum xi(Q =8(Qx(Q), (19)
Q variable whose classical limit will be taken.

Substitution of Eq.(13) in Eq. (12) leads to the set of
coupled equations

where thea; are slowly varying functions oQ. Then Eq.
(13) becomes

1 142 & V(xQ = XQX a(Q¢(xQ),
;Xi(Q)[HS+HI_(E_%§w§Q§ 2 5Q2X|> i '
N
S <_____ﬁz_ ) $(xQ) =0, ¥(x,Q) = QU Q) (20)
k 20QF xi (9QkXI dQx } I
(14) reminiscent of a single-channel Born-Oppenheimer approxi-
mation. Correspondingly, Eq18) is approximated by the
Equation(14) is now projected onto a staig, i.e., single-channel equation,
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h? P 1 — P(Q) = V2(E - w?Q%2). 25
[E (—;—2 + EwﬁQﬁ) +EQ —E]X(Q) =0. (21 Q=202 29
k IQk Thus, using Eqs(22)—<24), we get
We have now outlined the approximations necessary to allow R P . _
the exact wave functioil3) to be written in the factorized Hs+Hi(x.Q) 2 IQ? hP(Q) Q ¥x.Q) =0

form (20). Note that this step is absolutely crucial to the (26)
derivation: it reflects the assumption that the field is influ-

enced only marginally by the atom, while the atom is influ-for the remaining part of the wave function, describing the
enced strongly by the field. Now we are in a position todynamics of the quantum system. We may simplify by re-
consider the effective Schrodinger equation for the quantumplacingQ by a new parameter defined through a trajectory

system wave functiom. Q(t), and determined by

Although it is not necessary, for simplicity we will now
restrict our discussion to a single field mode. The following p(Q)i = ﬁ_ (27)
derivation starts from a slightly different angle than both the Q

previous approach of Ref7], and the one to be followed for . . -
the Jaynes-Cummings Hamiltonian in the Appendix. We giveC'€arly, P(Q) from Eq.(25) is nothing but the vqucﬂp, as
this alternative derivation here in order to pave the way foidétermined from the classical equations of motion:

the new considerations of Sec. IV, which is based on coher- Q= PandP=- ?Q (29)
ent states. !
In fact, we may view the last line in E¢R0) as a general with solutionQ(t)=Q, cog wt), so that the parameteis just
ansatz and find from the TISE classical time
0 We introducey(x,t)=(x,Q(t)) and find from Eq(26)
hel o
0=(H—E)‘I'=X(Q){HS+H|(X,Q)——<— d #2[ Q) 4
2\’ 1Lk = | Her HixQoy + 1 [ 202
/ 2 2 2 a 2 Q¥
+ 2&i>:| lﬁ(X Q) + lﬂ(X Q)[_ ﬁ_&_ + a)_Q2
x(Q) aQ ’ ' 207 2 1 P
R (x1). (29
- E} X(Q. (22) RAU

The derivatives on the right-hand side emerge from the
R Pt -

Motivated by the earlier discussion, here we split the actiorpecond-order derivative®”/JQ” with respect to position,
of the total Hamiltonian on the field and quantum systemWhen e_xp_ressed in terms Qfdenvatlves with respect to time
degree of freedom such that the wave functigi@) de- In.the limit of Iarge(“_class!cal” amount of energyE, con-
scribes the field with an energy close to the total endEgy tained almost exclusively in the classical degree of freedom
while the remaining part of the equation describes the dy—Q' the;e ad%monal fégf V.an'?hr’] as \(/jve a]rcehgomg to sr]]ow
namics of the quantum degree of freedom, involving negli-nheXt' First, o serverEt - Hm E 0 .t e or elrlo the ent(ajrgy 0
gible energy in comparison. This complete neglecting of thé € quantum §¥ste 5_<, s* ), i.e., sma compare &, ,
back coupling of the quantum system on the field is equivalf the the additional derivative terms on the rlght-hand side
lent to neglecting the potential(Q) or E(Q) and allows of Eq. (29 may be dropped. Now, by self-consistency, and

one to choose the wave function of the field which is tofurthermore usingQ_:P%.\sE for the harmonic osci_llator
become classical, to be an energy eigenstate of the fixed fieRway from the turning points anQ@ = wQ, we can estimate

Schrédinger equation, i.e., the order of magnitudes: First,
2 A 2 2
s ) QW o\ _ ke JH 1P\
_ (-2 % _ - - ~ Eg—, and - ~ EgE

Next, as explained earlier, for these lafgiassica) energies such that the additional derivative terms on the right-hand
i ' ’ ((Eg+#hw)/E). Thus, com-

and as long as we are far away from classical turning pointsSide of E(29) are of the ordeEg

we may replace the true wave functigriQ) by its WKB pared to the remaining terms on the right-hand side, which
expressior11] are of the ordelEg, the additional terms are smaller by a

factor of the orderhiw/E=1/n, wheren is the number of
Q photons in the field mode. The latter is a tiny number for a
i , , classical field. Therefore it is safe to write
x(Q) =exp| - | dQPQ) (24

J
iﬁaeb(x,t) =[Hs+ Hi(x,Qt) ], 1), (30
and find in leading classical order the usual wave vector
X' (Q)/x(Q)=(i/A)P(Q) with the classical momentum at po- which is the usual TDSE for a quantum system interacting
sition Q determined from energy conservation, with a (single mode of theclassical electromagnetic field
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with time dependence cast. Here, however, the derivation used in Eq(23). Plainly, this is a good approximation when

rests on the TISE for both atom and field. Time emergeshe total field energy,nifiwy, greatly exceedk. As we have

from a classical motion, i.e., as a derivgd cl_assical parametefoen in(30), this limit corresponds, for example in dipole
only. Note also that the dipole approximation is not NECeS¢qpling, to putting
y L

sary. However, the arguments above are valid only awa
from turning points where the velocit@(t) is nonzero. H,(t) o r - E(r)coq wt) (31)
Clearly the TDSE of Eq(30) is valid for all times. The
reason for this shortcoming is obvious: it is the choicéof
the position(or rather quadratujerepresentation, for the
field mode. While helpful in diagonalizing the coupling
HamiltonianH,, in this representation the real field quadra-
ture Q(t) undergoes harmonic motion with periodic zeroes in

its time derivativeQ(t). Therefore the position representation  Coherent states are the classical states of field modes,
fails to provide a global time. In Sec. IV it is shown how this corresponding to minimal uncertainty in both field quadra-
shortcoming may be overcome by using a coherent state repdres Q and P. Therefore, it is not too surprising that they
resentation of the field state. also play a role in the derivation of a time dependent
There is increasing emphasis, particularly for intenseSchrédinger equation for the quantum degree of freedom
few-cycle laser pulses, on the similarities of the interactionfrom a time independent Schrodinger equation for both the
of light sources and particle beams with matter. Therefore iEoupIed quantum system and field mode. We should empha-
is of interest to contrast the derivation of the TDSE for thegjse that the classical harmonic motion of the field ampli-
e.m. field interacting with a quantum system with that 0b-y,qes can be used as clock, provided by the classical system
tained from the interaction of a particle beam with a quantumy, 1 4hitor the quantum system with which it interacts. It
system. In the latter case, the defining equatiote fof‘ resembles a real clock more naturally than the linear, un-
statesy; of the particle beam as environment are the “per-, 4 motion of a scattered particle, which was previously

turbed stationary states” of Mott and Masgé¥] describing emploved71 to define time for an interacting quantum Svs-
ion-atom collisions and dating from the 1930s. These stat ployed[7] gq y

of the particle ion beam entangled with a target atom de-
scribe the diffraction pattern of the deflection of the ion
beam. Measurement of the ion-beam energy fixes the state
the atomic targefdelayed choice measuremgnh the case
of the photon fieldy; gives the amplitudgi.e., occupation
numbej of each modé and measurement of the field energy
gives the excitation state of the atom. In the TISE energy is
fixed. _ +
In the case of the ion beam, the classical limit in which H=hSa+a) (32
the beam is decoupled from the atom corresponds to classicaiith the atomic operatos=2;g; ciTcJ- from Eq. (4).
motion along a fixed trajectory. This is the classical limit of As in the last section, we set out to solve the time-
Eg.(21) in which the field Hamiltonian is replaced simply by independent equatiofH-E]¥ =0, here, however in coher-
the kinetic energy of the beam which moves in the fixedgnt state representation. Coherent staﬁtése““z"z""aWO)
potentialE provided by the atom. The energy of the beam isare eigenstates of the annihilation operatjt)=ala), la-
fixed, i.e., energy transfer to or from the quantum system ideled by a complex number. Crucial properties that are
ignored in deciding the ion-beam motion. The analogy in therelevant for us arg¢10]
case of the field is the classical limit of E@1) in which the -
field is described by a classical solution of Maxwell’s equa- (ofa’=a* (d, (33
tions in the oscillator “potential” oHg plus the polarization
field E(Q) of the atom. Again the field solutions are at fixed (ala= ( J + la)<a|'
energy. By contrast, in both cases the quantum system is da* 2
described by thg TDSEO0) in Whiqh change.s.in both in state Coherent states form an overcomplete basis,
and energy are induced by the field, expl|c.|tly througfit) = [(dal m)|@){(a| with the overlap between two coherent
and implicitly through the field motio@/ dt=Q(d/ Q). states given bya|8)=exp-1|a|2-1| 82+ a* ). Any state
When the ion-beam energy is very high, such that thgnay pe expanded in a coherent state representation according
kinetic energy is much greater thé& it is a good approxi- to |y)=[(d?a/m)x(a,a*)|a) with Y(a,a*)=(a|x). Note
mation (much used in atomic collisiongo ignoreE. Then that we can always writ&(a,a*):exd—%|a|2))((a*), with
the beam motion is a straight line trajectory, completely in-a function y(a*) depending ona* only, highlighting the
dependent of the quantum system. The corresponding aparticular dependence é&|x) on a and its complex conju-
proximation in the field case is to ignoEein Eq.(21). Then gatea* (see Bargmanil4)).
the classical limit is simply the free field mod€g(t) of the In contrast to the positiofiQ) representation used in the
cavity, without influence of the radiation field of the atom, asprevious sections, we employ the above properties of coher-

(wherer is the quantum system dipole operator @adhe
electric field amplitudg an approximation usually used in
laser-atom interactions.

IV. COHERENT STATE DERIVATION

We use usual annihilation and creation operators &S)in
and write the total Hamiltonia) (for a single field modge
the form

He=#% (aTa+1>
—hw =,
F 2
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ent states to write the TISE in coherent state representation . 9
with respect to the classical degree of freedom. We start from hoa Ja* =- 'ﬁa- (40)
1
(W)= exp{— §|a|2})((01* )a*)), (34 Thus time is determined from the classical, here harmonic,

motion of the field amplitude, with

implying as discussed after E(R2) that we consider exp
X{—%|cj2}x(a*) to describe the classical degree of freedom, alt) = age . (41)
while the dependence of the quantum parta*)) on the
classical degree of freedom is only secondary, without anysrycially, while the position space expressi@v) fails to
back reaction from the quantum part onto the classical deprovide a time near the classical turning points due to
gree of freedom. _ _ P(Q)=0, the coherent state expressid0) remains finite for

Before proceeding we should mention another importan|| times. Moreover, it is remarkable to see that the coherent
property of coherent states, namely, that their overlap with &tate equation(39) contains first-order derivatives only.
photon number state igr|n)=exp{~|a|*/2}(a*)"/\n! In the Naturally, it closely resembles the first-order time-dependent

relevant limit of large photon number it is easy to seéand  Schridinger equation, whereas the position space expression
physically obvious through energy consideratiotigt only (26 is of second order.

those coherent stat¢s) with We still have not quite achieved our goal: with da*
la2=n (35) replaced by(1/a*)dldt, we see that the field part of the
interaction Hamiltonian becomes [a*+ a
will contribute significantly to the number stalte. —a(ho|a|?)™Xihal at)]. With 1/|a|?>~1/n vanishing in the
With Eqg. (34), the TISE with the Hamiltonianslr andH,  |arge photon number limit— o, the additional time deriva-
from Eq.(32) reads tive vanishes, which may be compared to the similar discus-

sion after Eq(29).
- Therefore we find for the statei(t))=|/(a* (1))), in the
xla*) limit of large photon number, the TDSE

O:<a|(H - E)|‘I’>:)((a* )|:Hs+ﬁg<a* . x (a*)

d

da*

}ll/f(a* )+ lie* )

+ai*>a'x+ﬁwa* p ' |
o iﬁEW(t)) =[Hg+ hS(ape™ ' + age'“’t)]w(t)), (42

X[ﬁw(a* 7 +%)—E}X(a*). (36)

Ja describing the interaction of the atom with a time-dependent
This is to be compared to the corresponding &%) of the  classical e.m. field. If a two-level approximation is valid, we
position space approach. Just as before, we cgdsebe an  haveS=go,. In contrast to the identical position space result
eigenstate of the field Hamiltonian, i.e., to be a number staté30), however, the coherent state derivation of &) holds
In) with energyE:ﬁw(n+%)_ In coherent state representa- for all times. We emphasize again that we started from the

tion, time-independent Schrédinger equation, the time parameter
e [T in Eq. (42) being nothing but a convenient label for the clas-
x(a*)=(a* )" n! (37)  sical harmonic motion of the e.m. field amplitueit).
Indeed, one easily confirms that this choice ensures that the
s_econd part of E(.36) disappe_ars. F_or the remaining equa- V. CONCLUSION
tion we need the logarithmic derivativg’(a*)/x(a*),
which, by virtue of Egs(37) and(35) may be written as It has been shown earlidi7] that the time-dependent
ok Schrédinger equation may be regarded asemjclassical
X'(a*) n . : ) ) N .
=, =a (39 approximation of the time-independent Schrodinger equation
xa*)  « in one higher dimension. In the limit that this variable be-
Thus from Egs(36) and(38) we read off the defining equa- comes classical, the dynamics of the “classical” degree of
tion for the quantum system, freedom provides a “clock” for the remaining quantum part.
In this work, the idea of a “clock” as a periodic physical
4 4 system rather than a linearly extended one d§jras been
+ * o+ —— |+ * * )y =
{HS h$<a “ *) froa da* ]'l’[/(a =0, investigated in detail. This is the case when the extra degree

(39) of freedom corresponds to a quantized electromagnetic field
whose classical limit is oscillatory motion of the field ampli-

which should be compared with E@26) of the position tude. A key step in the quantum to classical transition has
space approach. In complete analogy we now introduce bBeen shown to be the “single-channel approximation” which
new parametet, replacinga*. It is defined through a com- amounts to an approximate disentanglement of the quantum
plex trajectorya* (t) for the coherent state field amplitude, field state from that of the atom and a semiclassical treatment
such that the first-order derivative term defines the time deef the ensuing field dynamics. However, the usual semiclas-
velopment: sical approximation breaks down at turning points. It has
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been shown that an approach based on coherent states dg-the adiabatic basis in whidHg+H, is diagonalized. In the
cumvents this problem. Hence the derivation is valid for allJaynes-Cummings model these potentials have been studied
times rather than restricted to those time spans well betwedny Graham and Héhnerbadghi3]. An alternative, used fre-

the classical turning points. The appearance of coheremuently in laser-atom interactions, is to take the unperturbed
states comes as no surprise, as they are the classical statestifmic eigenstateg+), |-) as basisg;, independent oR.

a harmonic oscillator. In the Appendix we illustrate our ap-Then Eq.(A3) becomes

proach with the Jaynes-Cummings model, whose large

photon-number dynamics, described by the time-dependent ¥ =xQ(a QI +)+a(Q)-)). (A4)

Schrédinger equation with a classical driving field, is hereThis wave function for both the field and the two-level sys-
derived from the time-independent Schrodinger equatioRem is of the form20). We substitute EqA4) into the TISE
where both atom and field are treated quantum mechanicallyH - g)w=0 with the HamiltoniarH given in Eq.(A1) and
project onto the wave function of the systapFa,(Q)|+)
ACKNOWLEDGMENTS +a(Q)-).
Neglecting all derivatives of the coefficiends(Q) with

.We' than T. Seligman anq the Centro InFerr_lacionaI derespect toQ, we find the effective equation for the fieldf.
Ciencias in Cuernavaca, Mexico, for the hospitality and SUPEq . (21)]

port while part of this work was written. A wealth of fruitful

discussions with J.-M. Rost and J. Macek are acknowledged. 1, 1,., =
SP+ZeQ +E(Q) -E|x(Q) =0, (A5)
APPENDIX: JAYNES-CUMMINGS MODEL with
In the field case it is of interest to develop the specific : 12 2
example of the Jaynes-Cummings mof#l in more detail, E(Q) = (flHs+H[¢) = [a,[A(QE.(Q) +|a|(QE-(Q)
since it has been so widely used. We follow the general dis- +a,(Qa(Q)(+|H,|-) +c.c. (AB)

cussion of the first half of Sec. Ill. If the quantum system is ) ) . .
a two-level atom coupled to a laser field consisting of oneere, the potential&,(Q) are defined in Eq17) neglecting
quantized mode only, the total Hamiltonian is of the faiin ~ the */9Q? terms. Following the discussion after Ed.4),

and is written and using the forn{A4) of the wave function allows us to
neglect the off-diagonal terms-|H,|—) in Eq. (A6). There-
H=Hs+Hp+H, fore the average potential reduces to
with Hs = 2hwgo, E(Q) =[aAQE.(Q) +|aAQE(Q) = jhada/X(Q)
- la Q). (A7)
He = 3(P?+ 0?Q?), _
Clearly, asE— o, the energyhw, and thusE(Q) may be
H, = \*"%QQO'X- (A1) neglected with respect  and the field energies are those of

the free mode, completely independent of any influence of
Here, the energy of a single photon of the modéds 7w,  the two-level atom. This is the high-energy situation where
is the energy of the atomic transition, amq, o, are (2 the numbem of photons far exceeds unity and therefore is
X 2) Pauli matrices. This Hamiltonian is written in E&) in  unaltered by emission or absorption of a single photon by the
terms of creation and annihilation operators by using theatom. In the particle beam case, as explained above, the ana-

transformation on the field quadratures, log is a plane wave for the particle beam, i.e., zero effective
7 potential E(Q).
Q=1 /2—(a+ ah), Although in the above approximation the field is unaf-
w

fected by the atom, the atom is still strongly affected by the
field. Substitution of Eq(A4) into Eq.(22) and making the

) ho same approximations that led to E0O) gives the coupled
— et
iP=4/~ (@-a). (A2)  equations for the atom alone,

ion i i ications i i 1 — t a [alt
The key question in practical applications is the choice of the <5ﬁw00-z+ \"Zﬁng(t)ox><a+( )) . <a+( )).

complete set; of functions in which to expand the state of a(t) dgt\a_(t)

the quantum system. In the case of the two-level atom one (A8)
requires two states+,Q) and |-,Q) corresponding to the

atom in the upper or lower state of the doublet, i.e., This is exactly the TDSE obtained by assuming at the outset

_ _ a classical field with amplitud€(t) driving the two-level
V= x.(Q[+.Q) +x-(Q[-,Q =x(Q@@QI[+,Q+a(Q  Jiom whose state vector is expanded in the unperturbed ba-

X[=,Q)). (A3) sis, i.e.,

Two choices of the “atomic” basis are practically useful. One [p(t)) =a,(t)] +) +a(t)]-). (A9)
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