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The interaction of nonrelativistic matter with the quantized electromagnetic field is investigated in the
classical limit of large photon numbers. Quantization of both matter, say an atom, and the field results in a
time-independent Schrödinger equation(TISE). However, for very strong fields(quantum mechanically, large
photon numbers) this is impractical to solve. The standard approach then is simply to replace the quantized
field by a classical field to give a time-dependent Schrödinger equation(TDSE) for the atom alone. Here we
show how this TDSE can be derived from the TISE for atom plus field, illustrating at each stage the approxi-
mations that are necessary to treat the field classically. An important difficulty at the semiclassical stage is a
breakdown of the approximation at classical turning points. We show how the use of coherent field states can
circumvent this problem. In the limit that the field can be treated classically, time emerges from the Maxwell
equations and a TDSE for the atom alone results.
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I. INTRODUCTION

The development of lasers has reached the stage where
the field strengths and the pulse lengths(attoseconds) are
approaching those attainable with heavy-ion beams. Indeed
the similarity between particle and laser beams in their action
on matter is being emphasized increasingly. In the first year
of quantum mechanics it was not known how to quantize a
particle beam or the electromagnetic field. Hence in
Schrödinger’s 1926 paper[1] on the interaction of an atom
with light, the electromagnetic field was treated as an exter-
nal classical field coupled to the atom, i.e., in this first appli-
cation of the time-dependent Schrödinger equation(TDSE) it
was recognized that the time-dependence arises from classi-
cal equations(the Maxwell equations) and in this sense the
TDSE is a mixed classical-quantum equation. Similarly, in
the famous Born, Heisenberg, and Jordan paper[2] both an
external electromagnetic field and an externala-particle
beam acting on an atom are treated by classical mechanics
(Maxwell’s or Newton’s equations, respectively), valid when
the corresponding energy can be regarded as infinitely large
compared with that of the atom.

In the case of a particle beam, Born’s collision theory[3]
showed how the beam could be quantized, in the simplest
approximation as a plane wave. Already by 1931, following
work by Frame, Brinkmann, and Kramers[4] and, above all,
Mott [5], it was known that the collision problem described
by the time-independent Schrödinger equation(TISE) with a
quantized beam reduces to the problem of a TDSE with a
classical, time-dependent beam, in the limit that the beam

energy greatly exceeds atomic transition energies. This con-
dition is necessary, since in the approximation of the TDSE,
energy is not conserved. Rather, the beam is considered to
have a fixed energy which in zeroth order is unchanged by
the interaction, i.e., there is no back coupling of the atom on
the beam.

Since Mott’s work, the transition from an exact descrip-
tion of a particle beam interacting with a quantum system via
the TISE to the approximate description of a classical beam
via the TDSE has been studied in great detail and precise
conditions have been given for the validity of each step of
the reduction[6]. Quite generally, it has been shown recently
how the full TISE for a quantum system interacting with a
quantized environment reduces to the TDSE for the system
in the presence of a classical environment, in the limit that
the energy of the environment is large on a quantum scale
[7]. This derivation was given in detail for the particle beam
and the analogous development for a boson field was
sketched out. The aim of the present paper is to give this
derivation of the TDSE for laser-matter interactions in detail
by enumerating the conditions that must be obtained in order
to treat the electromagnetic(e.m.) field classically. The ex-
tension to quantized fields is nontrivial since plainly the
treatment of the field involves oscillatory motion. Then the
semiclassical approximation breaks down at turning points
and the derivation given in Ref.[7] is invalid. Here we show
by use of coherent states that, nevertheless, a continuous
classical time variable can be defined. In the Appendix it is
shown explicitly that the conditions for validity enumerated
are satisfied in the limit of large photon numbers by treating
the Jaynes-Cummings(JC) model [9] as an example.

In 1927 Dirac showed how the electromagnetic field forn
photons can be quantized in the occupation number represen-
tation [8]. When coupled to a quantum system, say an atom,
the field-atom system obeys a TISE in which energy is ex-
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changed between field and atom but total energy is con-
served. For fields of few photons, e.g., in cavity QED experi-
ments, it is practical to solve the TISE and this procedure is
exact. However, clearly this is not feasible for very high-
power, short-pulse lasers involving extremely large numbers
of photons. Then the laser field is treated classically, the field
strength is considered as fixed, and energy is not conserved
in the interaction with the atom.

Below we present a derivation of the TDSE for the atom
in a time-dependent classical field and emphasise the ap-
proximations necessary at each stage of the reduction. A key
step along the way is the “single-channel approximation” for
the full quantum state of field and atom, which amounts, in a
certain sense, to an approximate disentanglement of the field
state from the state of the atom. Then the limit is taken that
the field energy becomes large enough that the field can be
treated classically and also large enough that the classical
state of the field is impervious to changes in the state of the
quantum system. In fact, it was shown[7] that not the clas-
sical but only the semiclassical approximation for beam par-
ticles is necessary to derive the TDSE from the full TISE.
Here the same will be shown to be true in the case of pho-
tons. However, as mentioned above, since the classical limit
in the photon case is that of oscillatory motion, a more care-
ful treatment of the semiclassical approximation is required.
Hence we discuss in some detail the problem of the semi-
classical limit in the vicinity of turning points. The latter

are points of zero velocityQ̇std=0 of the position variable
Qstd. An approach based on a position representation of the
degree of freedom whose classical limit is to be taken breaks
down at turning points. Away from turning points, the posi-
tion representation can be used to derive a time-dependent

Schrödinger equation sinceQ̇std.0 at all times. There is
thus a one-to-one correspondence between position and time.
However, at turning points where the velocity goes to zero,
the time cannot be defined in terms of the position.

Here we show explicitly that the problem of turning
points emerging in the harmonic motion of field quadratures
may be overcome by replacing the position(alias quadrature)
representation by a coherent state representation. We are thus
naturally led to introduce coherent states, known to be the
field states describing the classical limit of the quantized e.m.
field. This new derivation is also useful since it is not based
on field quadratures(similar to the particle beam case) but is
couched in the language of second quantization using cre-
ation and annihilation operators, obviously a language more
familiar in quantum optics. We will also discuss the similari-
ties and differences, with respect to their interaction with
matter, between the transition of a quantized particle beam to
classical status and the same transition of a quantized field.

II. INTERACTION OF A QUANTUM SYSTEM WITH A
BOSON FIELD

In the following we will first enumerate, step by step, the
conditions that must be obtained if a TDSE is to be a good
approximation to the TISE. The proof that these approxima-
tions do hold in the limit of large photon numbers, corre-

sponding to field energies much greater than atomic transi-
tion energies, is given in the text and in more detail for the
simple JC model in the Appendix. We begin by considering
the time-independent problem of a quantum system, with a
Hamiltonian HSsp,xd, interacting with a boson field with
HamiltonianHFsP,Qd via a couplingHIsx,Qd, to give a total
Hamiltonian

H = HSsp,xd + HFsP,Qd + HIsx,Qd. s1d

Herex, Q are position operators andp, P the corresponding
momentum operators. The boson field will be taken as a sum
over field modes with Hamiltonian

HFsP,Qd = o
k

1
2sPk

2 + vk
2Qk

2d s2d

and

Pk = − i"
]

]Qk
. s3d

It is more usual in quantum optics[10] to write the Hamil-
tonian in terms of annihilation and creation operators,

H = o
i

eici
†ci + o

k

ekSak
†ak +

1

2
D + "o

i jk

gij
kci

†cjsak
† + akd,

s4d

where the coupling constantsgij
k are proportional to the di-

pole matrix elementskfiupW k·pW uf jl. Here theufil are eigen-
vectors ofHS with eigenenergiesei, and we denote the po-
larization vector of the corresponding field mode withpW k.
We have assumed the usual dipole approximation for the
interaction, often valid in both atom-photon and electron-
phonon interactions. However, this specification is made for
the purposes of illustration only and the general form(1)
could be retained, as is shown explicitly[Eq. (30) below] in
an approach using field quadratures.

In Eq. (4) the operatorsak
†, ak create and annihilate pho-

tons of energyek="vk and the atomic operators areci
†

= ufilkf0u, so thatci
†cj = ufilkf ju. A simplification studied in a

large number of papers in diverse fields is that where the
quantum system has only two levels, corresponding to a spin
half system and the field has one mode only. Then Eq.(4)
can also be written in the form

H = 1
2se+ − e−dsz + eSa†a +

1

2
D + "gsa† + adsx, s5d

andsx, sz are Pauli 232 spin matrices, related in the usual
way to the atomic operatorsci, see Ref.[10] and the Appen-
dix. In what follows the limit will be taken that the energy in
the field, corresponding toHF, is much greater than the en-
ergy changes in the quantum system, or in the couplingHI.
Then it is convenient to emphasize the respective energies by
defining

b =
a

Îknl
, b† =

a†

Îknl
s6d

whereknl is the mean photon number. In Eq.(5), this gives
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H = 1
2"v0sz + knleSb†b +

1

2knlD + "Îknlgsb† + bdsx.

s7d

Then we note thatknle is just the mean total energy of the
field, whereas"v0=se+−e−d is the transition energy of the
two-level system. In the optical case"Îknlg is proportional
to the Rabi-broadening energy. In the following we will con-
sider the case where

knle @ "v0 andknle @ "Îknlg. s8d

In the general equation(4), the renormalization of the field
operators according to Eq.(6) gives

H = o
i

eici
†ci + o

k

knklekSbk
†bk +

1

2knkl
D

+ "o
i jk

Îknklgij
kci

†cjsbk
† + bkd. s9d

Note that whenknkl becomes large the zero-point energy can
be neglected as in the classical limit. Further,

fbk,bk
†g =

1

knkl
s10d

so thatknkl→` gives the classical limit, corresponding to
"→0 for the commutator

fQk,Pkg = i" s11d

of the field operatorsPk, Qk. Hence we will consider in the
following the separate but connected limits(i) that knkl→`,
allowing the field to be treated classically, and(ii ) the limits
(8) under which the total field energy far exceeds any energy
changes in the quantum system.

III. SEMICLASSICAL LIMIT

Without loss of generality the solution of the Schrödinger
equation

sH − EdC = 0 s12d

with H in the form (1) can be written

Csx,Qd = o
i

xisQdfisx,Qd. s13d

This form of expansion is exact if thefi are a complete
orthonormal set of functions in thex space. The particular
form of the right-hand side is chosen since it is the quantum
Q variable whose classical limit will be taken.

Substitution of Eq.(13) in Eq. (12) leads to the set of
coupled equations

o
i

xisQdFHS+ HI − SE − o
k

1

2
vk

2Qk
2 +

1

xi

"2

2

]2

]Qk
2xiD

+ o
k
S−

"2

2

]2

]Qk
2 −

1

xi
"2 ]

]Qk
xi

]

]Qk
DGfisx,Qd = 0.

s14d

Equation(14) is now projected onto a statef j, i.e.,

o
k
S−

"2

2

]2

]Qk
2 +

1

2
vk

2Qk
2Dx j + o

i

kf juHS+ HIufilxi

− o
i,k
Skf ju

"2

2

]2

]Qk
2ufil + kf ju

]

]Qk
ufil"2 ]

]Qk
Dxi = Ex j .

s15d

These are “close-coupled” equations for thex j. The off-
diagonal terms cause changes in the state of the e.m. field
due to changes in the state of the quantum system. Neglect-
ing all of these coupling terms gives a single-channel equa-
tion for the statex j of the field when the quantum system is
in the statef j, i.e.,

Fo
k
S−

"2

2

]2

]Qk
2 +

1

2
vk

2Qk
2D + EjsQd − EGx j

= "2o
k

kf ju
]

]Qk
uf jl

]

]Qk
x j s16d

with

EjsQd = kf juHS+ HI − o
k

"2

2

]2

]Qk
2uf jl. s17d

The diagonalkf ju] /]Qkuf jl terms on the right-hand side of
Eq. (16) are zero for realf j and otherwise can be eliminated
by a (Berry) phase transformation ofx j. In addition, since
first-order derivatives with respect toQk are neglected, it is
consistent to neglect the second-order derivatives in the ex-
pression forEj. Hence Eq.(16) reduces to

Fo
k
S−

"2

2

]2

]Qk
2 +

1

2
vk

2Qk
2D + EjsQd − EGx jsQd = 0,

s18d

the defining equation for the state of the field when the quan-
tum system is in the state described byf j.

For the complete independence of the field(specified ex-
ternal field) from the quantum system it is clearly necessary

thatEjsQd be replaced by some fixed average potentialĒsQd
and correspondinglyx jsQd by some “mean”-field statexsQd.
This is achieved by writing

x jsQd = ajsQdxsQd, s19d

where theaj are slowly varying functions ofQ. Then Eq.
(13) becomes

Csx,Qd = xsQdo
i

aisQdfisx,Qd,

Csx,Qd = xsQdcsx,Qd, s20d

reminiscent of a single-channel Born-Oppenheimer approxi-
mation. Correspondingly, Eq.(18) is approximated by the
single-channel equation,
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Fo
k
S−

"2

2

]2

]Qk
2 +

1

2
vk

2Qk
2D + ĒsQd − EGxsQd = 0. s21d

We have now outlined the approximations necessary to allow
the exact wave function(13) to be written in the factorized
form (20). Note that this step is absolutely crucial to the
derivation: it reflects the assumption that the field is influ-
enced only marginally by the atom, while the atom is influ-
enced strongly by the field. Now we are in a position to
consider the effective Schrödinger equation for the quantum
system wave functionc.

Although it is not necessary, for simplicity we will now
restrict our discussion to a single field mode. The following
derivation starts from a slightly different angle than both the
previous approach of Ref.[7], and the one to be followed for
the Jaynes-Cummings Hamiltonian in the Appendix. We give
this alternative derivation here in order to pave the way for
the new considerations of Sec. IV, which is based on coher-
ent states.

In fact, we may view the last line in Eq.(20) as a general
ansatz and find from the TISE

0 = sH − EdC = xsQdFHS+ HIsx,Qd −
"2

2
S ]2

]Q2

+ 2
x8sQd
xsQd

]

]Q
DGcsx,Qd + csx,QdF−

"2

2

]2

]Q2 +
v2

2
Q2

− EGxsQd. s22d

Motivated by the earlier discussion, here we split the action
of the total Hamiltonian on the field and quantum system
degree of freedom such that the wave functionxsQd de-
scribes the field with an energy close to the total energyE,
while the remaining part of the equation describes the dy-
namics of the quantum degree of freedom, involving negli-
gible energy in comparison. This complete neglecting of the
back coupling of the quantum system on the field is equiva-

lent to neglecting the potentialsEjsQd or ĒsQd and allows
one to choose the wave function of the field which is to
become classical, to be an energy eigenstate of the fixed field
Schrödinger equation, i.e.,

fHF − Egx = FS−
"2

2

]2

]Q2 +
v2

2
Q2D − EGxsQd = 0. s23d

Next, as explained earlier, for these large(classical) energies,
and as long as we are far away from classical turning points,
we may replace the true wave functionxsQd by its WKB
expression[11]

xsQd . expH i

"
E
Q

dQ8PsQ8dJ s24d

and find in leading classical order the usual wave vector
x8sQd /xsQd=si /"dPsQd with the classical momentum at po-
sition Q determined from energy conservation,

PsQd = Î2sE − v2Q2/2d. s25d

Thus, using Eqs.(22)–(24), we get

FHS+ HIsx,Qd −
"2

2

]2

]Q2 − i"PsQd
]

]Q
Gcsx,Qd = 0

s26d

for the remaining part of the wave function, describing the
dynamics of the quantum system. We may simplify by re-
placingQ by a new parametert, defined through a trajectory
Qstd, and determined by

PsQd
]

]Q
;

]

]t
. s27d

Clearly,PsQd from Eq.(25) is nothing but the velocityQ̇, as
determined from the classical equations of motion:

Q̇ = P and Ṗ = − v2Q, s28d

with solutionQstd=Q0 cossvtd, so that the parametert is just
classical time.

We introducecsx,td=c(x,Qstd) and find from Eq.(26)

i"
]

]t
csx,td =FHS+ HI„x,Qstd… +

"2

2 S Q̈std

Q̇3std

]

]t

−
1

Q̇2std

]2

]t2DGcsx,td. s29d

The derivatives on the right-hand side emerge from the
second-order derivative]2/]Q2 with respect to position,
when expressed in terms of derivatives with respect to timet.
In the limit of large(“classical” amount of) energyE, con-
tained almost exclusively in the classical degree of freedom
Q, these additional terms vanish, as we are going to show
next. First, observe that"] /]t is of the order of the energy of
the quantum systemES=kHS+HIl, i.e., small compared toE,
if the the additional derivative terms on the right-hand side
of Eq. (29) may be dropped. Now, by self-consistency, and

furthermore usingQ̇=P<ÎE for the harmonic oscillator

away from the turning points andQ̈<vQ̇, we can estimate
the order of magnitudes: First,

K"2

2

Q̈std

Q̇3std

]

]tL < ES
"v

E
, andK"2

2

1

Q̇2std

]2

]t2L < ES
2/E

such that the additional derivative terms on the right-hand
side of Eq.(29) are of the orderESssES+"vd /Ed. Thus, com-
pared to the remaining terms on the right-hand side, which
are of the orderES, the additional terms are smaller by a
factor of the order"v /E<1/n, wheren is the number of
photons in the field mode. The latter is a tiny number for a
classical field. Therefore it is safe to write

i"
]

]t
csx,td = fHS+ HI„x,Qstd…gcsx,td, s30d

which is the usual TDSE for a quantum system interacting
with a (single mode of the) classical electromagnetic field
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with time dependence cosvt. Here, however, the derivation
rests on the TISE for both atom and field. Time emerges
from a classical motion, i.e., as a derived classical parameter
only. Note also that the dipole approximation is not neces-
sary. However, the arguments above are valid only away
from turning points where the velocityQ̇std is nonzero.
Clearly the TDSE of Eq.(30) is valid for all times. The
reason for this shortcoming is obvious: it is the choice ofQ,
the position (or rather quadrature) representation, for the
field mode. While helpful in diagonalizing the coupling
HamiltonianHI, in this representation the real field quadra-
tureQstd undergoes harmonic motion with periodic zeroes in

its time derivativeQ̇std. Therefore the position representation
fails to provide a global time. In Sec. IV it is shown how this
shortcoming may be overcome by using a coherent state rep-
resentation of the field state.

There is increasing emphasis, particularly for intense,
few-cycle laser pulses, on the similarities of the interaction
of light sources and particle beams with matter. Therefore it
is of interest to contrast the derivation of the TDSE for the
e.m. field interacting with a quantum system with that ob-
tained from the interaction of a particle beam with a quantum
system. In the latter case, the defining equations(18) for
statesx j of the particle beam as environment are the “per-
turbed stationary states” of Mott and Massey[12] describing
ion-atom collisions and dating from the 1930s. These states
of the particle ion beam entangled with a target atom de-
scribe the diffraction pattern of the deflection of the ion
beam. Measurement of the ion-beam energy fixes the state of
the atomic target(delayed choice measurement). In the case
of the photon fieldx j gives the amplitude(i.e., occupation
number) of each modek and measurement of the field energy
gives the excitation state of the atom. In the TISE energy is
fixed.

In the case of the ion beam, the classical limit in which
the beam is decoupled from the atom corresponds to classical
motion along a fixed trajectory. This is the classical limit of
Eq. (21) in which the field Hamiltonian is replaced simply by
the kinetic energy of the beam which moves in the fixed

potentialĒ provided by the atom. The energy of the beam is
fixed, i.e., energy transfer to or from the quantum system is
ignored in deciding the ion-beam motion. The analogy in the
case of the field is the classical limit of Eq.(21) in which the
field is described by a classical solution of Maxwell’s equa-
tions in the oscillator “potential” ofHF plus the polarization

field ĒsQd of the atom. Again the field solutions are at fixed
energy. By contrast, in both cases the quantum system is
described by the TDSE(30) in which changes in both in state
and energy are induced by the field, explicitly throughHIstd
and implicitly through the field motion] /]t=Q̇s] /]Qd.

When the ion-beam energy is very high, such that the

kinetic energy is much greater thanĒ, it is a good approxi-

mation (much used in atomic collisions) to ignore Ē. Then
the beam motion is a straight line trajectory, completely in-
dependent of the quantum system. The corresponding ap-

proximation in the field case is to ignoreĒ in Eq. (21). Then
the classical limit is simply the free field modesQkstd of the
cavity, without influence of the radiation field of the atom, as

used in Eq.(23). Plainly, this is a good approximation when

the total field energyoknk"vk greatly exceedsĒ. As we have
seen in(30), this limit corresponds, for example in dipole
coupling, to putting

HIstd ~ rI ·EI srIdcossvtd s31d

(where rI is the quantum system dipole operator andEI the
electric field amplitude), an approximation usually used in
laser-atom interactions.

IV. COHERENT STATE DERIVATION

Coherent states are the classical states of field modes,
corresponding to minimal uncertainty in both field quadra-
turesQ and P. Therefore, it is not too surprising that they
also play a role in the derivation of a time dependent
Schrödinger equation for the quantum degree of freedom
from a time independent Schrödinger equation for both the
coupled quantum system and field mode. We should empha-
sise that the classical harmonic motion of the field ampli-
tudes can be used as clock, provided by the classical system
to monitor the quantum system with which it interacts. It
resembles a real clock more naturally than the linear, un-
bound motion of a scattered particle, which was previously
employed[7] to define time for an interacting quantum sys-
tem.

We use usual annihilation and creation operators as in(5),
and write the total Hamiltonian(4) (for a single field mode)
in the form

HF = "vSa†a +
1

2
D ,

HI = "Ssa + a†d s32d

with the atomic operatorS=oi jgijci
†cj from Eq. (4).

As in the last section, we set out to solve the time-
independent equationfH−EgC=0, here, however in coher-

ent state representation. Coherent statesual=e−ua2u/2+aa†
u0l

are eigenstates of the annihilation operator,aual=aual, la-
beled by a complex numbera. Crucial properties that are
relevant for us are[10]

kaua† = a * kau, s33d

kaua = S ]

]a*
+

1

2
aDkau.

Coherent states form an overcomplete basis,1
=esd2a /pdualkau with the overlap between two coherent
states given byka ubl=exph−1

2uau2− 1
2ubu2+a* bj. Any state

may be expanded in a coherent state representation according
to uxl=esd2a /pdx̃sa ,a* dual with x̃sa ,a* d=ka uxl. Note
that we can always writex̃sa ,a* d=exps−1

2uau2dxsa* d, with
a function xsa* d depending ona* only, highlighting the
particular dependence ofka uxl on a and its complex conju-
gatea* (see Bargmann[14]).

In contrast to the positionsQd representation used in the
previous sections, we employ the above properties of coher-
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ent states to write the TISE in coherent state representation
with respect to the classical degree of freedom. We start from

kauCl = expH−
1

2
uau2Jxsa * ducsa * dl, s34d

implying as discussed after Eq.(22) that we consider exp
3h−1

2uau2jxsa* d to describe the classical degree of freedom,
while the dependence of the quantum partucsa* dl on the
classical degree of freedom is only secondary, without any
back reaction from the quantum part onto the classical de-
gree of freedom.

Before proceeding we should mention another important
property of coherent states, namely, that their overlap with a
photon number state iska unl=exph−uau2/2jsa* dn/În! In the
relevant limit of large photon numbern, it is easy to see(and
physically obvious through energy considerations) that only
those coherent statesual with

uau2 = n s35d

will contribute significantly to the number stateunl.
With Eq. (34), the TISE with the HamiltoniansHF andHI

from Eq. (32) reads

0 = kausH − EduCl = xsa * dFHS+ "gSa * +
x8sa * d
xsa * d

+
]

]a*
Dsx + "va *

]

]a*
Gucsa * dl + ucsa * dl

3F"vSa *
]

]a*
+

1

2
D − EGxsa * d. s36d

This is to be compared to the corresponding Eq.(22) of the
position space approach. Just as before, we chosex to be an
eigenstate of the field Hamiltonian, i.e., to be a number state
unl with energyE="vsn+ 1

2
d. In coherent state representa-

tion,

xsa * d = sa * dn/În! s37d

Indeed, one easily confirms that this choice ensures that the
second part of Eq.(36) disappears. For the remaining equa-
tion we need the logarithmic derivativex8sa* d /xsa* d,
which, by virtue of Eqs.(37) and (35) may be written as

x8sa * d
xsa * d

=
n

a*
= a. s38d

Thus from Eqs.(36) and(38) we read off the defining equa-
tion for the quantum system,

FHS+ "SSa * + a +
]

]a*
D + "va *

]

]a*
Gucsa * dl = 0,

s39d

which should be compared with Eq.(26) of the position
space approach. In complete analogy we now introduce a
new parametert, replacinga*. It is defined through a com-
plex trajectorya* std for the coherent state field amplitude,
such that the first-order derivative term defines the time de-
velopment:

"va *
]

]a*
; − i"

]

]t
. s40d

Thus time is determined from the classical, here harmonic,
motion of the field amplitude, with

astd = a0e
−ivt. s41d

Crucially, while the position space expression(27) fails to
provide a time near the classical turning points due to
PsQd=0, the coherent state expression(40) remains finite for
all times. Moreover, it is remarkable to see that the coherent
state equation(39) contains first-order derivatives only.
Naturally, it closely resembles the first-order time-dependent
Schrödinger equation, whereas the position space expression
(26) is of second order.

We still have not quite achieved our goal: with] /]a*
replaced bys1/ȧ* d] /]t, we see that the field part of the
interaction Hamiltonian becomes fa* + a
−as"vuau2d−1si"] /]tdg. With 1/uau2<1/n vanishing in the
large photon number limitn→`, the additional time deriva-
tive vanishes, which may be compared to the similar discus-
sion after Eq.(29).

Therefore we find for the stateucstdl= uc(a* std)l, in the
limit of large photon number, the TDSE

i"
]

]t
ucstdl = fHS+ "Ssa0e

−ivt + a0
*eivtdgucstdl, s42d

describing the interaction of the atom with a time-dependent
classical e.m. field. If a two-level approximation is valid, we
haveS=gsx. In contrast to the identical position space result
(30), however, the coherent state derivation of Eq.(42) holds
for all times. We emphasize again that we started from the
time-independent Schrödinger equation, the time parameter
in Eq. (42) being nothing but a convenient label for the clas-
sical harmonic motion of the e.m. field amplitudeastd.

V. CONCLUSION

It has been shown earlier[7] that the time-dependent
Schrödinger equation may be regarded as a(semi)classical
approximation of the time-independent Schrödinger equation
in one higher dimension. In the limit that this variable be-
comes classical, the dynamics of the “classical” degree of
freedom provides a “clock” for the remaining quantum part.
In this work, the idea of a “clock” as a periodic physical
system rather than a linearly extended one as in[7] has been
investigated in detail. This is the case when the extra degree
of freedom corresponds to a quantized electromagnetic field
whose classical limit is oscillatory motion of the field ampli-
tude. A key step in the quantum to classical transition has
been shown to be the “single-channel approximation” which
amounts to an approximate disentanglement of the quantum
field state from that of the atom and a semiclassical treatment
of the ensuing field dynamics. However, the usual semiclas-
sical approximation breaks down at turning points. It has
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been shown that an approach based on coherent states cir-
cumvents this problem. Hence the derivation is valid for all
times rather than restricted to those time spans well between
the classical turning points. The appearance of coherent
states comes as no surprise, as they are the classical states of
a harmonic oscillator. In the Appendix we illustrate our ap-
proach with the Jaynes-Cummings model, whose large
photon-number dynamics, described by the time-dependent
Schrödinger equation with a classical driving field, is here
derived from the time-independent Schrödinger equation
where both atom and field are treated quantum mechanically.
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APPENDIX: JAYNES-CUMMINGS MODEL

In the field case it is of interest to develop the specific
example of the Jaynes-Cummings model[9] in more detail,
since it has been so widely used. We follow the general dis-
cussion of the first half of Sec. III. If the quantum system is
a two-level atom coupled to a laser field consisting of one
quantized mode only, the total Hamiltonian is of the form(1)
and is written

H = HS+ HF + HI

with HS= 1
2"v0sz,

HF = 1
2sP2 + v2Q2d,

HI = Î2"vgQsx. sA1d

Here, the energy of a single photon of the mode is"v, "v0
is the energy of the atomic transition, andsx, sz are s2
32d Pauli matrices. This Hamiltonian is written in Eq.(5) in
terms of creation and annihilation operators by using the
transformation on the field quadratures,

Q =Î "

2v
sa + a†d,

iP =Î"v

2
sa − a†d. sA2d

The key question in practical applications is the choice of the
complete setf j of functions in which to expand the state of
the quantum system. In the case of the two-level atom one
requires two statesu+ ,Ql and u−,Ql corresponding to the
atom in the upper or lower state of the doublet, i.e.,

C = x+sQdu + ,Ql + x−sQdu− ,Ql = xsQdsa+sQdu + ,Ql + a−sQd

3u− ,Qld. sA3d

Two choices of the “atomic” basis are practically useful. One

is the adiabatic basis in whichHS+HI is diagonalized. In the
Jaynes-Cummings model these potentials have been studied
by Graham and Höhnerbach[13]. An alternative, used fre-
quently in laser-atom interactions, is to take the unperturbed
atomic eigenstatesu+l, u−l as basisf j, independent ofQ.
Then Eq.(A3) becomes

C = xsQdsa+sQdu + l + a−sQdu− ld. sA4d

This wave function for both the field and the two-level sys-
tem is of the form(20). We substitute Eq.(A4) into the TISE
sH−EdC=0 with the HamiltonianH given in Eq.(A1) and
project onto the wave function of the systemc=a+sQdu+l
+a−sQdu−l.

Neglecting all derivatives of the coefficientsa±sQd with
respect toQ, we find the effective equation for the field[cf.
Eq. (21)]

S1

2
P2 +

1

2
v2Q2 + ĒsQd − EDxsQd = 0, sA5d

with

ĒsQd = kcuHS+ HIucl = ua+u2sQdE+sQd + ua−u2sQdE−sQd

+ a+
* sQda−sQdk+ uHIu− l + c.c. sA6d

Here, the potentialsE±sQd are defined in Eq.(17) neglecting
the ]2/]Q2 terms. Following the discussion after Eq.(14),
and using the form(A4) of the wave function allows us to
neglect the off-diagonal termsk+uHIu−l in Eq. (A6). There-
fore the average potential reduces to

ĒsQd = ua+u2sQdE+sQd + ua−u2sQdE−sQd = 1
2"v0fua+u2sQd

− ua−u2sQdg. sA7d

Clearly, asE→`, the energy"v0 and thusĒsQd may be
neglected with respect toE and the field energies are those of
the free mode, completely independent of any influence of
the two-level atom. This is the high-energy situation where
the numbern of photons far exceeds unity and therefore is
unaltered by emission or absorption of a single photon by the
atom. In the particle beam case, as explained above, the ana-
log is a plane wave for the particle beam, i.e., zero effective

potentialĒsQd.
Although in the above approximation the field is unaf-

fected by the atom, the atom is still strongly affected by the
field. Substitution of Eq.(A4) into Eq. (22) and making the
same approximations that led to Eq.(30) gives the coupled
equations for the atom alone,

S1

2
"v0sz + Î2"vgQstdsxDSa+std

a−std
D = i"

]

]t
Sa+std

a−std
D .

sA8d

This is exactly the TDSE obtained by assuming at the outset
a classical field with amplitudeQstd driving the two-level
atom whose state vector is expanded in the unperturbed ba-
sis, i.e.,

ucstdl = a+stdu + l + a−stdu− l. sA9d
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