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The transformation that an attenuator makes on the state of an optical field is the time reverse of that of an
amplifier. Thus predicting the output state for an amplifier is equivalent to retrodicting the input state of an
attenuator. We explore the consequences of this equivalence for simple optical quantum communication chan-
nels. One counterintuitive consequence is that the mean number of photons sent into an amplifier as retrodicted
from a measurement of the number of output photons does not include the contribution of the amplifier noise.
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I. INTRODUCTION

A description of the output state of a quantum communi-
cation channel, based on knowledge of the input state and the
initial state of the environment interacting with the channel,
requires the use of predictive quantum mechanics. The com-
bined initial state evolves forward in time unitarily under the
total Hamiltonian for the system and environment, and the
environmental trace is taken to give an evolved state of the
system alone. In this way we can calculate predictive condi-
tional probabilities of future measurement events based on
knowledge of states prepared in the present(preparation
events).

This is not the most natural way to analyze communica-
tions systems, however. In general, the communication prob-
lem is to determine the message sent from the message re-
ceived. In quantum communications this translates into
finding the probabilities that particular states were sent in the
past, given the results of measurements in the present. The
best way to do this is to use retrodictive quantum mechanics
[1–7]. In this more unusual formulation the state of the sys-
tem at any time between preparation and measurement is the
measuredstate evolved backwards in time. The retrodictive
conditional probability that a particular state was prepared is
found by projecting this back-evolved retrodictive state onto
the possible prepared states.

It is possible to use predictive quantum mechanics com-
bined with Bayes’s theorem, which relates predictive and
retrodictive conditional probabilities[8], to analyze the com-
munication problem. We can calculate retrodictive condi-
tional probabilities by calculating the evolved predictive
state for each possible prepared state and projecting these
onto the measurement result to obtain a complete set of pre-
dictive conditional probabilities. This is hardly an efficient
strategy, however, as there could be many possible prepared
states. Classical computers are inefficient at modeling quan-
tum systems. In open systems particularly this approach will
be calculationally intensive. It is much more efficient to per-

form one retrodictive calculation to find the retrodictive state
and project this onto the possible prepared states.

All quantum communication channels are currently opti-
cal and hence the study of quantum optical devices forms an
important part of quantum communication theory. Attenuat-
ing and amplifying devices are essential constituents of op-
tical communication channels. Lossy phenomena are always
present in such systems and are caused by signal scattering in
real fibers, transmission in nontransparent materials, or de-
tection of the signal by an imperfect apparatus with quantum
efficiency smaller than unity. Optical amplifiers, on the other
hand, are used in communications to increase the amplitude
of the transmitted optical signal when needed[9]. Although
classical amplification and attenuation are reverse processes,
in quantum mechanics following an attenuator by an ampli-
fier does not restore the original signal[10]. However, it has
been shown that retrodiction through an attenuating(ampli-
fying) channel corresponds to prediction through an ampli-
fying (attenuating) channel[11]. This correspondence allows
us to apply the more familiar predictive quantum theory to a
retrodictive system. Here we demonstrate the equivalence
between the two systems by deriving the predictive and ret-
rodictive matrix elements for the density operators describ-
ing the single mode field for an attenuating and an amplify-
ing device, respectively. We use these to explore the
consequences of this equivalence, concentrating particularly
on realistic measurement schemes and possible prepared
states. The quality of an attenuator or amplifier is character-
ized by the characteristic temperature of the environment
with which the signal field mode interacts. We concentrate
mainly on the ideal case where the environment is at zero
temperaturesT=0 Kd, before briefly dealing with the case
whereTÞ0 K.

In Sec. II we provide a brief introduction to retrodictive
quantum mechanics. The most general expressions for the
predictive and retrodictive density-matrix elements for am-
plifiers and attenuators are derived in Sec. III, and the ret-
rodictive elements are obtained using a simple method pre-
viously used to calculate retrodictive atomic states[12]. In
Sec. IV we apply the results to particular input photon prob-
ability distributions and to photocounting experiments. In
Sec. V we calculate predictive and retrodictive density-
matrix elements for the field for imperfect photodetection,
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caused by a nonunit detector quantum efficiency and/or the
presence of dark counts. In Sec. VI, we show by means of a
particular example and by using the field density-matrix
elements that the predictive-retrodictive equivalence between
attenuators and amplifiers is also valid for nonideal devices
with environments at a nonzero temperature; we further il-
lustrate this property by using a master equation approach.
The conclusions are given in Sec. VII.

II. PREDICTIVE AND RETRODICTIVE QUANTUM
THEORY IN OPEN SYSTEMS

In this section we summarize predictive and retrodictive
quantum theory in open systems[6,7]. Discussion of predic-
tive and retrodictive master equations[7,13] is left until
Sec. VI.

An open quantum system is one in which the system of
interest is coupled to a large unmeasured set of systems
called the environment. Almost every real quantum system is
open, but systems coupled to amplifying or attenuating chan-
nels are explicitly so. Suppose that states are prepared at time
tp, undergo evolution for a timet, and are then measured at
time tm= tp+t. The conditional probability that the measure-
ment resultj is obtained given that the system was prepared
in stater̂istpd is the trace over the system states of this den-

sity operator projected onto the elementP̂ j of the probability
operator measure(POM) describing the measurement
[6,7,14]

Ps j uid = TrSfr̂i
predstmdP̂ jstmdg. s1d

The state of the system at the measurement timetm is given
by the predictive density operator, i.e., the prepared state
coupled to the environment, evolved forward in time, and
conditioned on the result of a possible measurement of the
environment,

r̂i
predstmd = TrEfP̂EstmdÛstdr̂istpd ^ r̂EstpdÛ†stdg. s2d

Here r̂Estpd is the state of the environment at timetp and

Ûstd is the unitary operator which determines the evolution

of the coupled system and environment.P̂ jstmd is the POM
element corresponding to measurement resultj . A POM is a
mathematical representation of a measuring device, a set of

elementsP̂ j, each of which is a positive semidefinite opera-
tor associated with a different possible resultj of the mea-
surement, and which satisfies

o
j

P̂ j = 1̂S, s3d

the unit operator in the system space. This condition ensures
that the probabilities of all the possible measurement results
sum to unity. For a simple von Neumann measurement[15],
the POM elements are projectors onto the eigenstates of the
measured observable operator, and therefore their trace is
also normalized. The environment is usually unmeasurable

and so in Eq.(2) P̂Estmd=1̂E, the unit operator in the envi-
ronment space.

In a quantum communication system, the sender does not
send the same state every time, as this conveys no informa-
tion. One state from a set of possible states is prepared and
the particular state sent must be determined from the mea-
surement result. The best way to do this is to use retrodictive
quantum theory. The POM element of the system at any time
prior to tm is the measured POM element, coupled to the
environment state and evolved backwards in time, condi-
tioned on the state of and traced over the environment. The
POM at the preparation time is

P̂ jstpd = TrEfr̂EstpdÛ†stdP̂ jstmd ^ P̂EstmdÛstdg, s4d

and we can calculate the predictive conditional probability as

Ps j uid = TrSfr̂i
predstpdP̂ jstpdg. s5d

In fact this equation is valid for density operators and POM
elements evaluated at any intermediate timet between prepa-
ration and measurement, withr̂i

predstpd evolved forward in

time from tp to t, andP̂ jstmd evolved backwards in time from
tm to t. This amounts to an invariance of the conditional
probability on the time of collapse of the system. In other
words we may include the evolution as part of the system
preparation, as part of the measurement, or it may be divided
between the two processes. If required the retrodictive state
can be found from the POM element using

r̂ j
retrstd = P̂ jstd/TrSfP̂ jstdg. s6d

Suppose that we wish to calculate retrodictive conditional
probabilities. These must take account of thea priori prob-
abilities Psid that particular states are prepared. These prob-
abilities are encoded in thea priori prepared state

L̂stpd = o
i

L̂istpd = o
i

Psidr̂i
predstpd. s7d

The retrodictive conditional probability thati was prepared
given thatj was measured is then

Psi u jd =
TrfL̂iP̂ jg

TrfL̂P̂ jg
=

TrfL̂ir j
retrg

TrfL̂r j
retrg

, s8d

where again the operators can be evaluated at any time be-
tween preparation and measurement. In this way the receiver
can construct the message with the minimum of calculation.
If the preparation isunbiased, in other words each of the
states spanning the system is equally likely to be prepared,
thea priori prepared state, Eq.(7), becomes the unit operator

for the state space of the system,L̂=1̂/D, whereD is the
dimension of the state space of the system. The retrodictive
conditional probability, Eq.(8), can now be written

Psi u jd = TrfL̂ir̂ j
retrg, s9d

thus displaying a symmetric form to that of the predictive
conditional probability. Unbiased preparations are not the
norm in physics, but they do occur in quantum communica-
tions, for example in the BB84 protocol for quantum key
distribution [16].
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III. PREDICTIVE AND RETRODICTIVE DENSITY-
MATRIX ELEMENTS FOR IDEAL ATTENUATORS AND

AMPLIFIERS

The effect of attenuation or amplification of an optical
signal is reflected in the expression for the density operator
of the field after transmission through the attenuating or am-
plifying device. Information about the signal transformation
is given by the input-output relations for the matrix elements
of the field density operator. We derive these input-output
relations in the photon-number state basis, by using in both
cases beam-splitter models[17,18]. Although these models
use a single mode description of the environment field, the
resulting expressions have general validity. Once the predic-
tive reduced density operators for these open systems are
known, the retrodictive density-matrix elements for the sig-
nal field are easily derived by means of a simple calcula-
tional tool [12].

A. Attenuator

Light traveling through an optical fiber exhibits a power
that decreases exponentially with distance, as a result of the
absorption in the fiber’s material(usually fused silica glass)
and of the Rayleigh scattering due to the random inhomoge-
neities of the material refractive index[9]. The attenuation
process limits the magnitude of the optical power transmitted
and the transmission factorK of the device is smaller than
unity.

An optical attenuator can be modeled by an ensemble of
two-level atoms. If there areNg atoms in the lower(ground)
atomic level andNe atoms in the excited level, and the atoms
are at temperatureT the population ratio is given by a Boltz-
mann factor

Ng

Ne
= e"v/kBT, with T ù 0. s10d

The atoms absorb some of the field energy, but also add
noise photons with distribution given by the thermal excita-
tion function [18,19]

NattsTd =
Ne

Ne − Ng
=

1

1 − e"v/kBT ù 0. s11d

For a zero temperature attenuator the atomic population is
completely uninverted withNatt=0. In fact the theoretical
model of the damped harmonic oscillator gives the simplest
description for the attenuation process[20]. This can be gen-
erally constructed by coupling one oscillator to a bath of
oscillators, similar to the case of a single field mode resonat-
ing in a microcavity where the presence of the damping res-
ervoir is responsible for the finite quality factor of the cavity
[21].

Our model for the attenuating device is schematized in
Fig. 1. We denote byâ and â† the annihilation and creation

operators describing the signal field mode, and byb̂ and b̂†

the operators associated with the environment, here assumed
to be single mode and in the vacuum statesT=0d. The results
derived take the same form for a multimode environment. If
K is the attenuation factor of the system, we can define the

transmission and the reflection coefficients of the beam split-
ter (T and R, respectively) in terms ofK as T=ÎK and R
= iÎ1−K. These coefficients satisfy the usual conditions for
the validity of the field-operator commutation relations:

uT u2 + uRu2 = 1,

s12d
TRp + T pR = 0.

The relation between the input signal operator and the output
operators for a lossless attenuating beam splitter[18] is

âin
† = ÎKâout

† + iÎ1 − Kb̂out
† . s13d

As illustrated in Fig. 1, we denote bym (andm8) the quan-
tum numbers associated with the output of the attenuating
channel, and byn (andn8) the quantum numbers associated
with the input. We denote byr̂att the density operator de-
scribing the signal field sent into the attenuator at timet=0,
and can write

outkmur̂attum8lout = TrEo
n,n8

outkmunlininknur̂attun8lininkn8um8lout,

s14d

where the property of completeness of the photon-number
states has been used twice. No measurement is performed on
the environment output mode, and so we trace over the en-
vironment states. The input-output relation(14) for the signal
field can be evaluated once the termsoutkmunlin and

inkn8 um8lout are explicitly calculated. This can be done by
writing

unlin =
1

În!
sâin

† dnu0l = o
l=0

n

in−lÎ n!

l ! sn − l!d
Kl/2

3s1 − Kdsn−ld/2ulloutun − llE, s15d

where Eq.(13) has been used, and where the subscriptout is
associated with the signal output and the subscript E with the
unmeasured environment channel. We then easily find, in-
serting this result in Eq.(14),

FIG. 1. Attenuating beam-splitter model.
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outkmur̂attum8lout ; kmur̂att
predum8l

= o
n=m

n8=m8

` S n ! n8!

m ! m8 ! sn − md ! sn8 − m8d!
D1/2

3Ksm+m8d/2s1 − Kdsn−m+n8−m8d/2

3dn−m−n8+m8inknur̂attun8lin. s16d

The above expression is the general predictive input-output
relation for the density-matrix elements describing an attenu-
ated signal field. HereK can be written in terms of an attenu-
ation coefficienta as K=e−az (z being the propagation dis-
tance) if a is in km−1 units, or asK=e−0.23az if a is in dB/km
units [9], or asK=e−2gt if the attenuation is characterized by
a dissipation rate 2g of a lossy medium[21]. We will use the
temporal dependence here.

From Eq. (16) both the diagonal and off-diagonal ele-
ments of the reduced density operatorr̂att can be found. If
we setn=n8, and thereforem=m8 in Eq. (16), we obtain the
output state amplitude, but not phase, for a general superpo-
sition of photon-number input states. We have in this case

outkmur̂attumlout = o
n=m

` Sn

m
DKms1 − Kdn−m

inknur̂attunlin,

s17d

which shows that the effect of the attenuator is equivalent to
Bernoulli sampling[21].

The general predictive density operator describing the
output field after the attenuation process is given by

r̂att
pred= o

m,m8=0

`

o
n=m

n8=m8

`

rnn8s0dSn

m
D1/2Sn8

m8
D1/2

Ksm+m8d/2

3s1 − Kdsn−m+n8−m8d/2dn−m−n8+m8umlkm8u, s18d

where we have definedrnn8s0d= inknur̂attun8lin, the matrix el-
ement prior to any evolutionst=0d describing the field be-
fore transmission through the device. Note that by rearrang-
ing the summations in Eq.(18), the latter can be re-expressed
as

r̂att
pred= o

n,n8=0

`

o
m=0

n

o
m8=0

n8

rnn8s0dSn

m
D1/2Sn8

m8
D1/2

Ksm+m8d/2

3s1 − Kdsn−m+n8−m8d/2dn−m−n8+m8umlkm8u, s19d

so that the values ofn andn8 are unrestricted. The restriction
appears in the output quantum numbersm andm8. Since the
coefficientK is implicitly a function of time,r̂att

pred; r̂att
predstd

is a time-dependent operator.
We can use retrodictive quantum mechanics[6,7] to ob-

tain information about the state of the field at a time preced-
ing the measurement time, on the basis of the measurement
result. In order to do this we utilize a simple calculational
tool previously used to find retrodictive atomic states[12], in
order to derive the retrodictive density-matrix elements for

this system directly, given knowledge of its predictive evo-
lution. Note that Eq.(19) is also formally equivalent to Eq.
(2), which can be recast as

r̂att
pred= TrEfÛattr̂att ^ r̂Es0dÛatt

† g, s20d

whereÛatt is the unitary operator describing the evolution of
the system associated with the beam-splitter transformation
[11]. The probability of getting an outcomej from the mea-
surement performed at the output channel of the attenuator
is, with the use of Eq.(19),

TrESfP̂ jÛattr̂att ^ r̂Es0dÛatt
† g

= o
n,n8=0

`

o
m=0

n

o
m8=0

n8

rnn8s0dSn

m
D1/2Sn8

m8
D1/2

Ksm+m8d/2

3s1 − Kdsn−m+n8−m8d/2dn−m−n8+m8km8uP̂ juml. s21d

The retrodictive matrix elements(and consequently the ret-
rodictive density operator) can now be directly derived using
the method found in Ref.[12],

kn8ur̂att
retrunl =

1

Natt

]

] rnn8
TrESfP̂ jÛattr̂att ^ r̂Es0dÛatt

† g,

s22d

where Natt is the normalization constant. The trace factor
being simply the expectation value of the product of the
POM element and the evolved predictive density operator, in
general this equation allows us to obtain retrodictive density
operators for a particular system from the solution of the
predictive master equation describing its evolution. This
straightforward connection between the predictive and the
retrodictive evolutions of a system is in perfect analogy with
Bayes’ theorem[6,8], which in probability theory relates the
probabilities of later events given probabilities of earlier
events(predictive conditional probabilities), to the probabili-
ties of earlier events given probabilities of later events(ret-
rodictive conditional probabilities). With the summations ex-
pressed as in Eqs.(19) and(21), the evaluation in Eq.(22) of
the derivatives with respect tornn8 is straightforward and we
find

kn8ur̂att
retrunl =

1

Natt
o
m=0

n

o
m8=0

n8 Sn

m
D1/2Sn8

m8
D1/2

Ksm+m8d/2

3s1 − Kdsn−m+n8−m8d/2dn−m−n8+m8km8uP̂ juml.

s23d

The normalization constant is easily calculated,

Natt = o
m=0

`

kmuP̂ jumlo
n=m

` Sn

m
Ds1 − Kdn−mKm = TrP̂ j/K.

s24d

We can substitute this in Eq.(23), and use the definition of
the retrodictive density matrix(6) to find
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kn8ur̂att
retrunl = Ko

m=0

n

o
m8=0

n8 Sn

m
D1/2Sn8

m8
D1/2

Ksm+m8d/2

3s1 − Kdsn−m+n8−m8d/2dn−m−n8+m8km8ur̂ j
retruml.

s25d

The diagonal matrix element obtained by settingn=n8 (and
thus m=m8) in Eq. (25) represents the retrodictive photon-
number probability distribution, giving information on the
field amplitude before the measurement and before the at-
tenuating process. IfK is time dependent, the retrodictive
probability at a timet before the measurement time is given
by the diagonal part of Eq.(25).

B. Amplifier

Laser amplifiers are important components of fiber-optic
communication systems. They are generally constituted by
Erbium-doped silica fibers for light propagation atl
=1.55mm and offer high-gain amplification with low noise.
An Erbium-doped fiber amplifier may be used as an optical-
power amplifier placed directly at the output of the source
laser, or as an optical preamplifier at the photodetector input.
More generally amplifiers can also serve as all-optical re-
peaters, replacing the electronic repeaters that provide re-
shaping, retiming, and regeneration of the signal bits[9].

The simplest theoretical configuration for an amplifier
consists of an assembly of two-level atoms with an inverted
population. This is the usual model of the laser, and its linear
operation regime, well below threshold, describes an ampli-
fier. For the amplification process to occur, the population
factor characteristic of standard theory satisfies
[18,19,22–24]

NampsTd =
1

1 − e"v/kBT ù 1, but withT ø 0. s26d

It can be related to the thermal factor[12] for an attenuator
by

Namps− Td = NampsuTud =
e"v/kBT

e"v/kBT − 1
= 1 −NattsTd. s27d

In this section we consider a linear optical amplifying
channel modeled by a beam splitter, in which the signal en-
tering the device from one input port is coupled to an in-
verted harmonic oscillator, the latter representing the source
of noise entering the system from the other input[20,23,24].
Again we concentrate on the ideal case where the environ-
ment is at zero temperature(strictly T→−0, also correspond-
ing to a fully inverted atomic population withNamp=1). Thus
the state of the environment is different from that of the zero
temperature attenuator. Here the inverted harmonic oscillator
has no ground state, but it has a state of maximum energy
associated with the quantum number 0. The scheme of the
model we adopt is shown in Fig. 2.

If we denote the gain of the amplifier byG, the transmis-
sion and reflection coefficients of the beam splitter are

T = ÎG and R = ÎG − 1. s28d

In this case, the validity of the Bosonic commutation rela-
tions for the field creation and destruction operators leads to
[17,18],

uT u2 − uRu2 = 1, s29d

where uTu2=Gù1, as the beam splitter is amplifying. No
special requirements on the phases of the reflection and
transmission coefficients are needed, and the relation be-
tween the input signal operator and the output operators is
[18]

âin
† = ÎGâout

† − ÎG − 1b̂out. s30d

The derivation of the input-output relations for the density
matrix elements describing the field sent into an amplifier
can be made by a procedure similar to that outlined in Sec.
II. The forms of the photon-number states characterizing the
field at the output of the beam-splitter arms are now less
straightforward. We denote here byr̂amp the density operator
describing the signal field initially sent into the amplifier, and
we can write, similarly to Eq.(14),

outkmur̂attum8lout = TrEo
n,n8

outkmunlin inknur̂ampun8lin inkn8um8l.

s31d

The photon-number input state can be found from Eq.(30),

unlin =
1

În!
sâin

† dnu0lin =
1

În!
fÎGâout

† − ÎG − 1b̂outgnu0lin,

s32d

but where, in contrast to the attenuator, the input vacuum
state u0lin cannot be set equal to the output vacuum state.
Due to the noise introduced by the amplifier, the vacuum
state in the input of the device can be written only as a
superposition of all the diagonal states of the output. Here
these states are the result of the modeling the amplifier as a
harmonic oscillator coupled to an inverted harmonic oscilla-
tor with negative energy levels, but they must also be present
for other amplifier models. From this and using the principle
of energy conservation, given for the amplifier by

âout
† âout − b̂out

† b̂out = âin
† âin − b̂in

† b̂in, s33d

it can be shown that

FIG. 2. Amplifying beam-splitter model.
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u0lin =
1

ÎG
o
q=0

` SÎG − 1
ÎG

Dq

uqloutuqlE, s34d

where the subscriptout refers to the observed output chan-
nel, while the subscript E refers to the environmental noise
channel on which no measurements are assumed to be per-
formed. The resulting output probability distribution for a
T=−0 amplifier with no input signal is

Pampsqd =
sG − 1dq

Gq+1 ;
q̄q

s1 + q̄d1+q , s35d

showing that the emission is chaotic[25], and the mean num-
ber of output photons is

q̄ = G − 1. s36d

The insertion of Eq.(34) into Eq. (32) and the use of the
properties of the field annihilation and creation operators act-
ing on photon-number states[25] gives

unlin = o
l=0

n

o
s=n

` În!Îs!

l ! sn − ld ! Îss− nd!
S G

G − 1
Dl

3s− 1dn−l sG − 1dss+nd/2

Gss+1d/2 usloutus− nlE. s37d

By means of Eq.(36) the quantityoutkmunlin can now be
calculated and used in Eq.(31), leading to

outkmur̂ampum8lout ; kmur̂amp
predum8l

=
1

Gsm+m8+2d/2o
n=0

m

o
n8=0

m8 Sm

n
D1/2Sm8

n8
D1/2

3sG − 1dsm−n+m8−n8d/2

3 dm−n−m8+n8inknur̂ampun8lin. s38d

This is the general input-output relation for the predictive
density-matrix elements of the field sent through a fully in-
verted amplifier. The diagonal contributions are

outkmur̂ampumlout =
1

Gm+1o
n=0

m Sm

n
DsG − 1dm−n

inknur̂ampunlin,

s39d

in agreement with previous results[19]. This expression de-
scribes the output photon distribution of the amplifying
channel in terms of a general superposition of photon-
number input states.

The predictive density operator describing the output field
after the amplification process is

r̂amp
pred= o

n,n8=0

`

o
m=n

m8=n8

`

rnn8s0dSm

n
D1/2Sm8

n8
D1/2

3
sG − 1dsm−n+m8−n8d/2

Gsm+ni8+2d/2
dm−n−m8+n8umlkm8u, s40d

where we have defined,rnn8s0d= inknur̂ampun8lin. As for the
attenuator, Eq.(40) is a time-dependent density operator
r̂amp

pred; r̂amp
predstd, sinceG=e2g8t, with 2g8 being the gain rate of

the device.
We can now evaluate the retrodictive density-matrix ele-

ments for this system. Here Eq.(40) represents the quantity

r̂amp
pred= TrEfÛampr̂amp ^ r̂Es0dÛamp

† g, s41d

whereÛamp is the unitary operator describing the amplifying

process of the device[11]. If P̂ j is the POM associated with
measurement at the output of the amplifying channel, the
probability that the outcome isj becomes, with the use of
Eqs.(40) and (41),

TrESfP̂ jÛampr̂amp ^ r̂Es0dÛamp
† g

= o
n,n8=0

`

o
m=n

m8=n8

`

rnn8s0dSm

n
D1/2Sm8

n8
D1/2sG − 1dsm−n+m8−n8d/2

Gsm+m8+2d/2

3 dm-n-m8+n8km8uP̂ juml. s42d

Therefore, similarly to Eq.(22),

kn8ur̂amp
retr unl =

1

Namp

]

] rnn8
TrESfP̂ jÛampr̂amp ^ r̂Es0dÛamp

† g,

s43d

and using the same procedure as for the attenuator we find

kn8ur̂amp
retr unl = o

m=n

m8=n8

` Sm

n
D1/2Sm8

n8
D1/2sG − 1dsm−n+m8−n8d/2

Gsm+m8d/2

3dm-n-m8+n,km8ur̂ j
retruml s44d

The retrodictive conditional probability at timet is obtained
by substitutingG by e2g8t.

C. Linear attenuation and amplification:
Predictive-retrodictive inverses

A direct correspondence betweenpredicting the signal
output state from a quantum optical attenuator or amplifier,
and retrodicting the signal input state for an amplifier or
attenuator, respectively, has been previously established by
deriving a relation between the unitary operators associated
with amplification and attenuation[11]. Here, using the re-
sults obtained in Sec. II, we confirm the validity of this cor-
respondence in the situation where the environment is ini-
tially at zero temperature.
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We recall that the signal field retrodictive matrix elements
for the attenuator are given by Eq.(25). We now denote by
rm8ms0d the input density matrix elements associated with the
signal state sent into the amplifier. If we write the gain of the
amplifier as the inverse of an attenuation factor,G=1/K, Eq.
(38) becomes

kn8ur̂amp
predunl = Ko

m=0

n

o
m8=0

n8 Sn

m
D1/2Sn8

m8
D1/2

Ksm+m8d/2

3s1 − Kdsn−m+n8−m8d/2dn−m−n8+m8rm8ms0d,

s45d

where the quantum numbersm,m8 andn,n8 are exchanged.
Finally if we assume that the elementsrm8ms0d associated
with the amplifier input signal, are proportional to the mea-
sured quantitieskm8ur̂ j

retruml at the output of the attenuator,
i.e., if

rm8ms0d = km8ur̂ j
retruml, s46d

we find, by comparing Eq.(25) with Eq. (45), that

kn8ur̂att
retrunl = kn8ur̂amp

predunl. s47d

In other words, given the result of a measurement, the ret-
rodictive state that we calculate at the input of an attenuator
with lossK is the same as the calculated predictive state at
the output of an amplifier with gainG=1/K when its input
state is the measured output state of the attenuator; this is
shown here for the environment for the two devices initially
in vacuum states. We should bear in mind the different nature
of this state in the two cases: strictly speaking it is a state of
minimum energy for the attenuator and a state of maximum
energy for the amplifier. The opposite equivalence can be
shown by following an identical procedure to the one
adopted above and we have

kn8ur̂amp
retr unl = kn8ur̂att

predunl. s48d

In this case the retrodictive state for an amplifier with gainG
is the same as the predictive state for an attenuator with loss
K=1/G given that the measured output state of the amplifier
is the input state of the attenuator.

Note that, although we have proved the equivalence for
the particular case of zero-temperature environment, it is
valid for any temperature, as is shown in Sec. VI.

IV. APPLICATION TO PHOTOCOUNTING EXPERIMENTS

The aims of this section are to evaluate the retrodictive
matrix elements of the attenuator field for different photon
distributions and to compare the expressions with the predic-
tive forms for the amplifier. Two types of experimental pro-
cedure are considered, and explicit forms for the measure-

ment POM elementP̂ j are given. In order to confirm the
validity of the beam-splitter method used in Sec. II for the
derivation of the density-matrix input-output relations, some
calculations for the predictive density operator are based here
on the solution of the predictive master equation describing

the system under consideration. For a cavity mode coupled
to a zero-temperature environment, the evolution of the field
is described by[20]

ṙ̂std = gf2âr̂stdâ† − â†âr̂std − r̂stdâ†âg, s49d

where 2g is the damping rate. The effect of the coupling to
the environment is equivalent to the attenuation process.

In this section we confine the discussion to perfect photo-
detection. A nonunit detection efficiency can easily be ac-
commodated by giving the whole system an overall loss fac-
tor. The effect of detector dark counts can also be taken into
account. Both of these detection scenarios are discussed in
Sec. V.

A. Initial superposition of photon-number states and single
measurements

In photocounting experiments, where usually the statistics
of a radiation field have to be determined, the diagonal part
of the density operator is sufficient, as this gives information
on the photon-number probability distribution, and we con-
centrate on these diagonal terms only. Other detection
schemes such as homodyne detection are sensitive to the
phase of the field, and we will consider these elsewhere[26].
In this subsection we further limit the discussion to single
measurements. In optical communications or quantum cryp-
tography, where the receiver must analyze single bits of in-
formation sent through a communication channel, the detec-
tion can only be made with a single measurement on each
signal bit. We also restrict the discussion in this section to
unbiasedsources of radiation. The state space of the system
is spanned by the complete set of photon number states, but
usually the message sender and receiver restrict this artifi-
cially by agreeing to send one of a limited number of states
within a space spanned by the first few number states. In
either case, by an unbiased source we mean one for which
the a priori probability that it produces any particular num-
ber state is the reciprocal of the dimension of the state space.
We assume that both the sender and the receiver know the
state space of the system and that the detector used for the
measurement is an ideal photocounting detector with unit
quantum efficiency.

The initial state of any diagonal field can be expressed in
the general formr̂s0d= r̂att=on=0

` rnns0dunlknu, so the solution
of Eq. (49) is given by[20]

r̂attstd = o
m=0

`

o
n=m

`

rnns0dSn

m
D e−2gtms1 − e−2gtdsn−mdumlkmu,

s50d

which describes a mixed state with a binomial photon-
number probability distribution. Withe−2gt=K, we clearly
see that Eq.(50) agrees with the diagonal part of Eq.(18)
derived using the beam-splitter model. We first assume that
exactly m photons are counted by the detector in asingle
measurement. This is a simple von Neumann measurement
[15] and the POM element can be written as
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P̂ j ; P̂m = umlkmu. s51d

If the state space is the complete set of number states the
retrodictive probability that the input containedn photons
given m detected output photons is given by Eqs.(23) and
(51) as

Patt
retrsnumd = knur̂att

retrunl = Sn

m
DKm+1s1 − Kdn−m

= Sn

m
D sG − 1dn−m

G1+n with n ù m, s52d

where we have setK=1/G. If we have no information about
the prepared input state other than its random selection the
result of such an experiment does not tell us much about the
initial photon distribution of the prepared signal field. In fact
Eq. (52) represents the best available description of the ini-
tial photon distribution that we can obtain from a single mea-
surement, given our lack of knowledge of the particular state
that was sent. By comparing the above expression with Eq.
(39), we can see that Eq.(52) also describes the probability
of countingn photons at the output channel of an amplifier
with gain G, given a field input stateuml and the environ-
ment initially at zero temperature. Therefore in this particular
case we reobtain the diagonal part of Eq.(47).

Similarly we can illustrate for single measurements the
inverse case, where the predictive density-matrix element for
the amplifier is equivalent to the retrodictive matrix element
for the attenuator. Without going into details, we find that the
retrodictive probability forn input photons having detected
m photons at the output of the amplifier is

Pamp
retr snumd = knur̂amp

retr unl = Sm

n
D sG − 1dm−n

Gm with mù n.

s53d

Finally settingG=1/K, we again obtain the diagonal part of
Eq. (47).

One particularly striking consequence of the equivalence
between attenuators and amplifiers is that ideal attenuators
add noise photons backwards in time. Similarly, ideal ampli-
fiers, which must add noise photons to an input signal, do not
appear to do so backwards in time. An example of this can be
given if we suppose that a communication channel contains
an ideal amplifier with a particular gain(say G=2). If we
send a one-photon pulse of light through the channel the
mean number of photocounts at the output isknoutl=Gkninl
+G−1=3. If, however, we do not know how many photons
were sent, and wish to determine this from the results of the
measurement we obtain a counterintuitive result. If we mea-
sure three photons then the mean number of input photons is
determined by considering the retrodictive amplifier as an
ideal predictive attenuator with lossK=1/G. Thus kninl
=Kknoutl=1.5, which is not in line with the intuitive result, 1,
given by subtracting a photon and dividing by the gain. This
result is also obtainable directly by using the retrodictive
density operator for the amplifier obtained from the diagonal
part of Eq.(44), and computing the mean number of input
photons usingkninl=Trsr̂amp

retr n̂d. While the result is surprising

it is what one might intuitively expect for a channel that
contains a classical noise-free amplifier, and is thus in line
with the correspondence principle[27]. In classical physics
the beam intensity retrodicted at the input of an amplifier
would be the detected intensity divided by the gain. This is
the classical limit of the retrodictive result, but it is not the
exact classical limit of the result based on predictive ampli-
fier theory.

In the above examples the detection of a number of pho-
tons tells us little about the input because the state space of
the system is large. If the space is artificially restricted by
prior agreement between the sender and receiver, then the
amount of information gained from a single measurement
can be greatly increased. Suppose that an ideal attenuating
optical fiber is used to send signals in the form of photon
number states. Consider first the case where no photons are
detected at the output. Then the retrodictive density matrix
for the input to the fiber is, from Eq.(25),

r̂att
retr = o

m=0

`

Ks1 − Kdmumlkmu, s54d

whereK is the transmission of the fiber. If it is known that
only either zero or one photon was sent with equal prior
probability (an unbiased source) this restricts the state space
in Eq. (54). Therefore the sum stops atm=1, and the density
operator is renormalized,

r̂att
retr =

1

2 − K
u0lk0u +

1 − K

2 − K
u1lk1u. s55d

Figure 3 shows the retrodictive conditional probabilities that
0 or 1 photon was sent, given that none were found at the
detector. These probabilities both tend to 1/2 as the attenua-
tion increasessK→0d, and so the measurement gives no in-
formation about the input state if the fiber is highly attenu-
ating. This retrodictive decay to the no information state has

FIG. 3. Retrodictive conditional probabilitiesPatt
retrs0u0d (full

curve) andPatt
retrs1u0d (dashed curve), in the case where only zero or

one photon could have been sent through the attenuator.
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already been highlighted for two-level atoms interacting with
a single-mode electromagnetic field[12].

If the state space is extended so that zero, one or two
photons could have been sent with equal prior probabilities
(again unbiased), then for no detected photons the retrodic-
tive density operator becomes

r̂att
retr = o

m=0

2
s1 − Kdm

3 − 3K + K2umlkmu. s56d

In this case the retrodictive conditional probabilities all de-
cay to 1/3 as the attenuation increases, as shown in Fig. 4.
This is the no-information state for the three-state basis.
These retrodictive results tally with the results for the output
of a predictive amplifier with a vacuum input. In the high
gain limit all low photon numbers are equally likely at the
output, so if the output space is artificially restricted to a
finite set of low number states then the output density opera-
tor will tend to the no information state.

The situation is different if the detector registers a photon.
For the two-state system a count at the output of the ideal
attenuator means that a photon must have been sent. There is
no other mechanism for obtaining a count when the attenu-
ator temperature is zero. The situation becomes a little more
interesting for the three-state system. The retrodictive density
operator obtained from one count is

r̂att
retr = o

m=1

`

mKs1 − Kdmumlkmu, s57d

which, if not more than two photons were sent, becomes

r̂att
retr =

1

3 − 2K
u1lk1u +

2s1 − Kd
3 − 2K

u2lk2u. s58d

The probabilities that one and two photons were sent are
plotted as a function of the transmission coefficientK for an
unbiased source in Fig. 5. It is seen that in the high attenu-

ation limit the one-photon probability tends to 1/3 and the
two-photon probability tends to 2/3. This result is easy to
understand if the system is considered to be a predictive
amplifier with a one-photon input. If the output is limited to
two photons then only two processes can occur. Either the
photon passes through the amplifier and is detected, or on its
way through it stimulates an emission of a second photon.
The probability of this second process is proportional to the
stimulated emission factorsm+1d, so it is twice as likely to
occur in this case.

The situation can be different forbiasedsources for which
we havea priori information about the state preparation. If,
for example, only zero or one photon can be sent, but one
photon is twice as likely to be sent as no photons, then, if no
photons are detected at the output the retrodictive state is as
given in Eq. (55). However, the retrodictive conditional
probabilities that zero or one photon were sent are not the
same as in Fig. 3. The probabilities must take account of the
a priori distribution, which is encoded in the prepared state
(7),

L̂ = L̂0 + L̂1 =
1

3
u0lk0u +

2

3
u1lk1u. s59d

The probabilities that 0 and 1 photons were sent are respec-
tively, from Eq. (8),

Patt
retrs0u0d =

TrSfL0r̂retrg
TrSfLr̂retrg

=
1

3 − 2K
,

Patt
retrs1u0d =

TrSfL1r̂retrg
TrSfLr̂retrg

=
2 − 2K

3 − 2K
. s60d

In this case the retrodictive conditional probabilities at high
attenuation decay to thea priori probabilities, which are 1/3
and 2/3, and this time there is some remaining information
about the prior distribution of photons.

FIG. 4. Retrodictive conditional probabilitiesPatt
retrs0u0d (full

curve), Patt
retrs1u0d (dashed curve), and Patt

retrs2u0d (dotted curve), in
the case where only zero, one, or two photons could have been sent
through the attenuator.

FIG. 5. Retrodictive conditional probabilitiesPatt
retrs1u1d (dashed

curve) and Patt
retrs2u1d (dotted curve), in the case where only zero,

one, or two photons could have been sent through the attenuator.
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In real optical communications systems, signals consist of
a sequence of single bits of information, denoted by 0 or 1.
The essential part of the communication problem is to deter-
mine the transmitted message from the received signal and
here retrodiction is the natural approach to calculate the ret-
rodictive probabilities associated with the preparation states
of the signal bits of information. A study of retrodiction ap-
plied to optical communications for different detection
schemes will be presented in a subsequent paper, but here we
illustrate how information about the prepared states can be
accurately derived in this biased case, given the knowledge
of the outcome of the single measurement.

Conventional systems operate in the classical multiphoton
regime, where a received “1” may be represented by optical
pulses containing for example about 10 000 photons[28].
We make here the assumption that the two optical bits “0”
and “1” characterizing the binary signal can be described in
first approximation by the vacuum stateu0l and by a quan-
tum stateun̄l with an extremely large number of photonsn̄
@1. Thus the system represents another example of a biased
source. The retrodictive matrix elements, and hence the nor-
malized retrodictive conditional probabilities that, givenm
recorded photocounts, 0 orn̄ photons were sent into a zero-
temperature attenuator are now found to be

Patt
retrs0umÞ 0d = 0, Patt

retrsn̄umÞ 0d = 1, s61d

when a number of photonsmÞ0 is recorded during the
single measurement, while if no counts are registered

Patt
retrs0u0d =

1

1 + s1 − Kdn̄ and Patt
retrsn̄u0d =

s1 − Kdn̄

1 + s1 − Kdn̄ ,

s62d

where Eqs.(61) and(62) have been renormalized taking into
account the fact that here

knur̂att
retrunl = Patt

retrsnumd = 0 for n Þ 0,n̄. s63d

The above expressions depend on the transmission of the
device but also on the number of photons contained in the
strong optical pulse describing the “1” bit. While in this ideal
situation the relations(61) give a deterministic answer to the
problem of determining the nature of the signal bit sent into
the communication channel, the probabilities in Eq.(62) re-
spectively tend to 1 and 0 whenK→1. Note that for a fixed
value ofK, the biggern̄ the better the discrimination between
the two input pulses can be made by means of this retrodic-
tion process. The behavior of these retrodictive conditional
probabilities is shown in Fig. 6 wherePatt

retrs0u0d is plotted as
a function ofK for two different values of the input photon
numbern̄.

B. Coherent input state and repeated measurements

In this subsection and the following we illustrate how
some information on the statistics of a radiation field can be
derived using retrodiction, whenrepeatedmeasurements are
performed on the signal. This is not usually the case for
quantum communications but we imagine here that the na-
ture of a radiative source has to be analyzed, and that the

latter continuously produces identical field states that can be
measured separately.

If the cavity field mode at timet=0 is in a coherent state
ual, so thatr̂s0d= r̂att= ualkau and, as before, the environment
is assumed to be at zero temperature, then the solution of the
master equation(49) is [21]

r̂attstd = uae−gtlkae−gtu

= e−uau2e−2gt o
m,m8=0

`
amapm8

Îm ! m8!
e−gtsm+m8dumlkm8u.

s64d

By settinge−2gt=K, the diagonal contribution ofr̂attstd can
be written as a superposition of photon-number state opera-
tors similar to Eq.(50) and consequently the general retrod-
ictive matrix elements are given by the diagonal part of Eq.
(25),

knur̂att
retrunl = Ko

m=0

n Sn

m
DKms1 − Kdn−mkmur̂ j

retruml. s65d

This further underlines the fact that onesingle measurement
is not enough to extract accurate information about the sta-
tistics of the input radiation field.

In a situation whererepeatedcounts are recorded, we in-
troduce the following measured density operator:

r̂meas= o
j=0

`

Ps jdu jlk j u, s66d

wherePs jd is the experimentalprobability distribution con-
structed from the results of the repeated measurements, and
normalized. A coherent field is described by Poissonian sta-
tistics [21,25]. The fact that this input is coherent is not
known to the measurer, and the statistics of this field must be
determined from the measured statistics. If the input is Pois-

FIG. 6. Retrodictive conditional probability that no photons
were sent given that none were detected,Patt

retros0u0d, for the case
where (a) either zero orn̄=10 photons and(b) either zero orn̄
=1000 photons could have been sent through the attenuator.
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sonian the output statistics are also Poissonian so the con-
structed experimental probability distribution(in the limit of
an “infinite” number of single measurements) is

kmur̂measuml = Psmd =
e−ubu2ubu2m

m!
, s67d

where ubu2=Kuau2, and in agreement with the output prob-
ability distribution characterized by Eq.(17) for a coherent
input field. By inserting Eq.(65) in Eq. (64) (with r̂ j re-
placed byr̂meas) and settingK=1/G, we obtain the retrodic-
tive density-matrix elements,

knur̂att
retrunl =

sG − 1dn

Gn+1 e−ubu2o
m=0

n Sn

m
D 1

m!
S ubu2

G − 1
Dm

s68d

=
sG − 1dn

Gn+1 e−uau2/GLmS − uau2

GsG − 1d
D = knur̂amp

predunl, s69d

whereLm is the Laguerre polynomial. This expression also
describes the superposition of chaotic and coherent light at
the output of an amplifier[amplified vacuum field of the
environment with mean number of photonsG−1 in accor-
dance with Eq.(35), and coherent light of amplitudeuau
=G1/2ubu], for an input state given by a coherent field of
amplitudeubu, [19,20]. This can also be shown from Eq.(38),
when substitutingrnns0d by the initial Poissonian distribution
described by Eq.(67). Compared to the single measurement
experiment, additional information on the field statistics can
now be extracted from the retrodictive density-matrix ele-
ments. Nevertheless, it is true that, because of the noise in-
volved in the amplification process, an uncertainty about the
input field of the attenuator remains. It is not possible to say
that the input state had Poissonian statistics with a mean
number of photonsuau2 merely on the basis of the measure-
ment statistics.

C. Chaotic input state and repeated measurements

We now consider a chaotic input field, and we assume that
the radiation source emits continuously. As before the envi-
ronment is assumed to be at zero temperature, and the den-
sity operator describing the radiation amplitude at timet=0
can be written as[21,23]

r̂s0d = r̂att = o
n=0

`
n̄n

s1 + n̄d1+nunlknu, s70d

wheren̄ is the mean number of thermal photons of the input
field. We again assume that repeated measurements are per-
formed during the experiment, and thus that the statistics of
counted photons can be built up. The retrodictive density-
matrix elements for the system are again given by Eq.(65).
In this case, the expectation value of the POM elementr̂meas

(instead ofr̂ j) in the form Eq.(66), must be given(in the
limit of an infinite number of single measurements) by the
chaotic distribution

kmur̂measuml =
m̄m

s1 + m̄d1+m , s71d

where the average number of detected photons ism̄=Kn̄. We
obtain

knur̂att
retrunl =

sG − 1 +Gm̄dn

sG + Gm̄dn+1 = knur̂amp
predunl. s72d

The retrodictive matrix elements for the attenuator are thus
equivalent to the predictive matrix elements for an amplifier
where the input field is represented by chaotic light with
mean photon number equal tom̄. This can be shown from
Eq. (38) when the initial probability distribution is assumed
to be given by Eq.(71). The distribution in Eq.(72) repre-
sents a chaotic distribution with mean photon number equal
to the sum of the chaotic contributions constituting the out-
put of the amplifier[19]. These are the amplified vacuum
field of the environment and the amplified chaotic light, char-
acterized by mean photon numbers given byG−1 andGm̄,
respectively. As for the coherent input, by retrodicting the
result arising from successive measurements on the output
signal, we are able to derive information about the mean
photon number of the input field and on the field statistics.

V. PREDICTIVE AND RETRODICTIVE DENSITY-MATRIX
ELEMENTS IN THE CASE OF IMPERFECT

DETECTION

In order to complete the description of retrodiction for
ideal attenuators and amplifiers(at zero temperature environ-
ment) presented in Secs. II and III in the context of photo-
counting experiments, we give here the expressions for the
predictive and the retrodictive density-matrix elements of the
field, first when the detector placed at the output of the de-
vices has a quantum efficiency smaller than unity, and sec-
ond when dark counts affect the measurement. Both situa-
tions correspond more closely to real experimental
conditions. Devices which produce postselected states based
on measurements of exact numbers of photons are likely to
be useful in quantum information processing, and form the
basis of linear optical quantum computing. Therefore the re-
sults in this section have direct relevance to the fidelity of
such devices when detection is imperfect.

A. Inefficient photodetection

1. Attenuation and detection

An imperfect photodetector can always be modeled by a
beam splitter(or attenuator) followed by a perfect detector,
since its effect on the radiation falling onto its detection area
is an effective attenuation of the field. If we consider first the
case where an attenuating channel characterized by a trans-
mission factorK is followed by the imperfect detector with
quantum efficiencyh,1, we expect the whole system to be
equivalent to an attenuator with global transmission factor
Kh. In the context of photocounting experiments we concen-
trate our attention on the field amplitude, and so we only
present the diagonal contributions of the field density-matrix
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elements. By using the result valid for the attenuation pro-
cess of a single mode signal, the photon probability distribu-
tion after the measurement by the photodetector can be writ-
ten as[25]

kpur̂att+D
pred upl = o

m=p

`

kmur̂att
predumlSm

p
Dhps1 − hdm−p, s73d

assuming the surrounding thermal noise to be at zero tem-
perature. The distributionkmur̂att

preduml is given by Eq.(17),
and it can be shown by combining Eq.(73) with Eq. (17),
that the predictive matrix elements are simply

kpur̂att+D
pred upl = o

n=p

`

rnns0dSn

p
DsKhdps1 − Khdn−p. s74d

The whole system can therefore be represented, as expected,
by an attenuating device characterized by a transmission co-
efficient K8=Kh.

The diagonal retrodictive matrix elements for the system
attenuator + photodetector can be straightforwardly derived,
and the procedure of Sec. II, we obtain

knur̂att+D
retr unl = Kho

p=0

` Sn

p
DsKhdps1 − Khdn−pkpur̂ j

retrupl,

s75d

where r̂ j
retr represents the density operator associated with

the outcomej of the measurement. It is easy to show that we
have here

kn8ur̂att+D
retr unl = kn8ur̂amp

predunl, s76d

with the amplifier’s gain given byG8=1/Kh. The result(75)
is precisely that which was derived in Ref.[4] using Bayes’
theorem and the Bernoulli sampling formula.

2. Amplification and detection

The system consisting of an amplifying channel followed
by an imperfect detector can be represented by an amplifier
of transmissionG followed by an attenuator of transmission
h. The amplifier environment is initially in the vacuum state,
and we also assume that the thermal field surrounding the
detector is at zero temperature. The photon-number probabil-
ity distribution after the detection process can be written as
in Eq. (73) as

kpur̂amp+D
pred upl = o

m=p

`

kmur̂amp
predumlSm

p
Dhps1 − hdm−p, s77d

with

kmur̂amp
preduml =

1

Gm+1o
n=0

m

rnns0dSm

n
DsG − 1dm−n. s78d

By combining Eq.(78) with Eq. (77), we then obtain

kpur̂amp+D
pred upl = o

m=p

`

o
n=0

m

rnns0dSm

n
DSm

p
D

3hps1 − hdm−p 1

Gm+1sG − 1dm−n. s79d

On the other hand, although we will not go into details here,
it can be shown that the retrodictive matrix elements for the
system constituted by an amplifier followed by an imperfect
photodetector are given by

knur̂amp+D
retr unl = o

m=n

`

o
p=0

m Sm

n
DSm

p
Dhp+1s1 − hdm−p 1

Gm

3sG − 1dm−nkpur̂ j
retrupl. s80d

We have shown in Sec. II that the predictive matrix elements
for an attenuator or amplifier are equivalent to the retrodic-
tive matrix elements for an amplifier or attenuator, respec-
tively. We therefore expect Eq.(80) to be identical to the
photon-number probability distribution at the output of the
system where an amplifier with gainG8=1/h is followed by
an attenuator with lossK8=1/G. The environment is initially
at zero temperature and the noise entering the attenuating
channel is given only by the contribution coming from the
output of the amplifier. By evaluating the output photon dis-
tribution for this system we find

knur̂8amp+att
pred unl = o

m=n

`

o
p=0

m

rpps0dSm

n
DSm

p
Dhp+1

3s1 − hdm−p 1

GmsG − 1dm−n. s81d

Therefore, if

rpps0d = kpur̂ j
retrupl, s82d

we have, as expected,

knur̂8amp+att
pred unl = knur̂amp+D

retr unl ; knur̂amp+att
retr unl, s83d

valid for a general initial photon probability distributionrnn
of the field. Note that the predictive-retrodictive equivalence
shown in Eq.(83) is not a property of the diagonal elements
only, and its validity can be extended to the off-diagonal
ones. Retrodiction of the process of amplification followed
by imperfect photodetection is thus equivalent to prediction
for an amplifier followed by an attenuator. A similar property
applies for an attenuator followed by an amplifier.

B. Measurements including dark counts

Real photodetectors exhibit extra counts not associated
with the absorption of photons. These dark counts are ran-
dom detection events that are independent of the incident
light, and are usually described by a Poissonian probability
distribution [4,9],

JEDRKIEWICZ, LOUDON, AND JEFFERS PHYSICAL REVIEW A70, 033805(2004)

033805-12



Psdd =
e−nnd

d!
, s84d

with mean numbern. In quantum communications where
low intensity signal pulses constitute the information bits, the
dark count events are the main source of error. For instance,
in quantum cryptography, the bit error rate of the key distri-
bution process strongly depends on the rate of detected dark
counts; typically for an effective bit rate of 100 s−1, the error
rate due to dark counts is of the order of 6 s−1 [28]. The
presence of dark counts with mean numbern associated with
each measurement event, with a value between 0.01 and 0.1,
can have a significant effect on the measurement result when
signals consist of about 0.1 photons per bit, as is often the
case in quantum cryptography.

In this section we briefly illustrate how the presence of
dark counts in the measurement affects the expressions for
the predictive and retrodictive density-matrix elements for
the attenuating or amplifying system at zero temperature. We
limit our attention to the diagonal contributions only and for
simplicity we consider a detection quantum efficiencyh
equal to unity.

1. Attenuation and detection

The detector does not discriminate between dark counts
and photoelectron counts, and the probability of recordingN
total counts is derived by combining the two independent
output probabilities, given respectively by the photon-
number distribution at the output of the attenuating channel
(associated with the quantum numberm) and the probability
of detectingN−m dark counts. We have

kNur̂att+d
pred uNl = o

m=0

N
e−nnN−m

sN − md!
kmur̂att

preduml

= o
m=0

N
e−nnN−m

sN − md! on=m

`

rnns0dSn

m
DKms1 − Kdn−m,

s85d

whereN−m=d.
On the other hand, for a single measurement whereN

counts are recorded, we find, by the same method used
throughout the paper, the retrodictive matrix elements for the
system given by

knur̂att+d
retrounl = KSo

l=0

N
nl

l!
D−1

o
m=0

Minfn,Ng
nN−m

sN − md!
Sn

m
D

3Kms1 − Kdn−m, s86d

in accordance with previous results[4].

2. Amplification and detection

Similar calculations can be performed for the amplifier.
The probability of detectingN photons is given by

kNur̂amp+d
pred uNl = o

m=0

N
e−nnN−m

sN − md!
kmur̂amp

preduml

= o
m=0

N
e−nnN−m

sN − md! on=0

m

rnns0dSm

n
D 1

Gm+1sG − 1dm−n,

s87d

and inversely given a numberN of recorded counts, the ret-
rodictive density-matrix elements for the system amplifier
1photodetector are now

knur̂amp+d
retro unl = So

l=0

N
nl

l!
D−1

o
m=n

N
nN−m

sN − md!
Sm

n
D 1

GmsG − 1dm−n.

s88d

Note that, because of the additionalindependentrandom
counts(detector dark counts), the equivalence between the
attenuator(amplifier) predictive matrix elements and the am-
plifier (attenuator) retrodictive matrix elements, shown in
Eqs.(47) and (48), is lost.

VI. ATTENUATORS AND AMPLIFIERS AT ELEVATED
TEMPERATURE

The aim of this section is to illustrate the fact that quan-
tum linear amplification and attenuation remain predictive-
retrodictive inverses for a general temperatureT of the envi-
ronment. We use expressions for the predictive output
distributions from an attenuator and an amplifier which have
been previously derived[19]. We only compare the retrodic-
tive attenuator with the predictive amplifier in the case of
single measurements. Recently a retrodictive master equation
has been derived[13], which allows the evolution of a ret-
rodictive state to be tracked backwards in time for any open
system. The general equivalence between nonideal attenua-
tors and amplifiers is relatively easily proved using this for-
malism. An account of this is given in Sec. VI C.

A. Attenuation and retrodiction of single measurement result

The output photon distribution from an attenuating chan-
nel at general temperature, and for arbitrary input light can
be written as[19]

ksur̂att
predusl = o

m=0

s

o
n=m

`

rnns0dSs

m
DSn

m
D n̄ch

s−m

s1 + n̄chd1+s

3S K

1 + n̄ch
DmS1 −

K

1 + n̄ch
Dn−m

, s89d

wheren̄ch is the number of chaotic noise photons added by
the device. As we have already pointed out, the diagonal
contributions of the density matrix are sufficient for a de-
scription of the field in terms of its amplitude and they are in
fact the only relevant contributions in the context of photo-
counting experiments. If the attenuator is modeled by an en-
semble of two-level atoms,n̄ch can be written in terms of the
thermal factor(11) as [19]
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n̄ch = Natts1 − Kd. s90d

Note that forT→0, Natt→0. Then for an ideal attenuator(at
zero temperature) we haven̄ch=0 as expected. In general,
given the mean numbern̄ of photons of the input distribu-
tion, the mean number of output photons from the attenuat-
ing channel is

s̄= n̄ch + Kn̄, s91d

the sum of the chaotic contribution and the contribution from
the attenuated signal.

The diagonal retrodictive matrix elements for the field can
be calculated by the same method as in earlier sections. In
the case wheres photons are recorded(by an ideal detector)
at the output of the device we have

knur̂att
retrounl =

1

Natt

]

] rnns0d
ksur̂att

predusl, s92d

where Natt is the appropriate normalization constant. The
double summation in Eq.(89) can be rewritten as

o
n=0

s−1

o
m=0

n

+ o
n=s

`

o
m=0

s

,

so from Eq.(92)

knur̂att
retrounl = K o

m=0

Minfn,sg Ss

m
DSn

m
D n̄ch

s−m

s1 + n̄chd1+s

3S K

1 + n̄ch
DmS1 −

K

1 + n̄ch
Dn−m

. s93d

B. Amplification of photon-number state input
and comparison

The general output probability distribution from an ampli-
fying channel, and for a photon-number input stateusl, can
be written as[19]

knur̂amp
predunl = o

m=0

Minfn,sg Sn

m
DSs

m
D n̄8ch

n−m

s1 + n̄ch8 d1+n

3S G

1 + n̄ch8
DmS1 −

G

1 + n̄ch8
Ds−m

, s94d

and is characterized by a mean number of output photons

n̄ = n̄ch8 + Gs, s95d

being the sum of a pure chaotic contribution and the contri-
bution from the amplified signal. The mean number of cha-
otic photonsn̄ch8 , deriving from the amplification of the en-
vironment noise, can be written in terms of the thermal factor
(26) as [19]

n̄ch8 = NampsG − 1d, s96d

and it reduces to the amplified vacuum field fluctuation con-
tribution shown in Eq.(36), when T→−0 and thusNamp
→1.

The comparison between the retrodictive attenuator and
the predictive amplifier is easily made by looking at Eqs.
(93) and (94). The retrodictive matrix element(93) is iden-
tical to the predictive matrix element(94) provided that in
the two expressions the quantities raised to the various pow-
ers 0,s, n, andm are the same. It can be easily checked that
the four resulting conditions are all satisfied ifG=1/K and
the thermal factorsNatt andNampare related by Eq.(27). This
simple example proves the equivalence between the predic-
tive attenuator and the retrodictive amplifier in the general
case where the environment is at temperature different from
zero.

In real amplifiers the atomic population is never fully in-
verted and so the population factorNampcan never be exactly
equal to 1. Typically for Erbium doped fiber amplifiers
Namp<1.4, corresponding to a ratio between the populations
of the ground and excited levels given byNg/Ne<0.3 [29].
Nevertheless, a large range of population factor values can
be achieved since for instance in Ar+ lasers, where the lower
level population varies between 60% and 70% of that of the
upper level,Namp varies between 2.5 and 3.3[30]. On the
other hand, in Raman amplifiers characterized by"v /kBT
!1, Namp can be close to 1[29].

C. Predictive and retrodictive master equations
for attenuators and amplifiers

The evolution of an open quantum system can be tracked
using unitary evolution operators which act on both system
and environment variables. After the evolution time the trace
over the environment gives the density operator for the sys-
tem alone. A more popular approach is to derive an evolution
equation for the system in which the environment variables
have been already traced out of the problem. This means that
the environment variables do not have to be tracked during
the evolution. This equation, called a master equation, gen-
erally corresponds to nonunitary evolution[21], and is diffi-
cult to solve in general. If a stater̂i

predstpd is prepared at the
preparation timetp, and evolved for a timet= tm− tp until the
measurement timetm, the conditional probability that the

measurement resultP̂ jstmd will be obtained is given by Eq.
(1). The evolution of the prepared state for an attenuator or
an amplifier is the solution of the predictive Born-Markov
master equation, which takes the form

ṙ̂std = gNattsTds2â†r̂â − ââ†r̂ − r̂ââ†d

+ gfNattsTd + 1gs2âr̂â† − â†âr̂ − r̂â†âd s97d

for the attenuator, and the form

ṙ̂std = gfNattsuTud + 1gs2â†r̂â − ââ†r̂ − r̂ââ†d

+ gNattsuTuds2âr̂â† − â†âr̂ − r̂â†âd s98d

for the amplifier[24], where the dot means derivative with
respect tot. The parameterg is related to the attenuation and
amplification factors by equationsK=e−2gt and G=e2gt as
before, so these two equations represent an attenuator and an
amplifier, which satisfyKG=1. In this section we will derive
the retrodictive master equation for an attenuator whose pre-
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dictive master equation is Eq.(97) using the general proce-
dure followed in Ref.[13], and show that it is identical to Eq.
(98).

We start by using the fact that the conditional probability
does not depend on the time of collapse,

Ps j uid = Trfr̂i
predstdP̂ jstdg, s99d

for all t between preparation and measurement. Thus the de-
rivative of the probability with respect to this intermediate
time must vanish, and using the rule for differentiating a
product we have

Trfr̂i
predstdP̂˙ jstdg = − Trfṙ̂i

predstdP̂ jstdg. s100d

We can use the master equation for the density operator to
find the equation for the time derivative of the POM element,
the evolution equation that it must satisfy as it evolves back-
wards in time to the intermediate time. We substitute Eq.
(97) into Eq.(100), and use the cyclic property of the trace to
give (all indices are suppressed)

Trfr̂stdP̂˙ stdg = − gTr„hNattsTds2â†r̂â − ââ†r̂ − r̂ââ†d

+ fNattsTd + 1gs2âr̂â† − â†âr̂ − r̂â†âdjP̂std…

= − gTrhNattsTds2r̂âP̂â† − r̂P̂ââ† − r̂ââ†P̂d

+ fNattsTd + 1gs2r̂â†P̂â − r̂P̂â†â − r̂â†âP̂dj.

s101d

This equation is true for all density operators so the evolu-
tion equation for the POM element is

P̂
˙ std = − gNattsTds2âP̂â† − P̂ââ† − ââ†P̂d

− gfNattsTd + 1gs2â†P̂â − P̂â†â − â†âP̂d.

s102d

The retrodictive density operator is given byr̂retr=P̂ /TrP̂,
so substituting Eq.(102) we obtain

ṙ̂retr =
P̂
˙

TrP̂ − P̂TrP̂
˙

sTrP̂d2
=

P̂
˙

TrP̂
− r̂retrTrP̂

˙

TrP̂

= − gNattsTds2âr̂retrâ† − r̂retrââ† − ââ†r̂retrd

− gfNattsTd + 1gs2â†r̂retrâ − r̂retrâ†â − â†âr̂retrd

+ gr̂retr. s103d

where we have used the commutatorfâ,â†g=1 and the unit
trace of the density operator. A little more algebra using the
commutator gives

ṙ̂retr = − gNattsTds2âr̂retrâ† − r̂retrâ†â

− â†âr̂retrd − gfNattsTd + 1gs2â†r̂retrâ − r̂retrââ†

− ââ†r̂retrd, s104d

which is the evolution equation for the retrodictive density
operator in the forward time direction. If we define the pre-

measurement timet̃= tm− t we obtain the retrodictive master
equation for the attenuator,

dr̂retr

dt̃
= gNattsTds2âr̂retrâ† − r̂retrâ†â − â†âr̂retrd

+ gfNattsTd + 1gs2â†r̂retrâ − r̂retrââ† − ââ†r̂retrd.

s105d

This is the reverse time evolution equation for the retrodic-
tive density operator for the attenuator. It has the same form
as Eq.(98), provided that the attenuator and amplifier tem-
peratures satisfy the relationTatt=−Tamp= uTampu. Thus the
retrodictive master equation for an attenuator is identical to
the predictive master equation for an amplifier provided that
the gain of the amplifier is the inverse of the loss of the
attenuator, and provided that the effective noise temperatures
of the two devices are identical. The converse result is simi-
larly proved.

VII. CONCLUSIONS

In this paper we have shown, by direct calculation of the
input and output density-matrix elements, that optical attenu-
ation and amplification are predictive/retrodictive inverse
processes. In other words, the state transformations that they
effect on the optical field are the time reverse of one another.
Retrodictive quantum mechanics saves calculational effort
when reconstructing messages in quantum communication.
This paper shows that instead of performing, say, a retrodic-
tive calculation on an attenuating system, it is possible to
perform a predictive calculation using an amplifier, and ob-
tain identical results.

We have applied our results to ideal devices, which add
the minimum amount of noise, to the particular example of
direct detection. We have derived retrodictive density matrix
elements for single-shot measurements by perfect detectors,
with unit quantum efficiency, imperfect detectors with quan-
tum efficiency less than unity, and to detectors that exhibit
dark counts. We have extended the method further to apply
to the case where multiple measurements are made on many
identical copies of the same state, allowing for the recon-
struction of the density matrix of the input to the device.

In classical physics, noiseless attenuation and amplifica-
tion are allowed, and these two processes are the reverse of
one another. If we pre- or post-amplify an attenuated signal
using an amplifier whose gain is the reciprocal of the attenu-
ator loss we would obtain the unattenuated signal at the de-
tector. Thus a lossy detector could easily be compensated by
using a classical amplifier. Such a noise-free amplifier is dis-
allowed in quantum physics. Both attenuators and amplifiers
add noise to a quantum signal, merely by changing the prob-
abilities that the state contains particular numbers of photons.
For an ideal attenuator the mean output photon number need
not contain any extra noise photons. Amplification, however,
adds noise photons to the amplified mean input photon num-
ber, an ideal minimum ofG−1 noise photons, whereG is the
multiplicative gain of the amplifier. This limits our attempts
to reconstruct the unattenuated signal output from a noise-
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free attenuator exactly, even by ideal amplification, as there
is always noise added to the signal. In quantum physics am-
plification and attenuation do not seem to have the useful
classical reversing property, and one question which might
be legitimately asked is whether the quantum theories de-
scribing them satisfy the correspondence principle.

This paper restores a pleasing time-reverse symmetry to
the two processes in quantum theory. An interesting conse-
quence of this is that, for ideal devices, the noise properties
of amplification and attenuation are reversed in retrodictive
quantum theory. If we detect an amplified signal and wish to
reconstruct the signal prior to amplification we do not have
to subtract any amplifier added noise photons, as the retrod-
ictive state will be the attenuated measured state. The mean
number of photons retrodicted at the input contains no noise

photons for an ideal device. If, however, we detect an attenu-
ated state, as must always occur for a detector with nonunit
detector efficiency, the reconstructed state prior to the device
will be affected by amplifier noise photons. These relation-
ships between the mean numbers of input and output photons
in prediction and retrodiction for both devices ensure that the
theories satisfy the correspondence principle in the classical
limit.
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