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Retrodiction for optical attenuators, amplifiers, and detectors
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The transformation that an attenuator makes on the state of an optical field is the time reverse of that of an
amplifier. Thus predicting the output state for an amplifier is equivalent to retrodicting the input state of an
attenuator. We explore the consequences of this equivalence for simple optical quantum communication chan-
nels. One counterintuitive consequence is that the mean number of photons sent into an amplifier as retrodicted
from a measurement of the number of output photons does not include the contribution of the amplifier noise.
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|. INTRODUCTION form one retrodictive calculation to find the retrodictive state

e ~and project this onto the possible prepared states.
A description of the output state of a quantum communi- A quantum communication channels are currently opti-

cation channel, based on knowledge of the input state and they| 3nd hence the study of quantum optical devices forms an
initia] state of the enviro_nment interacting with t.he channel,importam part of quantum communication theory. Attenuat-
requires the use of predictive quantum mechanics. The compg and amplifying devices are essential constituents of op-
bined initial state evolves forward in time unitarily under the tica; communication channels. Lossy phenomena are always
total Hamiltonian for the system and environment, and th&resent in such systems and are caused by signal scattering in
environmental trace is taken to give an evolved state of thegg fibers, transmission in nontransparent materials, or de-
system alone. In this way we can calculate predictive conditection of the signal by an imperfect apparatus with quantum
tional probabilities of future measurement events based OBfficiency smaller than unity. Optical amplifiers, on the other
knowledge of states prepared in the presgeparation  pang, are used in communications to increase the amplitude
events. _ of the transmitted optical signal when need8l Although
_ This is not the most natural way to analyze communica- cjassjcal amplification and attenuation are reverse processes,
tions systems, however. In general, the communication proly quantum mechanics following an attenuator by an ampli-
lem is to determine the message sent from the message Ifsr does not restore the original sigriab]. However, it has
ceived. In quantum communications this translates intqeen shown that retrodiction through an attenuatargpli-
finding the probabilities that particular states were sent in th?ying) channel corresponds to prediction through an ampli-
past, given the results of measurements in the present. Thginq attenuating channel[11]. This correspondence allows
best way tq do this is to use retrod|c_t|ve quantum mechanicgg i apply the more familiar predictive quantum theory to a
[1=7]. In this more unusual formulation the state of the syS-eqrggictive system. Here we demonstrate the equivalence
tem at any time between preparation and measurement is thg\\veen the two systems by deriving the predictive and ret-
measuredstate evolved backwards in time. The retrodictive o gictive matrix elements for the density operators describ-
conditional probability that a particular state was prepared i$ng the single mode field for an attenuating and an amplify-
found by projecting this back-evolved retrodictive state ontoing device, respectively. We use these to explore the
the possible prepared states. _ consequences of this equivalence, concentrating particularly
_Itis possible to use predictive quantum mechanics comgy reglistic measurement schemes and possible prepared
bined with Bayes's theorem, which relates predictive andsiates. The quality of an attenuator or amplifier is character-
retrodictive conditional probabilitief8], to analyze the com- ;64 py the characteristic temperature of the environment
munication problem. We can calculate retrodictive condi-y;ith which the signal field mode interacts. We concentrate
tional probabilities by calculating the evolved predictive mainly on the ideal case where the environment is at zero

state for each possible prepared state and projecting the?@mperature(T:O K), before briefly dealing with the case
onto the measurement result to obtain a complete set of preghare T -0 K.

dictive conditional probabilities. This is hardly an efficient
strategy, however, as there could be many possible prepar
states. Classical computers are inefficient at modeling quans
tum systems. In open systems particularly this approach wi:E
be calculationally intensive. It is much more efficient to per-

In Sec. Il we provide a brief introduction to retrodictive
antum mechanics. The most general expressions for the
redictive and retrodictive density-matrix elements for am-
lifiers and attenuators are derived in Sec. Ill, and the ret-
rodictive elements are obtained using a simple method pre-
viously used to calculate retrodictive atomic stafgg]. In
Sec. IV we apply the results to particular input photon prob-

*Present address: INFM and Universita’ degli studi dell'lnsubria,ability distributions and to photocounting experiments. In
Dipartimento di Fisica e Matematica, Via Valleggio 11, 22100, Sec. V we calculate predictive and retrodictive density-
Como, Italy. matrix elements for the field for imperfect photodetection,
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caused by a nonunit detector quantum efficiency and/or the In a quantum communication system, the sender does not

presence of dark counts. In Sec. VI, we show by means of aend the same state every time, as this conveys no informa-

particular example and by using the field density-matrixtion. One state from a set of possible states is prepared and

elements that the predictive-retrodictive equivalence betweethe particular state sent must be determined from the mea-

attenuators and amplifiers is also valid for nonideal devicesurement result. The best way to do this is to use retrodictive

with environments at a nonzero temperature; we further il-quantum theory. The POM element of the system at any time

lustrate this property by using a master equation approaclurior to t,, is the measured POM element, coupled to the

The conclusions are given in Sec. VII. environment state and evolved backwards in time, condi-
tioned on the state of and traced over the environment. The
POM at the preparation time is

Il. PREDICTIVE AND RETRODICTIVE QUANTUM R R R R R
THEORY IN OPEN SYSTEMS I (ty) = Trel pe(t) UT (DI (t) @ et )U(D],  (4)

In this section we summarize predictive and retrodictiveand we can calculate the predictive conditional probability as
guantum theory in open systerf& 7]. Discussion of predic- - .
tive and retrodictive master equatiofig,13 is left until P(jli) = Tr oLt )TT;(tp)]. 5)

Sec. VI. n fact this equation is valid for density operators and POM

An open quantum system is one in which the system ol ents evaluated at any intermediate tirhetween prepa-

interest is coypled to a large unmeasured set of SysteMStion and measurement Wiﬂifred(t) evolved forward in
called the environment. Almost every real quantum system is A ' P o
p to t, andIl;(t,) evolved backwards in time from

open, but systems coupled to amplifying or attenuating charime fromt, ved L i
nels are explicitly so. Suppose that states are prepared at tinke t0 t. This amounts to an invariance of the conditional
t,, undergo evolution for a time, and are then measured at probability on the time of collapse of the system. In other
time t,=t,+r. The conditional probability that the measure- WOrds we may include the evolution as part of the system
ment resultj is obtained given that the system was prepared)reparatlon, as part of the measurement, or it may be divided

in statep;(t,) is the trace over the system states of this denbetween the two processes. If required the retrodictive state

sity operator projected onto the elem(f[]tof the probability can be found from the POM element using

([)(;P(;relliyor measure(POM) describing the measurement ;)](etr(t) - ﬁj(t)/Trs[ij(t)]. (6)
N A Suppose that we wish to calculate retrodictive conditional

P(jli) = Tre o Ut T (t) 1. (1) probabilities. These must take account of theriori prob-
abilities P(i) that particular states are prepared. These prob-

The state of the system at the measurement tjjie given e . o
y e g gbllmes are encoded in the priori prepared state

by the predictive density operator, i.e., the prepared stat
coupled to the environment, evolved forward in time, and NPREE S BN _ -\ ~pre
conditioned on the result of a possible measurement of the Alty) _Ei“ Ailty) _Ei P()p d(tp)' (7)

environment,
. . . The retrodictive conditional probability thatwas prepared
pPredt,) = Tre[TIe(t)U(7)pi(ty) © ﬁ)E(tp)UT(T)]. (2)  given thatj was measured is then

I:|ere .pE(tp) is .the state of the .environme.nt at timg and | o Tr[Aiﬁj] B Tr[/&ip{e‘r]
U(7) is the unitary operator which determines the evolution P(lj) = =

of the coupled system and environmeﬁq(tm) is the POM
element corresponding to measurement rgs#itPOM is a  where again the operators can be evaluated at any time be-
mathematical representation of a measuring device, a set tiveen preparation and measurement. In this way the receiver
elementsﬁj, each of which is a positive semidefinite opera-¢an construct the message with the minimum of calculation.
tor associated with a different possible resulif the mea- |f the preparation isunbiased in other words each of the

— - : (8)
TIAIL] T Ap*"]

surement, and which satisfies states spanning the system is equally likely to be prepared,
thea priori prepared state, E¢7), becomes the unit operator

> ﬁj = 15, (3)  for the state space of the systefh,: 1/D, whereD is the
i dimension of the state space of the system. The retrodictive

the unit operator in the system space. This condition ensureégPnditional probability, Eq(8), can now be written
that the probabilities of all the possible measurement results e aretr

sum to unity. For a simple von Neumann measurerfibit P(ilj) = T Aipi™], (©)

the POM elements are projectors onto the eigenstates of ”lﬁus displaying a symmetric form to that of the predictive
measured observable operator, and therefore their trace gnditional probability. Unbiased preparations are not the
also normalized. The environment is usually unmeasurablgorm in physics, but they do occur in quantum communica-
and so in Eq(2) IIg(t,)=1g, the unit operator in the envi- tions, for example in the BB84 protocol for quantum key
ronment space. distribution[16].

033805-2



RETRODICTION FOR OPTICAL ATTENUATORS,. PHYSICAL REVIEW A 70, 033805(2004)

IIl. PREDICTIVE AND RETRODICTIVE DENSITY-
MATRIX ELEMENTS FOR IDEAL ATTENUATORS AND b |n—m>E
AMPLIFIERS

The effect of attenuation or amplification of an optical 3 8,
signal is reflected in the expression for the density operator i —
of the field after transmission through the attenuating or am- |n),, 1) e

plifying device. Information about the signal transformation I

is given by the input-output relations for the matrix elements b.

of the field density operator. We derive these input-output !

relations in the photon-number state basis, by using in both

cases beam-splitter model$7,18. Although these models FIG. 1. Attenuating beam-splitter model.

use a single mode description of the environment field, the

resulting expressions have general validity. Once the prediaransmission and the reflection coefficients of the beam split-
tive reduced density operators for these open systems atger (7 and R, respectively in terms ofK as 7= VK andR
known, the retrodictive density-matrix elements for the sig-=j\1-K. These coefficients satisfy the usual conditions for

nal field are easily derived by means of a simple calculathe validity of the field-operator commutation relations:
tional tool[12].

2 2_
A. Attenuator TP+ |R|°=1,

12
Light traveling through an optical fiber exhibits a power TR +T*R =0. (12

that decreases exponentially with distance, as a result of the

absorption in the fiber’s materiglisually fused silica glags

and of the Rayleigh scattering due to the random inhomogelhe relation between the input signal operator and the output
neities of the material refractive indg®]. The attenuation operators for a lossless attenuating beam spljt8} is

process limits the magnitude of the optical power transmitted
and the transmission factét of the device is smaller than
unity.

An optical attenuator can be modeled by an ensemble of
two-level atoms. If there arll; atoms in the lowetground  As illustrated in Fig. 1, we denote by (andm’) the quan-
atomic level and\, atoms in the excited level, and the atomstum numbers associated with the output of the attenuating
are at temperatur€ the population ratio is given by a Boltz- channel, and by (andn’) the quantum numbers associated

al = \Kal +iV1-Kb . (13

mann factor with the input. We denote by, the density operator de-
N scribing the signal field sent into the attenuator at timé,
—d = gholkgT  Wwith T=0. (100 and can write
Ne

The atoms absorb some of the field energy, but also add
noise photons with distribution given by the thermal excita-
tion function[18,19

out< m| f’att' m’ >out = TrEE out<m| n>inin<n|FA)att| n’ >inin<n, | m’ >out’
nn’

(14)

N, 1
== (12)

Ne—Ng 1-¢he where the property of completeness of the photon-number

For a zero temperature attenuator the atomic population igfates has been used twice. No measurement is performed on

completely uninverted wittN,=0. In fact the theoretical th€ environment output mode, and so we trace over the en-

model of the damped harmonic oscillator gives the simplesyronment states. The input-output relatid) for the signal

description for the attenuation proce@)]. This can be gen- field can be evaluated once the termgg(m|n);, and

erally constructed by coupling one oscillator to a bath ofin{N’[M")o,; are explicitly calculated. This can be done by

oscillators, similar to the case of a single field mode resonatwriting

ing in a microcavity where the presence of the damping res-

ervoir is responsible for the finite quality factor of the cavity 1 n |
[21]. n = =@y = S [ 2
Our model for the attenuating device is schematized in M Vn! (&0 g [T(n=1")

Fig. 1. We denote by anda' the annihilation and creation
operators describing the signal field mode, andobgnd b’
the operators associated with the environment, here assumathere Eq.(13) has been used, and where the subsanipis

to be single mode and in the vacuum st@e0). The results  associated with the signal output and the subscript E with the
derived take the same form for a multimode environment. Ifunmeasured environment channel. We then easily find, in-
K is the attenuation factor of the system, we can define theerting this result in Eq.14),

Nael(T) =

X(1=K) ™25 dn = De, (15)
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ouMPad M Vout = <m|ﬁ§{fd|m’> this system directly, given knowledge of its predictive evo-
" lution. Note that Eq(19) is also formally equivalent to Eq.
s ( nin't )1’2 (2), which can be recast as
s £ m'm!(n-m!{n -m)! . -
n=m ~ ~ ~
n'=m’ Pgtrte = TrelUawpan ® pE(O)U:;tt]’ (20)
XK(MMI2(] — ) (nmmen’-m)i2 whereU,, is the unitary operator describing the evolution of

X S el Pagd N Vi (16) the system asso_c_iated With the beam—sp_litter transformation
[11]. The probability of getting an outconjefrom the mea-

The above expression is the general predictive input-outpusurement performed at the output channel of the attenuator

relation for the density-matrix elements describing an attenuis, with the use of Eq(19),

ated signal field. Her& can be written in terms of an attenu-

ation coefficiente as K=e™** (z being the propagation dis- Tred IUqupan ® f)E(O)ULt]

tance if ais in km™t units, or aK=e"%2%2 if o is in dB/km .

units[9], or asK=e 2" if the attenuation is characterized by E 5 2 (0)< )1’2(n’ )1’2K(m+m/),2
a dissipation rate 2 of a lossy mediunji21]. We will use the Pon’ !

=0 M0 m’=0
temporal dependence here. nn’ m’

From Eg.(16) both the diagonal and off-diagonal ele- X(l_K)(n—m+n’—m’)/25n_wn,+m,<mf|f]j|m>_ (21)
ments of the reduced density operafgy can be found. If
we setn=n’, and thereforen=m’ in Eq. (16), we obtain the The retrodictive matrix elemeni{@nd consequently the ret-
output state amplitude, but not phase, for a general superpoedictive density operatpican now be directly derived using
sition of photon-number input states. We have in this case the method found in Ref12],

. S (n . Jin 1
out<m|Patt|m>out: E ( )Km(l - K)n_min<n|Patt‘ Min, (n |p;entr|n> = ./\T TrEiH Uattpatt ® PE(O)Uatt]
n=m \M attapnn’

(17) (22
which shows that the effect of the attenuator is equivalent tavhere NV is the normalization constant. The trace factor
Bernoulli sampling[21]. being simply the expectation value of the product of the

The general predictive density operator describing thd?OM element and the evolved predictive density operator, in
output field after the attenuation process is given by general this equation allows us to obtain retrodictive density

operators for a particular system from the solution of the

spred_ E E Y2\ e predictive master equation describing its evolution. This
Patt = pnn’(o) m’ K straightforward connection between the predictive and the
mm’=0 =M retrodictive evolutions of a system is in perfect analogy with

n'=m’ Bayes’ theorenj6,8], which in probability theory relates the

X (1 -K)mmn-mzs - lmy(m|,  (18)  Probabilities of later events given probabilities of earlier

events(predictive conditional probabilitigsto the probabili-
where we have definegl,, (0)=;,(n|pag/n’)in, the matrix el-  ties of earlier events given probabilities of later evefnes-
ement prior to any evolutiot=0) describing the field be- rodictive conditional probabilitigs With the summations ex-
fore transmission through the device. Note that by rearrangeressed as in Eqél9) and(21), the evaluation in Eq22) of
ing the summations in E@18), the latter can be re-expressed the derivatives with respect i, is straightforward and we

as find
. n 12/ \ 12 , 12/ r \ 12 ,
#0335 ol 10 e = 23 3 (0 e
=0 M=0 /=0 m Nattm—om =0 m
X(l - K)(n—m+n -m )/25n m-n ’+m’|m><m | (19) X(l - K)(n_mm,_m,)lz‘sn—m—n’+m’<m,|ﬁj|m>-
so that the values af andn’ are unrestricted. The restriction (23

appears in the output quantum numberandm’. Since the

coefficientK is implicitly a function of time,pg{fd: patrted(t) The normalization constant is easily calculated,

is a time-dependent operator. o A = In A

We can use retrodictive quantum mecharj8g] to ob- N = > <m|HJ-|m>2 ( )(1 —K)"K™ = TrII /K.
tain information about the state of the field at a time preced- m=0 n=m \M
ing the measurement time, on the basis of the measurement (24)

result. In order to do this we utilize a simple calculational
tool previously used to find retrodictive atomic stafi&g], in ~ We can substitute this in E@23), and use the definition of
order to derive the retrodictive density-matrix elements forthe retrodictive density matrig6) to find
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n n n \12/p \12 , .
wigm=kZ 3 (1)) am i
m=0 /=0 m m
X(L=K) MM 2E (V[ M). & Bous
(25
The diagonal matrix element obtained by settimgn’ (and o
thusm=m’) in Eq. (25) represents the retrodictive photon- by,

number probability distribution, giving information on the

field amplitude before the measurement and before the at- FIG. 2. Amplifying beam-splitter model.
tenuating process. IK is time dependent, the retrodictive

probability at a time before the measurement time is given = —

by the diagonal part of Eq25). 7=VG and R=VG-1. (29

In this case, the validity of the Bosonic commutation rela-
B. Amplifier tions for the field creation and destruction operators leads to

o . . _[17.18,
Laser amplifiers are important components of fiber-optic

communication systems. They are generally constituted by IT]?-|R[?=1, (29)

Erbium-doped silica fibers for light propagation at o . . s
=1.55um and offer high-gain amplification with low noise. wherg 7] 'G.Zl’ as the beam splitter is ampllfymg. No
special requirements on the phases of the reflection and

An Erbium-doped fiber amplifier may be used as an Optical_transmission coefficients are needed, and the relation be-
power amplifier placed directly at the output of the source '

laser, or as an optical preamplifier at the photodetector inpu?’l\'se]en the input signal operator and the output operators is
More generally amplifiers can also serve as all-optical re-

peaters, replacing the electronic repeaters that provide re- at — Jeat e _an

shaping, retiming, and regeneration of the signal [8is 8n = VG &u~ VG~ houe (30)

The simplest theoretical configuration for an amplifier  The derivation of the input-output relations for the density
consists of an assembly of two-level atoms with an invertednatrix elements describing the field sent into an amplifier
population. This is the usual model of the laser, and its lineacan be made by a procedure similar to that outlined in Sec.
operation regime, well below threshold, describes an amplitl. The forms of the photon-number states characterizing the
fier. For the amplification process to occur, the populatiorfield at the output of the beam-splitter arms are now less
factor characteristic of standard theory satisfiesstraightforward. We denote here pyy,,the density operator
[18,19,22-2% describing the signal field initially sent into the amplifier, and

we can write, similarly to Eq(14),

1 .
Namp(T) = 1 _eﬁw/kBT =1, butwithT<0. (26) out<m|patt| m/>0ut: TrEE out<m| r]>in in<n|pamAn,>in in<nl|m,>-

nn’

It can be related to the thermal factd2] for an attenuator (31
by The photon-number input state can be found from E6@),
wolkgT 1 1 — —
Namg=T) = Namd| T = Zoir— =1 =Naw(T). (27) INYin = —— (&1 )"|0)in = ——[VGA! ,,— VG — 1byy,J"O)in,
! V! V!
In this section we consider a linear optical amplifying (32

channel modeled by a beam splitter, in which the signal enb h . the att tor. the input
tering the device from one input port is coupled to an in-°Yt woere, n cont:rast tto elat e?hua or,t f inpu vac;u:m
verted harmonic oscillator, the latter representing the sourc tate|0yi, cann_ot € Set equal 1o he output vacuum state.
of noise entering the system from the other inf2@,23,24. ue to the noise introduced by the amplifier, the vacuum

Again we concentrate on the ideal case where the envirorpate In t_h_e input of the _dewce can be written only as a
ment is at zero temperatufgtrictly T— 0, also correspond- superposition of all the diagonal states of the output. Here

ing to a fully inverted atomic population With,m,=1). Thus these states are the result of the modeling the amplifier as a

the state of the environment is different from that of the zeroh""”’n.oniC osc@llator coupled to an inverted harmonic oscilla-
temperature attenuator. Here the inverted harmonic oscillatdP” With hegative energy levels, but.they must also be present
has no ground state, but it has a state of maximum energgJr other amplifier m_odels._ From this and using the principle
associated with the quantum number 0. The scheme of th@f EN€rgy conservation, given for the amplifier by

model we adopt is shown in Fig. 2. at 2 _0ot D _ata _DTR
If we denote the gain of the amplifier Iy, the transmis- Zouout ™ Poubout = &nin = Binbin, (33)
sion and reflection coefficients of the beam splitter are it can be shown that
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\G 1 — 12/ oy \ 12
|O>in 72 |q>out|Q>Ea (34) pg{r?p 2 E Pnn’(o) ,
VGg=0 n,n’=0 M=n n
where the subscripbut refers to the observed output chan- m’=n’
nel, while the subscript E refers to the environmental noise (G 1)(m-n+m’-n")/2
channel on which no measurements are assumed to be per- 272 O +ne|MYM'[, (40)
formed. The resulting output probability distribution for a G
T=-0 amplifier with no input signal is where we have definedy (0)=(N|pamdn’in- As for the
attenuator, Eq(40) is a time-dependent density operator
_(G-19 @ phied=phred(t), sinceG=€2""t, with 2y’ being the gain rate of

(35) the device.

We can now evaluate the retrodictive density-matrix ele-
ments for this system. Here E@O0) represents the quantity

Pamp(q) - Gq+1 = (1 +@1+q,

showing that the emission is chaof5], and the mean num-

ber of output photons is ,Dg,rﬁg— Tre[ O ameamp @ ﬁE(O)U;mp], (41)
9=G-1. (36) wherelAJamp is the unitary operator describing the amplifying

process of the devicgll]. If ﬁj is the POM associated with
The insertion of Eq(34) into Eq. (32) and the use of the measurement at the output of the amplifying channel, the

properties of the field annihilation and creation operators actErObafgity tga;r 1the outcome i becomes, with the use of
ing on photon-number stat¢g5] gives gs.(40) and(41),

TrEiﬁ'Oamd’\)amp ® ISE(O) L,\Jg\mp]

2 2 Vﬁ\’g ( G )I 1/2 1/2 ( "—n)/2
n — m’' \74(G - 7)mmmeen
M= & 2 ) oo\ G- 1 E 2 pnnr(o)( ) (n, ) p——T
n,n’=0 M=n
(G- 16" _
X (- 1) G2 ISVoudS = Me. (37) m'=n’ i
X Oy +nr (M [T m). (42

By means of Eq(36) the quantity,,(m|n), can now be Therefore, similarly to Eq(22),
calculated and used in E@1), leading to

n’ |AretrFJn> = p ,TrEs{H Uampoamp® pE(O)Uamp]
out<m|FA’amp|m,>outE (mlﬁgﬁﬁﬂm’) Nampd Pan
(43
1/2 m 1/2
212 2 E ( ) ( ) and using the same procedure as for the attenuator we find
m+m + n=0 -0 n/ .
] +n - < |Aretr > m 1/2 1/2(G_ 1)(m—n+m n’)/2
X (G = 1)(m-m+m'=n’) n Pamdn = 2, o "
X 5m—n—m’+n’in<n|f’amp|nl>in- (38) -
X ey +ne (M’ |pretr|m> (44)

This is the general input-output relation for the predictive
density-matrix elements of the field sent through a fully in- The retrodictive conditional probability at tinteis obtained

verted amplifier. The diagonal contributions are by substitutingG by e2”'*.
R 1 = ~ R C. Linear attenuation and amplification:
out<m|Pamp|m>out= @2 n (G-pm nin(n|Pam,Jn>in, Predictive-retrodictive inverses
n=0

A direct correspondence betwegmedicting the signal
output state from a quantum optical attenuator or amplifier,
and retrodicting the signal input state for an amplifier or
in agreement with previous results9]. This expression de- attenuator, respectively, has been previously established by
scribes the output photon distribution of the amplifying deriving a relation between the unitary operators associated
channel in terms of a general superposition of photonwith amplification and attenuatiofil1]. Here, using the re-

(39

number input states. sults obtained in Sec. Il, we confirm the validity of this cor-
The predictive density operator describing the output fieldrespondence in the situation where the environment is ini-
after the amplification process is tially at zero temperature.
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We recall that the signal field retrodictive matrix elementsthe system under consideration. For a cavity mode coupled
for the attenuator are given by E@5). We now denote by to a zero-temperature environment, the evolution of the field
pmm(0) theinputdensity matrix elements associated with theis described by20]
signal state sent into the amplifier. If we write the gain of the
amplifier as the inverse of an attenuation fac@®+ 1/K, Eq. p(t) = Y[28p(1)a" - aTap(t) - p(H)atal, (49)

(38) becomes
oo T where 2y is the dgmping rate. The effect of the coupling to
<nr|ﬁpred|n> kS (n ) (n ) (/2 the env_wonmgnt is equglent to t_he atte_nuatlon process.
amp m’ In this section we confine the discussion to perfect photo-
detection. A nonunit detection efficiency can easily be ac-
X (1 -K)mmen'-mizg ey m(0), commodated by giving the whole system an overall loss fac-
45) tor. The effect of detector dark counts can also be taken into
account. Both of these detection scenarios are discussed in
where the quantum numbens,m’ andn,n’ are exchanged. Sec. V.
Finally if we assume that the elemenis, (0) associated

with the amplifier input signal, are proportional to the mea- A Initial superposition of photon-number states and single

m=0 m'=0

sured quantitieim’|f)}e"|m> at the output of the attenuator, measurements
ie., if . . -
In photocounting experiments, where usually the statistics
Prvm(0) = ([ |m), (46)  of a radiation field have to be determined, the diagonal part
) ) ) of the density operator is sufficient, as this gives information
we find, by comparing Eq25) with Eq. (45), that on the photon-number probability distribution, and we con-
" — A centrate on these diagonal terms only. Other detection
([ Im) = (0’ [BRreeln) (47) J y

schemes such as homodyne detection are sensitive to the
In other words, given the result of a measurement, the retphase of the field, and we will consider these elsewh26g
rodictive state that we calculate at the input of an attenuatoin this subsection we further limit the discussion to single
with lossK is the same as the calculated predictive state ameasurements. In optical communications or quantum cryp-
the output of an amplifier with gaiG=1/K when its input tography, where the receiver must analyze single bits of in-
state is the measured output state of the attenuator; this fermation sent through a communication channel, the detec-
shown here for the environment for the two devices initiallytion can only be made with a single measurement on each
in vacuum states. We should bear in mind the different natursignal bit. We also restrict the discussion in this section to
of this state in the two cases: strictly speaking it is a state ofinbiasedsources of radiation. The state space of the system
minimum energy for the attenuator and a state of maximunis spanned by the complete set of photon number states, but
energy for the amplifier. The opposite equivalence can beisually the message sender and receiver restrict this artifi-
shown by following an identical procedure to the onecially by agreeing to send one of a limited number of states

adopted above and we have within a space spanned by the first few number states. In
JIAtelr | _ 1 {~pred either case, by an unbiased source we mean one for which
(' |pamdm = (n’[p5In). (48 thea priori probability that it produces any particular num-

In this case the retrodictive state for an amplifier with g@in ber state is the reciprocal of the dimension of th(_e state space.
is the same as the predictive state for an attenuator with los&/e¢ assume that both the sender and the receiver know the
K=1/G given that the measured output state of the amplifiestate space of the system and that the detector used for the
is the input state of the attenuator. measurement is an ideal photocounting detector with unit

Note that, although we have proved the equivalence fofluantum efficiency. _ _ _
the particular case of zero-temperature environment, it is 1he initial state of any diagonal field can be expressed in
valid for any temperature, as is shown in Sec. VI. the general formp(0) = pay==n-opnn(0)[N)X(N[, S0 the solution

of Eq. (49) is given by[20]

IV. APPLICATION TO PHOTOCOUNTING EXPERIMENTS R S n B _ .
HTON 1o me  u0=3 3 )] e -,
The aims of this section are to evaluate the retrodictive m=0 n=m m
matrix elements of the attenuator field for different photon (50)

distributions and to compare the expressions with the predic-

tive forms for the amplifier. Two types of experimental pro- which describes a mixed state with a binomial photon-
cedure are considered, and explicit forms for the measurgymber probability distribution. Witle2"=K, we clearly
ment POM elementl; are given. In order to confirm the see that Eq(50) agrees with the diagonal part of EQ.8)
validity of the beam-splitter method used in Sec. Il for thederived using the beam-splitter model. We first assume that
derivation of the density-matrix input-output relations, someexactly m photons are counted by the detector irsiagle
calculations for the predictive density operator are based hemmeasurement. This is a simple von Neumann measurement
on the solution of the predictive master equation describing15] and the POM element can be written as
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11 = Tl = [m)m. (51) | | | |
0.9t .
If the state space is the complete set of number states th
retrodictive probability that the input containedphotons ~~ 08f 1
given m detected output photons is given by E¢®3) and 8 o7} i
51) as B
&Y £ o ]
R n _ &
PIE (njm) = (|55 |n) = (m)Km”(l K R '
B 04 0 el ]
— 5 ~—
n (G - 1)n m . <] S
_ _ 0.2} Tt :
where we have sé¢=1/G. If we have no information about “aal
the prepared input state other than its random selection the ~ %1f ]
result of such an experiment does not tell us much about the 0 : . . . N
initial photon distribution of the prepared signal field. In fact 0 02 04 L 0 08 1

Eq. (52) represents the best available description of the ini-

tial photon distribution that we can obtain from a single mea- FIG. 3. Retrodictive conditional probabilitieB’S;'(0/0) (full
surement, given our lack of knowledge of the particular stateurve) andPL;'(1|0) (dashed curve in the case where only zero or
that was sent. By comparing the above expression with Ecpne photon could have been sent through the attenuator.

(39), we can see that E@52) also describes the probability

of countingn photons at the output channel of an amplifierit js what one might intuitively expect for a channel that
with gain G, given a field input statém) and the environ-  contains a classical noise-free amplifier, and is thus in line
ment initially at zero temperature. Therefore in this particulanyth the correspondence principl7]. In classical physics
case we reobtain the diagonal part of &4j7). the beam intensity retrodicted at the input of an amplifier
~ Similarly we can illustrate for single measurements theywould be the detected intensity divided by the gain. This is
inverse case, where the predictive density-matrix element fojhe classical limit of the retrodictive result, but it is not the
the amplifier is equivalent to the retrodictive matrix elementexact classical limit of the result based on predictive ampli-
for the attenuator. Without going into details, we find that thefjer theory.

retrodictive probablllty fom input phOtOI’]S haVing detected In the above examp|es the detection of a number of pho-

m photons at the output of the amplifier is tons tells us little about the input because the state space of
m\ (G-1)™" the system is large. If the space is artificially restricted by
P;er;rrﬂn\m) :(n|f>'a$,§’pjn>: (n )T with m=n. prior agreement between the sender and receiver, then the

amount of information gained from a single measurement
(53 can be greatly increased. Suppose that an ideal attenuating
optical fiber is used to send signals in the form of photon
number states. Consider first the case where no photons are

Eq. (47). . o . detected at the output. Then the retrodictive density matrix
One particularly striking consequence of the equalencqOr the input to the fiber is, from Eq25)
between attenuators and amplifiers is that ideal attenuators ' '

add noise photons backwards in time. Similarly, ideal ampli- o

fiers, which must add noise .phc_)tons to an input signgl, do not E);‘:r - 2 K(L - K)™my(m, (54)
appear to do so backwards in time. An example of this can be 0

given if we suppose that a communication channel contains

an ideal amplifier with a particular gaigsay G=2). If we  whereK is the transmission of the fiber. If it is known that
send a one-photon pulse of light through the channel thenly either zero or one photon was sent with equal prior
mean number of photocounts at the outpu{rs,,)=G({n;,) probability (an unbiased sourg¢his restricts the state space
+G-1=3. If, however, we do not know how many photons in Eq. (54). Therefore the sum stops =1, and the density
were sent, and wish to determine this from the results of th@perator is renormalized,

measurement we obtain a counterintuitive result. If we mea-

sure three photons then the mean number of input photons is aretr L 1-K
determined by considering the retrodictive amplifier as an Patt = 2_K|O><O| * 2 _K|l><1|'
ideal predictive attenuator with losk=1/G. Thus {n;,)

=K(neu=1.5, which is not in line with the intuitive result, 1, Figure 3 shows the retrodictive conditional probabilities that
given by subtracting a photon and dividing by the gain. ThisO or 1 photon was sent, given that none were found at the
result is also obtainable directly by using the retrodictivedetector. These probabilities both tend to 1/2 as the attenua-
density operator for the amplifier obtained from the diagonation increase¢K — 0), and so the measurement gives no in-
part of Eq.(44), and computing the mean number of input formation about the input state if the fiber is highly attenu-
photons usingnin>=Tr(f)§"rHFf1). While the result is surprising ating. This retrodictive decay to the no information state has

Finally settingG=1/K, we again obtain the diagonal part of

(55)
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FIG. 4. Retrodictive conditional probabilitieBy (0]0) (full FIG. 5. Retrodictive conditional probabilitie®s"(1/1) (dashed

curve, PL'(10) (dashed curve and P{"(2|0) (dotted curvg in  curve) and PiE"(2|1) (dotted curve, in the case where only zero,
the case where only zero, one, or two photons could have been semite, or two photons could have been sent through the attenuator.
through the attenuator.

ation limit the one-photon probability tends to 1/3 and the

already been highlighted for two-level atoms interacting withtwo-photon probability tends to 2/3. This result is easy to
a single-mode electromagnetic fidlt2]. understand if the system is considered to be a predictive

If the state space is extended so that zero, one or twamplifier with a one-photon input. If the output is limited to
photons could have been sent with equal prior probabilitieswo photons then only two processes can occur. Either the
(again unbiaseyd then for no detected photons the retrodic- photon passes through the amplifier and is detected, or on its

tive density operator becomes way through it stimulates an emission of a second photon.
2 m The probability of this second process is proportional to the
pretr = &| M| (56)  stimulated emission factdm+1), so it is twice as likely to
att 2 . .
me0 3~ 3K +K occur in this case.

. - " - The situation can be different fiasedsources for which

In this case the retrod|ct|vg cqndmonal probabllmes_ all .de' e havea priori information about the state preparation. If,
cay tc_) 13 as th_e attenqanon increases, as shown in F|g._ or example, only zero or one photon can be sent, but one
This is the nol—lnformatlon state for the three-state basis hoton is twice as likely to be sent as no photons, then, if no
These retr OQ'Ct'Ve rels.ults tglly with the re;ults for the ou_tpu hotons are detected at the output the retrodictive state is as
of a p_re_dlctlve amplifier with a vacuum input. _In the high given in Eg. (55). However, the retrodictive conditional
gain limit aI_I low photon numbe_rs are__e_qually I'k“?ly at the probabilities that zero or one photon were sent are not the
output, so If the output space is artificially restricted to 4same as in Fig. 3. The probabilities must take account of the

finite .set of low numbgr states .then the output density Operay priori distribution, which is encoded in the prepared state
tor will tend to the no information state. @

The situation is different if the detector registers a photon.
For the two-state system a count at the output of the ideal oA a1 2
attenuator means that a photon must have been sent. There is A=Ag+ Ay = §|0><0| + §|1><1|- (59
no other mechanism for obtaining a count when the attenu-
ator temperature is zero. The situation becomes a little mor¢pe propabilities that 0 and 1 photons were sent are respec-
interesting for the three-state system. The retrodictive densityyely, from Eq.(8),
operator obtained from one count is
TrdAgp™"] 1

e 5 . PEI(0]0) = —ond - ,
Pl = 2 mK(L =K)m)(m], (57) TrdAp™] ~ 3-2K
m=1
which, if not more than two photons were sent, becomes et (1]0) = TrdAp"]  2- K 60
. 1 2(1-K) at T OTrd AP 3-2K
= (1] + 2)(2]. S
Patt 3—2K| X1 3-2K 12)(2| (58)

In this case the retrodictive conditional probabilities at high
The probabilities that one and two photons were sent arattenuation decay to thee priori probabilities, which are 1/3
plotted as a function of the transmission coefficiknfior an ~ and 2/3, and this time there is some remaining information
unbiased source in Fig. 5. It is seen that in the high attenuabout the prior distribution of photons.
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In real optical communications systems, signals consist of
a sequence of single bits of information, denoted by 0 or 1.

The essential part of the communication problem is to deter- 1r

mine the transmitted message from the received signal anig /

here retrodiction is the natural approach to calculate the ret:g | b) / |
rodictive probabilities associated with the preparation statesg 7

of the signal bits of information. A study of retrodiction ap- S V4

plied to optical communications for different detection o 06} ,x a) ]

schemes will be presented in a subsequent paper, but here \f%
illustrate how information about the prepared states can b€g ,l 1
accurately derived in this biased case, given the knowledgeé
of the outcome of the single measurement.

Conventional systems operate in the classical multiphotor 92|
regime, where a received “1” may be represented by optical
pulses containing for example about 10 000 photf{i26j. 0 s : s s
We make here the assumption that the two optical bits “0” 0 0.0001 0.001 K 001 01 !
and “1” characterizing the binary signal can be described in
first approximation by the vacuum std@® and by a quan- FIG. 6. Retrodictive conditional probability that no photons
tum state[n) with an extremely large number of photons  were sent given that none were detecteff;"®(0|0), for the case
> 1. Thus the system represents another example of a bias@diere (a) either zero om=10 photons andb) either zero orn
source. The retrodictive matrix elements, and hence the nor1000 photons could have been sent through the attenuator.
malized retrodictive conditional probabilities that, given
recorded photocounts, 0 arphotons were sent into a zero- latter continuously produces identical field states that can be
temperature attenuator are now found to be measured separately.

If the cavity field mode at timé=0 is in a coherent state
P (Om#0)=0, PR(Nm+0)=1, (62) |), so thatp(0) =p.=|a){a| and, as before, the environment
when a number of photonm+0 is recorded during the is assumed to be at zero temperature, then the solution of the

single measurement, while if no counts are registered master equatio9) is [21]
1 (1-K)" par(t) = [ae ") ae ™|
Pt (0[0) = - and Py'(n[0)= =,
au (010) 1+(1-K)" au (M0) 1+(1-K)" o m o
[ ]2a=29t a o _ +m’
=gl ———e ™™ m)(m|.
(62) =0 Ym!m’!
where Eqs(61) and(62) have been renormalized taking into (64)

account the fact that here

. _ By settinge ?"'=K, the diagonal contribution ob,,(t) can

retr| .\ — pretr _ al

(nfpg' M = Pgy (Nm) =0 for n+0,n. (63) be written as a superposition of photon-number state opera-

The above expressions depend on the transmission of tHers similar to Eq(50) and consequently the general retrod-
device but also on the number of photons contained in théctive matrix elements are given by the diagonal part of Eq.
strong optical pulse describing the “1” bit. While in this ideal (25,

situation the relation&1) give a deterministic answer to the o

problem of determining the nature of the signal bit sent into ATetr] \ — M1 _ K-y | Aretr

the communication channel, the probabilities in E&R) re- (nlpgar'Im) = Kzo(m)K (1K) <m|pj Im. (69
spectively tend to 1 and 0 whdfi— 1. Note that for a fixed . ) )

value ofK, the biggem the better the discrimination between This further underlines the fact that oeiagle measurement
the two input pulses can be made by means of this retrodidS not enough to extract accurate information about the sta-

tion process. The behavior of these retrodictive conditionafistics of the input radiation field.

probabilities is shown in Fig. 6 wheS"(0|0) is plotted as In a situation whereepeatedcounts are recorded, we in-

a function ofK for two different values of the input photon troduce the following measured density operator:
numbern. o
pmeas= 2 P()iil, (66)
B. Coherent input state and repeated measurements =0
In this subsection and the following we illustrate how whereP(j) is the experimentalprobability distribution con-

some information on the statistics of a radiation field can bestructed from the results of the repeated measurements, and
derived using retrodiction, wherepeatedmeasurements are normalized. A coherent field is described by Poissonian sta-
performed on the signal. This is not usually the case fotistics [21,25. The fact that this input is coherent is not
guantum communications but we imagine here that the naknown to the measurer, and the statistics of this field must be
ture of a radiative source has to be analyzed, and that thedetermined from the measured statistics. If the input is Pois-
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sonian the output statistics are also Poissonian so the con- ) mm
structed experimental probability distributi¢im the limit of (m[pMeatm) = ———, (71)
e . (1+m)
n “infinite” number of single measuremenis
where the average number of detected photons=&n. We
. eTlAl|gjm obtain
(mlp™etm) = P(m) = ————, (67)

m <n|Aretr| )= (G_1+Gﬂn
where |8]2=K|af?, and in agreement with the output prob- Par (G+Gm"
ability distribution characterized by E@17) for a coherent  Thg retrodictive matrix elements for the attenuator are thus
input field. By inserting Eq(65) in Eq. (64) (with p; re-  gqyivalent to the predictive matrix elements for an amplifier
placed byp™**) and setting<=1/G, we obtain the retrodic- \yhere the input field is represented by chaotic light with
tive density-matrix elements, mean photon number equal fo. This can be shown from

N Eq. (38 when the initial probability distribution is assumed
~retr 1) RESS n\1/18*\" to be given by Eq(71). The distribution in Eq(72) repre-
(nlpg Iy = G-1 (68) sents a chaotic distribution with mean photon number equal

to the sum of the chaotic contributions constituting the out-
put of the amplifier[19]. These are the amplified vacuum
(G- T L - g  feldof the environment and the amplified chaotic light, char-
T ogmt € ™ G(G-1) _<n|pamp|n> (69) acterized by mean photon numbers given®y1l andGm,
respectively. As for the coherent input, by retrodicting the
wherel, is the Laguerre polynomial. This expression alsoresult arising from successive measurements on the output
describes the superposition of chaotic and coherent light atignal, we are able to derive information about the mean
the output of an amplifiefamplified vacuum field of the photon number of the input field and on the field statistics.
environment with mean number of photo@s-1 in accor-
dance with Eq.(35), and coherent light of amplitudgy|
=G%?8[], for an input state given by a coherent field of
amplitude| ], [19,20. This can also be shown from E&8),
when substituting,,,(0) by the initial Poissonian distribution
described by Eq(67). Compared to the single measurement In order to complete the description of retrodiction for
experiment, additional information on the field statistics canideal attenuators and amplifigiat zero temperature environ-
now be extracted from the retrodictive density-matrix ele-meni presented in Secs. Il and Il in the context of photo-
ments. Nevertheless, it is true that, because of the noise iwounting experiments, we give here the expressions for the
volved in the amplification process, an uncertainty about theredictive and the retrodictive density-matrix elements of the
input field of the attenuator remains. It is not possible to sayfield, first when the detector placed at the output of the de-
that the input state had Poissonian statistics with a meawices has a quantum efficiency smaller than unity, and sec-
number of photonsa|?> merely on the basis of the measure- ond when dark counts affect the measurement. Both situa-

=(pledny. (72

m=0

V. PREDICTIVE AND RETRODICTIVE DENSITY-MATRIX
ELEMENTS IN THE CASE OF IMPERFECT
DETECTION

ment statistics. tions correspond more closely to real experimental
conditions. Devices which produce postselected states based
C. Chaotic input state and repeated measurements on measurements of exact numbers of photons are likely to

be useful in quantum information processing, and form the
We now consider a chaotic input field, and we assume thaasis of linear optical quantum computing. Therefore the re-
the radiation source emits continuously. As before the envisyits in this section have direct relevance to the fidelity of
ronment is assumed to be at zero temperature, and the de§ych devices when detection is imperfect.
sity operator describing the radiation amplitude at tirm®

can be written a$21,2
¢ 3 A. Inefficient photodetection

“ ~ - 1. Attenuation and detection
p(0) = part = E ——~|nXn|, (70

no (1 + _51”' An imperfect photodetector can always be modeled by a
beam splitteror attenuator followed by a perfect detector,

wheren is the mean number of thermal photons of the inputsince its effect on the radiation falling onto its detection area
field. We again assume that repeated measurements are pran effective attenuation of the field. If we consider first the
formed during the experiment, and thus that the statistics ofase where an attenuating channel characterized by a trans-
counted photons can be built up. The retrodictive densitymission factorK is followed by the imperfect detector with
matrix elements for the system are again given by (B§). quantum efficiencyyp<<1, we expect the whole system to be
In this case, the expectation value of the POM eleng@fit®  equivalent to an attenuator with global transmission factor
(instead ofp;) in the form Eq.(66), must be givenin the K. In the context of photocounting experiments we concen-
limit of an infinite number of single measuremenby the  trate our attention on the field amplitude, and so we only
chaotic distribution present the diagonal contributions of the field density-matrix
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elements. By using the result valid for the attenuation pro- ® m m\/m
cess of a single mode signal, the photon probability distribu- <p|ﬁ§I§S+DIp> => > pnn(O)( )( >
tion after the measurement by the photodetector can be writ- m=p n=0 n/Ap
ten as[25] 1
X7P(L=n)™ P (G-D)™" (79

- G™
~pred — ~pred m P(1 — . \m—p

(PlpolP §p<m|pa“ |m><|0 )7] @=n"% (79 On the other hand, although we will not go into details here,
it can be shown that the retrodictive matrix elements for the
assuming the surrounding thermal noise to be at zero tensystem constituted by an amplifier followed by an imperfect
perature. The distributionm|i)g{fd|m> is given by Eq.(17),  photodetector are given by

and it can be shown by combining E.3) with Eq. (17),
that the predictive matrix elements are simpl 2 /m\/m

P id (Nlpolm = 2 > (n )(p )77"”(1 - 77)”""i

- G™
~pre - n . m=n p=0
<p|pgtt+dD|p> = ngppnn(o)<p)(l< 71)"(1 - K7]) P (74) X(G — 1)m-n<p|ﬁlfetf|p>. (80)

JMe have shown in Sec. Il that the predictive matrix elements

by an attenuating device characterized by a transmission cdor an attenuator or amplifier are equivalent to the retrodic-
efficientK’ =K 7. tive matrix elements for an amplifier or attenuator, respec-
The diagonal retrodictive matrix elements for the systenf!Vely. We therefore expect Eq80) to be identical to the

attenuator + photodetector can be straightforwardly derived?noton-number probability d_istributi/on at the output of the
and the procedure of Sec. II, we obtain system where an amplifier with ga@® =1/ is followed by

an attenuator with loss’ =1/G. The environment is initially
* at zero temperature and the noise entering the attenuating
([P oIy =K7Y, ( >(K77)p(1 - K7)™P(plpi*p), channel is given only by the contribution coming from the
p=0 \P output of the amplifier. By evaluating the output photon dis-
(75) tribution for this system we find

The whole system can therefore be represented, as expect

where ﬁ}e" represents the density operator associated with ~ pred B S my(m\ .,
the outcomg of the measurement. It is easy to show that we (nlp amp+att|n> = 2_ 2 Ppp(0) nJ\p 7
have here m=n p=0
1 _
(' |pigrolm) = (' BBreedn), (76) XA=p)"PR(G-D™ (8D

with the amplifier’s gain given b’ =1/K#. The resul{(75)
is precisely that which was derived in R§4] using Bayes’
theorem and the Bernoulli sampling formula.

Therefore, if

ppp(0) = (pIp;*"[p), (82)

2. Amplification and detection we have, as expected,
The system consisting of an amplifying channel followed
by an imperfect detector can be represented by an amplifier (Nlp'Bres. el = (nlpfemrplny = (Nipiem e, (83)
of transmissiorG followed by an attenuator of transmission
1. The amplifier environment is initially in the vacuum state, valid for a general initial photon probability distributigi,
and we also assume that the thermal field surrounding thef the field. Note that the predictive-retrodictive equivalence
detector is at zero temperature. The photon-number probabishown in Eq.(83) is not a property of the diagonal elements
ity distribution after the detection process can be written a®nly, and its validity can be extended to the off-diagonal
in Eq.(73) as ones. Retrodiction of the process of amplification followed
by imperfect photodetection is thus equivalent to prediction
- m for an amplifier followed by an attenuator. A similar property
(plpSmol) = 2 <m|/3§I§S|m><p )ﬂp(l -n)™P, (77)  applies for an attenuator followed by an amplifier.
m=p

with B. Measurements including dark counts

. m Real photodetectors exhibit extra counts not associated
misPedmy = —— 0 ( ) G-1)™". (78  With the absorption of photons. These dark counts are ran-
(mip2mplm) Gm+1n2_0pnn( ) n ( ) (78) dom detection events that are independent of the incident
light, and are usually described by a Poissonian probability
By combining Eq.(78) with Eq. (77), we then obtain distribution[4,9],
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d N

P(d) = e (84) ~pred e N ~pred
d <N|pamp+d|N> = mE:O (N=-m)! <m|Pamp|m>
with mean number. In quantum communications where B NogrNm T m\ 1 men
low intensity signal pulses constitute the information bits, the - mz_o (N=m)! nzopnn(o) n Gm+1(G -,

dark count events are the main source of error. For instance,
in quantum cryptography, the bit error rate of the key distri- (87)
bution process strongly depends on the rate of detected da
counts; typically for an effective bit rate of 100'sthe error
rate due to dark counts is of the order of & §28]. The
presence of dark counts with mean numbessociated with
each measurement event, with a value between 0.01 and 0.1, NN Nem ) g

- (ET

Hhd inversely given a numbé&¢ of recorded counts, the ret-
rodictive density-matrix elements for the system amplifier
+photodetector are now

-~ 14 14

can have a significant effect on the measurement result WherKn|P£ent1r§+d > m > m n

signals consist of about 0.1 photons per bit, as is often the I=0 =/ men ’

case in quantum cryptography. (898)

In this section we briefly illustrate how the presence of

dark counts in the measurement affects the expressions fO{°t€ that, because of the additionadependentandom
counts(detector dark counfsthe equivalence between the

the predictive and retrodictive density-matrix elements for - S !
the attenuating or amplifying system at zero temperature. t.tc_enuato(amplmer) pred.|ct_|ve matrl_x elements and the am-
rpln‘ler (attenuator retrodictive matrix elements, shown in

limit our attention to the diagonal contributions only and fo Eas (4 4(48). is |
simplicity we consider a detection quantum efficiengy ~E9S-(47) and(48), is lost.
equal to unity.

VI. ATTENUATORS AND AMPLIFIERS AT ELEVATED
1. Attenuation and detection TEMPERATURE

The detector does not discriminate between dark counts The aim of this section is to illustrate the fact that quan-
and photoelectron counts, and the probability of recortng  tym linear amplification and attenuation remain predictive-
total counts is derived by combining the two independentetrodictive inverses for a general temperafiiref the envi-
output probabilities, given respectively by the photon-yonment. We use expressions for the predictive output
number distribution at the output of the attenuating channegjistributions from an attenuator and an amplifier which have
(associated with the quantum numbpey and the probability peen previously derivefL9]. We only compare the retrodic-

of detectingN-m dark counts. We have tive attenuator with the predictive amplifier in the case of
single measurements. Recently a retrodictive master equation
N o N-m has been derive@lL3], which allows the evolution of a ret-
~pred — ev ~pred| .. ..
(N|phiegINy = > (N=m)! (m[pgee Tm) rodictive state to be tracked backwards in time for any open
m=0 :

system. The general equivalence between nonideal attenua-

N e v N-m n tors and amplifiers is relatively easily proved using this for-
=>—>> pnn(0)< )Km(l —K)nm malism. An account of this is given in Sec. VI C.
meo (N—=m)! m
(85) A. Attenuation and retrodiction of single measurement result
whereN-m=d. The output photon distribution from an attenuating chan-

On the other hand, for a single measurement whére nel at general temperature, and for arbitrary input light can
counts are recorded, we find, by the same method useRf Written ag19]

throughout the paper, the retrodictive matrix elements for the s s \/n oo
system given by glppredgy = 0 ( )( )+
( |Patt | ) EOn:Empnn( ) m/\m (1+nCh)1+s
N —1Min[n,N] N—m m n-m
n K K
nAretron =K K V—< ) X( — ) (1_ — ) , 89
(n|pgisalm (I:EO T mE:O (N-m)! \m 1+, 1+, (89)
XKML -K)™™m, (86)  whereng, is the number of chaotic noise photons added by
the device. As we have already pointed out, the diagonal
in accordance with previous resuf]. contributions of the density matrix are sufficient for a de-

scription of the field in terms of its amplitude and they are in
fact the only relevant contributions in the context of photo-
counting experiments. If the attenuator is modeled by an en-

Similar calculations can be performed for the amplifier.semble of two-level atoms, can be written in terms of the
The probability of detecting\ photons is given by thermal facton(11) as[19]

2. Amplification and detection

033805-13
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Nen= Nau(1 - K). (90) The cpmparison .b.etv\{een the retrodictive att.enuator and
] the predictive amplifier is easily made by looking at Egs.
Note that forT— 0, Ny — 0. Then for an ideal attenuateat  (93) and (94). The retrodictive matrix elemeri®3) is iden-
zero temperatujewe haveng,=0 as expected. In general, tica| to the predictive matrix elemeii®4) provided that in
given the mean number of photons of the input distribu-  he two expressions the quantities raised to the various pow-
tion, the mean number of output photons from the attenuatars 0,5, n, andm are the same. It can be easily checked that
ing channel is the four resulting conditions are all satisfied@E=1/K and
S=T + KN (91) the thermal factordl,;; andN,y,, are related by Eq27). This
— lch ’ H ; H
simple example proves the equivalence between the predic-
the sum of the chaotic contribution and the contribution fromtive attenuator and the retrodictive amplifier in the general
the attenuated signal. case where the environment is at temperature different from
The diagonal retrodictive matrix elements for the field canzero.
be calculated by the same method as in earlier sections. In In real amplifiers the atomic population is never fully in-
the case where photons are recordety an ideal detector  verted and so the population factdy,,can never be exactly

at the output of the device we have equal to 1. Typically for Erbium doped fiber amplifiers
Namp= 1.4, corresponding to a ratio between the populations
(nlpIny = — (s)plredsy, (92)  of the ground and excited levels given bly/N.~0.3[29].
Nait @ pan(0) Nevertheless, a large range of population factor values can

be achieved since for instance in*Aasers, where the lower
level population varies between 60% and 70% of that of the
upper level,Nym, varies between 2.5 and 3[30]. On the

where Ny is the appropriate normalization constant. The
double summation in Eq89) can be rewritten as

ss1.n © s other hand, in Raman amplifiers characterizedzlay/ kgT
DRI <1, Ngmp can be close to 129].
n=0m=0 n=s m=0
so from Eq.(92) C. Predictive and retrodictive master equations
: for attenuators and amplifiers
Min[n,s] —s-m
(n|pretolny = K > (S >(n >n+hl+ The evolution of an open quantum system can be tracked
meo  \M/AM/ (1 +ngp)™" using unitary evolution operators which act on both system
K \m K \nm and environment variables. After the evolution time the trace
><< — ) ( - ) (93 over the environment gives the density operator for the sys-
1+ng, 1+ng, tem alone. A more popular approach is to derive an evolution
equation for the system in which the environment variables
have been already traced out of the problem. This means that
B. Amplification of photon-number state input the environment variables do not have to be tracked during
and comparison the evolution. This equation, called a master equation, gen-

The general output probability distribution from an ampli- €rally corresponds to nonunitary evolutigi], and is diffi-
fying channel, and for a photon-number input st can cult to solve in general. If a stafe d(tp) is prepared at the

be written ag19] preparation time,,, and evolved for a time=t,,—t, until the
Min(ns] measurement time,, the conditional probability that the
(nlppredny = 2 (n )(S ) n'c," measurement resull(t,) will be obtained is given by Eq.
Pamp o \m/\m/ (1+n})t" (1). The evolution of the prepared state for an attenuator or

" om an amplifier is the solution of the predictive Born-Markov
><< G ) (1 _ G ) (94) master equation, which takes the form

7 A7
1+ Nep Nep

p(t) = YNay(T)(28"pa~ 245 - paa’)
+ YNa(T) + 1]1(28p8" - &'ap - pa'a)  (97)
for the attenuator, and the form
being the sum of a pure chaotic contribution and the contri- .
bution from the amplified signal. The mean number of cha- p(t) = Y Ny(|T]) + 1](22"pa - aa"p - paah)
otic photonsn},, deriving from the amplification of the en- Anat  atan  Aata
vironment noise, can be written in terms of the thermal factor + Wa(|T))(28p8" - 8'ap - pa'a) (98)

(26) as[19] for the amplifier[24], where the dot means derivative with
= Namd G = 1) (96) respect td. The parametey is related to the attenuation and
ch™ ""am ’ amplification factors by equations=e 2" and G=e*" as
and it reduces to the amplified vacuum field fluctuation con-before, so these two equations represent an attenuator and an
tribution shown in Eq.(36), when T—-0 and thusN,,, amplifier, which satishKG=1. In this section we will derive
— 1. the retrodictive master equation for an attenuator whose pre-

and is characterized by a mean number of output photons

n=n,+Gs, (95)

033805-14



RETRODICTION FOR OPTICAL ATTENUATORS,. PHYSICAL REVIEW A 70, 033805(2004)

dictive master equation is E¢97) using the general proce- measurement timé=t,,—t we obtain the retrodictive master
dure followed in Ref[13], and show that it is identical to Eq. equation for the attenuator,

(98).

. .. - dﬁretr o e
do;/genitf\;tetgé rl;lglr;?] iuz i?rﬁte tg?tct;}g ;gg,dltlonal probability = = YN,(T)(28p"a" - prevata - ataprer)

P(i[i) = TP 0T @], (99 +Nao(T) + 1](287pre"8 - p2"84" - 88T5'™").

for all t between preparation and measurement. Thus the de- (109
rivative of the probability with respect to this intermediate This is the reverse time evolution equation for the retrodic-
time must vanish, and using the rule for differentiating ative density operator for the attenuator. It has the same form

product we have as Eq.(98), provided that the attenuator and amplifier tem-
. . A peratures satisfy the relation,;=—Tamy=|Tamg- Thus the
Tr[f,f’fed(t)nj(t)] =- Tr[f)i’”"‘d(t)l'[j(t)]. (100 retrodictive master equation for an attenuator is identical to

, , the predictive master equation for an amplifier provided that
We can use the master equation for the density operator i@e gain of the amplifier is the inverse of the loss of the
find the equation for the time derivative of the POM element aanyator, and provided that the effective noise temperatures

the evolution equation that it must satisfy as it evolves backyt the two devices are identical. The converse result is simi-
wards in time to the intermediate time. We substitute Eqiarly proved.

(97) into EqQ.(100), and use the cyclic property of the trace to
give (all indices are suppressed
o pten  antn  aant VIl. CONCLUSIONS
Trip(MIL(M)] =~ yTr({Na(T)(22'pa - 8a'p - pad’) _ _ _
In this paper we have shown, by direct calculation of the

+[Na(T) + 1](28p8" - a'8p - paTa)H1 (1) input and output density-matrix elements, that optical attenu-
B AATyAt  ATiAAt | Amatn ation and amplification are predictive/retrodictive inverse
== yTH{Na(T)(2palla’ - pllaa’ - paa'll) processes. In other words, the state transformations that they

Aatfra _ ~fyata _ catal effect on the optical field are the time reverse of one another.
+ [Na(T) + 1](2pa’TIa - pl1a‘a - pa'all)}. Retrodictive quantum mechanics saves calculational effort
(10D when reconstructing messages in quantum communication.
This paper shows that instead of performing, say, a retrodic-
tive calculation on an attenuating system, it is possible to
perform a predictive calculation using an amplifier, and ob-
2 ATYAT  PrAnt  Aatr tain identical results.
T1(1) = = yNqy(T)(2&118" - T18a" - 88'IT) We have applied our results to ideal devices, which add
— M[Nae(T) + 1](2éTﬁé_ Mata- é‘raﬁ)_ the minimum amount of noiS(_e, to the pgrt!cular ex_ample (_)f
direct detection. We have derived retrodictive density matrix
(102 elements for single-shot measurements by perfect detectors,
with unit quantum efficiency, imperfect detectors with quan-
tum efficiency less than unity, and to detectors that exhibit
dark counts. We have extended the method further to apply
to the case where multiple measurements are made on many

This equation is true for all density operators so the evolu
tion equation for the POM element is

The retrodictive density operator is given be”:l:I/Trl:[,
S0 substituting Eq(102) we obtain

Aretr — Tl - 117l - A AretrTrrAI identical copies of the same state, allowing for the recon-
(TrII)2 T Tl struction of the density matrix of the input to the device.
_ AAraitat | Aretraat . aataretr In classical physics, noiseless attenuation and amplifica-
=~ Wa(T)(28p°78" - p"*"aa’ —aa'p™") tion are allowed, and these two processes are the reverse of
— M[Na(T) + 1](2aTp"ea - prevrata — atapter) one another. If we pre- or pps;—ampllfy an attenuated signal
mretr using an amplifier whose gain is the reciprocal of the attenu-
Ty (103 ator loss we would obtain the unattenuated signal at the de-

tector. Thus a lossy detector could easily be compensated by
eusing a classical amplifier. Such a noise-free amplifier is dis-
allowed in quantum physics. Both attenuators and amplifiers
add noise to a quantum signal, merely by changing the prob-

where we have used the commutatara’]=1 and the unit
trace of the density operator. A little more algebra using th
commutator gives

;Jretr = — yN,(T)(28p"a" - preva’a abilities_ that the state contains particular numbers of photons.
o e For an ideal attenuator the mean output photon number need

- 8'8p"") — Y[ Nau(T) + 1](28"pea - p'eaa’ not contain any extra noise photons. Amplification, however,
— aTpre) (104) adds noise photons to the amplified mean input photon num-

ber, an ideal minimum o& -1 noise photons, whel@ is the
which is the evolution equation for the retrodictive density multiplicative gain of the amplifier. This limits our attempts
operator in the forward time direction. If we define the pre-to reconstruct the unattenuated signal output from a noise-
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free attenuator exactly, even by ideal amplification, as ther@hotons for an ideal device. If, however, we detect an attenu-
is always noise added to the signal. In quantum physics amated state, as must always occur for a detector with nonunit
plification and attenuation do not seem to have the usefulietector efficiency, the reconstructed state prior to the device
classical reversing property, and one question which mighiill be affected by amplifier noise photons. These relation-
be legitimately asked is whether the quantum theories deships between the mean numbers of input and output photons
scribing them satisfy the correspondence principle. in prediction and retrodiction for both devices ensure that the

This paper restores a pleasing time—rev_erse symmetry theories satisfy the correspondence principle in the classical
the two processes in quantum theory. An interesting consgp;t.

quence of this is that, for ideal devices, the noise properties

of amplification and attenuation are reversed in retrodictive

quantum theory. If we detect an amplified signal and wish to ACKNOWLEDGMENTS
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