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By stochastic modeling of the process of Raman photoassociation of Bose-Einstein condensates, we show
that, the farther the initial quantum state is from a coherent state, the farther the one-dimensional predictions
are from those of the commonly used zero-dimensional approach. We compare the dynamics of condensates,
initially in different quantum states, finding that, even when the quantum prediction for an initial coherent state
is relatively close to the Gross-Pitaevskii prediction, an initial Fock state gives qualitatively different predic-
tions. We also show that this difference is not present in a single-mode type of model, but that the quantum
statistics assume a more important role as the dimensionality of the model is increased. This contrasting
behavior in different dimensions, well known with critical phenomena in statistical mechanics, makes itself
plainly visible here in a mesoscopic system and is a strong demonstration of the need to consider physically
realistic models of interacting condensates.
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I. INTRODUCTION

In this work, we combine two issues which are of topical
interest to the Bose-Einstein condensate(BEC) community
and farther demonstrate that the dimensionality of models
used to represent trapped condensates can be of crucial im-
portance. The first issue is superchemistry, or Raman photo-
association of condensed atoms to form a molecular conden-
sate [1]. The second issue is the question of the actual
quantum state of a trapped condensate, as described by the
Wigner function, and whether knowledge of this state may
be important for theoretical analyses. The mathematics of
photoassociation is essentially a more complex form of that
of traveling-wave second-harmonic generation, in which
both quantum statistics[2,3] and Kerr nonlinearities[4] are
predicted to affect the dynamics of a zero-dimensional model
in a quantitative manner. However, we will show that once
we consider a one-dimensional model with spatial depen-
dence for interacting condensates, the differences arising due
to the quantum statistics are qualitative.

The first prediction of an atom-optical analog of the opti-
cal processes of frequency conversion with condensates was
by Drummondet al. [5], who developed an effective quan-
tum field theory to describe coupled atomic and molecular
BECs. Javanainen and Mackie[6] later proposed a two-
mode, phenomenological Hamiltonian to model the process
of photoassociation. A more complete proposal, using an
atomic and two molecular fields, coupled via a two-color
Raman transition so as to minimize spontaneous-emission
losses, was developed by Heinzenet al. [1]. This model,
which utilized the Gross-Pitaevskii equation(GPE) ap-
proach, demonstrated that the molecular formation would not

obey the usual Arrhenius rules for chemical reactions and
introduced the name superchemistry. Hope and Olsen in one
dimension [7], and Hope in three dimensions[8], subse-
quently showed that fully quantum treatments using the
positive-P representation[9,10] do not always agree with
mean-field predictions, even for the mean fields. Recent
works by Olsen and Plimak[11] and Olsen[12] have shown
that superchemistry not only does not obey the Arrhenius
rules, but also depends on the quantum statistics of the reac-
tants.

Experimental efforts to form molecular condensates by
photoassociation of atomic condensates have been at least
partially successful, although the most successful method for
the production of condensed molecules to date has been the
recent combination of pairs of fermions using Feshbach tech-
niques[13–16]. Because of Pauli blocking of the dissociation
channel, the dynamics of this process, even if it were to be
carried out using photoassociative techniques, are expected
to be different from those of superchemistry[17]. Photoas-
sociation experiments have been performed using Raman
techniques by Heinzenet al. [18] and Gertonet al. [19],
although the atom-molecule oscillations predicted theoreti-
cally [1] were not observed. Molecules have also been
formed from a sodium condensate by a single photon transi-
tion, although this method does have problems with their
subsequent spontaneous breakup[20]. A number of groups
are continuing their efforts and we feel it may not be long
before coupled atomic and molecular condensates are formed
by photoassociation and can be controlled in the laboratory.
This will open new areas for investigation, much as fre-
quency conversion provided for in quantum and nonlinear
optics. We note here that photoassociation is not the only
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possible method which can be used to form coupled atomic
and molecular condensates, with Feshbach resonance tech-
niques having been successfully used[21–24], although this
technique would not normally be expected to produce the
population oscillations predicted for photoassociation su-
perchemistry.

An intriguing issue is raised by the quantum state of a
trapped condensate with repulsive interatomic interactions,
which is perhaps best described in terms of the Wigner func-
tion [25]. This function has long been a useful tool in quan-
tum optics and has a simple definition in the single-mode
case,

Wsad =
2

p2E
−`

`

d2bka + burua − blexpsa*b − ab*d, s1d

which is useful if the density matrix is known. A condensate,
however, is not a single mode and, even in the case of a
noninteracting condensate, the dimensionality of the Hilbert
space required to describe the density matrix makes this ap-
proach intractable. Another approach is to solve for a steady-
state solution of the appropriate Fokker-Planck equation,
which can sometimes be done in terms of a potential solution
[26]. In the case of a trapped condensate, the equation of
motion for the Wigner function is a generalized Fokker-
Planck equation with third-order derivatives and spatial de-
pendence, so that the steady-state solution is not easily found
[10]. In the absence of a complete solution for the Wigner
function, obtained without making various approximations,
researchers have often chosen to use either the coherent or
Fock states. In previous works[11,12], the photoassociation
dynamics for different initial states were stochastically simu-
lated, but the Fock, or number state, was not considered due
to difficulties in simulating its Wigner function numerically.
(For a short discussion of what we consider to be the relative
merits of different choices, see Refs.[11,12].) Here we adapt
an approximation developed by Gardineret al. [27], which
allows us to approximately represent Fock states without
having to deal with negative pseudoprobabilities. As we in-
vestigate only the dynamics of the mean fields rather than
quantum correlations, we will stochastically integrate the ap-
propriate equations in the truncated Wigner representation
[10,28,29], which we expect to give reliable results for the
numbers of particles involved. For the parameters used in
Ref. [12], where it was shown that the superchemistry-type
oscillations can eventually disappear due solely to the quan-
tum noise, without any thermal component being present, we
will show here that, for an initial Fock atomic state, the os-
cillations may not even appear.

II. QUANTUM STATES IN THE WIGNER
REPRESENTATION

Due to the difficulty of solving the equations of motion
analytically, all our solutions will be obtained numerically, as
averages over a large number of stochastic trajectories. When
we wish to calculate the time evolution for a particular initial
quantum state, we must begin by representing the Wigner
distribution for the chosen state. To model these, each of the

512 points on the spatial grid is given an initial value on each
trajectory, chosen from the appropriate Wigner distribution.
Coherent states and the crescent state, given this name be-
cause its Wigner contours are sheared in phase space due to
the xs3d nonlinearity, are modeled as explained in the appen-
dix of Ref. [12]. We note here that, unlike in the single-mode
zero-dimensional models used in quantum optics, there is
some freedom in the way these initial states can be modeled
once spatial dependence is included. For the purposes of
simple comparisons, we will use the same method as in Refs.
[11,12]. The Wigner function for the Fock stateuNl is

WNsa,a*d = 2
s− 1dN

p
exps− 2uau2dLNs4uau2d, s2d

whereLN is the Laguerre polynomial of orderN. This distri-
bution is oscillatory and can obviously be either positive or
negative, so it cannot be easily simulated numerically. How-
ever, in the large-N regime Gardiner has made the observa-
tion [27] that the cumulative distribution behaves very much
like a step function centered atuau2=N. This distribution can
then be approximated by a Gaussian which gives the right
moments for the mean and variance and approximates the
higher moments well. The appropriate distribution is

PNsn,ud =Î 2

p
expS−

sn − N − 1/2d2

2s1/4d D , s3d

where we have takena=Îneiu, with u uniform on f0,2pd.
The first three moments of this distribution are

a*a = N +
1

2
, s4d

a*2a2 = SN +
1

2
D2

+
1

4
, s5d

a*3a3 = SN +
1

2
D3

+
3

4
SN +

1

2
D , s6d

so that mean and variance are in agreement with Eq.(2). We
can now show that such an approximation in fact generates
all moments of Eq.(2), up to a correction of order 1/N2,
which is negligible for largeN.

Using the differential recursion relation for the Laguerre
polynomials,

x
d

dx
LNsxd = NfLNsxd − LN−1sxdg, s7d

a recursion relation for arbitrary even moments can be found.
Writing

sa*mamdN = 2
s− 1dN

p
E d2a exps− 2uau2dLNs4uau2duau2m,

s8d

we can use Eq.(7) to find
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sa*mamdN =
N + m

2
sa*m−1am−1dN +

N

2
sa*m−1am−1dN−1.

s9d

The first three moments are

sa*adN = N + 1/2, s10d

sa*2a2dN = sN + 1/2d2 + 1/4, s11d

sa*3a3dN = sN + 1/2d3 +
5

4
sN + 1/2d, s12d

and comparison with Eq.(4) shows that the Gaussian ap-
proximation is exact for the mean and variance, and accurate
to Os1/N2d for m=3. It is easily shown by induction onm
that the exact moments satisfy

sa*mamdN = sN + 1/2dm + OsNm−2d, s13d

so that the correction is always of order 1/N2 relative to the
leading term. Returning to the Gaussian approximation, we
see that it gives

a*mam =Î 2

p
E

−`

`

dzsz+ N + 1/2dmexps− 2z2d

=Î 2

p
E

−`

`

dzfsN + 1/2dm + msN + 1/2dm−1z

+ OsNm−2dgexps− 2z2d

= sN + 1/2dm + OsNm−2d, s14d

which will be an adequate description of the number state
statistics for largeN.

To simulate this distribution numerically, consider the
choice(using a single mode for simplicity)

ai = p + qhi , s15d

wherehi is a normal Gaussian random variable, andp andq
are yet to be determined. As we are using a Gaussian ap-
proximation, it is sufficient to reproduce the first two mo-
ments ofa2. (Note thata is a real variable here, with the

phase distribution to be added.) We need to reproducea2̄

=N+1/2 anda4̄=sN+1/2d2+1/4. Thechoices

p =
1

2
s2N + 1 + 2ÎN2 + Nd1/2 s16d

and

q =
1

4p
s17d

reproduce the required distribution to a high degree of accu-
racy. Theai thus chosen is then multiplied by the factor
exps2ipjid, wherej is randomly chosen from the uniform
distributionf0,1d. The molecular field is always chosen to be
in a coherent vacuum state at the beginning of the photoas-
sociation process.

After stochastic integration, the trajectory averages will
be ucGPsxndu2+1/s2Dxd at each point, with 1/s2Dxd needing
to be subtracted at each point after the averaging.cGPsxnd is
the ground-state solution of the GPE at spatial pointxn, with
the mean number of atoms at each spatial point being
DxucGPsxndu2, so that when the summation is performed, the
Wigner average is this plus 1/2. In the continuous limit, with
an infinite number of spatial points, this causes a divergence
in the Wigner equations, as the “vacuum” noise becomes
infinite. In this sense, only the normally orderedP represen-
tations truly exist for continuous fields. However, as the
s-wave scattering length imposes a physical limit on the grid
size which may be used, we are able to use the Wigner rep-
resentation. This ultraviolet divergence does not exist for
single-mode treatments, as commonly used in quantum op-
tics. However, as we shall demonstrate, the effects of the
quantum noise change with the dimensionality, meaning that
single-mode-type approaches to the dynamics of interacting
condensates may not always be valid.

III. THE SYSTEM AND EQUATIONS OF MOTION

The system we treat is the same as in previous works
[11,12], where we again treat the trapped zero-temperature
atomic condensate as one-dimensional. We consider a Ra-
man photoassociation scheme[1,7,8] with the excited mo-
lecular field adiabatically eliminated. Following the same
procedure as detailed in Ref.[12], we map the Hamiltonian
onto differential equations which have the appearance of
coupled Gross-Pitaevskii-type equations. These Wigner
equations calculate symmetrically ordered operator products
and averages must be taken over a large number of integra-
tions, with initial conditions chosen so as to represent the
desired Wigner function. We can now model the quantum
fields (to a good level of approximation) via equations which
are completely classical in appearance.(Note that a full ver-
sion of the derivation of these equations is given in Ref.
[12].) Using the usual oscillator units, with time measured in
units of v0

−1 and space in units ofÎ" /mv0, the two coupled
equations for the complex atomicscad and molecularscmd
fields are

i
] ca

] t
= −

]2ca

] x2 + Vasxdca + sUaaucau2 + Uamucmu2dca

+ ikca
*cm,

i
] cm

] t
= −

1

2

]2cm

] x2 + Vmsxdcm + sUmmucmu2 + Uamucau2 − Ddcm

−
i

2
kca

2. s18d

In the above,Vasxd fVmsxdg represents the trapping potential
for the atomic(molecular) condensate,Uaa is the atom-atom
interaction strength,Umm represents that between molecules,
and Uam represents atom-molecule scattering, all in the
s-wave d-function approximation. The coupling strength,k,
chosen as real here, represents the Raman laser coupling be-
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tween atoms and molecules.D is the detuning from the Ra-
man resonance. In this model, we ignore spontaneous losses
and interactions with the thermal cloud, which does not exist
at zero temperature.

IV. RESULTS

In all simulations, we use as our starting point a ground-
state solution of the GPE with 23104 atoms and a value
of the nonlinear interaction,Uaa=4310−3. We use
Uam=−1.5Uaa, Umm=2Uaa, k=1, D=0, and a molecular trap-
ping potential twice that of the harmonic-atomic potential.
Physically, the one-dimensional value chosen forUaa is at
the low end of the range, representing either a three-
dimensional scattering length smaller than that of sodium, or
a weak trap. We have chosen this value because, given the
value ofk, the differences from the GPE predictions happen
after a somewhat short integration time, even for initial co-
herent states.(For the importance of the ratio ofxs2d to xs3d

nonlinearities in the quantum dynamics, at least in the zero-
dimensional case, see Ref.[4]). We note that scattering
lengths can be tuned using Feshbach resonance techniques.
The coupling parameterk depends on both laser intensities
and the one-photon detuning from the excited molecular lev-
els, as well as on the overlap integrals of the states involved
in the transition [1]. Using the same procedure as
Kheruntsyan and Drummond[30], we find that the value ofk
used here is comparable to the one used in that work, the
value of the coupling equating to approximately 2.1
310−7 m1/2 s−1. Although we have not attempted to model
an actual experiment, with all the complications involved in
the process, we can have some confidence that our param-
eters are not physically unattainable.

The integrations begin with all particles in the atomic
condensate. The equations are integrated over 104 trajecto-
ries, using a standard split-operator method, as described in
Ref. [12]. In Fig. 1, we show the results for the atomic num-

bers, using initial Fock, crescent, and coherent states, all with
the same initial mean numbers of atoms. Immediately obvi-
ous is that, for these parameters, the dynamics for the Fock
state are completely different from the other two. Not only is
the initial conversion rate less, but the degree of conversion
to molecules is much less, and there are no oscillations seen
between atoms and molecules. The different dynamics of the
Fock state cannot be ascribed to the initial spatial intensity
correlation,gs2dsx,xd (see Refs.[12,31]), as this between 1
−1/N for a Fock state, 1 for a coherent state, and 1.04 at the
center for the crescent state. As demonstrated previously
[11,12], the more uncertainty in phase that a given state has
by comparison with a coherent state, the more difference we
see in the dynamics. A Fock state, which exhibits the maxi-
mum possible phase uncertainty of 2p, is therefore expected
to differ most in its dynamics from the coherent state.

V. ZERO-DIMENSIONAL APPROACH

By comparison with a zero-dimensional quantum-optics-
type approach, sometimes used to represent Raman photoas-
sociation of atomic condensates[32], we can show that the
quantum statistics become more important as the dimension
increases. We can investigate the zero-dimensional system
with the coupled equations given in Ref.[12]. We show the
results for the atomic dynamics in Fig. 2, comparing the
predictions of the truncated Wigner with initial coherent and
Fock states to those of the classical approach, both for an
initial atom number equal toucau2 at the center of the densi-
ties used for the harmonic trap. Note that this is not the same
as the atomic number at the center of the one-dimensional
grid, which isDxucau2, but is the number which enters into
the one-dimensional equations. We find that the classical ap-
proach, which predicts regular periodic behavior in this case,

FIG. 1. Atom number evolution for Fock, crescent, and coherent
initial states.

FIG. 2. Zero-dimensional predictions for the atomic evolution.
The dash-dotted line represents the classical mean-field prediction,
the solid line is for an initial Fock state(8.253105 trajectories), and
the dotted line is for an initial coherent state, as previously shown in
Ref. [12] (3.453105 trajectories), which is almost indistinguishable
from the Fock state.
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is reasonably accurate up to the second oscillation, but then
begins to differ from the quantum prediction. The quantum
result shows a damping of the oscillations, due solely to the
quantum noise. However, when compared with the one-
dimensional predictions, the results for the Fock state are
completely different. Although the difference increases in
one dimension for the coherent state, it is only quantitative.
For a Fock state, the difference with dimension is qualitative
and the zero-dimensional predictions, as used in Refs.
[33,34] with initial Fock states, are far from the 1D results.
We note here that, while there are certain physical conditions
to be fulfilled so that a trapped BEC may be effectively con-
sidered as one-dimensional(see, for example, Ref.[31]), we
are not aware of any physical conditions which would allow
for a zero-dimensional model of the photoassociation process
as treated here.

VI. CONCLUSION

Using the truncated Wigner representation and a Gaussian
approximation, we have shown that the photoassociation dy-
namics for an initial Fock state of a trapped condensate can
be completely different from those of other commonly con-
sidered quantum states. We have demonstrated that, to see

this difference theoretically, it is necessary to use at least a
one-dimensional model, with the differences not being ap-
parent in a zero-dimensional treatment. In zero dimensions,
for the parameters used in our simulations, we still find giant
oscillations between the atomic and molecular populations
for all three quantum states considered here. In one dimen-
sion, we do not see a single oscillation for the Fock state,
with the dynamics being noticeably different from the time
the interaction begins. This is a clear example of the impor-
tance of the underlying dimensionality, which has long been
appreciated in critical phenomena and is now shown to play
a role in the quantum dynamics of interacting atomic and
molecular condensates.
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