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Fock-state dynamics in Raman photoassociation of Bose-Einstein condensates
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By stochastic modeling of the process of Raman photoassociation of Bose-Einstein condensates, we show
that, the farther the initial quantum state is from a coherent state, the farther the one-dimensional predictions
are from those of the commonly used zero-dimensional approach. We compare the dynamics of condensates,
initially in different quantum states, finding that, even when the quantum prediction for an initial coherent state
is relatively close to the Gross-Pitaevskii prediction, an initial Fock state gives qualitatively different predic-
tions. We also show that this difference is not present in a single-mode type of model, but that the quantum
statistics assume a more important role as the dimensionality of the model is increased. This contrasting
behavior in different dimensions, well known with critical phenomena in statistical mechanics, makes itself
plainly visible here in a mesoscopic system and is a strong demonstration of the need to consider physically
realistic models of interacting condensates.
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I. INTRODUCTION obey the usual Arrhenius rules for chemical reactions and

In this work, we combine two issues which are of topical in_trodU(_:ed the name superchemistry._ Hope and Olsen in one
dimension[7], and Hope in three dimensiori8], subse-

interest to the Bose-Einstein condens@@&C) community v sh 4 that full ; h
and farther demonstrate that the dimensionality of model§uently showed that fully quzéntum trTatments usmgr: €
used to represent trapped condensates can be of crucial i@S!tVEP representatior{9,10 do not always agree wit

et ; : ean-field predictions, even for the mean fields. Recent
portance. The first issue is superchemistry, or Raman photé‘-1 ;
association of condensed atoms to form a molecular condel){\-’OrkS by Olsen and Plimakl1] and Olser{12] have shown

sate [1]. The second issue is the question of the actuafhat superchemistry not only does not obey the Arrhenius

quantum state of a trapped condensate, as described by ules, but also depends on the quantum statistics of the reac-

- . . ts.
Wigner function, and whether knowledge of this state may Experimental efforts to form molecular condensates by

be important for theoretical analyses. The mathematics of,inassociation of atomic condensates have been at least
photoassociation is essentially a more complex form of thapaially successful, although the most successful method for
of traveling-wave second-harmonic generation, in whichihe production of condensed molecules to date has been the
both quantum statisticf2,3] and Kerr nonlinearitie$4] are  recent combination of pairs of fermions using Feshbach tech-
predicted to affect the dynamics of a zero-dimensional modehiques[13-16. Because of Pauli blocking of the dissociation
in a quantitative manner. However, we will show that oncechannel, the dynamics of this process, even if it were to be
we consider a one-dimensional model with spatial depenearried out using photoassociative techniques, are expected
dence for interacting condensates, the differences arising due be different from those of superchemisfty7]. Photoas-
to the quantum statistics are qualitative. sociation experiments have been performed using Raman
The first prediction of an atom-optical analog of the opti- techniques by Heinzeet al. [18] and Gertonet al. [19],
cal processes of frequency conversion with condensates wa#though the atom-molecule oscillations predicted theoreti-
by Drummondet al. [5], who developed an effective quan- cally [1] were not observed. Molecules have also been
tum field theory to describe coupled atomic and moleculaformed from a sodium condensate by a single photon transi-
BECs. Javanainen and Mack|@] later proposed a two- tion, although this method does have problems with their
mode, phenomenological Hamiltonian to model the processubsequent spontaneous breakf@]. A number of groups
of photoassociation. A more complete proposal, using amre continuing their efforts and we feel it may not be long
atomic and two molecular fields, coupled via a two-colorbefore coupled atomic and molecular condensates are formed
Raman transition so as to minimize spontaneous-emissioby photoassociation and can be controlled in the laboratory.
losses, was developed by Heinzehal. [1]. This model, This will open new areas for investigation, much as fre-
which utilized the Gross-Pitaevskii equatigqfGPE) ap-  quency conversion provided for in quantum and nonlinear
proach, demonstrated that the molecular formation would nobptics. We note here that photoassociation is not the only
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possible method which can be used to form coupled atomi&12 points on the spatial grid is given an initial value on each
and molecular condensates, with Feshbach resonance tedhajectory, chosen from the appropriate Wigner distribution.
nigues having been successfully ug@d—24, although this Coherent states and the crescent state, given this name be-
technique would not normally be expected to produce theause its Wigner contours are sheared in phase space due to
population oscillations predicted for photoassociation suthe x® nonlinearity, are modeled as explained in the appen-
perchemistry. dix of Ref.[12]. We note here that, unlike in the single-mode
An intriguing issue is raised by the quantum state of azero-dimensional models used in quantum optics, there is
trapped condensate with repulsive interatomic interactionssome freedom in the way these initial states can be modeled
which is perhaps best described in terms of the Wigner funcence spatial dependence is included. For the purposes of
tion [25]. This function has long been a useful tool in quan-simple comparisons, we will use the same method as in Refs.
tum optics and has a simple definition in the single-modg11,12. The Wigner function for the Fock staih) is
case, ~
2 [ X . Wy(a,a’) = 2( )
W= | Bt fpla- prexta p- o). "
N wherelLy is the Laguerre polynomial of ord@&. This distri-
which is useful if the density matrix is known. A condensate,bution is oscillatory and can obviously be either positive or
however, is not a single mode and, even in the case of gegative, so it cannot be easily simulated numerically. How-
noninteracting condensate, the dimensionality of the Hilberever, in the largeN regime Gardiner has made the observa-
space required to describe the density matrix makes this agpion [27] that the cumulative distribution behaves very much
proach intractable. Another approach is to solve for a steadyike a step function centered at[?=N. This distribution can
state solution of the appropriate Fokker-Planck equationthen be approximated by a Gaussian which gives the right
which can sometimes be done in terms of a potential solutiomoments for the mean and variance and approximates the
[26]. In the case of a trapped condensate, the equation afigher moments well. The appropriate distribution is
motion for the Wigner function is a generalized Fokker-
Planck equation with third-order derivatives and spatial de- 2 (n=N-1/2)?2
pendence, so that the steady-state solution is not easily found Pn(n, 6) = \/je B 2(1/4) )
[10]. In the absence of a complete solution for the Wigner B
function, obtained without making various approximations,where we have taken=\nd? with 6 uniform on[0, 2m).
researchers have often chosen to use either the coherent Thie first three moments of this distribution are
Fock states. In previous work41,12, the photoassociation

expl- 2|af?)L(4]af?), (2)

3

dynamics for different initial states were stochastically simu- 7 1

lated, but the Fock, or number state, was not considered due @a=N+ 2’ 4)
to difficulties in simulating its Wigner function numerically.

(For a short discussion of what we consider to be the relative 2

merits of different choices, see Ref$1,12.) Here we adapt @202 = (N ¥ }) + } (5)
an approximation developed by Gardiredral. [27], which 2 4

allows us to approximately represent Fock states without
having to deal with negative pseudoprobabilities. As we in- 3 3 1
vestigate only the dynamics of the mean fields rather than 3= (N + —) + —(N + —), (6)
quantum correlations, we will stochastically integrate the ap- 2 4 2

propriate equations in the truncated Wigner representatiog0 that mean and variance are in agreement with BgWe

[10,28,29, which we expect to give reliable results for the .o now show that such an approximation in fact generates
numbers of particles involved. For the parameters used Q) moments of Eq(2), up to a correction of order N
Ref. [12], where it was shown that the superchemistry-type,nich is negligible forylargeN. '

oscillations can eventually disappear due solely to the quan- sing the differential recursion relation for the Laguerre
tum noise, without any thermal component being present, W8olynomials
will show here that, for an initial Fock atomic state, the os- '

cillations may not even appeatr. d
X&LN(X) = N[Ln(X) = Ly-2(¥)], (7
Il. QUANTUM STATES IN THE WIGNER a recursion relation for arbitrary even moments can be found.
REPRESENTATION Writing
Due to the difficulty of solving the equations of motion (=N

analytically, all our solutions will be obtained numerically, as (" m,m) =2
averages over a large number of stochastic trajectories. When

we wish to calculate the time evolution for a particular initial (8)
quantum state, we must begin by representing the Wigner

distribution for the chosen state. To model these, each of thee can use Eq7) to find

f da exp(— 2|a?)Ly(4]af?)|al?™,
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—_ N+m —— N ——— After stochastic integration, the trajectory averages will
(@MaMy=——(a M) + Sl R R be |gep(x,)|2+1/(2AX) at each point, with 1(2Ax) needing
to be subtracted at each point after the averagiig(x,) is
©  the ground-state solution of the GPE at spatial pgjnivith

The first three moments are the mean number of atoms at each spatial point being
S Ax|ysp(X,)|?, so that when the summation is performed, the
(@ a)y=N+1/2, (100 wigner average is this plus 1/2. In the continuous limit, with

an infinite number of spatial points, this causes a divergence

(a"?a®)y=(N+1/22%+1/4, (11 in the Wigner equations, as the “vacuum” noise becomes

infinite. In this sense, only the normally orderBdepresen-
- 5 tations truly exist for continuous fields. However, as the
(a )= (N+1/2°%+ Z(N +1/2), (12)  swave scattering length imposes a physical limit on the grid
size which may be used, we are able to use the Wigner rep-
and comparison with Eq4) shows that the Gaussian ap- resentation. This ultraviolet divergence does not exist for
proximation is exact for the mean and variance, and accuratgngle-mode treatments, as commonly used in quantum op-
to O(1/N?) for m=3. It is easily shown by induction om tics. However, as we shall demonstrate, the effects of the

that the exact moments satisfy guantum noise change with the dimensionality, meaning that
—_— " o single-mode-type approaches to the dynamics of interacting
(@MaMy=(N+1/2M+O(N™), (13)  condensates may not always be valid.

so that the correction is always of orderNP/relative to the
leading term. Returning to the Gaussian approximation, we

see that it gives Ill. THE SYSTEM AND EQUATIONS OF MOTION

2 [ The system we treat is the same as in previous works
a™MaM= \/:J dz(z+ N+ 1/2)Mexp(- 27%) [11,12, where we again treat the trapped zero-temperature
TJ atomic condensate as one-dimensional. We consider a Ra-

> (* man photoassociation scherflg7,8 with the excited mo-

= \/:J d4(N+1/2™+ m(N+ 1/2™ 1z lecular field adiabatically eliminated. Following the same

TJ procedure as detailed in R¢fL2], we map the Hamiltonian
m-2 _ onto differential equations which have the appearance of
+O(N™) Jexp(- 22) coupled Gross-Pitaevskii-type equations. These Wigner
=(N+1/2™+O(N™?), (14)  equations calculate symmetrically ordered operator products

i will b an adequate descrption of e rmber st 00 00 TS 0 ker over  r0e e of g
statistics for largeN. ’ P

To simulate this distribution numerically, consider the ﬁ:ﬂ;e(?o\:iv'ggg(; rg\?ejtgfné:gfo;ﬁ?at?gman;?qifilti:)hnes \thvl?]?gr:um
choice(using a single mode for simplicity are completely classical in appearan@éote that a full ver-
a=p+qmy, (150  sion of the derivation of these equations is given in Ref.
i ) . [12].) Using the usual oscillator units, with time measured in
where#, is a normal Gaussian random variable, an@hdq | nits of wy* and space in units of/mwg, the two coupled

are yet to be determined. As we are using a Gaussian apquations for the complex atomigs,) and molecular(y, )
proximation, it is sufficient to reproduce the first two mo- fields are

ments ofa?. (Note thate is a real variable here, with the

phase distribution to be addgdVe need to reproduce? ia_lﬂa:_ a2¢a+v s+ (Ul 2+ Ul |20
=N+1/2 anda®=(N+1/2)2+1/4. Thechoices ot e+ Ve00Yat Waaldlt Usnléml e
1 + Ky im,
p=Z(@N+1+2N+N)Y (16) !
Y 1Y,

and Ié,_tm = _Ea_xgn + Vi (X) i + (Uan'//m|2+ Uam|¢a|2_A)‘/’m
_ 1 17 L 18
q ap 2K1/1a. (19

reproduce the required distribution to a high degree of accumn the aboveV,(x) [V(X)] represents the trapping potential
racy. Theq; thus chosen is then multiplied by the factor for the atomic(moleculay condensatelJ,, is the atom-atom
exp2im¢), where ¢ is randomly chosen from the uniform interaction strengthl),, represents that between molecules,
distribution[0, 1). The molecular field is always chosen to be and U,,, represents atom-molecule scattering, all in the
in a coherent vacuum state at the beginning of the photoas-wave §-function approximation. The coupling strength,
sociation process. chosen as real here, represents the Raman laser coupling be-

033611-3



OLSEN, BRADLEY, AND CAVALCANTI PHYSICAL REVIEW A 70, 033611(2004

2"104 . . . . . . . . . 2500 ' A ' S '
\\
1.8f N ]
AN 2000
1.6k \ Fock 1
. A3
14F \\ ]
\ 1500
1.2f "‘ 1 L]
N -4
o
1t \ 1
z \, 1000
0.8f N ,;
o5 \\ crescent ¢’ |
: “o . 500
¢§‘\ P
0.4} s o-- -7 %
0.2_ ............. 4 1 1 I 1 1 L L
coherent % 005 01 o015 02 025 03 03 04
0 . . . . . . . L . 1 (units of &'
0 001 002 003 004 005 006 007 008 0.09 ¢ %)

t (units of w61) . . L. . .
FIG. 2. Zero-dimensional predictions for the atomic evolution.
FIG. 1. Atom number evolution for Fock, crescent, and coherentThe d"’_ISh_'do'Fted line _re_presents the classical me_an-fle_ld prediction,
initial states. the solid line is for an initial Fock stat®.25x 10° trajectorie$, and
the dotted line is for an initial coherent state, as previously shown in

) ) Ref.[12] (3.45% 1P trajectorie, which is almost indistinguishable
tween atoms and molecules.is the detuning from the Ra- om the Fock state.

man resonance. In this model, we ignore spontaneous losses
and interactions with the thermal cloud, which does not exis

bers, using initial Fock, crescent, and coherent states, all with
at zero temperature.

the same initial mean numbers of atoms. Immediately obvi-

ous is that, for these parameters, the dynamics for the Fock
IV. RESULTS state are completely different from the other two. Not only is
the initial conversion rate less, but the degree of conversion
to molecules is much less, and there are no oscillations seen
between atoms and molecules. The different dynamics of the
Fock state cannot be ascribed to the initial spatial intensity
correlation,g?(x,x) (see Refs[12,31)), as this between 1

In all simulations, we use as our starting point a ground
state solution of the GPE with 210* atoms and a value
of the nonlinear interaction,U,,=4x103 We use
Uam=—-1.9,5 Unm=2Uaa k=1,A=0, and a molecular trap-

gr?g _po':lentlﬁl tW|cedthat Of. thel harlmonlﬁ-atomm p.Oterlt'al'—llN for a Fock state, 1 for a coherent state, and 1.04 at the
ysically, the one-dimensional value chosen g, is a center for the crescent state. As demonstrated previously

the Iovy end of th_e range, representing either a.three'll,la, the more uncertainty in phase that a given state has
dimensional scattering length smaller than that of sodium, o comparison with a coherent state, the more difference we

a weak trap. We have chosen this value because, given tl% e in the dynamics. A Fock state, which exhibits the maxi-

value of«, the difference_s from t_he C?PE prediction_s _h_appenmum possible phase uncertainty af,4s therefore expected
after a somewhat short integration time, even for initial CO4o differ most in its dynamics from £he coherent state

herent stategFor the importance of the ratio gf? to x®
nonlinearities in the quantum dynamics, at least in the zero-
dimensional case, see Rd#]). We note that scattering
lengths can be tuned using Feshbach resonance techniques.
The coupling parametet depends on both laser intensities By comparison with a zero-dimensional quantum-optics-
and the one-photon detuning from the excited molecular levtype approach, sometimes used to represent Raman photoas-
els, as well as on the overlap integrals of the states involvedociation of atomic condensatg&2], we can show that the
in the transition [1]. Using the same procedure as quantum statistics become more important as the dimension
Kheruntsyan and Drummori80], we find that the value of  increases. We can investigate the zero-dimensional system
used here is comparable to the one used in that work, theith the coupled equations given in R¢L2]. We show the
value of the coupling equating to approximately 2.1results for the atomic dynamics in Fig. 2, comparing the
x 1077 m*2 571, Although we have not attempted to model predictions of the truncated Wigner with initial coherent and
an actual experiment, with all the complications involved inFock states to those of the classical approach, both for an
the process, we can have some confidence that our pararmitial atom number equal thy,|? at the center of the densi-
eters are not physically unattainable. ties used for the harmonic trap. Note that this is not the same
The integrations begin with all particles in the atomic as the atomic number at the center of the one-dimensional
condensate. The equations are integrated ovérrdfecto-  grid, which is Ax|,)?, but is the number which enters into
ries, using a standard split-operator method, as described the one-dimensional equations. We find that the classical ap-
Ref.[12]. In Fig. 1, we show the results for the atomic num- proach, which predicts regular periodic behavior in this case,

V. ZERO-DIMENSIONAL APPROACH
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is reasonably accurate up to the second oscillation, but thethis difference theoretically, it is necessary to use at least a
begins to differ from the quantum prediction. The quantumone-dimensional model, with the differences not being ap-
result shows a damping of the oscillations, due solely to th@arent in a zero-dimensional treatment. In zero dimensions,
quantum noise. However, when compared with the onefor the parameters used in our simulations, we still find giant
dimensional predictions, the results for the Fock state arescillations between the atomic and molecular populations
completely different. Although the difference increases infor all three quantum states considered here. In one dimen-
one dimension for the coherent state, it is only quantitativesion, we do not see a single oscillation for the Fock state,
For a Fock state, the difference with dimension is qualitativewith the dynamics being noticeably different from the time
and the zero-dimensional predictions, as used in Refghe interaction begins. This is a clear example of the impor-
[33,34 with initial Fock states, are far from the 1D results. tance of the underlying dimensionality, which has long been
We note here that, while there are certain physical conditionappreciated in critical phenomena and is now shown to play
to be fulfilled so that a trapped BEC may be effectively con-a role in the quantum dynamics of interacting atomic and
sidered as one-dimensionakee, for example, Ref31]), we  molecular condensates.

are not aware of any physical conditions which would allow
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