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We present an analytic description of the finite-temperature phase diagram of the Bose-Hubbard model,
successfully describing the physics of cold bosonic atoms trapped in optical lattices and superlattices. Based on
a standard statistical mechanics approach, we provide the exact expression for the boundary between the
superfluid and the normal fluid by solving the self-consistency equations involved in the mean-field approxi-
mation to the Bose-Hubbard model. The zero-temperature limit of such a result supplies an analytic expression
for the Mott lobes of superlattices, characterized by a critical fractional filling.
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I. INTRODUCTION

The standing wave produced by the interference among
counterpropagating laser beams gives rise to a periodic po-
tential commonly used to fragment and trap clouds of ultra-
cold (possibly condensed) alkali-metal atoms[1–3]. The lo-
cal minima of such trapping potential are the sites of the
so-calledoptical lattice [4]. The use of multiple wavelength
laser beams allows the obtaining of superlattices, namely
more structured periodic potentials characterized by a spatial
modulation of the depth of the lattice wells[5–9].

In the case of bosonic atoms cooled to within the lowest
Bloch band of the periodic potential, it can be shown[4] that
the physics of the system is described by the well-known
Bose-Hubbard Hamiltonian[10],

H = o
j
FU

2
njsnj − 1d − sm − v jdnj − tajo

h, j

t jhah
†G , s1d

where the subscriptsj ,h label the sites of the optical lattice,
aj

† sajd creates(annihilates) a boson at sitej , nj =aj
†aj counts

the bosons at sitej , and the symbol, restricts the sum over
h to the nearest neighbors ofj . This is obtained by a scheme
analogous to the tight-binding approximation commonly
adopted for the study of electrons in solids, i.e., by expand-
ing the state of the system onto a set of wave functions
localized at the local minima of the trapping potential. The
parametersU, t, t jh, andv j are hence given in terms of over-
lap integrals between the localized wave functions at neigh-
boring sites and the trapping potential. Specifically,U repre-
sents the repulsive boson-boson interaction,v j is the local
potential at sitej , andtt jh is the hopping amplitude between
sites j and h. More in detail, t is a global scaling factor
determined by the laser intensity, whilet jh=thj is a local
parameter depending on the details of the optical potential in
the region between lattice sitesj and h (see Fig. 3 for a
schematic representation of the optical superlattices consid-
ered in the following). A fine tuning of parametersv j, t, and
ti j can be in principle obtained via suitable variations of
experimental parameters such as the intensity, the frequency,
and the geometric setup of the laser beams producing the
optical (super)lattice [11]. For generic superlattices,t jh and
v j are periodic functions of the lattice labels, whereas in the

case of the usual single-wavelength optical lattices they are
usually assumed to be site-independent, so that one can set
t jh=1 andv j =0 without loss of generality.

The parameterm appearing in Hamiltonian(1) is the usual
chemical potential of the grand-canonical statistical ap-
proach, and is fixed by the total number of bosons in the
system.

Hamiltonian (1) is also strictly related to systems other
than the one under consideration, such as Josephson junction
arrays and quantum spin systems on lattices[12,13]. The
hallmark of such a class of systems is no doubt the quantum
phase transition between a superfluid and a(Mott) insulator
phase[10] originating from the competition between the re-
pulsive and kinetic term of the Hamiltonian, whose magni-
tudes are proportional to the parametersU and t, respec-
tively. The fine tuning of these parameters made possible by
the striking progress in optical lattice techniques allowed
Greiner and co-workers to observe the superfluid-insulator
transition in a recent breakthrough experiment[14]. More in
general, ultracold neutral atoms make an ideal benchmark for
testing the properties of widespread models of condensed-
matter physics[15].

It is worth recalling that the above quantum phase transi-
tion is rigorously present only at zero temperature[16],
whereas at finite temperature thermal fluctuations induce a
classical phase transition between a superfluid and a normal
phase. However, at sufficiently low temperatures, a remnant
of the insulating phase still persists within the normal phase.
Indeed in these conditions it is possible to observe a sharp
crossover between a compressible normal fluid and a phase
characterized by a vanishing compressibility, which, for all
practical purposes, can be considered a Mott insulator
[17,18].

The zero-temperature phase diagram of the Bose-Hubbard
model has been widely studied using a variety of techniques,
including the mean-field approaches[17,19–21], strong cou-
pling perturbative expansion[22–24], density-matrix renor-
malization group[25], and of course quantum Monte Carlo
simulations[26,27].

As to the finite-temperature case, some early numerical
results concerning the homogeneous lattice are reported in
Ref. [28], where acoarse-grainingmean-field approach is
adopted, and in Ref.[17], based on a random-phase approxi-
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mation refining the mean-field approach proposed therein. In
Ref. [29], the weak-repulsion limit is addressed, and some
results are obtained numerically within a different mean-field
scheme, based on the linearization of the repulsive term
rather than on the decoupling of the hopping term, as in Ref.
[17]. Quite recently, Dickerscheid and co-workers[18]
adopted a slave-boson technique allowing to include the
finite-temperature effects in the mean-field picture of Ref.
[17]. The ongoing interest in the issue under examination is
further confirmed by Ref.[30], where a multiband model is
addressed, and Ref.[31], where some analytic results are
obtained by interpolating two different perturbative schemes
and subsequently checked against density-matrix
renormalization-group simulations. All of the above listed
results have been obtained either numerically or applying
some further approximation such as introducing tight restric-
tions on the number of particles per site. Note, however, that,
despite such restrictions, the latter approach may prove suf-
ficient to give satisfactory results within circumscribed re-
gions of the phase diagram.

Here we focus on the mean-field approach to Hamiltonian
(1) proposed by Sheshadriet al. [17], and, for any tempera-
ture T, we determine analytically the boundary of the super-
fluid domain of the phase diagram thereof. In this framework
the phases of the system are characterized in terms of the
so-calledsuperfluid order parameter, to be determined as the
stable fixed point of a self-consistency equation. More to the
point, this parameter vanishes in the normal fluid phase,
whereas it has a finite value in the superfluid phase. We
determine the critical boundary between these phases by dis-
cussing the(parameter-dependent) stability of the fixed point
corresponding to the normal phase. Furthermore, we discuss
the above-mentioned crossover between the compressible
normal fluid and theinsulatorlikephase taking place outside
the superfluid domain. Other than the usuald-dimensional
homogeneous lattice, we consider a generic one-dimensional
,-periodic superlattice, providing a solution in terms of the
maximal eigenvalue an,3, matrix. Explicit results are
given for the 2-periodic and for a special case of the
3-periodic superlattice, where such a maximal eigenvalue
can be easily worked out. The zero-temperature phase dia-
gram of the above-mentioned systems is recovered taking the
appropriate limit in our results. In particular, for superlat-
tices, we find that rational filling lobes appear besides the
usual integer-filling Mott domains. Also, we observe that the
occurrence of the latter can be prevented with suitable
choices of the supercell potential profile. All of our results
prove equivalent to those obtained adopting the standard nu-
merical algorithm, based on a self-consistent iterative proce-
dure.

The plan of this paper is as follows. In Sec. II, we briefly
recall the mean-field approach presented in Ref.[17] and
introduce the finite-temperature self-consistency condition.
In Sec. III, we briefly address the homogeneous lattice case,
providing the exact expression for the boundary of the super-
fluid domain, and discussing the crossover between the com-
pressible normal fluid and an insulatorlike phase. These re-
sults are extended to the case of periodic superlattices in Sec.
IV, where the two above-mentioned special cases are explic-
itly considered. Most of the technical details of our deriva-

tion are confined to Appendix A. Section V contains our
conclusions.

II. MEAN-FIELD APPROXIMATION

The mean-field approach to the Bose-Hubbard(BH)
model introduced by Sheshadri and co-workers[17] relies on
the standard approximation

ajah
† < kajlah

† + ajkah
†l − kajlkah

†l, s2d

where a j ;kajl=kaj
†l is the so-calledsuperfluid parameter

[32], to be determined self-consistently. Indeed, Eq.(2) al-
lows us to recast Hamiltonian(1) as the sum of terms con-
taining on-site operators only,

H = o
j=1

M

H j , s3d

H j =
U

2
njsnj − 1d − sm − v jdnj − tsaj + aj

+ − a jdo
h, j

t jhah,

s4d

where M is the number of lattice sites. Note that, unlike
Hamiltonian (1), the mean-field HamiltonianH features
single boson terms, and therefore it does not conserve the
total number of bosons.

A qualitative zero-temperature phase diagram of the BH
model can be obtained by evaluating the expectation value
k·l on the ground state of Hamiltonian(3). Such evaluation
must be performed self-consistently, since the ground state of
H itself depends on the set of superfluid parametersha jj. In
the particular case of homogeneous lattices, translational in-
variance yieldsa j =a, and one is left with(M identical cop-
ies of) a single-site problem. The resulting phase diagram
consists of a superfluid region, wherea.0, and a series of
Mott-insulator lobes, wherea=0 and the local densityknjl is
pinned to an integer value(and hence the system is in an
incompressible state,]mknjl=0 ). The boundaries of these
Mott lobes have been determined numerically in the original
paper [17], while their analytical expression has been re-
ported in a quite recent work[20].

More in general, this mean-field approach has been
adopted for studying the superfluid-insulator transition in
some inhomogeneous situations. A harmonic confining po-
tential v j ~ s j − j0d2 is considered in Ref.[33], whereas the
effect of topological inhomogeneity is addressed in Ref.[34].

Here we are interested in the thermodynamics of the sys-
tem, and we adopt the standard grand-canonical statistical
mechanic approach,

kOl =
TrsOe−bHd
Trse−bHd

, s5d

where the trace is evaluated on the whole Fock space. Ex-
ploiting the site-decoupling of the mean-field Hamiltonian
H, Eq. (3), the self-consistency conditions become
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a j = kajl =
Trsaje

−bHd
Trse−bHd

=
Trsaje

−bH jdpkÞ j
Trse−bHkd

pk=1

M
Trse−bHkd

=
Trsaje

−bH jd
Trse−bH jd

, s6d

where the traces in the second line are evaluated on the
single-site Fock space. Note that the superfluid parametersa j
can be safely assumed to be real since bothH j andaj are real
operators.

In the following sections, we illustrate how it is possible
to determine analytically the critical condition for superflu-
idity, i.e., for the existence of a stable solution of the self-
consistency equations(6) with a j Þ0.

III. HOMOGENEOUS CASE

When v j =0 and t jk=t, the system is translationally in-
variant and, similar to the above-recalled zero-temperature
case, Eqs.(6) reduce to(M identical copies of) a single con-
sistency equation. Dropping the site-labeling subscripts, one
getsa j =a=kal and

H j = H̄ =
U

2
nsn − 1d − mn − 2d tasa + a+d, s7d

whered is the dimension of the lattice and we discarded the
constant term 2tda2 since it can be factored out from both
the numerator and the denominator of Eq.(5).

In this simple case, the self-consistency constraint, Eq.
(6), depends on the(site-independent) superfluid parameter
a, and it is met when the latter is a stable fixed point. It is
easy to check thata=0 is a fixed point of Eq.(6) whose
stability depends on the parametersU, m, andt. In particular,
when a=0 is unstable, a stable solutiona.0 is expected
and the system is in a superfluid state.

In Appendix A, we show that the critical curve defining
the superfluid domain border is

tcsU,m,bd =

o
k=0

`

ebfmk−sU/2dksk−1dg

2do
k=0

`

QksU,mdebfmk−sU/2dksk−1dg

, s8d

where

QksU,md =
m + U

sm − UkdfUsk − 1d − mg
. s9d

Note that whena=0, the expectation value of the particle
density does not depend ont, being simply

rsU,m,bd = knl =

o
k=0

`

kebfmk−sU/2dksk−1dg

o
k=0

`

ebfmk−sU/2dksk−1dg

. s10d

Hence, unlike the zero-temperature case, thea=0 region in
general does not yield integer particle density. However, it

can be shown that, for sufficiently low temperatures, there
arem intervals wherersU ,m ,bd is practically constant. This
happens when a single term of the sums in Eq.(10), whose
label we denotek* , outweighs the remaining terms, i.e., when

e−bU/2fk* − sm/Ud − s1/2dg2 . e−1e−bU/2fk* ± 1 − sm/Ud − s1/2dg2,

s11d

wheree is a small parameter. The last equation identifies the
interval

k* − 1 −
lnsed
bU

,
m

U
, k* +

lnsed
bU

, s12d

where rsU ,m ,bd<k* . More precisely, expanding Eq.(10)
with respect toe and considering only the linear order, one
getsur−k* u <e. In the normal fluid region between two sub-
sequent intervals of the form(12), the particle density can be
described considering only the termsk* and k* +1 in Eq.
(10),

rsU,m,bd <
k* + sk* + 1debsm−Uk* d

1 + ebsm−Uk* d
.

The preceding equation clearly shows the crossover between
two subsequent insulatorlike regions. Of course, whenb
,−2 lnsed /U there is nom satisfying Eq.(12), and the pla-
teaulike behavior ofrsU ,m ,bd disappears.

The same line of reasoning allows us to obtain quite
straightforwardly the exact phase diagram of the model in
the zero-temperature limit[20]. Indeed, whenb→` only the
terms labeled byk=k* survive in Eq.(8), so that the critical
curve in them /U-t /U phase diagram is

tcsU,m,`d
U

=
fsm/Ud − k*gfk* − 1 − sm/Udg

2dfsm/Ud + 1g
s13d

and, according to Eq.(12), mP fk* −1,k*g.
The boundary of the superfluid domain at different tem-

peratures, along with the crossover between the normal fluid
and the Mott insulator(when present), is shown in Figs. 1
and 2 for a homogeneous lattice withd=1. As is evident
from Eq. (8), the results ford.1 are obtained by a suitable
rescaling oftc.

IV. SUPERLATTICES

We now turn to the case of superlattices, where the pa-
rameters appearing in Hamiltonian(3) are periodic functions
of the site label. Our approach can be applied to a generic
d-dimensional superlattice, but, for the sake of clarity, here
we focus on the one-dimensional,-periodic case,v j =v j+,

and t j ,h=sdh,j+1+dh,j−1dt j+,,h+,. Note that this choice is not
merely dictated by the ensuing notational simplification, but
also experimentally relevant[2,3].

Since the superfluid parameters mirror the, periodicity of
the superlattice,a j =a j+,, the self-consistency conditions(6)
reduce to, independent equations. As in the homogeneous
case, the choiceah=0 for all h’s is a fixed point of Eq.(6),
and only when it is unstable is the system expected to be in
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a superfluid state. According to a standard approach, the sta-
bility of such a fixed point can be discussed based on the
spectrum of the matrix linearizing the map defined by Eq.(6)
in the vicinity of the configurationah=0. More in detail, the
fixed point is stable only if the modulus of the maximal
eigenvalue of such a matrix is lower than 1. By adopting a
calculation technique similar to the one of the homogeneous
case(see Appendix A), the linearized map turns out to be

ah < t o
h8=1

,

Fh,h8ah8, s14d

where, introducingmh=m−vh andTh,h8=thh8sdhh8+1+dhh8−1d
+t,,,+1sdh1dh8,+dh81dh,d,

Fh,h8 = Th,h8

o
k

QksU,mhdebfmhk−sU/2dksk−1dg

o
k

ebfmhk−sU/2dksk−1dg
. s15d

The functionQksU ,md appearing in Eq.(15) is exactly the
same as defined in Eq.(9). SinceFh,h8 is a real and positive
matrix, Perron-Frobenius theorem[35] ensures that its maxi-
mal eigenvaluefMsb ,U ,md is real and positive. Hence, the
fixed pointah=0 is unstable—and the system behaves like a
superfluid—only whent. tcsb ,U ,md=fM

−1. Note that the
critical curve separating the superfluid and the normal do-
mains can also be defined as the lowest positivetc such that
PFstc

−1d=0, wherePFsld is the characteristic polynomial of
matrix Fh,h8.

In the normal phase(t, tc andah=0, ∀h), the local den-
sity of particles at siteh is

rhsU,m,bd = knhl =

o
k

kebfmhk−sU/2dksk−1dg

o
k

ebfmhk−sU/2dksk−1dg
. s16d

Analogously to the homogeneous case, for sufficiently low
temperatures there exist intervals ofm where the local par-
ticle density is arbitrarily close to an integer value. In detail,
introducing a small parametere, urhsU ,m ,bd−k* u,e if m
PMhsk* ,ed, where

Mhs0,ed = G− `,vh +
lnsed

b
F

and, for any positive integerk* ,

Mhsk* ,ed = GUsk* − 1d + vh −
lnsed

b
,Uk* + vh +

lnsed
b

F .

s17d

This in particular means that the average filling

rsU,m,bd = ,−1o
h=1

,

rhsU,m,bd s18d

remains very close to the rational value

k*̄ = ,−1o
h=1

,

kh
* s19d

as long as the chemical potential belongs to the interval

Mshkh
*j,hvhj,ed = ù

h=1

,

Mhskh
* ,ed, s20d

wherehkh
*jh=1

, is a set of non-negative integers such thatM
Þx. If, conversely,ah=0 but m¹M, the average filling is

FIG. 1. Finite-temperature mean-field phase diagram for the ho-
mogeneous one-dimensional lattice. The dotted, solid, and dashed
lines are the critical curves, Eq.(8), for T/U=0, T/U=0.04, and
T/U=0.1, respectively. In every case, the superfluid domain is
above the relevant critical curve. ForT/U=0, the region below the
(dotted) critical curve consists of two disjoint Mott lobes. For
T/U=0.04 (solid curve), a sharp crossover between a normal fluid
phase and an insulatorlike phase is present. The gray areas are the
insulatorlike regions as evaluated settinge=10−3 in Eq. (12). As
discussed in the text, the particle density is very close to an integer
value (also shown) inside these regions. ForT/U=0.1 (dashed
curve), no insulatorlike regions are present(for the same value of
e).

FIG. 2. (Color online) Three-dimensional representation of the
finite-temperature mean-field phase diagram for a homogeneous
one-dimensional lattice. Dark gray: critical surcface, Eq.(8). Light
gray: zero-temperature Mott lobes. White-rimmed transparent sur-
faces: boundaries between the insulatorlike(below) and normal
fluid (above) regions. Figure 1 is obtained by cross-sectioning this
figure at the relevant values ofT/U.
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not close to a rational number and it significantly varies with
varying m. That is to say, the compressibility is significantly
different from zero, and the system behaves like a normal
fluid, owing to thermal fluctuations.

In the zero-temperature limit, the normal phase behavior
disappears and a(Mott) insulator-superfluid transition is re-
covered. Similar to the homogeneous case, them /U-t /U
zero-temperature phase diagram consists of a superfluid do-
main and a series of insulating Mott lobes. However, the
average filling and compressibility within these lobes are ex-

actly k*̄ and zero, respectively. Therefore, as is expected[8],
we obtain that superlattices can display an insulating-Mott
behavior even for some critical rational fillings.

Let us now analyze explicitly the two simple superlattices
generated by the trapping potential schematically represented
in Fig. 3. The upper panel of this figure corresponds to the
simplest choice, namely a superlattice of periodicity,=2. In
this case, the maximal eigenvalue of matrixF can be evalu-
ated analytically, and the resulting critical value oft turns out
to be

tcsU,m,bd =Î 1

F1,2F2,1
. s21d

The ensuing mean-field phase diagram for a particular choice
of the parameters is displayed in Fig. 4. As mentioned above,
rational (actually half-integer) filling Mott lobes appear in
the zero-temperature phase diagram(dotted curves). As the
temperature increases, the regions where the system is in a
quasi-insulating state shrink and eventually disappear, ac-
cording to Eq.(20). It is interesting to observe that these
regions may disappear at different temperatures, depending
on their filling. This is clearly shown in Fig. 4, where the
insulating regions relevant toT=0.02 (light gray) and T
=0.04 (dark gray) are shown. Note that in the latter case
there are only integer-filling(quasi)-insulating regions.

Matrix F can be analytically diagonalized with a limited
effort also for the special case of a 3-periodic lattice illus-
trated in the lower panel of Fig. 3, wherev1=v3 and t1,2

=t2,3, so thatF1,2=F3,2, F1,3=F3,1 and F2,1=F2,3. After a
straightforward calculation, one gets

tcsU,m,bd =
2

F1,3+ ÎF1,3
2 + 8F1,2F2,1

. s22d

The relevant phase diagram is shown in Fig. 5. Note that,
similar to the previous example, the zero-temperature Mott
lobes can be divided into two classes depending on the rel-
evant particle density, which can be eitherk or k+ 1

3, where
kPN. This simple behavior is a consequence of our choice
for the local potentials. Of course, more structured choices

FIG. 3. Schematic representation of the,-periodic optical super-
lattices explicitly considered in Sec. IV. The lattice sites correspond
to the local minima of the optical potentialVsxd. Upper panel:,
=2, v j =v j+2Þv j+1, t j ,j+1=t j+2,j+3Þt j+1,j+2. Lower panel:,=3, v j

=v j+2Þv j+1, t j ,j+1=t j+1,j+2Þt j+2,j+3, j =3k+1, kPN.
FIG. 4. Phase diagram for the superlattice of periodicity,=2

with parametersv2k/U=0.35, v2k+1/U=0. Note that the possibly
different values of parametersth,h8 are conveniently absorbed into
tc by a multiplicative rescaling. The filled areas correspond to the
insulatorlike phase forT=0.02(light gray) andT=0.04(dark gray)
as evaluated settinge=10−3 in Eq. (20). The rational numbers de-
note the particle density within the Mott-like domains.

FIG. 5. Phase diagram for the superlattice of periodicity,=3
with parametersv3k/U=v3k+1/U=0.35, v3k+2/U=0, t3k,3k+1=1/2,
and t3k+1,3k+2=t3k+2,3k+3=1. The rational numbers denote the par-
ticle density within the zero-temperature Mott insulator domains.

PHASE DIAGRAM FOR ULTRACOLD BOSONS IN… PHYSICAL REVIEW A 70, 033608(2004)

033608-5



result in a quite richer phase diagram, where the particle
density in the insulatorlike regions is an integer multiple of
,−1. Note that some of these multiples are excluded if the
energy offset between any two sitesj andh within the same
supercell is an integer multiple ofU. Indeed, in this situation,
the intervals relevant to sitesj and h defined by Eq.(17)
overlap exactly. Hence for some set of integers the intersec-
tion defined by Eq.(20) is empty. This is exactly what hap-
pens in Fig. 5, wherev1−v3=0. Interestingly, it is possible to
devise superlattices where only fractional critical fillings are
present, provided that the energy offset between two lattice
sites is larger thanU. This is shown in Fig. 6, displaying the
zero-temperature phase diagram for a superlattice of period-
icity ,=4 as obtained by numerical diagonalization of matrix
F, Eq. (6).

V. CONCLUSIONS

In this paper, we extend the mean-field approximation to
the Bose-Hubbard model introduced in Ref.[17] to include
thermal fluctuations. An analytical study of the ensuing self-
consistency equations allows us to determine the exact form
of the boundary of the superfluid region at any finite tem-
perature. We also quantify the crossover from the normal
fluid to the insulatorlike phase.

Other than to the homogeneousd-dimensional lattice con-
sidered in the original reference, we apply our method to a
generic one-dimensional,-periodic superlattice, giving ex-
plicit results for,=2 and a special case of,=3. Results for
more complex one-dimensional superlattices involve the
evaluation of the maximal eigenvalue of an,3, matrix. Of
course, this must be accomplished numerically even for rela-
tively small matrix sizes. Nevertheless, this approach is
much less demanding and more precise than the(equivalent)

fully numerical solution of the self-consistency equation. The
latter actually involves an iterative self-consistent diagonal-
ization for each point of the mesh grid describing the phase
diagram. Our technique can be extended also to generic
d-dimensional superlattices, where the size of the matrix to
be diagonalized iss3s, s being the number of sites within a
supercell. We remark that the boundaries of the superfluid
region as evaluated with our method are valid also in the
zero-temperature limit, thus providing the phase diagram for
the superfluid-insulator quantum transition. In particular, this
allows us to find the analytic expressions of the(mean-field)
Mott lobes in the case explicitly considered above.
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APPENDIX A

In this section, the analytic expression for the boundary of
the superfluid domain is derived in detail for the simple case
of the homogeneous lattice. The generalization to the super-
lattice case is briefly discussed.

As we mention above, in the homogeneousd-dimensional
case, the self-consistency constraints, Eqs.(6), reduce to a
single equation in the variablea, i.e., the site-independent
superfluid parameter. It proves useful to recast such an equa-
tion in terms of the quantityg;at as

g = t
Trsae−bH̄d

Z
=

t

4db

d

dg
logsZd ; fsgd, sA1d

where

Z = Trse−bH̄d sA2d

is the grand-canonical partition function of the single-site
problem. The additional 1/2 factor in Eq.(A1) ensues from
the equalitya=kal=ka+lPR.

Let us now prove Eq.(8) by discussing the stability char-
acter of the fixed pointg=0 of the map(A1). To this aim we
truncate the on-site Fock basis considering states up to a

given number of particlesn and denoteH̄n the relevant
Hamiltonian matrix. The final result is obtained lettingn go
to infinity.

Introducing the set of eigenvalues ofH̄n, hEksgdjk=0
n , Eq.

(A1) becomes

g =
t

4d

o
k=0

n

e−bEksgddEksgd
dg

o
k=0

n

e−bEksgd

. sA3d

Now, sincepn(Eksgd ;g)=0, wherepnsl ;gd is the character-

istic polynomial ofH̄n,

FIG. 6. Zero-temperature phase diagram for the superlattice of
periodicity ,=4 with parameters v4k/U=1.9, v4k+2/U=0.3,
v4k+1/U=1.3,v4k+3/U=0.0, tk,k+1=1. The rational numbers denote
the particle density within the Mott insulator domains. Note that, as
we discussed in the text, for this particular choice of the well depths
there are no integer critical fillings.
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0 =
dpn„Eksgd,g…

dg
= FdEksgd

dg
]lpnsl,gd + ]gpnsl,gdG

l=Eksgd

sA4d

so that it is possible to write

dEksgd
dg

= − U ]gpnsl,gd
]lpnsl,gd

U
l=Eksgd

. sA5d

Denotingpn
hkjsl ;gd the characteristic polynomial of the ma-

trix obtained by discarding fromH̄n the rows and columns
labeled by the set of indiceshkj, and making use of the
formula for the derivative of a determinant[35], one gets

]lpnsl,gd = o
k=0

n

pn
skdsl;gd,

]gpnsl,gd = g8d2Fo
k=1

n

kpn
sk,k−1dsl;gd + PsgdG ,

where the polynomialPsgd is homogeneous, so thatPs0d
=0. Hence Eq.(A3) becomes

g = tg

o
k=0

n

e−bEksgdqnsEk;gd

o
k=0

n

e−bEksgd

; fsgd, sA6d

where

qnsl;gd =
1

4d

]gpnsl,gd
]lpnsl,gd

= 2d

o
h=1

n

hpn
sh,h−1dsl;gd + Psgd

o
h=0

n

pn
shdsl;gd

.

sA7d

According to standard treatment,g=0 is a stable solution of
Eq. (A6) only if u]g fsgdug=0,1, i.e.,

t ,

o
k=0

n

e−bEks0d

o
k=0

n

qnsEks0d;0de−bEks0d

. sA8d

Observing that

pn
hkjsl;0d = p

h¹hkj
fEhs0d − lg, sA9d

one gets

qn„Eks0d;0… = 2dfkpn
sk,k−1d

„Eks0d;0…

+ sk + 1dpn
sk+1,kd

„Eks0d;0…gfpn
skd
„Eks0d;0…g−1,

sA10d

where we setpn
sn,n+1dsl ;gd=pn

s−1,0dsl ;gd=0. Now, recalling
that Eks0d=sU /2dksk−1d−mk one gets limn→`qnsEks0d ;0d
=QksU ,md, where the functionQk is defined in Eq.(9).
Therefore, the limitn→` of Eq. (A8) gives the desired re-
sult, Eq.(8).

In the case of superlattices, the parameters appearing in
Hamiltonian(3) are periodic functions of the site labels. Here
we focus on the one-dimensional,-periodic case,v j =v j+,

and t j ,h=sdh,j+1+dh,j−1dt j+,,h+,. Since the superfluid param-
eters mirror the, periodicity of the superlattice,a j =a j+,, the
self-consistency conditions(6) reduce to, independent equa-
tions. Introducing the parametersgh; tah (h=1, . . . ,,, g,+1
;g1 andg0;g,), Eqs.(6) can be recast as

gh =
t

4b
F 1

th,h−1

d logsZhd
dgh−1

+
1

th,h+1

d logsZhd
dgh+1

G ; fhshgh8jd,

sA11d

where

Zh = Trse−bH̃hd sA12d

and

H̃h =
U

2
nsn − 1d − sm − vhdn − sth,h−1gh−1 + th,h+1gh+1d

3sa + a+d. sA13d

A procedure similar to that illustrated in detail in the case of
homogeneous lattices allows us to linearize Eq.(A11), ob-
taining Eq.(14).
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