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Phase diagram for ultracold bosons in optical lattices and superlattices
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We present an analytic description of the finite-temperature phase diagram of the Bose-Hubbard model,
successfully describing the physics of cold bosonic atoms trapped in optical lattices and superlattices. Based on
a standard statistical mechanics approach, we provide the exact expression for the boundary between the
superfluid and the normal fluid by solving the self-consistency equations involved in the mean-field approxi-
mation to the Bose-Hubbard model. The zero-temperature limit of such a result supplies an analytic expression
for the Mott lobes of superlattices, characterized by a critical fractional filling.
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[. INTRODUCTION case of the usual single-wavelength optical lattices they are
usually assumed to be site-independent, so that one can set
ih=1 andv;=0 without loss of generality.

The parameter appearing in Hamiltonial) is the usual

The standing wave produced by the interference amon
counterpropagating laser beams gives rise to a periodic po!

tential commonly used to fragment and trap clouds of ultra;pemical potential of the grand-canonical statistical ap-
cold (possibly condensgdlkali-metal atomg1-3|. The lo-  hoach, and is fixed by the total number of bosons in the
cal minima of such trapping potential are the sites of thegygtem.
so-calledoptical lattice[4]. The use of multiple wavelength ~ Hamiltonian (1) is also strictly related to systems other
laser beams allows the obtaining of superlattices, namelyhan the one under consideration, such as Josephson junction
more structured periodic potentials characterized by a spatiaglrrays and quantum spin systems on lattifg®,13. The
modulation of the depth of the lattice well5-9]. hallmark of such a class of systems is no doubt the quantum
In the case of bosonic atoms cooled to within the lowesiphase transition between a superfluid and/att) insulator
Bloch band of the periodic potential, it can be showhthat  phase[10] originating from the competition between the re-
the physics of the system is described by the well-knowrpulsive and kinetic term of the Hamiltonian, whose magni-

Bose-Hubbard HamiItonia[iLO], tudes are proportional to the parametéfsandt, respec-
tively. The fine tuning of these parameters made possible by
H = E ~(w-vpn, - taJE Tjhah L) the striking progress in optical lattice techniques allowed

Greiner and co-workers to observe the superfluid-insulator
transition in a recent breakthrough experimgi#]. More in
where the subscripljsh label the sites of the optical lattice, general, ultracold neutral atoms make an ideal benchmark for
a,-T (a;) creategannihilate$ a boson at sitg, nj=ajTaj counts  testing the properties of widespread models of condensed-
the bosons at sitg and the symbot- restricts the sum over matter physic§15].

h to the nearest neighbors pfThis is obtained by a scheme It is worth recalling that the above quantum phase transi-
analogous to the tight-binding approximation commonlytion is rigorously present only at zero temperatiife],
adopted for the study of electrons in solids, i.e., by expandwhereas at finite temperature thermal fluctuations induce a
ing the state of the system onto a set of wave functionglassical phase transition between a superfluid and a normal
localized at the local minima of the trapping potential. Thephase. However, at sufficiently low temperatures, a remnant
parameters), t, 7, andv; are hence given in terms of over- of the insulating phase still persists within the normal phase.
lap integrals between the localized wave functions at neighindeed in these conditions it is possible to observe a sharp
boring sites and the trapping potential. Specificdllzepre-  crossover between a compressible normal fluid and a phase
sents the repulsive boson-boson interactignis the local characterized by a vanishing compressibility, which, for all
potential at sitg, andtr, is the hopping amplitude between practical purposes, can be considered a Mott insulator
sitesj and h. More in detail,t is a global scaling factor [17,1§.

determined by the laser intensity, whitg,=7,; is a local The zero-temperature phase diagram of the Bose-Hubbard
parameter depending on the details of the optical potential imodel has been widely studied using a variety of techniques,
the region between lattice sitgsand h (see Fig. 3 for a including the mean-field approachgls’,19-21, strong cou-
schematic representation of the optical superlattices consigiing perturbative expansiof22—-24, density-matrix renor-
ered in the following. A fine tuning of parameters;, t, and ~ malization group[25], and of course quantum Monte Carlo

7ij can be in principle obtained via suitable variations ofsimulations[26,27.

experimental parameters such as the intensity, the frequency, As to the finite-temperature case, some early numerical
and the geometric setup of the laser beams producing thesults concerning the homogeneous lattice are reported in
optical (supejlattice [11]. For generic superlattices;, and  Ref. [28], where acoarse-grainingmean-field approach is

v; are periodic functions of the lattice labels, whereas in theadopted, and in Ref17], based on a random-phase approxi-
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mation refining the mean-field approach proposed therein. Ition are confined to Appendix A. Section V contains our
Ref. [29], the weak-repulsion limit is addressed, and someconclusions.

results are obtained numerically within a different mean-field
scheme, based on the linearization of the repulsive term
rather than on the decoupling of the hopping term, as in Ref.
[17]. Quite recently, Dickerscheid and co-workef$8] The mean-field approach to the Bose-HubbdBH)

adopted a slave-boson technique allowing to include the,qqe|introduced by Sheshadri and co-worKarg relies on
finite-temperature effects in the mean-field picture of Ref

[17]. The ongoing interest in the issue under examination ighe standard approximation
further confirmed by Ref[30], where a multiband model is t + N +
addressed, and Ref31], where some analytic results are aan = (8)ay *+ a(ap) — (ay)(ap), 2
obtained by interpolating two different perturbative schemesyhere a E<aj>:<ajff> is the so-calledsuperfluid parameter
and ~ subsequently ~ checked against density-matrisy 15 he determined self-consistently. Indeed, E2).al-

renormalization-group simulations. All of the above listed|,.s us to recast Hamiltoniafl) as the sum of terms con-
results have been obtained either numerically or applyinqaining on-site operators only

some further approximation such as introducing tight restric-
tions on the number of particles per site. Note, however, that,

despite such restrictions, the latter approach may prove suf- H=S M 3)
ficient to give satisfactory results within circumscribed re- -1 I

gions of the phase diagram.

Here we focus on the mean-field approach to Hamiltonian
(1) proposed by Sheshadst al. [17], and, for any tempera-
ture T, we determine analytically the boundary of the super-
fluid domain of the phase diagram thereof. In this framework
the phases of the system are characterized in terms of the
so-calledsupertfluid order parameteto be determined as the where M is the number of lattice sites. Note that, unlike

stable fixed point of a self-consistency equation. More to thq—|amiltonian (1), the mean-field Hamiltoniar{ features

point, th|§ parameter vamshe; in the norma! fluid ph"""Sesingle boson terms, and therefore it does not conserve the
whereas it has a finite value in the superfluid phase. W

. . Yotal number of bosons.
determine the critical boundary between these phases by dis- A qualitative zero-temperature phase diagram of the BH

cussing theparameter-dependgnittability of the fixed point model can be obtained by evaluating the expectation value

corresponding to the normal phase. Furthermore, we dlscy é on the ground state of HamiltonigB). Such evaluation
the above-mentioned crossover between the compressib

normal fluid and thensulatorlike phase taking place outside mu;t be performed self-consistently, sin_ce the ground state of
the superfluid domain. Other than the usdadimensional M itself depends on the set of superfluid paramefefk In

homogeneous lattice, we consider a generic one-dimensiong]e particular case of homogeneous lattices, translational in-

¢-periodic superlattice, providing a solution in terms of the arance yieldsy =a, and one is left with(M identical cop-

maximal eigenvalue arf X { matrix. Explicit results are 1es O.D a single-site p_roblem. The resulting phase .diagram
given for the 2-periodic and for a special case of theConsists of a superfluid region, whetie>0, and a series of

3-periodic superlattice, where such a maximal eigenvalué’_'c’tt"nsm"’1tor .Iobes, where =0 and the local dens't@i>,'s
can be easily worked out. The zero-temperature phase di®inned to an integer valugnd hence the system is in an
gram of the above-mentioned systems is recovered taking tHBCOMPressible statej,(n)=0 ). The boundaries of these
appropriate limit in our results. In particular, for superlat- Mott lobes have been determined numerically in the original
tices, we find that rational filling lobes appear besides theaper[17], while their analytical expression has been re-
usual integer-filling Mott domains. Also, we observe that thePorted in a quite recent worfl20].

occurrence of the latter can be prevented with suitable More in general, this mean-field approach has been
choices of the supercell potential profile. All of our results@dopted for studying the superfluid-insulator transition in
prove equivalent to those obtained adopting the standard ngome inhomogeneous situations. A harmonic confining po-
merical algorithm, based on a self-consistent iterative proce€ntial vj=(j—jo)* is considered in Ref[33], whereas the
dure. effect of topological inhomogeneity is addressed in R&4].

The plan of this paper is as follows. In Sec. II, we briefly ~Here we are interested in the thermodynamics of the sys-
recall the mean-field approach presented in R&¥] and tem, and we adopt the standard grand-canonical statistical
introduce the finite-temperature self-consistency conditionmechanic approach,

In Sec. lll, we briefly address the homogeneous lattice case, B

providing the exact expression for the boundary of the super- (O)= Tr(Oe*") 5)

fluid domain, and discussing the crossover between the com- Tr(e )’

pressible normal fluid and an insulatorlike phase. These re-

sults are extended to the case of periodic superlattices in Sewhere the trace is evaluated on the whole Fock space. Ex-
IV, where the two above-mentioned special cases are expligloiting the site-decoupling of the mean-field Hamiltonian
itly considered. Most of the technical details of our deriva-H, Eq. (3), the self-consistency conditions become

Il. MEAN-FIELD APPROXIMATION

U
HJ = Enj(nj - 1) - (,LL - Uj)nj —t(aj + a;‘ - a’])hz 7'jhah,
~]

(4)
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Trae ™™ Tr(aje-BHj)Hk#j Tr(e #™) can b.e shown that, for sufficigntly onv temperatures, there
o= (@)= = — - are u intervals whe_rep(U M, B) s practlcally_ constant. This
. Tr(e™#™) [1., Tre?™y happens when a single term of the sums in @), whose
- - label we denot&”, outweighs the remaining terms, i.e., when
Tr(ae P') . .
= W, (6) e BUI2K - (ulV) - (11212 > ¢ 1gBU2K £1 - (ulU) - (1/2)]2,
(11)

where the traces in the second line are evaluated on the
single-site Fock space. Note that the superfluid paramefers wheree is a small parameter. The last equation identifies the
can be safely assumed to be real since i¢tlanda; are real  interval
operators.

In the following sections, we illustrate how it is possible K -1 _In(e) <E s I”(“),
to determine analytically the critical condition for superflu- BU U BU
idity, i.e., for the existence of a stable solution of the self-
consistency equation®) with a; # 0.

(12

where p(U, 1, 8) =K'. More precisely, expanding E¢10)

with respect toe and considering only the linear order, one
lIl. HOMOGENEOUS CASE gets|p—K'| = e. In the normal fluid region between two sub-
sequent intervals of the fori12), the particle density can be

Whenv;=0 and 7=, the system is translationally in- gescribed considering only the termks and k' +1 in Eq.
variant and, similar to the above-recalled zero—temperatur@lo)

case, Eqs(6) reduce taM identical copies ofa single con-

sistency equation. Dropping the site-labeling subscripts, one U K + (K + 1)efle-U)
getsa;=a=(a) and p(U, . B) = 1 + eBk-UK)
H; = H = %n(n -1) - un-2d ta(a+a), (7) The preceding equation clearly shows the crossover between

two subsequent insulatorlike regions. Of course, when

whered is the dimension of the lattice and we discarded the~ ~2 In(€)/U there is nou satisfying Eq.(12), and the pla-
constant term ®la? since it can be factored out from both teaulike behavior op(U, ., B) disappears. . _
the numerator and the denominator of ). The same line of reasoning allows us to obtain quite
In this simple case, the self-consistency constraint, EgStraightforwardly the exact phase diagram of the model in
(6), depends on thésite-independentsuperfluid parameter the zero-temperature limi20]. Indeed, wherB— < only the
a, and it is met when the latter is a stable fixed point. It isterms labeled bk=k" survive in Eq.(8), so that the critical
easy to check that=0 is a fixed point of Eq(6) whose curve in theu/U-t/U phase diagram is
stability depends on the parametétsu, andt. In particular, to(U, ) [(u/U) =K K = 1 = (u/U)]

when «=0 is unstable, a stable solutian>0 is expected (13
and the system is in a superfluid state. U 2d[(wU) + 1]
In AppenQix A, we show that the critical curve defining and, according to Eq12), u e [k -1 ,K'].
the superfluid domain border is The boundary of the superfluid domain at different tem-
o peratures, along with the crossover between the normal fluid
> efluk=(U2)kk-1)] and the Mott insulatotwhen present is shown in Figs. 1
_ k=0 and 2 for a homogeneous lattice witlr1. As is evident
U pB)=—= ' ®) from Eq.(8), the results fod>1 are obtained by a suitable
2dY, QuU, p)efluk-(Ui2)kk-1)] rescaling oft,.
k=0
where IV. SUPERLATTICES
QU ) = p+y . (9) We now turn to the case of superlattices, where the pa-
(= UK[U(k=1) = ] rameters appearing in HamiltonigB) are periodic functions

of the site label. Our approach can be applied to a generic
d-dimensional superlattice, but, for the sake of clarity, here
we focus on the one-dimensionéiperiodic casep;=vj.¢

Note that whena=0, the expectation value of the particle
density does not depend onbeing simply

* and 7, =( 41+ O i-) T . Note that this choice is not
k=(U/2)k(k-1 LA™ Aol = h U T e e ; R
2 CR merely dictated by the ensuing notational simplification, but
p(U, i, B) =(n) = k‘: ) (10) also experimentally relevarig,3].

Since the superfluid parameters mirror theeriodicity of
the superlatticeq; = a;,, the self-consistency conditioris)
reduce tof¢ independent equations. As in the homogeneous
Hence, unlike the zero-temperature case,dh® region in  case, the choice,,=0 for all h's is a fixed point of Eq(6),
general does not yield integer particle density. However, itand only when it is unstable is the system expected to be in

E eBluk-(U72)k(k-1)]
k=0
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0.09

€

ap = tE thh,ah,, (14)
h'=1

o.08f
0.07f . .
where, introducingu,=u—vy, and 7y, i = Ty (Shp+1+ Shpr-1)
+ 74 0+1(Sh10hr ¢+ Shr16he),

2 QUU, ek U2k
k
Fan = Thi S k- (U2)k(k-1)] ' (19

k

0.061

0.051

vy

0.04f /:

0.03}
0.02} ; The functionQ,(U, ) appearing in Eq(15) is exactly the
same as defined in E¢Q). SinceFy,, is a real and positive
: . . matrix, Perron-Frobenius theordi®5] ensures that its maxi-
0 . L : - mal eigenvaluepy,(8,U, u) is real and positive. Hence, the
0 05 1 15 2 : . ) :
WU fixed pointa,=0 is unstable—and the system behaves like a
superfluid—only whent>t.(8,U,u)=¢,;. Note that the
FIG. 1. Finite-temperature mean-field phase diagram for the hocritical curve separating the superfluid and the normal do-
mogeneous one-dimensional lattice. The dotted, solid, and dashedains can also be defined as the lowest positiaich that
lines are the critical curves, E@8), for T/U=0, T/U=0.04, and P,:(tgl):o, wherePg(\) is the characteristic polynomial of
T/U=0.1, respectively. In every case, the superfluid domain ismatrix Frn-
above the relevant critical curve. Foru=0, the region below the In the normal phasé <t, and a,=0, 0h), the local den-
(dotted critical curve consists of two disjoint Mott lobes. For sty of particles at sité is
T/U=0.04(solid curve, a sharp crossover between a normal fluid

0.01f

phase and an insulatorlike phase is present. The gray areas are the > keflunk-(U2k(k-1)]
insulatorlike regions as evaluated settiag107 in Eq. (12). As _ ok
discussed in the text, the particle density is very close to an integer pn(U, 1, 8) =(np) = E eBluk-(UI2k(k-1)] ' (16

value (also shown inside these regions. FoF/U=0.1 (dashed

curve), no insulatorlike regions are presdifidor the same value of

€). Analogously to the homogeneous case, for sufficiently low
temperatures there exist intervals @fwhere the local par-

a superfluid state. According to a standard approach, the sthcle density is arbitrarily close to an integer value. In detalil,
bility of such a fixed point can be discussed based on théhtroducing a small parametes, [pn(U, u, ) =K'|<e if
spectrum of the matrix linearizing the map defined by ®y. € Mn(K',€), where

in the vicinity of the configuratior,=0. More in detail, the

fixed point is stable only if the modulus of the maximal Mh(016)::|—oc,vh+
eigenvalue of such a matrix is lower than 1. By adopting a

calculation technique similgr to Fhe one of the homogeneougnd’ for any positive intege’,
case(see Appendix A the linearized map turns out to be

k

In(e){
B

M (K e) = }U(k* -1) +v,- %,Uk* +o,+

In(e){

(17
This in particular means that the average filling
¢
p(U,,8) = €2 pr(U, 11, B) (19
h=1
remains very close to the rational value
o ¢
K=k, (19

h=1
FIG. 2. (Color onling Three-dimensional representation of the 54 long as the chemical potential belongs to the interval
finite-temperature mean-field phase diagram for a homogeneous
one-dimensional lattice. Dark gray: critical surcface, Bj. Light
gray: zero-temperature Mott lobes. White-rimmed transparent sur-
faces: boundaries between the insulatorlikelow) and normal .
fluid (above regions. Figure 1 is obtained by cross-sectioning thiswhere{k;}f-, is a set of non-negative integers such that
figure at the relevant values @t U. # @. If, conversely,a,=0 but u ¢ M, the average filling is

¢
Mk} font, €)= aMm n(kn ©), (20)
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N =0

\ — TIU=0.02
g? 3 -- TIU=0.04
§ \ == TIU=01

V(x)

FIG. 3. Schematic representation of #fyperiodic optical super- i i 4 i i
lattices explicitly considered in Sec. IV. The lattice sites correspond 0 05 1u/U 1.5 2
to the local minima of the optical potenti®l(x). Upper panel{
=2, Uj:Uj+2?/:Uj+1, Tj,j+l:Tj+2,j+3:’t Tj+1 j+2- Lower pane|:€:3, Uj
SV F Vjsls Tjj+1= Tje1 427 Tjezj+a ) =3K+1, ke N

FIG. 4. Phase diagram for the superlattice of periodi€ity2
with parameters,/U=0.35, vy,1/U=0. Note that the possibly
different values of parametets, are conveniently absorbed into
not close to a rational number and it significantly varies witht, by a multiplicative rescaling. The filled areas correspond to the
varying . That is to say, the compressibility is significantly insulatorlike phase fof=0.02(light gray) and T=0.04 (dark gray
different from zero, and the system behaves like a normads evaluated setting=10" in Eq. (20). The rational numbers de-
fluid, owing to thermal fluctuations. note the particle density within the Mott-like domains.

In the zero-temperature limit, the normal phase behavior
disappears and @lott) insulator-superfluid transition is re- =7, 5 SO thatF,,=Fj, Fj3=F3; and F, =F, 5 After a
covered. Similar to the homogeneous case, iti&-t/U straightforward calculation, one gets
zero-temperature phase diagram consists of a superfluid do-
main and a series of insulating Mott lobes. However, the t(U, . ) = 2
average filling and compressibility within these lobes are ex- RN Fig+ VF2 3+ 8F oFp s
actly kK" and zero, respectively. Therefore, as is expef8ed ) _ o
we obtain that superlattices can display an insulating-Mott' "€ relevant phase diagram is shown in Fig. 5. Note that,
behavior even for some critical rational fillings. similar to the previous example, the zero—tem_perature Mott

Let us now analyze explicitly the two simple superlatticesIObeS can _be d|V|de_d mto_two classes_dependlnlg on the rel-
generated by the trapping potential schematically representédyant particle density, which can be eitheor k+3, where
in Fig. 3. The upper panel of this figure corresponds to thé € NN. This simple behavior is a consequence of our choice
simplest choice, namely a superlattice of periodi€ity2. In for the local potentials. Of course, more structured choices
this case, the maximal eigenvalue of matfixcan be evalu-
ated analytically, and the resulting critical valuet ¢firns out

(22)

vy - TIU=0
to be PR — TIU=0.02
Y -- TWU=0.05
1 vy = - TU=041
tC(leu’lB): \ . (21) .
Fl,2F2,l 0.1}F ’

The ensuing mean-field phase diagram for a particular choice
of the parameters is displayed in Fig. 4. As mentioned aboves
rational (actually half-integer filling Mott lobes appear in  =°
the zero-temperature phase diagrédotted curves As the
temperature increases, the regions where the system is in
quasi-insulating state shrink and eventually disappear, ac
cording to EQ.(20). It is interesting to observe that these
regions may disappear at different temperatures, dependin
on their filling. This is clearly shown in Fig. 4, where the

0.051

insulating regions relevant td=0.02 (light gray) and T 0 0.5 1 WU 1.5 2
=0.04 (dark gray are shown. Note that in the latter case
there are only integer-fillingquas)-insulating regions. FIG. 5. Phase diagram for the superlattice of periodi¢ity3

Matrix F can be analytically diagonalized with a limited with parameters)g/U=vgs1/U=0.35, v/ U=0, 73 3s1=1/2,
effort also for the special case of a 3-periodic lattice illus-and 73,1 342=Tak+2,3+3=1. The rational numbers denote the par-
trated in the lower panel of Fig. 3, whetg=v; and 7, ticle density within the zero-temperature Mott insulator domains.
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025 ' ' ' ' ' fully numerical solution of the self-consistency equation. The
latter actually involves an iterative self-consistent diagonal-
ization for each point of the mesh grid describing the phase
02r 1 diagram. Our technique can be extended also to generic
d-dimensional superlattices, where the size of the matrix to
be diagonalized isX s, s being the number of sites within a
supercell. We remark that the boundaries of the superfluid
region as evaluated with our method are valid also in the
zero-temperature limit, thus providing the phase diagram for
the superfluid-insulator quantum transition. In particular, this
allows us to find the analytic expressions of theean-field

s 52 Mott lobes in the case explicitly considered above.

0.15

t/u

0.1

0.05f
ACKNOWLEDGMENTS
1/4 172 34 5/4 714 o4

0 . . \ The work of P.B. has been entirely supported by MURST

0 05 1 2 25 3 projectQuantum Information and Quantum Computation on

Discrete Inhomogeneous Bosonic Systefd/. also ac-
FIG. 6. Zero-temperature phase diagram for the superlattice dfnowledges partial financial support from the same project.

periodicity ¢=4 with parameters vy, /U=1.9, v44,/U=0.3,  The authors wish to thank Vittorio Penna for fruitful discus-

Va1 U=1.3, 04443/ U=0.0, 7y y+1 = 1. The rational numbers denote sion and comments.

the particle density within the Mott insulator domains. Note that, as

we discussed in the text, for this particular choice of the well depths

there are no integer critical fillings. In this section, the analytic expression for the boundary of

the superfluid domain is derived in detail for the simple case

result in a quite richer phase diagram, where the particl®f the homogeneous lattice. The generalization to the super-

density in the insulatorlike regions is an integer multiple oflattice case is briefly discussed.

¢71. Note that some of these multiples are excluded if the As we mention above, in the homogeneaokdimensional

energy offset between any two siteandh within the same case, the self-consistency constraints, E@g. reduce to a

supercell is an integer multiple &f. Indeed, in this situation, single equation in the variable, i.e., the site-independent

the intervals relevant to sitgsand h defined by Eq.17)  superfluid parameter. It proves useful to recast such an equa-

overlap exactly. Hence for some set of integers the intersedion in terms of the quantity= ot as

tion defined by Eq(20) is empty. This is exactly what hap-

15
wu

APPENDIX A

pens in Fig. 5, where,;—v3=0. Interestingly, it is possible to :tTr(ae‘BH) _ Lilog(z) — f(+) (A1)
devise superlattices where only fractional critical fillings are Y 4 4dpdy v

present, provided that the energy offset between two lattice

sites is larger that. This is shown in Fig. 6, displaying the Where

zero-temperature phase diagram for a superlattice of period- Z=Tr(e M) (A2)

icity £=4 as obtained by numerical diagonalization of matrix
F, Eq.(6). is the grand-canonical partition function of the single-site
problem. The additional 1/2 factor in EGA1) ensues from
the equalityae=(ay=(a*) e R.
V. CONCLUSIONS Let us now prove Eq8) by discussing the stability char-
acter of the fixed poiny=0 of the map(Al). To this aim we

In this paper, we extend the mean-field approximation totruncate the on-site Fock basis considering states up to a

the Bose-Hubbard model introduced in REf7] to include ) )
thermal fluctuations. An analytical study of the ensuing self-9'V€n number of particles and denote}{, the relevant
consistency equations allows us to determine the exact forff@miltonian matrix. The final result is obtained lettinggo
of the boundary of the superfluid region at any finite tem-t€ infinity. _
perature. We also quantify the crossover from the normal Introducing the set of eigenvalues #f,, {Ex(y)}-o EQ.
fluid to the insulatorlike phase. (Al) becomes

Other than to the homogeneoaisiimensional lattice con- n
sidered in the original reference, we apply our method to a D e_ﬁEk(y)dEk(')’)
generic one-dimensiondl-periodic superlattice, giving ex- t ieo dy
plicit results for¢=2 and a special case é6f£3. Results for V= 2d n . (A3)
more complex one-dimensional superlattices involve the S PR
evaluation of the maximal eigenvalue of &x ¢ matrix. Of k=0
course, this must be accomplished numerically even for rela- ] )
tively small matrix sizes. Nevertheless, this approach igNOW. sincepy(Ex(y);¥)=0, wherep,(\;y) is the character-
much less demanding and more precise thar(¢heivalent  istic polynomial of H,,
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dp.(Ex(y), d
02 IPED) y):[ Ek<y)§hpn(x,y)+ﬁypn(h1w}
dy d N=E(7)
(Ad)
so that it is possible to write
a.,pn(N,
dEG) __ apy| e
dy ahpn()\!y) N=E ()

Denoting pﬂ‘}()\; v) the characteristic polynomial of the ma-

trix obtained by discarding frorfi{,, the rows and columns
labeled by the set of indice&}, and making use of the
formula for the derivative of a determinaf85], one gets

n
PN, Y) = 2 PR(N; ),
k=0

n
a,pn(N, y) = ¥8d?| 2 kpK V() + P(y>] ,
k=1

where the polynomiaP(y) is homogeneous, so th&(0)
=0. Hence Eq(A3) becomes

n

> e PBq (B y)

k=0
y=ty ; =1f(y), (A6)
S PR
k=0
where
n
T 2 MY\ ) + P(y)
Y h=1
Qn(h; '}’) = — 0 =

~4dapa(h,y) n
> (N y)
h=0

(A7)

According to standard treatment=0 is a stable solution of
Eq. (A6) only if |3, f(y)],20<1, i.e.,
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n

> e PEO
k=0
t<— n8)
> G(Ex(0): 0)ePEO)
k=0
Observing that
P00 =TT [Ey(0) -], (A9)

he{k}
one gets
an(Ex(0);0) = 2d[kp* "V (E,(0); 0)

+ (k+ 1)p*R(EL(0);0) I pF(E(0);0)] 7Y,
(A10)

where we sep"™Y(\;9)=p{ " ?(\;7)=0. Now, recalling
that E.(0)=(U/2)k(k-=1)-uk one gets lim_..q,(E«(0);0)
=Qu(U,u), where the functionQ, is defined in Eq.(9).
Therefore, the limin— o of Eq. (A8) gives the desired re-
sult, Eq.(8).

In the case of superlattices, the parameters appearing in
Hamiltonian(3) are periodic functions of the site labels. Here
we focus on the one-dimensionéiperiodic casep;=vj.¢
and 7 ,=( j+1% 6hj-1) Tj+enee- Since the superfluid param-
eters mirror thel periodicity of the superlatticey; = a;., the
self-consistency conditior®) reduce tof independent equa-
tions. Introducing the parametesg=tay, (h=1,... £, ve+1
= vy, and yo= vy,), Egs.(6) can be recast as

t| 1 dlog(Zy) N 1 dlog(Z,)

= = fn{m D),
48| thp-1 Ay Thitr d¥her
(A11)
where
Z, = Tr(eFn) (A12)
and
~ U
Hp = En(n -1 - (M - Uh)n - (Th,h-lyh—l + Th,h+17h+1)

X(a+a). (A13)

A procedure similar to that illustrated in detail in the case of
homogeneous lattices allows us to linearize &ifl1), ob-
taining Eq.(14).
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