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We present the results of numerical calculations of the ground states of weakly interacting Bose-Einstein
condensates containing large numbers of vortices. Our calculations show that these ground states appear to be
close to uniform triangular vortex lattices. However, slight deviations from a uniform triangular lattice have
dramatic consequences on the overall particle distribution. In particular, we demonstrate that the overall
particle distribution averaged on a length scale large compared to the vortex lattice constant is well approxi-
mated by a Thomas-Fermi profile.
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I. INTRODUCTION

Experiments on rotating Bose condensates at high angular
momentum have reached the limit in which the vortex cores
overlap strongly[1]. In this limit, the single particle states
are restricted to states in the lowest Landau level(LLL )
[2,3]. The vortices cannot be considered to interact by pair-
wise interactions, but have intrinsically multivortex interac-
tions [4], leading to a very interesting regime of vortex phys-
ics.

In an influential theoretical paper studying the nature of
the vortex lattices in this regime[5], the assumption was
made that the vortices will form a uniform triangular lattice.
Under this assumption, it was shown that the particle density
averaged over a length scale large compared to the intervor-
tex spacing has a Gaussian profile. One can, however, expect
that in the true LLL ground state the vortices will not form
an ideal triangular lattice, and that small changes in vortex
position could lead to a rather different overall density pro-
file; within simple approximate considerations, when there
are a large number of vortices one would expect these devia-
tions to lead to a Thomas-Fermi(TF) profile for the average
particle distribution[6–8], which for a harmonic trap is an
inverted parabola as a function of the distance from the ro-
tation axis.

We expect that the LLL approximation is an excellent
guide to the low-energy properties(including the ground
state density profile) whenever the ratiol of the interaction
energy scale to the level spacing of the transverse harmonic
confinement in an axially symmetric trap, l
;4p"2asn̄/ sM"v'd, is much smaller than unity(n̄ is the
typical number density of bosons,as the s-wave scattering
length,M the particle mass, andv' the trapping frequency
perpendicular to the rotation axis). We terml!1 the LLL
regime. Note that the condition for being in this regime does
not involve the system size. When many vortices are present,
it is equivalent to the healing length being larger than the
vortex spacing. There will be perturbative corrections to the
LLL approximation, in powers of the interaction parameter
l. Earlier work[9], which extends into the LLL regime, finds

within a variational ansatz that even if one neglects the de-
formations of the vortex lattice that we study here, a TF
profile emerges through weak Landau level mixing provided
the healing length is small compared to the sample size.
Also, Ref.[10] provides a treatment of the averaged density
profile in the vortex lattice in the opposite limit in which the
healing length is small compared to the vortex spacing, and
deviations of the vortex lattice from a uniform triangular
lattice were found there.

In this paper, we provide explicit numerical calculations
of the ground states of large numbers of vortices in atomic
Bose condensates in the LLL limit. By comparing our full
variational results for the many-vortex ground state with the
results obtained under the assumption of a uniform triangular
vortex lattice, we show that the small changes in the vortex
position in the true ground state away from a uniform lattice
have a dramatic effect on the overall density profile. In par-
ticular, we demonstrate that the coarse-grained particle den-
sity of a system containing a large number of vortices is well
approximated by a Thomas-Fermi profile. The accuracy of
the Thomas-Fermi profile in describing this regime can al-
ready be seen from the results of the numerical studies of
Sinovaet al. [7], where the coarse-grained particle density
for a small vortex lattice array in the LLL was found to fit an
inverted parabola.

II. MODEL

We consider the rotating Bose gas when interactions are
sufficiently weak to enter the LLL regimesl!1d and, fur-
thermore, to allow restriction to the two-dimensional(2D)
limit in which all particles occupy the lowest harmonic os-
cillator state of the axial confinement[accurate provided
4p"2asn̄/ sM"vid!1, where vi is the trapping frequency
parallel to the rotation axis]. Although these conditions are
far from being satisfied in atomic gases in the absence of
rotation, at high angular momentum the radial expansion of
the cloud due to the centrifugal forces reduces the mean par-
ticle density and leads the system toward the weakly inter-
acting limit [5,9]. Indeed, recent experiments[1] have
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reached conditions that are within the LLL regime and close
to the 2D limit.

In this paper we shall restrict attention to the case where
the filling fraction(the ratio of the number of particles to the
number of vortices[11]) is sufficiently large that the ground
state is a vortex lattice[11,12] and can be well described by
Gross-Pitaevskii theory. In the case of interest—weak con-
tact interactions—Gross-Pitaevksii theory for the ground
state amounts to minimizing the interaction energy

Eint =
2p"2asN

2

M
E ucsrdu4d3r s1d

within the space of states in the lowest subband of the axial
confinementszd and in the lowest Landau level of the trans-
versesx-yd motion. Such states may be written

csrd = Ap
j

sh − h jde−uhu2/s2a'
2 de−z2/s2ai

2d, s2d

where h=sx+ iyd, and ai,';Î" /Mvi,' are the oscillator
lengths parallel and perpendicular to the rotation axis. We
choose the normalization constantA such that

E ucsrdu2d3r = 1, s3d

which is why the number of particlesN enters in the expres-
sion for the interaction energy, Eq.(1). The variablesh j are
the complex numbers representing the positions of the vorti-
ces in thex-y plane. Hence, the wave function(including
therefore the particle density) is fully specified by the posi-
tions of the vortices. The task is to find the positions of the
vortices that minimize the interaction integral as a function
of the total angular momentum per particle in units of",

, =E d3rF− ic*r 3
] c

] r
· ẑG . s4d

Note that, within the LLL states, the combined kinetic and
potential energy(relative to the zero-point energy) is propor-
tional to the angular momentum, which is why these energies
need not be included explicitly in the minimization when
angular momentum is constrained.

The connection between vortex positions and particle
density lies at the heart of the difficulty of an exact deriva-
tion of the density profile. Variations in the coarse-grained
2D density profilen̄2Dsx,yd [the particle densityucsrdu2 aver-
aged over length scales large compared to the vortex lattice
constant and integrated over thez direction] are by necessity
tied to variations in the vortex positions.[A similar relation
of superfluid density(which is the same as particle density in
the Gross-Pitaevskii theory) and vortex density as in the LLL
approximation[5] was found in Ref.[10].] If one makes the
assumption that the vortices are only slightly perturbed from
a triangular lattice and ignores the variation of the lattice
geometry in the energetics, then one is led to the expectation
that the coarse-grained density profile will be an inverted
parabola—i.e., Thomas-Fermi-like[8]. By imposing the nor-

malization condition(3), and noting that for states in the
lowest Landau level, the angular momentum per particle is
directly related to the density profile via

, =E dxdyF sx2 + y2d
a'

2 − 1Gn̄2Dsx,yd s5d

we find that the Thomas-Fermi profile may be written as

n̄2Dsrd =
2

3ps, + 1da'
2 F1 −

r2

3s, + 1da'
2 G s6d

wherer;Îx2+y2. Thus, the radius of the cloud,R, increases
with angular momentum per particle as

R= Î3s, + 1da'. s7d

One can also relate the radius to the angular rotation fre-
quencyV at which the state with angular momentum, is
stable. Following the approach of Ref.[8] one finds

R= F 2bg2Da'
2

p"sv' − VdG1/4

, s8d

whereb=1.1596 is the Abrikosov parameter for the energy
of a uniform triangular vortex lattice[13] and g2D
=2Î2pN"2as/ saiMd.

On the other hand, if one assumes that the vortices form a
uniform triangular lattice, then the coarse-grained 2D density
profile is of the form[5]

n̄2Dsrd =
1

ps2e−r2/s2
, s9d

1

s2 =
1

a'
2 − pnV, s10d

wherenV is the areal density of vortices.[For a triangular
lattice of lattice constanta, the vortex density isnV
=2/sÎ3a2d.] Using Eq.(5), one finds

1

s2 =
1

a'
2

1

, + 1
. s11d

For the full variational study, a numerical conjugate gra-
dient method is used to minimize the interaction energy(1)
with respect to the vortex positions in(2) and subject to the
normalization(3) for a range of values of the fixed angular
momentum per particle(4). To this end, it is helpful to ex-
pand the wave function(2) in terms of the single-particle
states in the LLL with angular momentum quantum number
m, and write the(normalized) wave function in thex-y plane
as

fshd = o
mù0

cm
hm

Îpm!a'
m+1

e−uhu2/s2a'
2 d. s12d

Constraints on angular momentum per particle and normal-
ization are then imposed by Lagrange multipliers[in terms of
physical parameters these are"sv'−VdN andmN, wherem
is the chemical potential relative to the zero-point energy]. In
this way, the variational equations can be expressed in terms
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of coupled equations for the complex coefficientscm.
As an aside, we note that the resulting variational equa-

tions can be expressed in real-space form as

g2DE d2h8dsh,h8dufsh8du2fsh8d − mfshd

+ "sv' − Vd E d2h8dsh,h8d
hh̄8

a'
2 fsh8d = 0, s13d

where

dsh,h8d =
1

pa'
2 es−uhu2/2a'

2 −uh8u2/2a'
2 +hh̄8/a'

2 d s14d

is (the integral kernel of) the projection operator to the LLL

[14]. Notice thatudsh ,h8du2=e−uh −h8u2/a'
2

/ spa'
2 d2 falls rapidly

for uh−h8u.a'. This real-space form of the lowest Landau
level variational equations is a useful starting point for fur-
ther analytic approximations.

Here we focus on the numerical solution to the problem.
In our numerical procedure we work in terms of the coeffi-
cientscm, which we allow to be nonzero up to some maxi-
mum angular momentumsø300d which we check is suffi-
ciently large to have no significant effect on the results[this
is equivalent to setting a maximum number of vortices in Eq.
(2)]. This procedure is identical to that followed in Ref.[3];
the difference is that here we are interested in much larger
values of the angular momentum per particle than the cases
studied in Ref.[3]. (For the Thomas-Fermi profile, at large
angular momentum, one expects the number of visible vor-
ticesNV to increase with the angular momentum per particle
asNV=3,.)

III. RESULTS

The results of our full variational calculation always show
a (slightly distorted) vortex lattice. We focus attention on the
case of large angular momentum where the lattice spacing
appears to be roughly uniform in the central region of the
condensate. For the range of angular momentum that we
study, we find that there are stable low-energy configurations
of the system in which one vortex is close to the center of the
trap, and around which there is an approximate sixfold rota-
tion symmetry. One can then choose one of the lines of re-
flection symmetry to be thex axis. We have tested that such
configurations are stable to small deviations around the mini-
mizing values, and that they give the lowest energy that we
could obtain.

In Fig. 1 we show shadow plots of the particle density for
two examples of the results of the full variational study, at
,=31 and,=91. Even though the vortex positions of the full
variational ground state appear to be very close to the posi-
tions of a triangular lattice, there are slight deviations from
this regular arrangement, especially close to the edge of the
cloud. These deviations are sufficient to give a very different
overall density profile from that expected from a uniform
vortex lattice.

To illustrate this, we have constructed the wave functions
for the ansatz in which the vortices are at the sites of a

uniform triangular lattice[5]. To most closely reproduce our
full variational results we choose to position the lattice such
that there is a lattice site at the center of the condensate and
there is reflection symmetry in thex axis. The only remain-
ing freedom in the ansatz is then the value of the lattice
constant, which controls the angular momentum per particle.

In Fig. 2 we show the particle densities for this triangular
lattice ansatz, with lattice constant chosen to give angular
momenta,=31 and,=91. The differences between the par-
ticle densities obtained from the full variational calculation
and from the triangular lattice ansatz are large enough to be
seen directly from the shadow plots. The particle density for
the triangular ansatz is more peaked at the center and has a
somewhat longer tail at large distances.

FIG. 1. The particle density for two vortex lattices which are
calculated as the minimum of the interaction energy(1). In the
upper entry we have angular momentum,=31 and in the lower
entry ,=91. The gray-scale code is set to black for vanishing par-
ticle density and to white for maximum density, which occurs at the
central region of the trap.
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To make a more quantitative comparison of the above
lattices we have determined the angular-averaged particle
density as a function of the radial distancer from the trap
center, by writingh=reiw and averaging the particle density
over the azimuthal variablew. The results are presented in
Figs. 3(a) and 3(b). The difference between the full varia-
tional result and the triangular lattice is very clear for,
=31 as well as for,=91. For both values of angular momen-
tum, the average density profile for the full variational result
is very well reproduced by the Thomas-Fermi profile, Eq.(6)
(ignoring the rapid oscillations on the length scale of the

intervortex spacing). On the other hand, the average particle
density for the triangular lattice ansatz is well reproduced by
the Gaussian formula(9), consistent with the result of Ref.
[5]. The Gaussian and Thomas-Fermi profiles are sufficiently
different that it can be clearly seen that the Thomas-Fermi
profile provides a significantly better fit to the full variational
ground state than does the Gaussian.

Finally, in Fig. 4 we compare the interaction energies per
particle for the full variational wave function and the trian-

FIG. 2. The particle density for two wave functions obtained
under the assumpion of a perfect triangular vortex lattice. In the
upper entry we use a lattice constanta=1.9351a' which corre-
sponds to angular momentum,=31 and in the lower entry we have
a=1.9151a' which gives,=91. The gray-scale code is set to black
for vanishing particle density and to white for maximum density,
which occurs at the central region of the trap. A qualitative com-
parison with Fig. 1 is easy, but note that the white color in Fig. 1
does not correspond to the same value in the present figure.

FIG. 3. The angular-averaged particle density as a function of
the radial coordinate for(a) ,=31 and(b) ,=91. (The particle den-
sity is in units ofa'

−2 andr in units ofa'.) In both figures, the solid
line corresponds to the full variational result, and the dashed line
corresponds to the triangular lattice ansatz. The dotted lines are the
Thomas-Fermi profiles, Eq.(6), for (a) ,=31 and(b) ,=91, while
the dot-dashed curves are the Gaussian profiles(9) for the lattice
constant(a) a=1.9351a' and (b) a=1.9151a'.
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gular lattice cases as a function of angular momentum per
particle. As is required for consistency, the full variational
wave function has an interaction energy lower than that of
the triangular lattice ansatz(by about 10%). The interaction
energy for the full variational wavefunction is very closely
given by the expressionEint

var=2bg2DN/ f9pa'
2 s,+1dg, which

can be found by use of the Thomas-Fermi analysis of Ref.
[8]; the corresponding energy for the triangular lattice is
Eint

tri =bg2DN/ f4pa'
2 s,+1dg. This energy reduction by a factor

of 8/9 at fixed angular momentum, is equivalent to the
energy reduction by a factor of 2Î2/3 at fixed angular fre-
quencyV found in Ref.[8].

IV. CONCLUSIONS

In conclusion, we have presented the results of numerical
calculations of the finite-size vortex lattices in atomic Bose
condensates at large values of the angular momentum. We
have studied the weakly interacting limit where vortex cores
overlap strongly, and the particles are restricted to states in
the lowest Landau level. Our results show clearly that the
density distribution of particles averaged over a length scale
larger than the inter-vortex spacing is very accurately given
by a Thomas-Fermi profile. These results indicate that, in the
lowest Landau level limit, a fit of the overall density profile
found in experiment to a Thomas-Fermi profile, Eq.(6), can
be used as a measure of the angular momentum per particle.
Images of the ground state density profile and vortex loca-
tions can be obtained reliably from the expanded cloud(fol-
lowing release of the trapping potential), since for states in
the lowest Landau level the wave function of the final(ex-
panded) state is directly related to the initial(unexpanded)
state up to a rescaling and rotation[15].

Recently, we became aware of related numerical studies
where similar conclusions were reached[16].
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