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Spin-dependent Hubbard model and a quantum phase transition in cold atoms
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We describe an experimental protocol for introducing spin-dependent lattice structure in a cold atomic Fermi
gas using lasers. It can be used to realize Hubbard models whose hopping parameters depend on spin and
whose interaction strength can be controlled with an external magnetic field. We suggest that exotic superflu-
idities will arise in this framework. An especially interesting possibility is a class of states that support
coexisting superfluid and normal components, even at zero temperature. The quantity of normal component
varies with external parameters. We discuss some aspects of the quantum phase transition that arises at the
point where it vanishes.
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I. INTRODUCTION role of a conservative potential. In particular, a standing light

Cold-atom systems can be used to explore importar:?ave leads to a periodic intensity pattern which results in a

roblems of condensed matter bhvsics in new wavs. For e eriodic potential, i.e., an optical lattice. By superimposing
P . Py ys. - attice beams from different directions and different intensity
ample, recent rapid development of the ultracold atomic ga

in optical lattices[1,2] supported the observation of the 3n effectively one<(1D), two- (2D), or three-dimensional

superfluid—Mott insulator transition in cold atomic bosons(3D) lattice can be built

confined in an optical latticE—6]. In a wider context, meth- Consider a cloud of cold fermionic atoms in a 3D optical
P ’ ' lattice [15]. We assume that only two of the internal ground

ods of “engineering” various lattice model systems with states participate in the dynamics, which we call spin up and

bosonic and fermionic atoms have been propofed g, own, |T) and||). The corresponding effective Hamiltonian
opening prospects for exploring exotic new phases. In recen

years achieving superfluidity in cold atomfermions has

become a major goal, involving several experimental pro- _ 3t h? )

grams[17—29. Here we consider techniques that permit one 1= > | dxyx)| - ;nV +Vo(X) | #6(%)

to introduce both sorts of complexity in one system, with 7

controlled band structures and interactions that depend on 3t Qo [ 50t

spin. They involve counterpropagating laser beams that to- =0 | XX (x) + ) d*x ()¢ (x) + H.c.

gether generate a standing light wave which leads to differ-

ent ac Stark shifts for the spin-up and spin-down components

of alkali-metal atoms(such as*’K) in their ground state

[2,8]. We then discuss an interesting new phase of matter that o )

might arise in this context, involving coexistence of normalWith #.=1,(x) fermionic field operators obeying the usual

Fermi liquid and superfluid componenf26-32, and the anticommutation rela_tlons. The_van_ous terms contributing to

quantum phase transition between this state and conventiori&€ Hamiltonian are illustrated in Fig. 1.

Bardeen-Cooper-Schrieff¢3] (BCS) superfluidity. The firstline in Eq(1) contains the kinetic energy and the

optical lattice potentiaV,(x) generated by the laser beams,

obtained in second-order perturbation theory for coupling of

the ground state levels to the excited atomic states. In the

simplest case of three orthogonal laser beams this potential
In this section we describe how to realize, using coldhas the form

atoms in an optical lattice, a rather general band Hubbard- 3

type model, with separate, tunable effective masses and fill- V,(X) = > VEEI)) sir? kx,. 2)

ing factors for the two spin§7,8,15. =1

4mrah?
+ % f &yl )] )9, () (%), (1)

II. SPIN-DEPENDENT OPTICAL LATTICES FOR COLD
FERMIONIC ATOMS

Here k=27/\ is the wave vector of the light, an\zlffe) is

proportional to the lattice beam intensity in the direction
Atoms in an off-resonant laser field exhibit a second-ordetand the dynamic atomic polarizability at the laser frequency

ac Stark shift of their ground state levels. This shift is pro-of the level(spin statg o.

portional to the light intensity. The intensity may vary in  Note that in Eq(1) we have ignoredrossac Stark terms

space, for example, by forming a standing light wave fromcoupling two different spin components. These are negligible

counterpropagating laser beams. For the center-of-mass mfwar the situation indicated in Fig. 2, where the ac Stark shifts

tion of the atoms, spatially varying ac Stark shifts play theare much smaller than thibare energy of the atomic levels,

A. The setup of an optical lattice model
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Finally, the last term in Eq(l) is the usual atom-atom

2 interaction described by a pseudopotential with scattering
lengtha,. In atomic experiments the sign and magnitude of

the scattering length can be manipulated, for example, with

ty J_ . an external magnetic field via Feshbach resonaf@®es23.
% ) The derivation of Eq(1) assumes explicitly that the scatter-
A\

ing length is much smaller than the lattice spadigiyen by

A\
MAN— 1) AN \/2). In more general circumstances, the interaction will ex-
laser laser tend beyond nearest neighbors.
,\*‘A f For single atoms the energy eigenstates in the optical lat-
V \J tice are conveniently described by a band structure and

Bloch wave functions. An appropriate superposition of the
) . ) Bloch wave functions forms a set of Wannier states which
FIG. 1. Spin-dependent lattice: two counterpropagating laseg o ocalized at the various lattices sites. For typical experi-
beams generate a standing light wave which leads to different ag, o yia) narameters the frequencies associated with dynamics
Stark shifts for the spin-up and spin-down components of theof cold atoms in the lattice are much smaller than the exci-
ground state atom(?".T 1) As a result th'.a tunneling mat.r'x ele- tation energies in the optical potenti@xcitation to higher
mentst,, for the two spin components are different. The spin-up andBIOCh bands Expanding the field operators in the set of
-down components are coupled by a Raman laser with Rabi fre- . - P 9 P
quencyQ, and detunings. Wannier functions of the lowest Bloch bandy,(x)
=2w,(X—-Xj)a,, we obtain the Hubbard(single-bang
which can be achieved, e.g., by applying a magnetic field tiHamiltonian[7]
split the magnetic sublevels of the atoms. Furthermore, we

have assumed in Eq2) that the ac Stark shifts of lattice H=- > t(,(CLC,,J- +H.c)+h> (c}ricﬁ —CLCU)

beams in different directions can be added. Depending on the ofi.) i

laser configuration there may be interference terms. How- Q0

ever, for lattice beams in different directions witslightly) + ?2 (cfic;i+H.c) - UZ cliclicjicyi. (3)
1 I

shifted optical frequencie@btained by modulating the lat-

tice beamy these interference terms will average to zero. Wem the Hamiltonian(3), h=—5/2 plays the role of “magnetic
have also ignored contributions from spontaneous emiSSio?i'eld "t s a spin-dépendent Fr)]ogping term which gfollows

These can, for sufficiently large detunings of the lattice . . . . .
beams from the excited states, be made arbitrarily small. mf_rom the spin-dependent optical potential, dhé an on-site

deed, for large detuning> T from excited states with width nteraction. The dependence of the hopping amplitiydend
T, the spontaneous emission rate scaled &s? while the on-sne mteracﬂonU_on the ors)ltjlcal lattice paralllmeters is
lattice potential scales as A/ so spontaneous emission be- 9VeN by t;=Er(2/Vm)(Vo,/Er) exf -2(Vo,/ Er) 2]. and
comes, on the relevant dynamical time scale, negligible. U=Erkas\8/m(Vo,/Eg ¥ with Er=r"k?*/2m the recoil fre-

A key element in Eq(1) is the assumption that the lattice quency of the atoms anki=2m7/\ the wave vector of the
potentialvu_(x) is Spin dependent, as illustrated graphica"y in I|ght Thus the ratio of tunne“ng t0.0I’l—SIte.Intel’aCtlon can be
Fig. 1. Immediately below we will discuss in detail specific controlled via the depth of the optical lattice.
atomic and laser configurations that allow us, by varying

laser parameters, to engineer this spin dependence. ) ] .
The second line in Eq1) describes the coupling of the  For alkali-metal atoms, i.e., the atoms used in present cold

two spin states via a Raman transition with effective two-Fermi gas experiments, the difficulty in obtainingspin-
photon Rabi frequency), and Raman detuning. The dependentattice arises from thes-wave character of the
Hamiltonian has been written in the frame where the opticaground state. It implies that the ac Stark shift induced by

frequencies have been transformed away, so that only thi@r-off-resonant driving fields is the same for gilyperfing
detuningd appears in Eq(l). ground state levels. Fortunately, however, heavy alkali-metal

atoms such a¥K, have a large fine structure splitting of the
first excited statg34]. This permits us to obtain a spin-

B. Tuning spin-dependent tunneling

M=-3% -3 +i +3
2 2 2 22P3/2

_$Af5 _A 2p F=7/ dependent optical potential by tuning the lattice lasers be-
- 2 e S tween the fine structure levels, still remaining far off reso-
o, _—+ nance to suppress spontaneous emis@prAs illustrated in
__/ __——_+Mp=w Fig. 2, the grounch %S, ,,M=+1/2 states couple to excited
(@ M=-1 +1 2S1/2 (b)—_p_: o2 Me=T/2 statesn 2P3,2’1,2 with right (left) circularly polarized lighto

according to the selection rulddvi=+1. This gives rise to a
FIG. 2. (a) Atomic level scheme of alkali-metal atoms. & spin-dependent ac Stark shift.
polarized lattice beam is tuned between the two excited state fine For example, the ac Stark shift of the two ground states in
structure components resulting in different ac Stark shifts for thecircularly polarized light with amplitudé€ is
ground state levels as explained in the context of @y.(b) Two |,U~ 5|2
possible “spin-up” and “spin-down” states are illustrated the case of + — 3/2
40 atoms. ABz, pu=rd ) (A —-Aw)’ @
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|,LL1/25|2+ | 131282
AA (A=A’

AEZsl M —ydo’) =

keeping only the dominant contributions from the lowest-
lying excited states. Here the detuning from fig,, state is
denotedA, A is the fine structure splitting, and the dipole
matrix elements for the transitions from the ground state are
32,12 We see that for detunings between the fine structure
states B<A <A the ac Stark shiftAEszM__l,zswitches

from positive to negative values, whiIAEle/ZM:+1,2is al-

1 2
ways negative, giving rise to a strongly spin-dependent lat- A
tice potential. We can vary the strength of the Stark shift by
varying the laser power. FIG. 3. ac Stark shiftin arbitrary unit$ of the “% hyperfine

Thus, the laser configuration consisting of unbalanced-=9/2 (solid line) and Mg=7/2 (dashed ling states[compare
right and left circularly polarized polarization componentsFig. 2b)] as a function of the detuning. The value ofA=0 cor-
gives rise to a spin-dependent lattice, where the resulting aesponds to théP, , excited fine structure state, while= A is the
Stark shifts are a sum of the shifts in the first and secondPs, resonance. We note the strong spin dependéinee depen-
lines of Eq.(4), weighted according to their fractions of dence on the internal stateor detuning between the two fine struc-
ando~ components. For linearly polarized light the ac Starkture states.

shifts of the two states are equal. . . _ -
It is easy to include hyperfine splitting of the atomic € the minima of the optical well¥,(x) coincide but the

ground state$8]. Consider an atomic ground state electronWells have different depths, giving rise to a spin-dependent
which is coupled to a nuclear spinThe resulting total an- t_unnellng. The ac Stark shifts in 'Fhls region between the two
gular momentum isF=[1+1/2|, and the hyperfine ground fine structure states are plotted in Figagwhere again the

states have the forrtF,Mg)=a|l,Mg+1/2)|?S,,M=-1/2)

+b|l,Mg-1/2)|?S,,M=+1/2), wherea andb are Clebsch- 05

Gordan coefficients. Assuming that the Zeeman hyperfine 0

states are split by a constant magnetic figddmpare the -0.5

discussion following Eq.(1)], the ac Stark shift of -1

this state will be the weighted sumAEgy_ p: 5

:|a|2AE231/2M=_1,2+ \b|2AE231/2M=+1,2 Thus a pair of hyperfine '

ground state levels will have a spin-dependent lattice pro- 2

vided that the Clebsch-Gordan coefficients in the decompo- -2.5

sition are sufficiently different. These spm-dependent lattices -3 02 03 04 05 06 07
were first proposed for quantum computing purposes by Jak- (@ AA,

schet al. [8] and recently implemented in experiments with

cold Rb atoms by Bloch and collaboratdf. 10?
This shows how to create a 1D spin-dependent lattice in

counterpropagating laser beams of unbalane&gbolariza-

tion. The setup is readily generalized to higher dimensions.

For example, a 3D lattice is obtained by first applying a =

magnetic field to provide a Zeeman splitting of the hyperfine -~

ground stategto suppress the cross ac Stark ternasd then

C

b
applying three standing wave' polarized beams which are a
tilted by 45° relative to the magnetic field. Figures 3 and 4

summarize the corresponding results for tig=9/2 and 10° 02 03 04 05 06 07

7/2 hyperfine structure ground statfsompare the level (b) ' ’ CAAL ' '

scheme in Fig. @®)]. For these states the squares of the rel- fo

evant Clebsch-Gordan coefficientas defined aboyeare FIG. 4. (a) ac Stark shift(in arbitrary unit of the Mg=9/2

given by|al?=1/9 and|b|*=8/9. Figure 3 plots the ac Stark (solid line) and theM-=7/2 state (dashed ling in the detuning
shift of theMg=9/2 (solid line) andMg=7/2 stategdashed  region right of the interference zero 0.24& /A of the Mg=7/2
line) as a function of the laser detuning. The detuning state. (b) Ratio of the hopping matrix elements for the
interval covers the region of tHi®,,, and Py, excited fine  t,_jy_—o/2 ¢/t~ =712, for a given spatial directiofi=1,2,3 as a
structure states, which are separated\pyWe see that for a function of detuningA for a fixed V(IOE)\M —orz,c=Vo With Vo=5
detuningA ~ 0.248\ the ac Stark shift of thtz=7/2state  (curve a), 10 (curveb), and 2y (curve c) in units of the recoil
has a zero while the shift of thMg=7/2 varies compara- energyEg=%%k?/2m. The hopping matrix elements were obtained
tively slowly. For detunings in the range 0.24&8/A<1  from a band structure calculation for the given depth of the optical
the ac Stark shift of both statdd-=9/2,7/2 isnegative, potential.
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Mg=9/2 level is represented by the solid line, and tg
=7/2level of *K is given by the dashed line. In Fig(B) we

PHYSICAL REVIEW A 70, 033603(2004)

up and down fermions. Instead of working with the Hamil-
tonian(3) of the original fermions, we could just as well start

give the ratio of the corresponding hopping matrix elementsvith the Hamiltonian(6) of the effective fermions. The in-

as a function ofA in the same interval. Here we have chosenteraction term will now contain not onlsswave spin-singlet

a light intensity so that we keep the depth of the opticalterms, but also other higher angular and spin terms. As far as
potentiawglM —oi2.0=Vo (for a given direction¢=1,2,3  our main interests-wave spin-singlet pairing, is concerned,
at a fixed givan valud/, for the whole range of detunings, the theoretical treatment QOes not di_ffer su.bstantially from
while V(i()E)\MF=7/2),€ varies. Thus the ratio of;(/t,, varies. the model(7) below, for which the Rabi term is transformed

. . X away.
From Fig. 4b) we see that the ratio of the tunneling elements y

can be varied by more than an order of magnitude when we
approach the interference minimum /= 0.248\.

In addition to the alkali-metal atoms discussed above, ex-
perimental progress might soon allow the realization of Recently there has been considerable discussion of the
quantum degenerate Fermi gases with alkaline-earth aton®ssible existence of homogeneous zero-temperature phases
e.g., with Sr atomg35,3§. Alkaline-earth atoms have, as Wherein superfluid condensation coexists with one or more
well as their singlet ground states, long-lived electronic exFermi surfaces, where the gap vanishes. We have in mind
cited triplet states. Applying an off-resonant laser field, theséhat these are full-fledged codimension-1 Fermi surfaces
states will in general have quite different ac Stark si#.  (e.9., two-dimensional surfaces, which bound three-
Identifying the ground and metastable excited states with th@imensional regions, in a three-dimensional systerhere
spin-up and spin-down states, we thus can also have a natuifie gap vanishes. The roots of this idea go back to early work

realization of a Hubbard model with a spin-dependent interof Sarma[38]; the issue has arisen again, under several dif-
action. ferent names, in several other contexts, including high-

density QCD andas emphasized hereold-atom systems.
There are delicate issues of stability involved, which have
. been mishandled in much of the literature. We believe that a
The model we have been akleonceptually to engineer  carefyl and correct discussion is supplied in R&B]. We
contains a Rabi coupling that is not present in the CONVeng 4| not repeat the analysis given there, but we rely on the
tional Hubbard mode(3). A few remarks about this issue are conciysion: there are a number of physically interesting cir-
in order. _ _cumstances in which two-component interacting Fermi sys-
(2,=0 corresponds to the case that the particle number ijpms of the general type discussed in the preceding section,
each spin species is conserved separately.Ckp# 0 only — can support a continuous “breached pairiiBP) to a BCS
total particle number is conserved, while the relative part'dequantum phase transitioni.e., a “superfluid+normal
numbers can vary. This point will be important for our dis- —superfluid” transition at zero temperatire
cussion of exotic phases. , _ Stability of the BP phase, which has coexisting, homoge-
To treat the effect of the Rabi term theoretically, We noqys superfluid and normal components at zero tempera-
should first diagonalize the quadratic part of the Hamil-y,re “appears to require momentum-dependent interactions,
tonian. This is best done in momentum space. In principlegame_species repulsion, or some other complication not
we can always find a unitary transformation of the originalyresent in the simplest Hubbard Hamiltonian with two states
fermion fields, defining a quasi spin degree of freedom. For the sake of
simplicity and concreteness, however, we shall work with
this Hamiltonian. The qualitative, universal features of the
phase transition ought not to depend on this idealization.
Then,

Ill. BREACHED PAIRING TO BCS TRANSITION

C. Remarks on spin superposition by Rabi coupling

Ea'(k) = uo’a"(k)ca(k) ’ (5)

that transforms the Hamiltonian into

TN~ =t ~t =t = =
H= E é_()'kccrkCO'k - E V0'1,. oK .,k4Ca-1k1C0'2k2Ca'3k3Ca'4k4
k {ki,oi}t
7 v H=- 2 t,(chic,j+H.c) +hX (clic;i —clicy)

o(ij) i

t 1
- UE cliclicich,
I

(6)
with
V,

(rl,...,(r4;k1,...,

)
K, = Usl(ky+ko—kg—ky)

Xua'lT(kl)uazl(kZ)z’{z-3T(kS)u:rr4T(k4) where as usuak,; andc:;i are fermion annihilation and cre-

ation operators at sitie with o=1, | indicating two internal

in d spatial dimensions. The explicit form of the unitary quantum states.

transformation matrix4/(k) for each modek can be found The Hamiltonian(7) appears to be a simplified version of
easily after some elementary algebra, but is not essential &), by assuming that the Rabi coupling term is transformed
our discussion here. The important point is that the effectiveaway through(5). An important difference is that the spin-up
energy band&,, remain spin dependent. The free param-and -down internal states are coherent now. The two qua-
etersh, ), andt,, allow great freedom of tuning for the band sispin states could well be two hyperfine spin levels for the
mass ratio and the Fermi surface difference of the effectivease of cold atoms, as we discussed in detail above.
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1.5

- ' : ' that have distinct properties in a BP state. They are
h<h, h=h \/ h=h
C

E1a(K) = (h+1.0y) £ (.0, — w)?+|A]?, 9

where we have adopted the shorthand notatient, +t,. We
OF oo | 1o ] will assumet, =t; andh>h, =—(t_/t,) u. By definition,h
is the value of the magnetic field for which the spin-up and
-down bands have the same Fermi surface.

Figure 5 shows how the two branches of excitations
evolve withh. A quantum phase transition takes place at the
critical value ofh=h, with [40]

E(k)

-0.4 0

L _mmt 280y
FIG. 5. Quantum phase transition seen from change of quasipar- ¢ t, .

ticle spectra. The critical value=h is determined by requiring that An important feature of the BP state is that Bebranch of
the E, branch have just one solution at zero energy. fiFeih;, one excitations crosses the zero-energy axis at two two-

should imagine a three-dimensional momentum space in which tw%imensional surfaces in three-dimensional momentum space
surfaces, defined by, =0~ and ©,=0%, are gapless for th&, P '

. o - RPN .
branch. (a) BCS superfluid; (b) quantum critical state;(c) defined to be® =0~ and®,=0O". Their values are

(10)

“superfluid+normal” BP state. For conveniende=t, is always t.+ht) + V(ht, + ut )2 — 4/ A2t
assumed throughout the paper. 0= (pts )£t + pt) 4| L (11
aut,
A. Nature of quantum phase transition between BCS At the critical pointh=h, the two gapless “Fermi” surfaces
and BP states merge into a single one,
The general nature of the transition can be gleaned from uty + het

Fig. 5. The BP to BCS transition is continuous, at least in 0 =0"=0,= th (12
mean field theory. To characterize its critical dynamics, we T

must use parameters that characterize the singular Excitation spectra similar to Fig.(& are also found in

behavior—in particular, the appearance or disappearance @érromagnetic metals. It was argued [i#l] that supercon-
low-energy degrees of freedom. The magnitude of the supetuctivity could coexist with ferromagnetism.

conducting order parameter is evidently not a suitable order

parameter, since it evolves smoothgt the level of mean

field theory and is nonvanishing at both sides of the transi- C. As a Lifshitz topological transition
tion. Furthermore, there is no evident change in symmetry at | itz (topologica) transitions
the transition. We propose that a good order parameter f
the BP to BCS transition is the quasispin polarizatisee
Sec. Il D).

[42] can take place in
%hetals and alloys at the motion of Van Hove singularities of
the electron density of states across Fermi surfgfmsa
review, see, e.g., Blantest al. [43]). The transition from a
o o BCS to a BP state actually falls into this universality class.
B. Quasiparticle excitations To illustrate the topological nature of the transition, we
We shall assume a uniform pairing, with order parametestart with the many-body wave functions for the BP and BCS
A=U(c] cl)=const. To find the spectrum of low-energy qua- states,
siparticle excitations, we diagonalize the mean field Hamil-

tonian [Wece) = 1;[ (Ui +0icCr€li )]0, 13
2,0, +h- u A
Hin = qf*( ! )\If ,
m % k A* - (2t0-h)+u K Wer= [l (uc+ kachikl) II CL

k:0, <0~ k:0,e[067,0%

®) < e
where x I (u + 3Gy )[0). (14)

k:0,>0"
W, = ( CTkT ) Here,u, anduv, are complex numbers satisfying,|>+|v|?
Cok) =1; their amplitudes are determined by diagonalizing the
and mean field Hamiltoniari8),

2 —
0,=- > codka). {|UK| }:5<1+ 8O 1 ) (15)

1=1.. d o) 2\ T [0 - w? + AP

(Here d=3 for three-dimensional spageThere are two There is a manifold of degenerate states featuring an overall
physical branches afBogoliuboy quasiparticle excitations relative phase between thg andv factors, corresponding
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1 i 1 -‘ Ginzburg type theory, no obvious spontaneously broken
symmetry is involved at the transition. The spin polarization
0.5} 0.5 density is given by
~> 0O 0 o
M= —J dON(®), (19
S -0.5 o
1 1 where
1 0 1 0 1
@ K, ) 3 N(©) = 2, 36 -0y

k

FIG. 6. An illustration of changing topology of the spin-up plays the role of gdimensionlesgdensity of states. Near the
Fermi sea. Shown are cross sectionatm/2a in a 3D first Bril-  critical pointh=h,, both®~ and®* approact®.. So the spin

louin zone for(a) BCS and(b) BP; momentum units fok,, ky are  polarization may be approximated to the lowest ordehin
w/a wherea is the cubic lattice constant. As usual, the occupied—p_py

states spread out over the entire Brillouin zone due to the pairing /
interaction. The shading in the graph indicates that the region has a _ L V(ut + hL)2 - 4A2tLtT
nonvanishing occupation number. The dotted lines indicate the M =N(@)(0™ - 607)=-N(O,) ot .t '
orginal free Fermi surfaces of spins (ipner curvg and spins down [

(outer curvg. The solid lines in(b) are energy surfaces defined by (19
0,=0" and ©,=0"; for small A—0, they merge with the free

Fermi surfaceqdotted line$. The phase transition occurs at the ty
point in which a simply connected Fermi sea is isolated into two “ot.t
regions. [

V’(h - hc)(h + hc - 2h><)-

The spin polarization may be thought of as being derived
from the grand thermodynamical potentialby viewing it as

to the broken W1)cpaqe (Note that by our convention of a functional ofh:

h>h,, there are more particles in the spispecies than the
| species. 5Q[h]
The occupation numbers of both spin-up and -down fer- M= “sh

mions are readily determined. For the BCS state,

) This formula can be inverted. Defing, as the magnetic

Ny =Ny, = [v|* (for all k), (16)  field for which the above equation has a prescribed viue

while for the BP state, Then the quantum effective potentlB[M] is defined(as a

functional of M, not h) by the Legendre transformation

N =0, =1 if O e[O7,07],
Kmm «<[67.67] T[M]=~hM+Q[h],

N =Ny = |vy[? otherwise. (17)  with

In the BCS state the occupation numbers are equal, while for h=hy

the_ E_SP state they differ. Since '_the BCS state is malntalned fofrixed. The form of '[M] is determined by requiring that the
a finite range of parameters, its continuous evolution to the

BP state is nonanalytic. This signals(zero-temperature, equation of state

quantum phase transition. aT[M]

The phase transition is associated with a change in topol- YR By (20)
ogy of the Fermi sea. This kind of transition is generally
known as a Lifshitz transition. As shown in Fig. 6, the quan-produce what is equivalent to E¢L9) upon inverting the
tum phase transition connects states of a simply connectdétter. This leads to
Fermi sea and of two isolated regions.

" 2
A transition between superfluid phases of different topol- I[M]= t—‘MM + M{“\M A1+ <M>
ogy in momentum space is also known to occur in, for in- t, t Ma

stance, théHe-B phase. There, the superfluid velocity with M|
respect to a container drives a quantum phase transition from + M@rcsinf(—)} , (22)
a fully gapped state to a state of(gaples$ Fermi surface Ma
[44,43. whereM, is a constant an¥,=AN(O)/\;t,. In deriving

Eq. (21), we have treated as a magnetic-field-independent
parameter to effectively represent the coupling strength. The
effective potential is not analytic iNl; the appearance ¢f/|

We now come to discuss the order parameter that charads a consequence of selecting the physically stable solution of
terizes the quantum phase transition. It is the spin polarizait. The physical origin is due to the presence of two gapless
tion, M=(S,(x))=n;—n,. However, unlike the usual Landau- “Fermi” surfaces. For smalM (and alsoM <0 in our par-

D. The order parameter
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2

1= f dtdd‘leldfT(k)<io7t— >¢(k)

2m,

"'QJdt [T [d**%K;dl] (ke o' (ko) k) k)

= j=1...4
X &(ky + ko= kg = Ka) + yipp+ T yppp--+ - (29)
1/2
= (h-hy) where ¢ is the gapless fermion field.
One can perform a simple renormalization group analysis

to find out how the interactions should scale. When we scale
0 h, h down the fluctuating momentuimby a factors<1,
FIG. 7. Quantum phase transition shown by spin polarizaon | —sl,

For the BCS(BP) state,M=0 (M #0). the quasiparticle energy scales down with a dynamical expo-

nentz=2 as
ticular case ot, >t; andh>h,), we could expand’[M] in
powers of M. Then, in the presence of external magnetic w—Sw

field h, the final effective potential reads for a quadratic dispersion relationship. So, in geneneral, the

momentum and time in the above action should scale as

At )
V(M)EhM+F[M]:(h—hC)M+;\'\AT—2L|M|3+ follows:
+IVIA _ _ _
dt— s2dt, d* K — 2d 1K, dl — s'dl,
(22
For h>h., V(M) always has a minimum at a nonzekb. g — S°d, | — sl withs — 0.

From either Eq(19) or Eq.(22), one can immediately verify
the following power-law(scaling relation for the spin polar-
ization at mean field leveffor h nearh,)

Note that the momenturd, being attached onto the critical
Fermi surface, does not scale. Accordingly, the fermion field

scales as
N(O)(t,A)Y2 112
M = —%(h—hc)l’2 if h> hg, - Y—sY.
B T ) (23) The scaling dimension of potential interaction operators
0 otherwise. can now be derived by straight-forward power counting. We

The results are sketched in Fig. 7. The behavior of spiﬁ(i_”d that agenericfour-fermion scattering operator is mar-

polarization near the poirti=h, suggests that the quantum 9inal- Thatis,

phase transition is of second order. { g (generic scatterings
9

) ) s'g (BCS or forward scatterings
E. Scaling theory ofz=2 gapless fermions
This result contrasts dramatically with what is found in the

standard renormalization group theory of a conventional

excitations is gapless at a single “Fermi surface” defined b¥:ermi liqui ; .
_ = . o quid (see, for instance, the review by Shank&s]).
O(k)=0.. What makes the critical point special is that the |, thay context, only special momentum configurations are

spectrum disperses quadratically near the surface: marginal.

2 We next turn to the scaling property of the order param-
-Eyk)=—=, k=K+lI, (24)  eter correlation function. We now attempt to derive the criti-
2 cal theory of quantum fluctuations of the order parameter
) - ) field M. While the static part of it is already derived in Eq.
whereK is a vector on _the critical Fermi surface aha (22), its dynamical part can be obtained by calculating the
vecto_r of (smalg _fluctuatmg _momentum orthogonal _t0 t_he spin-spin correlation, which is just the fermion polarization
Fermi surfacem, is the effective band mass which is implic- p,pple diagram, i.e.(S,K,i®)S,(-k,-iw))=TI(k,iw) (in
itly determined from Eq(9). The dispersion relation implies imaginary time formalism whereS,(k ,iw) is defined as the
that the dynamical exponentis 2 (at least at the tree-graph Fourier transform of ’
level) in contrast withz=1 in a nominal(metallic) Fermi
liquid [46]. 1, +
The critical properties of th&,(k) fermions appear to Si= E(CTiCTi = CjiCy)
define a different universality class. To begin understanding
it, let us consider the relevant operators. Consider a theory dit sitei and timet. The quadratic part of the action f4 is
gapless fermions described by an effective free action plugiven byIl(k,iw). Near the critical point, we find the quan-
possible quartic interactions, tum effective action oM takes the form,

At the critical point, theE,(k) branch of quasiparticle
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g c , G 5 i ¢° famous field theory of the Yang-Lee edge singularity in a
SM] :f d°xdr] E(ﬁrM) + E(VM) ferromagnetic Ising model. However, the two theories differ
fundamentally in that the cubic interaction term hek&|3, is
(26) _both _nonanalytic and regas opposed to analytic and purely
imaginary)
Further investigation of the this new critical theory, in-

+£M2+Q|M|3+ cee |,
2 3!

where cluding interactions between the low-energy fermion modes
2(t,t))%" (h=hot2 2(t;t))%2 7 and the order parameter, is reserved for future work.
r=————"—"5 - 1 NN
N(O)(t, )" ¢ N*(@)t.A
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