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We describe an experimental protocol for introducing spin-dependent lattice structure in a cold atomic Fermi
gas using lasers. It can be used to realize Hubbard models whose hopping parameters depend on spin and
whose interaction strength can be controlled with an external magnetic field. We suggest that exotic superflu-
idities will arise in this framework. An especially interesting possibility is a class of states that support
coexisting superfluid and normal components, even at zero temperature. The quantity of normal component
varies with external parameters. We discuss some aspects of the quantum phase transition that arises at the
point where it vanishes.
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I. INTRODUCTION

Cold-atom systems can be used to explore important
problems of condensed matter physics in new ways. For ex-
ample, recent rapid development of the ultracold atomic gas
in optical lattices [1,2] supported the observation of the
superfluid–Mott insulator transition in cold atomic bosons
confined in an optical lattice[3–6]. In a wider context, meth-
ods of “engineering” various lattice model systems with
bosonic and fermionic atoms have been proposed[7–16],
opening prospects for exploring exotic new phases. In recent
years achieving superfluidity in cold atomicfermions has
become a major goal, involving several experimental pro-
grams[17–25]. Here we consider techniques that permit one
to introduce both sorts of complexity in one system, with
controlled band structures and interactions that depend on
spin. They involve counterpropagating laser beams that to-
gether generate a standing light wave which leads to differ-
ent ac Stark shifts for the spin-up and spin-down components
of alkali-metal atoms(such as40K) in their ground state
[2,8]. We then discuss an interesting new phase of matter that
might arise in this context, involving coexistence of normal
Fermi liquid and superfluid components[26–32], and the
quantum phase transition between this state and conventional
Bardeen-Cooper-Schrieffer[33] (BCS) superfluidity.

II. SPIN-DEPENDENT OPTICAL LATTICES FOR COLD
FERMIONIC ATOMS

In this section we describe how to realize, using cold
atoms in an optical lattice, a rather general band Hubbard-
type model, with separate, tunable effective masses and fill-
ing factors for the two spins[7,8,15].

A. The setup of an optical lattice model

Atoms in an off-resonant laser field exhibit a second-order
ac Stark shift of their ground state levels. This shift is pro-
portional to the light intensity. The intensity may vary in
space, for example, by forming a standing light wave from
counterpropagating laser beams. For the center-of-mass mo-
tion of the atoms, spatially varying ac Stark shifts play the

role of a conservative potential. In particular, a standing light
wave leads to a periodic intensity pattern which results in a
periodic potential, i.e., an optical lattice. By superimposing
lattice beams from different directions and different intensity
an effectively one-(1D), two- (2D), or three-dimensional
(3D) lattice can be built.

Consider a cloud of cold fermionic atoms in a 3D optical
lattice [15]. We assume that only two of the internal ground
states participate in the dynamics, which we call spin up and
down, u↑l and u↓l. The corresponding effective Hamiltonian
is

H = o
s
E d3xcs

†sxdF−
"2

2m
¹2 + VssxdGcssxd

− dE d3xc↑
†sxdc↑sxd +

V0

2
E d3xc↑

†sxdc↓sxd + H.c.

+
4pas"

2

m
E d3xc↑

†sxdc↓
†sxdc↓sxdc↑sxd, s1d

with cs=↑,↓sxd fermionic field operators obeying the usual
anticommutation relations. The various terms contributing to
the Hamiltonian are illustrated in Fig. 1.

The first line in Eq.(1) contains the kinetic energy and the
optical lattice potentialVssxd generated by the laser beams,
obtained in second-order perturbation theory for coupling of
the ground state levels to the excited atomic states. In the
simplest case of three orthogonal laser beams this potential
has the form

Vssxd = o
,=1

3

Vs,
s0d sin2 kx,. s2d

Here k=2p /l is the wave vector of the light, andVs,
s0d is

proportional to the lattice beam intensity in the direction,
and the dynamic atomic polarizability at the laser frequency
of the level(spin state) s.

Note that in Eq.(1) we have ignoredcrossac Stark terms
coupling two different spin components. These are negligible
for the situation indicated in Fig. 2, where the ac Stark shifts
are much smaller than the(bare) energy of the atomic levels,
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which can be achieved, e.g., by applying a magnetic field to
split the magnetic sublevels of the atoms. Furthermore, we
have assumed in Eq.(2) that the ac Stark shifts of lattice
beams in different directions can be added. Depending on the
laser configuration there may be interference terms. How-
ever, for lattice beams in different directions with(slightly)
shifted optical frequencies(obtained by modulating the lat-
tice beams), these interference terms will average to zero. We
have also ignored contributions from spontaneous emission.
These can, for sufficiently large detunings of the lattice
beams from the excited states, be made arbitrarily small. In-
deed, for large detuningD@G from excited states with width
G, the spontaneous emission rate scales asG /D2 while the
lattice potential scales as 1/D, so spontaneous emission be-
comes, on the relevant dynamical time scale, negligible.

A key element in Eq.(1) is the assumption that the lattice
potentialVssxd is spin dependent, as illustrated graphically in
Fig. 1. Immediately below we will discuss in detail specific
atomic and laser configurations that allow us, by varying
laser parameters, to engineer this spin dependence.

The second line in Eq.(1) describes the coupling of the
two spin states via a Raman transition with effective two-
photon Rabi frequencyV0, and Raman detuningd. The
Hamiltonian has been written in the frame where the optical
frequencies have been transformed away, so that only the
detuningd appears in Eq.(1).

Finally, the last term in Eq.(1) is the usual atom-atom
interaction described by a pseudopotential with scattering
lengthas. In atomic experiments the sign and magnitude of
the scattering length can be manipulated, for example, with
an external magnetic field via Feshbach resonances[21–23].
The derivation of Eq.(1) assumes explicitly that the scatter-
ing length is much smaller than the lattice spacing(given by
l /2). In more general circumstances, the interaction will ex-
tend beyond nearest neighbors.

For single atoms the energy eigenstates in the optical lat-
tice are conveniently described by a band structure and
Bloch wave functions. An appropriate superposition of the
Bloch wave functions forms a set of Wannier states which
are localized at the various lattices sites. For typical experi-
mental parameters the frequencies associated with dynamics
of cold atoms in the lattice are much smaller than the exci-
tation energies in the optical potential(excitation to higher
Bloch bands). Expanding the field operators in the set of
Wannier functions of the lowest Bloch band,cssxd
=oiwssx−xidasi, we obtain the Hubbard(single-band)
Hamiltonian[7]

H = − o
ski,jl

tsscsi
† cs j + H.c.d + ho

i

sc↑i
† c↑i − c↓i

† c↓id

+
V0

2 o
i

sc↑i
† c↓i + H.c.d − Uo

i

c↑i
† c↓i

† c↓ic↑i . s3d

In the Hamiltonian(3), h=−d /2 plays the role of “magnetic
field,” ts is a spin-dependent hopping term which follows
from the spin-dependent optical potential, andU is an on-site
interaction. The dependence of the hopping amplitudets and
on-site interactionU on the optical lattice parameters is
given by ts=ERs2/ÎpdsV0s /ERd3/4expf−2sV0s /ERd1/2g and
U=ERkas

Î8/psV0s /ERd3/4 with ER="2k2/2m the recoil fre-
quency of the atoms andk=2p /l the wave vector of the
light. Thus the ratio of tunneling to on-site interaction can be
controlled via the depth of the optical lattice.

B. Tuning spin-dependent tunneling

For alkali-metal atoms, i.e., the atoms used in present cold
Fermi gas experiments, the difficulty in obtaining aspin-
dependentlattice arises from thes-wave character of the
ground state. It implies that the ac Stark shift induced by
far-off-resonant driving fields is the same for all(hyperfine)
ground state levels. Fortunately, however, heavy alkali-metal
atoms such as40K, have a large fine structure splitting of the
first excited state[34]. This permits us to obtain a spin-
dependent optical potential by tuning the lattice lasers be-
tween the fine structure levels, still remaining far off reso-
nance to suppress spontaneous emission[8]. As illustrated in
Fig. 2, the groundn 2S1/2M = ±1/2 states couple to excited
statesn 2P3/2,1/2 with right (left) circularly polarized lights
according to the selection rulesDM = ±1. This gives rise to a
spin-dependent ac Stark shift.

For example, the ac Stark shift of the two ground states in
circularly polarized light with amplitudeE is

DE2S1/2M=+1/2ss+d =
um3/2Eu2

"sD − Dfsd
, s4d

FIG. 1. Spin-dependent lattice: two counterpropagating laser
beams generate a standing light wave which leads to different ac
Stark shifts for the spin-up and spin-down components of the
ground state atomsss= ↑ , ↓ d. As a result the tunneling matrix ele-
mentsts for the two spin components are different. The spin-up and
-down components are coupled by a Raman laser with Rabi fre-
quencyV0 and detuningd.

FIG. 2. (a) Atomic level scheme of alkali-metal atoms. As+

polarized lattice beam is tuned between the two excited state fine
structure components resulting in different ac Stark shifts for the
ground state levels as explained in the context of Eq.(4). (b) Two
possible “spin-up” and “spin-down” states are illustrated the case of
40K atoms.
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DE2S1/2M=−1/2ss+d =
um1/2Eu2

"D
+

um3/2Eu2

"sD − Dfsd
,

keeping only the dominant contributions from the lowest-
lying excited states. Here the detuning from the2P3/2 state is
denotedD, Dfs is the fine structure splitting, and the dipole
matrix elements for the transitions from the ground state are
m3/2,1/2. We see that for detunings between the fine structure
states 0,D,Dfs the ac Stark shiftDE2S1/2M=−1/2switches
from positive to negative values, whileDE2S1/2M=+1/2is al-
ways negative, giving rise to a strongly spin-dependent lat-
tice potential. We can vary the strength of the Stark shift by
varying the laser power.

Thus, the laser configuration consisting of unbalanced
right and left circularly polarized polarization components
gives rise to a spin-dependent lattice, where the resulting ac
Stark shifts are a sum of the shifts in the first and second
lines of Eq.(4), weighted according to their fractions ofs+

ands− components. For linearly polarized light the ac Stark
shifts of the two states are equal.

It is easy to include hyperfine splitting of the atomic
ground states[8]. Consider an atomic ground state electron
which is coupled to a nuclear spinI. The resulting total an-
gular momentum isF= uI ±1/2u, and the hyperfine ground
states have the formuF ,MFl=auI ,MF+1/2lu2S1/2M =−1/2l
+buI ,MF−1/2lu2S1/2M = +1/2l, wherea andb are Clebsch-
Gordan coefficients. Assuming that the Zeeman hyperfine
states are split by a constant magnetic field[compare the
discussion following Eq. (1)], the ac Stark shift of
this state will be the weighted sum DEFMF
= uau2DE2S1/2M=−1/2+ ubu2DE2S1/2M=+1/2. Thus a pair of hyperfine
ground state levels will have a spin-dependent lattice pro-
vided that the Clebsch-Gordan coefficients in the decompo-
sition are sufficiently different. These spin-dependent lattices
were first proposed for quantum computing purposes by Jak-
schet al. [8] and recently implemented in experiments with
cold Rb atoms by Bloch and collaborators[5].

This shows how to create a 1D spin-dependent lattice in
counterpropagating laser beams of unbalanceds± polariza-
tion. The setup is readily generalized to higher dimensions.
For example, a 3D lattice is obtained by first applying a
magnetic field to provide a Zeeman splitting of the hyperfine
ground states(to suppress the cross ac Stark terms), and then
applying three standing waves+ polarized beams which are
tilted by 45° relative to the magnetic field. Figures 3 and 4
summarize the corresponding results for theMF=9/2 and
7/2 hyperfine structure ground states[compare the level
scheme in Fig. 2(b)]. For these states the squares of the rel-
evant Clebsch-Gordan coefficients(as defined above) are
given by uau2=1/9 andubu2=8/9. Figure 3 plots the ac Stark
shift of theMF=9/2 (solid line) andMF=7/2 states(dashed
line) as a function of the laser detuningD. The detuning
interval covers the region of the2P1/2 and2P3/2 excited fine
structure states, which are separated byDfs. We see that for a
detuningD<0.248Dfs the ac Stark shift of theMF=7/2 state
has a zero while the shift of theMF=7/2 varies compara-
tively slowly. For detunings in the range 0.248,D /Dfs,1
the ac Stark shift of both statesMF=9/2,7/2 isnegative,

i.e., the minima of the optical wellsVssxd coincide but the
wells have different depths, giving rise to a spin-dependent
tunneling. The ac Stark shifts in this region between the two
fine structure states are plotted in Fig. 4(a) where again the

FIG. 3. ac Stark shift(in arbitrary units) of the 40K hyperfine
MF=9/2 (solid line) and MF=7/2 (dashed line) states[compare
Fig. 2(b)] as a function of the detuningD. The value ofD=0 cor-
responds to the2P1/2 excited fine structure state, whileD=Dfs is the
2P3/2 resonance. We note the strong spin dependence(i.e., depen-
dence on the internal state) for detuning between the two fine struc-
ture states.

FIG. 4. (a) ac Stark shift(in arbitrary units) of the MF=9/2
(solid line) and theMF=7/2 state (dashed line) in the detuning
region right of the interference zero 0.248,D /Dfs of the MF=7/2
state. (b) Ratio of the hopping matrix elements for the
t↑;uMF=9/2l,, / t↓;uMF=7/2l,, for a given spatial direction,=1,2,3 as a
function of detuningD for a fixed V↑;uMF=9/2l,,

s0d ;V0 with V0=5
(curve a), 10 (curve b), and 20ER (curve c) in units of the recoil
energyER="2k2/2m. The hopping matrix elements were obtained
from a band structure calculation for the given depth of the optical
potential.
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MF=9/2 level is represented by the solid line, and theMF
=7/2 level of 40K is given by the dashed line. In Fig. 4(b) we
give the ratio of the corresponding hopping matrix elements
as a function ofD in the same interval. Here we have chosen
a light intensity so that we keep the depth of the optical
potentialV↑;uMF=9/2l,,

s0d ;V0 (for a given direction,=1,2,3)
at a fixed given valueV0 for the whole range of detunings,
while V↓;uMF=7/2l,,

s0d varies. Thus the ratio oft↑, / t↓, varies.
From Fig. 4(b) we see that the ratio of the tunneling elements
can be varied by more than an order of magnitude when we
approach the interference minimum atD<0.248Dfs.

In addition to the alkali-metal atoms discussed above, ex-
perimental progress might soon allow the realization of
quantum degenerate Fermi gases with alkaline-earth atoms
e.g., with Sr atoms[35,36]. Alkaline-earth atoms have, as
well as their singlet ground states, long-lived electronic ex-
cited triplet states. Applying an off-resonant laser field, these
states will in general have quite different ac Stark shifts[37].
Identifying the ground and metastable excited states with the
spin-up and spin-down states, we thus can also have a natural
realization of a Hubbard model with a spin-dependent inter-
action.

C. Remarks on spin superposition by Rabi coupling

The model we have been able(conceptually) to engineer
contains a Rabi coupling that is not present in the conven-
tional Hubbard model(3). A few remarks about this issue are
in order.

V0=0 corresponds to the case that the particle number in
each spin species is conserved separately. ForV0Þ0 only
total particle number is conserved, while the relative particle
numbers can vary. This point will be important for our dis-
cussion of exotic phases.

To treat the effect of the Rabi term theoretically, we
should first diagonalize the quadratic part of the Hamil-
tonian. This is best done in momentum space. In principle,
we can always find a unitary transformation of the original
fermion fields,

c̃sskd = Uss8skdcsskd, s5d

that transforms the Hamiltonian into

H̃ = o
ks

ẽskc̃sk
† c̃sk − o

hki,sij
Vs1,. . .,s4;k1,. . .,k4

c̃s1k1

† c̃s2k2

† c̃s3k3
c̃s4k4

s6d

with

Vs1,. . .,s4;k1,. . .,k4
= Uddsk1 + k2 − k3 − k4d

3Us1↑sk1dUs2↓sk2dUs3↑
† sk3dUs4↑

† sk4d

in d spatial dimensions. The explicit form of the unitary
transformation matrixUskd for each modek can be found
easily after some elementary algebra, but is not essential to
our discussion here. The important point is that the effective
energy bandsẽsk remain spin dependent. The free param-
etersh, V0, andts allow great freedom of tuning for the band
mass ratio and the Fermi surface difference of the effective

up and down fermions. Instead of working with the Hamil-
tonian(3) of the original fermions, we could just as well start
with the Hamiltonian(6) of the effective fermions. The in-
teraction term will now contain not onlys-wave spin-singlet
terms, but also other higher angular and spin terms. As far as
our main interest,s-wave spin-singlet pairing, is concerned,
the theoretical treatment does not differ substantially from
the model(7) below, for which the Rabi term is transformed
away.

III. BREACHED PAIRING TO BCS TRANSITION

Recently there has been considerable discussion of the
possible existence of homogeneous zero-temperature phases
wherein superfluid condensation coexists with one or more
Fermi surfaces, where the gap vanishes. We have in mind
that these are full-fledged codimension-1 Fermi surfaces
(e.g., two-dimensional surfaces, which bound three-
dimensional regions, in a three-dimensional system) where
the gap vanishes. The roots of this idea go back to early work
of Sarma[38]; the issue has arisen again, under several dif-
ferent names, in several other contexts, including high-
density QCD and(as emphasized here) cold-atom systems.
There are delicate issues of stability involved, which have
been mishandled in much of the literature. We believe that a
careful and correct discussion is supplied in Ref.[39]. We
shall not repeat the analysis given there, but we rely on the
conclusion: there are a number of physically interesting cir-
cumstances in which two-component interacting Fermi sys-
tems, of the general type discussed in the preceding section,
can support a continuous “breached pairing”(BP) to a BCS
quantum phase transition(i.e., a “superfluid+normal
−superfluid” transition at zero temperature).

Stability of the BP phase, which has coexisting, homoge-
neous superfluid and normal components at zero tempera-
ture, appears to require momentum-dependent interactions,
same-species repulsion, or some other complication not
present in the simplest Hubbard Hamiltonian with two states
defining a quasi spin degree of freedom. For the sake of
simplicity and concreteness, however, we shall work with
this Hamiltonian. The qualitative, universal features of the
phase transition ought not to depend on this idealization.
Then,

H = − o
ski,jl

tsscsi
† cs j + H.c.d + ho

i

sc↑i
† c↑i − c↓i

† c↓id

− Uo
i

c↑i
† c↓i

† c↓ic↑i , s7d

where as usual,csi andcsi
† are fermion annihilation and cre-

ation operators at sitei, with s= ↑ ,↓ indicating two internal
quantum states.

The Hamiltonian(7) appears to be a simplified version of
(3), by assuming that the Rabi coupling term is transformed
away through(5). An important difference is that the spin-up
and -down internal states are coherent now. The two qua-
sispin states could well be two hyperfine spin levels for the
case of cold atoms, as we discussed in detail above.
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A. Nature of quantum phase transition between BCS
and BP states

The general nature of the transition can be gleaned from
Fig. 5. The BP to BCS transition is continuous, at least in
mean field theory. To characterize its critical dynamics, we
must use parameters that characterize the singular
behavior—in particular, the appearance or disappearance of
low-energy degrees of freedom. The magnitude of the super-
conducting order parameter is evidently not a suitable order
parameter, since it evolves smoothly(at the level of mean
field theory) and is nonvanishing at both sides of the transi-
tion. Furthermore, there is no evident change in symmetry at
the transition. We propose that a good order parameter for
the BP to BCS transition is the quasispin polarization(see
Sec. III D.).

B. Quasiparticle excitations

We shall assume a uniform pairing, with order parameter
D=Ukci↓

† ci↑
† l=const. To find the spectrum of low-energy qua-

siparticle excitations, we diagonalize the mean field Hamil-
tonian

Hm = o
k

Ck
†S2t↑Qk + h − m D

D* − s2t↓Qk − hd + m
DCk ,

s8d

where

Ck ; S ck↑
c−k↓

† D
and

Qk = − o
l=1. . .d

cossklad.

(Here d=3 for three-dimensional space.) There are two
physical branches of(Bogoliubov) quasiparticle excitations

that have distinct properties in a BP state. They are

E1,2skd = sh + t−Qkd ± Îst+Qk − md2 + uDu2, s9d

where we have adopted the shorthand notationt± ; t↑± t↓. We
will assumet↑ù t↓ andh.h3;−st−/ t+dm. By definition,h3

is the value of the magnetic field for which the spin-up and
-down bands have the same Fermi surface.

Figure 5 shows how the two branches of excitations
evolve withh. A quantum phase transition takes place at the
critical value ofh=hc with [40]

hc =
− mt− + 2uDuÎt↑t↓

t+
. s10d

An important feature of the BP state is that theE2 branch of
excitations crosses the zero-energy axis at two two-
dimensional surfaces in three-dimensional momentum space,
defined to beQk =Q− andQk =Q+. Their values are

Q± =
smt+ + ht−d ± Îsht+ + mt−d2 − 4uDu2t↑t↓

4t↑t↓
. s11d

At the critical pointh=hc, the two gapless “Fermi” surfaces
merge into a single one,

Q− = Q+ = Qc ;
mt+ + hct−

4t↑t↓
. s12d

Excitation spectra similar to Fig. 5(c) are also found in
ferromagnetic metals. It was argued in[41] that supercon-
ductivity could coexist with ferromagnetism.

C. As a Lifshitz topological transition

Lifshitz (topological) transitions[42] can take place in
metals and alloys at the motion of Van Hove singularities of
the electron density of states across Fermi surfaces(for a
review, see, e.g., Blanteret al. [43]). The transition from a
BCS to a BP state actually falls into this universality class.

To illustrate the topological nature of the transition, we
start with the many-body wave functions for the BP and BCS
states,

uCBCSl = p
k

suk + vkck↑
† c−k↓

† du0l, s13d

uCBPl = p
k:Qk,Q−

suk + vkck↑
† c−k↓

† d p
k:QkPfQ−,Q+g

ck↓
†

3 p
k:Qk.Q+

suk + vkck↑
† c−k↓

† du0l. s14d

Here,uk andvk are complex numbers satisfyinguuku2+ uvku2
=1; their amplitudes are determined by diagonalizing the
mean field Hamiltonian(8),

Huuku2

uvku2J =
1

2S1 ±
t+Qk − m

Îft+Qk − mg2 + uDu2
D . s15d

There is a manifold of degenerate states featuring an overall
relative phase between theuk andvk factors, corresponding

FIG. 5. Quantum phase transition seen from change of quasipar-
ticle spectra. The critical valueh=hc is determined by requiring that
theE2 branch have just one solution at zero energy. Forh.hc, one
should imagine a three-dimensional momentum space in which two
surfaces, defined byQk =Q− and Qk =Q+, are gapless for theE2

branch. (a) BCS superfluid; (b) quantum critical state;(c)
“superfluid+normal” BP state. For convenience,t↑ù t↓ is always
assumed throughout the paper.
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to the broken Us1dcharge. (Note that by our convention of
h.h3, there are more particles in the spin↓ species than the
↑ species.)

The occupation numbers of both spin-up and -down fer-
mions are readily determined. For the BCS state,

nk↑ = nk↓ = uvku2 sfor all kd, s16d

while for the BP state,

nk↑ = 0, nk↓ = 1 if Qk P fQ−,Q+g,

nk↑ = nk↓ = uvku2 otherwise. s17d

In the BCS state the occupation numbers are equal, while for
the BP state they differ. Since the BCS state is maintained for
a finite range of parameters, its continuous evolution to the
BP state is nonanalytic. This signals a(zero-temperature,
quantum) phase transition.

The phase transition is associated with a change in topol-
ogy of the Fermi sea. This kind of transition is generally
known as a Lifshitz transition. As shown in Fig. 6, the quan-
tum phase transition connects states of a simply connected
Fermi sea and of two isolated regions.

A transition between superfluid phases of different topol-
ogy in momentum space is also known to occur in, for in-
stance, the3He-B phase. There, the superfluid velocity with
respect to a container drives a quantum phase transition from
a fully gapped state to a state of a(gapless) Fermi surface
[44,45].

D. The order parameter

We now come to discuss the order parameter that charac-
terizes the quantum phase transition. It is the spin polariza-
tion, M ;kSzsxdl=n↑−n↓. However, unlike the usual Landau-

Ginzburg type theory, no obvious spontaneously broken
symmetry is involved at the transition. The spin polarization
density is given by

M = −E
Q−

Q+

dQNsQd, s18d

where

NsQd ; o
k

dsQ − Qkd

plays the role of a(dimensionless) density of states. Near the
critical pointh=hc, bothQ− andQ+ approachQc. So the spin
polarization may be approximated to the lowest order inh
−hc by

M . NsQcdsQ− − Q+d = − NsQcd
Îsmt− + ht+d2 − 4D2t↓t↑

2t↑t↓
,

s19d

=− NsQcd
t+

2t↑t↓
Îsh − hcdsh + hc − 2h3d.

The spin polarization may be thought of as being derived
from the grand thermodynamical potentialV by viewing it as
a functional ofh:

M =
dVfhg

dh
.

This formula can be inverted. DefinehM as the magnetic
field for which the above equation has a prescribed valueM.
Then the quantum effective potentialGfMg is defined(as a
functional ofM, not h) by the Legendre transformation

GfMg = − hM + Vfhg,

with

h = hM

fixed. The form ofGfMg is determined by requiring that the
equation of state

]GfMg
]M

= − hM s20d

produce what is equivalent to Eq.(19) upon inverting the
latter. This leads to

GfMg =
t−
t+

mM +
DÎt↑t↓

t+
FuMuÎ1 +S M

MD
D2

+ MDarcsinhS uMu
MD

DG , s21d

whereMD is a constant andMD;DNsQcd /Ît↑t↓. In deriving
Eq. (21), we have treatedD as a magnetic-field-independent
parameter to effectively represent the coupling strength. The
effective potential is not analytic inM; the appearance ofuMu
is a consequence of selecting the physically stable solution of
it. The physical origin is due to the presence of two gapless
“Fermi” surfaces. For smallM (and alsoM ,0 in our par-

FIG. 6. An illustration of changing topology of the spin-up
Fermi sea. Shown are cross sections atkz=p /2a in a 3D first Bril-
louin zone for(a) BCS and(b) BP; momentum units forkx, ky are
p /a wherea is the cubic lattice constant. As usual, the occupied
states spread out over the entire Brillouin zone due to the pairing
interaction. The shading in the graph indicates that the region has a
nonvanishing occupation number. The dotted lines indicate the
orginal free Fermi surfaces of spins up(inner curve) and spins down
(outer curve). The solid lines in(b) are energy surfaces defined by
Qk =Q− and Qk =Q+; for small D→0, they merge with the free
Fermi surfaces(dotted lines). The phase transition occurs at the
point in which a simply connected Fermi sea is isolated into two
regions.
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ticular case oft↑. t↓ andh.h3), we could expandGfMg in
powers of M. Then, in the presence of external magnetic
field h, the final effective potential reads

VsMd ; hM + GfMg = sh − hcdM +
DÎt↑t↓
3t+MD

2 uMu3 + ¯ .

s22d

For h.hc, VsMd always has a minimum at a nonzeroM.
From either Eq.(19) or Eq.(22), one can immediately verify
the following power-law(scaling) relation for the spin polar-
ization at mean field level(for h nearhc)

M = 5−
NsQcdst+Dd1/2

st↑t↓d3/4 sh − hcd1/2 if h . hc,

0 otherwise.
6 s23d

The results are sketched in Fig. 7. The behavior of spin
polarization near the pointh=hc suggests that the quantum
phase transition is of second order.

E. Scaling theory ofz=2 gapless fermions

At the critical point, theE2skd branch of quasiparticle
excitations is gapless at a single “Fermi surface” defined by
Qskd=Qc. What makes the critical point special is that the
spectrum disperses quadratically near the surface:

− E2skd =
l2

2m2
* , k ; K + l , s24d

where K is a vector on the critical Fermi surface andl a
vector of (small) fluctuating momentum orthogonal to the
Fermi surface.m2

* is the effective band mass which is implic-
itly determined from Eq.(9). The dispersion relation implies
that the dynamical exponent isz=2 (at least at the tree-graph
level) in contrast withz=1 in a nominal(metallic) Fermi
liquid [46].

The critical properties of theE2skd fermions appear to
define a different universality class. To begin understanding
it, let us consider the relevant operators. Consider a theory of
gapless fermions described by an effective free action plus
possible quartic interactions,

Ic =E dtdd−1Kdlc†skdSi]t −
l2

2m2
* Dcskd

+ gE dt p
j=1. . .4

fdd−1K jdl jgc†sk1dc†sk2dcsk3dcsk4d

3ddsk1 + k2 − k3 − k4d + cccc + c†ccc ¯ , s25d

wherec is the gapless fermion field.
One can perform a simple renormalization group analysis

to find out how the interactions should scale. When we scale
down the fluctuating momentuml by a factors,1,

l → sl ,

the quasiparticle energy scales down with a dynamical expo-
nentz=2 as

v → s2v

for a quadratic dispersion relationship. So, in geneneral, the
momentum and time in the above action should scale as
follows:

dt → s−2dt, dd−1K → s0dd−1K , dl → s1dl ,

]t → s2]t, l → sl withs→ 0.

Note that the momentumK , being attached onto the critical
Fermi surface, does not scale. Accordingly, the fermion field
scales as

c → s1/2c.

The scaling dimension of potential interaction operators
can now be derived by straight-forward power counting. We
find that ageneric four-fermion scattering operator is mar-
ginal. That is,

g → H s0g sgeneric scatteringsd,

s−1g sBCS or forward scatteringsd.
J

This result contrasts dramatically with what is found in the
standard renormalization group theory of a conventional
Fermi liquid (see, for instance, the review by Shankar[46]).
In that context, only special momentum configurations are
marginal.

We next turn to the scaling property of the order param-
eter correlation function. We now attempt to derive the criti-
cal theory of quantum fluctuations of the order parameter
field M. While the static part of it is already derived in Eq.
(22), its dynamical part can be obtained by calculating the
spin-spin correlation, which is just the fermion polarization
bubble diagram, i.e.,kSzsk , ivdSzs−k ,−ivdl=Psk , ivd (in
imaginary time formalism), whereSzsk , ivd is defined as the
Fourier transform of

Szi =
1

2
sc↑i

† c↑i − c↓i
† c↓id

at sitei and timet. The quadratic part of the action forM is
given byPsk , ivd. Near the critical point, we find the quan-
tum effective action ofM takes the form,

FIG. 7. Quantum phase transition shown by spin polarizationM.
For the BCS(BP) state,M =0 sM Þ0d.
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SfMg =E ddxdtFct

2
s]tMd2 +

cs

2
s¹Md2

+
r

2
M2 +

g

3!
uMu3 + ¯ G , s26d

where

r =
2st↑t↓d3/4

NsQcdst+Dd1/2sh − hcd1/2, g =
2st↑t↓d3/2

N2sQcdt+D
, s27d

and

ct =
]Psk,ivd

]sv2d
, cs =

]Psk,ivd
]sk2d

, s28d

with k,v→0 (long wavelength limit). In deriving the effec-
tive action, we have shifted the position of the minima of
VsMd to eliminate the linear term of Eq.(22).

One recognizes that the effective theory of spin polariza-
tion field M bears superficial resemblance to Fisher’s[47]

if3 famous field theory of the Yang-Lee edge singularity in a
ferromagnetic Ising model. However, the two theories differ
fundamentally in that the cubic interaction term here,uMu3, is
both nonanalytic and real(as opposed to analytic and purely
imaginary.)

Further investigation of the this new critical theory, in-
cluding interactions between the low-energy fermion modes
and the order parameter, is reserved for future work.
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