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The transition probability for the emission of a Bessel photon by an atomic system is calculated within first
order perturbation theory. We derive a closed expression for the electromagnetic potentials beyond the paraxial
approximátion that permits a systematic multipole approximation. The matrix elements for the center of mass
and internal motion are explicitly evaluated for some particularly relevant cases. This permits to clarify the
feasibility of observing the rotational effects of twisted light on atoms predicted by the calculations. It is shown
that the probability that the internal state of an atom acquires orbital angular momentum from light is, in
general, maximum for an atom located at the axis of a Bessel mode. For a Gaussian packet, the relevant
parameter is the ratio of the spread of the atomic center of mass wave packet to the transversal wavelength of
the photon.
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I. INTRODUCTION

It is important to understand the influence of the angular
momentum of light on the dynamics of atomic systems and
microparticles from the point of view of basic and applied
physics. The work by Beth[1] showed that circularly polar-
ized light has rotational effects on rigid bodies. Likewise,
observed atomic transitions are simply described in terms of
the angular momentum carried by plane wave circularly po-
larized photons. Thus, the phenomenological relation be-
tween spin angular momentum and polarization is well es-
tablished.

In the last few years it has been shown both theoretically
[2] and experimentally[3] that light beams may carry angu-
lar momentum not directly related to their polarization state.
This form of angular momentum is usually qualified as or-
bital and is due to an azimuthal phase dependence of the
transverse electromagnetic intensity. For laser beams prop-
erly described within the paraxial approximation, e.g.,
Laguerre-Gaussian beams, the total angular momentum of
light can be clearly divided into spin and orbital parts; this
separation has direct physical consequences on the motion of
microparticles[3,4]. In the case of atoms, the orbital angular
momentum of paraxial light can induce torques in the center
of mass[5,6] while the probability of changing the internal
angular momentum is very small[6,8]. However, the separa-
tion between orbital and spin angular momentum is not so
natural beyond the paraxial approximation[9,10]. On the one
hand, the general forms of these quantities, as they usually
appear in the literature, are not gauge invariant[11,12], de-
spite the fact that physical observables are expected to be so.
On the other hand, the concept of polarization for twisted
light is not identical to that used for plane waves since, in
general, the electric and/or magnetic field of twisted beams
are nonzero along the main propagation axis.

Among electromagnetic modes carrying orbital angular
momentum, Bessel modes are particularly interesting be-

cause they propagate with an intensity pattern invariant
along its axis[13]. Experimental realizations of such beams
and their mechanical effects on microparticles are the subject
of many current investigations[4]. Studies concerning the
separation between spin and orbit angular momentum have
been carried out both semiclassically[14] and quantum me-
chanically[10,15]. The quantum dynamical properties of the
Bessel photons should, in principle, be studied via the opera-
tors assigned to energy, momentum, orbital angular momen-
tum, and spin using the standard quantum optics formalism.
However, direct calculations show that these operators do not
follow the algebra of the translation and rotation group
[10,15]. Actually, the standard spin operator has a behavior
more similar to an helicity operator.

The purpose of the present paper is to study in detail the
rotational effects of Bessel photons on atomic systems. This
is a dynamical mean to measure the mechanical properties of
twisted light. To this end, we evaluate the transition ampli-
tude for the spontaneous emission of a Bessel photon by a
non relativistic hydrogenic atom within first order perturba-
tion theory. In the next section, we describe the system in-
cluding the interaction which is incorporated using minimal
coupling in the Coulomb gauge. Then, an explicit expression
relevant for a systematic multipole approximation is obtained
and it is applied to the explicit calculation of matrix elements
of the interaction Hamiltonian between an unperturbed atom
and electromagnetic field states. Finally, a comparison with
previous results is given, and some conclusions following
our results are summarized.

II. THE ATOM-RADIATION SYSTEM

Consider two particles of opposite chargesqe andqN, gy-
romagnetic ratiosge andgN, massesMe andMN, and vector
positionsr e andr N. This hydrogenlike atom is assumed to be
described to a good approximation by a nonrelativistic
Hamiltonian of the form

ĤP =
pe

2

2Me
+

P̂N
2

2MN
+ Vr + VR, s1d

with Vr an internal potential depending on the relative coor-
dinater =r e−r N andVR an external potential that affects the*Electronic address: rocio@fisica.unam.mx

PHYSICAL REVIEW A 70, 033415(2004)

1050-2947/2004/70(3)/033415(9)/$22.50 ©2004 The American Physical Society70 033415-1



center of mass coordinateR=sMer e+MNr Nd / sMe+MNd. The
atom state can be written as a superposition of wave func-
tions

Csr e,r N,xe,xNd = FsRdfsr dxNxee
−iEt/", s2d

where

FpCM
2

2M
+ VRsRdGFsRd = ECMFsRd, s3d

F p̂2

2m
+ Vrsr dGfsr d = Erelfsr d, s4d

E = ECM + Erel s5d

andxe, xN are the spinors associated to each particle. In the
simplest case

Vrsr e − r Nd =
qeqN

ur e − r Nu
s6d

andVR=0.
We are interested in the perturbative description of the

interaction of the atom with a Bessel mode. Thus, the quan-
tization of the free radiation field will be done using trans-
verse magnetic(TM) and transverse electric(TE) Bessel vec-
tor potentials; in the Coulomb gauge, they are given by

Ak
sTMd =

c

2v
E0e

iskzz−vtd

3Scm−1sex + ieyd − cm+1sex − ieyd − i
2k'

kz
cmezD ,

s7d

Ak
sTEd =

i

2kz
E0e

iskzz−vtdfcm−1sex + ieyd + cm+1sex − ieydg,

s8d

wherek denotes the set of quantum numbershk' ,kz,mj,

cmsr,f;k'd = Jmsk'rdeimf, s9d

Jm is the cylindrical Bessel function of orderm,

v = cÎk'
2 + kz

2 s10d

and

E0
2 =

"k'

2p
Fkz

2c2

v
G . s11d

The corresponding electric fields areEk
sid= iv /cAk

sid while the
magnetic fields are

Bk
sTMd =

E0v

2ckz
eiskzz−vtdfcm−1sex + ieyd − cm+1sex − ieydg,

s12d

Bk
sTEd =

iE0

2
eiskzz−vtd

3Scm−1sex + ieyd + cm+1sex − ieyd − i
2k'

kz
cmezD .

s13d

From the electromagnetic potentials, the operatorÂ is ob-
tained as

Âsr ,td = o
i=TM,TE

o
m=−`

` E
0

`

dk'E
−`

`

dkzfâm
sidskz,k'dAk

sidsr ,td

+ âm
sid†skz,k'dAk

sid*sr ,tdg, s14d

fâm
sidskz,k'd,âm8

sid†skz8,k'8 dg =
1

k'

dm,m8dsk' − k'8 ddskz − kz8d.

s15d

The normalization condition imposed on the potentials(7)
and (8) guarantees that the radiation energy operator can be
written as[15]

ĤR = o
i,m
E dk' dkz "vN̂m

sid,

N̂m
sid = 1

2sâm
sid†âm

sid + am
sidâm

sid†d. s16d

The linear momentum electromagnetic operator is

P̂ = "o
i
E dk' dkzfk'P̂+

sidsex − ieyd + k'P̂−
sidsex + ieyd

+ kzP̂3
sidezg, s17d

where the operatorsP̂±,3
sid sk' ,kzd are

P̂+
sid = io

m

âm−1
sid† âm

sid, s18d

P̂−
sid = − io

m

âm−1
sid âm

sid†, s19d

P̂3
sid = o

m

N̂m
sid. s20d

Another important quantity is the angular momentum

J =
1

4pc
E
V

r 3 fEsr ,td 3 Bsr ,tdgdV. s21d

TakingV as the whole space, using the standard decomposi-
tion,
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J =
1

4pc
E
V

Eifr 3 ¹ gAidV+
1

4pc
E
V

E 3 A dV

−
1

4pc
R

S
Efr 3 Ag ·ds, s22d

the expression

L̂z =
1

4pc
E
V

Êifr 3 ¹ gzÂi dV= "o
i,m
E dk' dkz mN̂m

sid

s23d

follows for the orbital angular momentum along thez axis
and

Ŵz =
1

4pc
E
V

sE 3 Adz dV

= "o
m
E dk' dkz

c

2v
ikzsâm

sTMd†âm
sTEd − âm

sTMdâm
sTEd†d

s24d

represents the helicity operator. The surface integral in Eq.
(22) is not well defined for the elementary TE and TM modes
because they do not decay rapidly enough asr →`. Similar

but not identical expressions forL̂z and Ŵz are reported in
Ref. [6]. The differences are apparently due to additional
boundary conditions imposed in[6] at surfaces withr
=constant.

The Hamiltonian describing the system formed by the
atom and the electromagnetic radiation is taken to be

Ĥ = ĤP + ĤR + ĤI , s25d

with ĤI the interaction Hamiltonian. The latter results from
minimal coupling of the particles and the electromagnetic
field in Coulomb gauge, as well as the magnetic interaction
between the magnetic momentgiqi /2MiSi associated to the
spin of each particleSi with the radiation magnetic fieldB,

ĤI = ĤI1 + ĤI2 + ĤI3, s26d

ĤI1 = − o
i=1

2
qi

Mi
pi · Âsr id, s27d

ĤI2 = o
i=1

2
qi

2

2Mi
uÂsr idu2, s28d

ĤI3 = − o
i=1

2

gi
qi

2Mi
Si · B̂sr id. s29d

III. MATRIX ELEMENTS OF THE INTERACTION
HAMILTONIAN

A. The interaction Hamiltonian HI1

The first order perturbation theory probability amplitude
of emission of a Bessel photonAk

sid when the atom makes a
transition between an initialC0 and a final stateCF via the
interaction HamiltonianHI1 can be written as

kF,1k
siduHI1u0;0l =

1

i"
sECM

s0d − ECM
sFd d E d3r d3RfCF

* sr ,RdRC0
*sr ,RdgFqeAk

sid*SR +
m

Me
rD + qNAk

sid*SR −
m

MN
rDG +

1

i"
sErel

s0d

− Erel
sFdd E d3r d3RfCF

* sr ,RdrC0
*sr ,RdgFqe

m

Me
Ak

sid*SR +
m

Me
rD − qN

m

MN
Ak

sid*SR −
m

MN
rDG s30d

as long as the separability conditions(5) are satisfied.
Let us define

jlmsr,w;k'd = Jlsk'rdeimw s31d

and consider the case where the argument of the Bessel func-
tion refers to a transverse vectorrW that can be written as the
vector sum of two transverse vectorsrW =R'−q'. For l .0
the Gegenbauer sum rule[16] establishes that

Jlsk'rd
sk'rdl = 2lsl − 1d ! o

v=0

`

sl

+ vd
Jl+vsk'R'd

sk'R'dl

Jl+vsk'q'd
sk'q'dl Cv

l fcosswR − wqdg,

Cv
l = o

s=0

v
Gsl + sdGsl + v − sd
s ! sv − sd ! fGsldg2 cosfsv − 2sdswR − wqdg,

s32d

while it can be shown that[8]

eimw = o
n=0

m

s− 1dnSm

n
Deism−ndwReinwqS sk'R'dm−nsk'q'dn

sk'rdm D .

s33d

Thus, form.0,
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cmsr,w;k'd = jmmsr,w;k'd = 2msm− 1d ! o
v=0

`

sm+ vd
Jm+vsk'R'dJm+vsk'q'd

sk'q'dm o
s=0

v
Gsm+ sdGsm+ v − sd
s ! sv − sd ! sGsmdd2 cosfsv − 2sdswR

− wqdgo
n=0

m

s− 1dnSm

n
DS q'

R'

Dn

eism−ndwReinwq, s34d

while, for m=0 [16],

c0sr,w;k'd = J0sk'rd = o
v=−`

`

Jvsk'R'dJvsk'q'dcosfvswR

− wqdg. s35d

These equations are the basis of the multipolar expansion
of the transition amplitude(30) in cylindrical coordinates.
The relevant values of the vectorq are q=sm /Medr and q
=−sm /MNdr . Before performing explicit multipole calcula-
tions, we show an important result for the emission of a
Bessel photon valid when the center of mass and relative
wave functions are of the form

FsRd =
1

Î2p
eimRwRYCMsR',zRd,

fsr d = QsrdYlrmr
su,wrd, s36d

with Ylm the spherical harmonics. In this case, the integration
over the azimuthal angleswR andwr leads to selection rules
related to the conservation of angular momentum in thez
direction. A direct examination of Eq.(30) and Eqs.(34) and
(35) shows that these selection rules are of the form

m− n ± v 7 2s− m= mR − mR8 ,

n 7 v ± 2s= mr − mr8, s37d

for the transition amplitudes proportional toECM
s0d −ECM

sFd , and

m− i − n ± v 7 2s= mR − mR8 ,

i + n 7 v ± 2s= mr − mr8, s38d

with i = ±1,0, for thetransition amplitudes proportional to
Erel

s0d−Erel
sFd. Here the lettersn, s, andv denote the summation

indices as they appear in Eq.(34). The first(second) equality
in Eqs.(37) and(38) permits the identification of the angular
momentum acquired by the center of mass(internal motion)
in the corresponding emission process. These results are con-
sistent with those reported in Refs.[6,7] for the dipole and
quadrupole transitions. Notice that the total change in the
projection of the angular momentum of the atom along thez
axis is always −m". The conservation of angular momentum
implies that the total angular momentum of the Bessel pho-
ton is m". Thus the helicity term in Eq.(22) obtained from
standard quantum optics definitions must be somehow com-
pensated by the surface integral.

Now, consider the cases for which the longitudinal and
transverse long wavelength approximationskzzr !1 and
k'rr !1 are valid. These conditions are satisfied for optical
Bessel beams and standard atomic systems. Notice that 0
ønøm is the index related to a series expansion on powers
of q' /R' in Eq. (34), and that due to the relation

Jm+vsk'q'd
sk'q'dm = Sk'q'

2
Dv

o
t=0

`

s− 1dt sk'q'd2t

22tt ! sm+ v + td!
,

s39d

v can be regarded as an index related to a power expansion
useful for a long wavelength approximation. Fork'q'!1
the termv=0 is expected to be dominant in the series expan-
sion of the vector potential and the functionscm can be ap-
proximated by

cm , Jmsk'R'do
n=0

m

s− 1dnSm

n
DS q'

R'

Dn

eism−ndwReinwq.

s40d

If the atom is located outside the axes of the Bessel beam
then, in general,q'!R' and then=0 term is dominant.
Under such conditions the neutral atomsqe=−qNd transition
amplitude

kF,1K
siduHI1u0;0l ,

qe

i"
sErel

0 − Erel
F d

3E d3R F0
*sRdAK

sid*sRdFFsRd

3E d3r fF
* sr drf0sr d s41d

contains the standard dipole matrix element for the relative
coordinates. If the center of mass and internal wave functions
are given by Eq.(36), the transition amplitude can be written
as

kF,1K
TEuHI1u0;0l ,

qeE0

kz"
sErel

0 − Erel
F de−ifvt−sEF−E0dt/"g

3 o
j=±1

dm−j ,mR−mR8
d j ,mr8−mr

ICM
s0d sk',kz,m

− jdI relsk',kz, jd, s42d

while
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kF,1K
TMuHI1u0;0l ,

qeE0c

i"v
sErel

0 − Erel
F de−ifvt−sEF−E0dt/"g

3S−
2k'i

kz
fdm,mR8−mR

dmr8,mr
ICM

s0d

3sk',kz,mdI relsk',kz,0d

+ o
j=±1

s− jddm−j ,mR−mR8
d j ,mr8−mr

ICM
s0d sk',kz,m

− jdI relsk',kz, jdgD , s43d

with

ICM
s0d sk',kz,m− jd =E dR' dzYCM

F* sR',zdeikzzJm−jsk'R'd

3YCM
0 sR',zd s44d

and

I relsk',kz, jd =
1

2l r8 + 1hd j ,0fsl r8 − umru + 1ddlr,lr8+1 + sl r8 − umru

− 1dg + s1 − d j ,0dfdlr,lr8+1dumru,umr8u−1

− dlr,lr8−1dumru,umr8u+1gj E dr r3QF
* srdQ0srd. s45d

As expected, the selection rules for transitions involving
the relative motion of the charged particles are the same as
those obtained with a plane wave expansion of the radiation
potential. Notice, however, that according to Eqs.(42) and
(43), the emission of a Bessel photon of orbital angular mo-
mentumm" yielding mr8=mr ±1 leads to a rotational recoil
effect mR8 =mR−m71 for the center of mass while, to this
order of approximation, transitions withmr8=mr and mR8
=mR−m are allowed just for the emission of transverse mag-
netic photons. These transitions favor torque effects on the
center of mass and are specially relevant in the emission of
nonparaxial photons. The idea that rotational recoil effects on
the center of mass motion could occur for Bessel photons
can be traced out to the work of van Enk and Nienhuis[6,7]

Going beyond the approximation corresponding to Eq.
(41) requires to consider both terms withn.0 in the series
(40) and terms withv.0 in Eqs.(34) and(35). In the case of
atoms withMN@Me, the energy involved in changes of the
center of mass motion is usually several orders of magnitude
smaller than the energy involved in changes of the internal
state. As a consequence, the important terms are those pro-
portional toErel

s0d−Erel
sFd in Eq. (30); for them, to lowest order

in m /MN and first order ink'r',

F m

Me
jmmSR +

m

Me
rD −

m

MN
jmmSR −

m

MN
rDG , eimwRJmsk'R'd + S m

Me
D2

k'r'Jm+1sk'R'dcosswR − wrdeimwR

+ s1 − dm,0d
m

Me
Fo

n=1

m Sm

n
DS r'

R'

Dn

eism−ndwReinwrGSJmsk'R'd

+
m

Me
Jm+1sk'R'dk'r' cosswR − wrdD , s46d

and at the same order inkzqz,

eikzszR+qzd , eikzzRs1 + ikzqzd. s47d

When inserted in the transition probability amplitude, Eq.
(30), the terms proportional tor' andz in the last two equa-
tions lead to matrix elements of the relative motion of the
quadrupole typexixj. As a consequence, standard selection
rules are obtained for that degree of freedom, e. g.,Dmz

rel

= ±2" , ±1" ,0.
The terms in Eq.(46) with n.0 are expected to be rel-

evant only when the atomic center of mass is located close to
the axis of symmetry of the Bessel mode. However, there is
a vortex of chargem at that axis andJmsk'rd=0 for r=0 if
mÞ0. Thus, even if the center of mass is properly located,
the matrix element is expected to be small. To explicitly

quantify this effect, consider two specific situations. In the
first, the center of mass states correspond to a free atom

YCM
FreesR',zRd = NCMJmR

sk'
RR'deikz

RzR. s48d

In the second, the atom is trapped by an external harmonic
potential

YCM
HOsR',zRd = NCMe−R'

2 /2a2SR'

a
DumRu

Ln̄
umRusR'

2 /a2deikz
RzR.

s49d

Here n̄=sNR−mRd /2, andNR is the quantum number giving
the energy of the oscillatorER="VRsNR+1d, VR is the fre-
quency of the oscillator anda=Î" /MNVR is the natural am-
plitude of the oscillator.
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For simplicity, in both the free and trapped atom cases, we
take the symmetry axis of the center of mass motion to co-
incide with the axis of the Bessel mode. According to Ref.
[17], if

Isk',k'
R ,k'

R8,m,nd ¬ E
0

`

Jmsk'R'dR'
−n+1

3JmR
sk'

RR'dJmR+m−nsk'
R8R'd s50d

then

Isk',k'
R ,k'

R8,m,nd = 0, s51d

wheneverk'
R8.k'+k'

R , while

Isk',k'
R ,k'

R8,m,nd = 2−n+2k'
msk'

RdmRsk'
R8dm+mR−2

3
Gf3smR + m− nd/2 + 2g

m ! mR!

3 o
u,v=0

`
smR + m− n + 1du+v

s1 + mdus1 + mRdvu ! v!

3S k'

k'
R8
D2uS k'

R

k'
R8
D2v

s52d

otherwise.
Equation(51) reflects the conservation of transverse mo-

mentum, and Eq.(52) shows that the transition amplitude for
n.0 decreases asn increases(each coefficient in the series
expansion of positive terms decreases asn increases). Notice
also that a free center of mass wave function is normalized in
terms of delta distributions. For free atoms, a comparison
with experimental results would require working with wave
packets.

For an atom trapped in a harmonic potential, a direct use
of the integral

E
0

`

dx xn+1e−x2/a2
Ll

n−ssx2/a2dLh
ssx2/a2dJnskxd

= s− 1dl+hs2/Îad−n−1kne−sa2k2/4dLh
s−l−hsa2k2/4d

3Ll
n−s+l−hsa2k2/4d s53d

shows that even forn=0 the transition amplitude depends
exponentially on the ratio of the spread of the harmonic
wave function and the transversal wavelengthk'

2 a2. The
casen.0 can be treated analytically if the center of mass
initial wave function corresponds to the ground state oscilla-
tions (N=0 andmR=0). In that case, we can use the expres-
sion [18]

E
0

`

dx xn−1JmsbÎxdLn
lscxde−cx

=
bms1 − n − m + ldn

2mn ! cn+m/2

Gsn + m/2d
Gsm + 1d

32F2Sn + m/2,n + m/2 − l;n + m/2 − l − n,m + 1;−
b2

4c
D

s54d

to show that

Jsn̄,a,k',md

= sÎadn−mE
0

`

R'
m−2n+1er'

2 /a2
Jmsk'R'dLn̄

m−nsR'
2 /a2d

=
k'

m+2n

2m+2n+1n̄ ! sÎad−n̄−1o
r=0

`
sm+ n̄ − n + rd!
sm+ n̄ + rd ! r!

3S− k'
2 a2

4
Dr

. s55d

Notice that the terms of this series withr @n behave as the
exponential series terms, so that series(55) is convergent
even if k'

2 a2/4.1.

B. Matrix elements of the interaction term HI2

The lowest order contribution of the interactionĤI2 to
spontaneous emission of light from vacuum is quadratic in
the coupling constantqi and, to this order, involves necessar-
ily two photons. For a hydrogenic atom, the value of the
electron-proton mass ratio implies thatqe

2/2Me@qN
2 /2MN

and also

ĤI2 ,
qe

2

2Me
UÂSR +

m

Me
rDU2

. s56d

In the long wavelength limit, one can use the approximation
to the products

cmSR' +
m

Me
r ',zDcm8SR' +

m

Me
r ',zD

, eiskz+kz8dzR−isv+v8dtJmsk'R'd s57d

3Jm8sk'8 R'd o
n,n8=0

m Sm

n
DSm8

n8
D

3S−
m

Me

r'

R'

Dsn+n8d

eism+m8−n−n8dwReisn+n8dwr s58d

in the expression for the relevant electromagnetic modes. As
a consequence, unless the atom is located on the beam axis,
it should be expected that the most important contributions to
the transition probabilities come from then=n8=0 terms in
these series. The two photons are then emitted producing a
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translational and rotational recoil effect on the center of
mass, while the internal state of the atom remains invariant.
Higher order effects can be directly calculated using Eqs.
(34) and (35).

C. Matrix elements of the interaction term HI3

The interaction termĤI3 makes it possible to change the
spin of the particles. The corresponding matrix elements can
be easily calculated within first order perturbation theory us-
ing the identities

gi
qi

2Mi
Si · B̂sTMdsr id = gi

qiv

4Mickz
E0fcm−1sr idŜ+

sid + cm+1sr idŜ−
sidg,

s59d

gi
qi

2Mi
Si · B̂sTEdsr id = gi

iqi

4Mi
E0Scm−1sr idŜ+

sid − cm+1sr idŜ−
sid

−
2ik'

kz
cmsr idŜz

sidD , s60d

with S± the ascending and descending spin operators. Again,
Eqs. (34) and (35) lead to a multipole expansion for the
matrix elements. For hydrogenic atoms, the ratioqi /Mi is
larger for electrons than for nuclei, so that the most probable
event of this type produces changes of the spin angular mo-
mentum of the electron by a factor ±" without changing the
spatial wave function of relative motion, while the center of
mass acquires an angular momentum −sm71d". The event
corresponding to no changes in the internal wave function at
the expense of a recoil effect with a change of the orbital
angular momentum of the center of mass by −m" is also
relevant for nonparaxial photons. Notice that the matrix ele-
ments calculated forHI1 with the proper identifications are
useful in the evaluation of the transition amplitudes associ-
ated toHI3.

IV. COMPARISON WITH SOME PREVIOUS RESULTS
IN THE PARAXIAL APPROXIMATION

Now let us compare our results to those obtained by
Babikeret al. [8] who studied the transition amplitude for the
emission of electromagnetic photons of the generic type

Asx,td = êFsx'deiskzxz−vtdeimw s61d

by hydrogenic atoms within the PZW formalism[19,20]. The
fields (61) can be considered a paraxial approximation to the
so-called left and right polarized Bessel modes[9,21],

Am
sLdsx,t;k',kzd = A0

sLdFsex + ieydcm − iSk'

kz
Dcm+1ezG ,

s62d

Am
sRdsx,t;k',kzd = A0

sRdFsex − ieydcm + iSk'

kz
Dcm−1ezG .

s63d

Their superpositionsAm
sRd±Am

sLd define linearly polarized
modes, and are linear combinations of the elementary TE and
TM modes,

Am
sLd = A0

sLd8SAm+1
sTMd − i

ckz

v
Am+1

sTEdD , s64d

Am
sRd = A0

sRd8SAm−1
sTMd + i

ckz

v
Am−1

sTEdD . s65d

Notice that an indexm for the polarized modes corresponds
to the superposition of TE and TM modes withm±1. Ac-
cording to the results we have obtained, the corresponding
left and right polarized Bessel beams carry an angular mo-
mentumsm±1d" along thez axis.

In the present work we have an explicit form for the ge-
neric functionFsx'd and we obtained a complete multipole
expansion that takes into account both the azimuthal and
radial behavior of electromagnetic Bessel modes. Accord-
ingly, these transition amplitudes extend the results of
Babikeret al. beyond the paraxial limit. Using Eqs.(64) and
(65), it is straightforward to show that our results are consis-
tent with those reported in Ref.[8]. However, there are some
conceptual differences between both approaches. The total
angular momentum for TE and TM photons ism" and can-
not be directly separated into orbital or spin parts. For the
superpositions of the TE and TM modes leading toL andR
modes, this separation seems more natural and permitted
Babiker et al. to conclude that “in the interaction of mol-
ecules with light endowed withorbital angular momentum,
an exchange oforbital angular momentum in an electric
dipole transition occurs only between the light and the center
of mass motion.”

Nevertheless, the circularly polarized modesR andL do
not form an orthogonal basis. This has consequences when
performing a quantization of the electromagnetic field in
terms of them. By choosingA0

sLd8=A0
sRd8=Î1+c2kz

2/v2/2 the
corresponding creation and annihilation operators satisfy the
standard commutation relations

fâm
sLdskz,k'd,âm8

sLd†skz8,k'8 dg =
1

k'

dm,m8dsk' − k'8 ddskz − kz8d,

fâm
sRdskz,k'd,âm8

sRd†skz8,k'8 dg =
1

k'

dm,m8dsk' − k'8 ddskz − kz8d.

s66d

However, not all the other commutators are zero, in fact

fâm
sLdskz,k'd,âm8+2

sRd† skz8,k'8 dg =
1 − c2kz

2/v2

1 + c2kz
2/v2

1

k'

dm,m8dsk'

− k'8 ddskz − kz8d. s67d

These results make it more difficult to interpret the dynami-
cal observables of the field written in terms of creation and
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annihilation operators. For instance, the energy is not diago-
nal in this basis[15].

Thus, the idea that internal angular momentum of the
atom and the spin of the photon as well as the center of mass
angular momentum and the orbital angular momentum of the
photon are separately conserved is just valid in the paraxial
approximation[6]. Besides, when the identification of circu-
larly polarized Bessel photons is made with the modes(64)
and(65) care must be taken because they are not an orthogo-
nal set. An alternative in this case is to consider the super-
positionsA s±d=A0

±sATM ±ATEd which diagonalizeWz given
by Eq. (24) and constitute an orthonomal set[15].

V. CONCLUSIONS AND DISCUSSION

In this Paper we have calculated the emission probability
amplitude of a Bessel photon by an atomic system within
first order perturbation theory. We obtained a closed expres-
sion of the electromagnetic potentials that permits a system-
atic multipole approximation taking into account both the
azimuthal and radial behavior of the electromagnetic Bessel
modes.

It was shown that the emission of a Bessel TE or TM
photon of orderm induces a change in the projection of
angular momentum along thez axis of the atom that is al-
ways of magnitude"m. Thus, the angular momentum carried
by these Bessel photons is precisely"m. Similar results were
obtained by van Enk and Nienhuis[6,7]. Nevertheless, their
relevance must be emphasized because a field theoretical de-
scription of the angular momentum of the electromagnetic
field in terms of TE and TM Bessel modes leads to Eq.(22).
The second term in this equation is usually related to spin
angular momentum, while the surface integral is not well
defined. Thus, the calculations here performed show the rel-
evance of the surface terms and are a direct dynamical evalu-
ation of the total angular momentumz component of a
Bessel photon.

It is important to notice, as van Enk and Nienhuis did[6],
that the vectorial character of the electromagnetic field is
responsible for possible changes ±" in the internal angular
momentum within the dipole approximation. As usual, these
changes are induced by the field components along the cir-
cular vectorsêx± êy. The corresponding transition probabili-
ties are proportional toE0

2,kz
2k'c2/v as can be seen from

Eq. (11). The transition probability of emission of TM Bessel
photons viaHI1 without changes in the internal angular mo-
mentum necessarily leads to the maximum possible ex-
change of angular momentum between a Bessel photon and
the center of mass motion. These transition probabilities are
proportional toE0

2k'
2 /kz

2,k'
3 c2/v and they could be impor-

tant for nonparaxial Bessel photons.
The fact that spontaneously emitted optical Bessel pho-

tons have not been observed can be due to the small value of
the center of mass matrix elements under usual circum-
stances. In this paper, we have explicitly evaluated these el-
ements both for free atoms and for harmonically trapped at-
oms. In the first case, the conservation of linear momentum
in the radial direction do not single out a particular value of

k'
R8; this is an important difference with the result obtained in

the axial direction for which the matrix element is propor-
tional to dskz

R8−kz
R+kzd. Notice that both the radial and axial

photon functions are normalized via delta distributions; that
is, the matrix elements for the emission of a photon with
specific k', starting from a specified wave function of the
center of mass with a givenk'

R , are finite and different from
zero for a continuum range of values of the final transversal
momentum for the center of massk'

R8. As a consequence, the
idealized case of a transition between initial and final states
for the center of mass represented by Bessel functions, has
an effectively zero probability. In any case, comparison with
experimental results would require working with wave pack-
ets. For trapped atoms, the transverse part of the center of
mass wave function is localized. The transition amplitude
depends on the average position of the center of mass and on
the spread of the oscillationa. We have shown that the ma-
trix element of the center of mass motion given by the stan-
dard electric dipole matrix for the internal motion, Eq.(41),
is proportional to two factors. The first is the coefficient
k'

m+2n/an/2 and the second decays exponentially with the fac-
tor k'

2 a2/4 relating the spread of the atom oscillation to the
photon wavelength. For paraxial beams and highly localized
trapped atoms, the conditionk'

2 a2!1 is currently feasible.
Simultaneously, to observe this effect the atom localization
must be such thatk'

m+2n/an/2 is not too small.
We have focused our attention on spontaneous transition

amplitudes, but induced transition probabilities can also be
calculated from them using Einstein relations. They will be
proportional to incident radiation intensity and could experi-
mentally confirm our results. We have explicitly shown that
certain mechanisms can enhance the probability of changing
the internal angular momentum of the atom in multiples of"
larger than those predicted by the standard plane wave mul-
tipole expansion. For instance, transitions withDmr = ±2"
depend on the electric quadrupole matrix elements of the
relative motion and are given by two kinds of transition am-
plitudes: one for the standard quadrupole expansion that is
proportional tok' and the other arising from terms withn
=1 andk=0 in Eq. (34). The latter are due to the vortex of
the Bessel mode in the beam axes and could be detected for
a trapped atom with an adequate value ofk' anda, Eq. (58).

Finally, we have analyzed some specific features of the
transition amplitudes associated to the interaction Hamil-
tonian HI2 and HI3. In the long wavelength limit, the most
important transitions associated to the former Hamiltonian
involve two photons that do not alter the internal motion of
the atom but exchange linear,"skz+kz8d, and angular momen-
tum, sm+m8d", with the center of mass. For hydrogenic at-

oms, the magnetic interactiongiqi /2MiSi ·B̂sr id will favor
changes in the spin orientation of the electron ±" and in the
orbital angular momentum of the center of mass.
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