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The electronic structure of the lithium atom in a strong magnetic field 0øgø10 is investigated. Our
computational approach is a full configuration interaction method based on a set of anisotropic Gaussian
orbitals that is nonlinearly optimized for each field strength. Accurate results for the total energies and one-
electron ionization energies for the ground and several excited states for each of the symmetries20+, 2s−1d+,
4s−1d+, 4s−1d−, 2s−2d+, 4s−2d+, and4s−3d+ are presented. The behavior of these energies as a function of the
field strength is discussed and classified. Transition wavelengths for linear and circular polarized transitions are
presented as well.
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I. INTRODUCTION

During the past 20 years an enormous development of our
knowledge on atoms exposed to strong magnetic fields has
taken place(see the reviews[1–5] and references therein).
Focusing on astrophysical conditions and on the field regime
100øBø105 T for magnetic white dwarfs, it is in particular
the one- and two-electron problems, i.e., the hydrogen and
helium atom, whose behavior and properties in strong mag-
netic fields have been investigated in detail. In both cases our
knowledge of the electronic structure of the atoms has had
major impact on astrophysical observations. For the hydro-
gen atom a huge amount of data is nowadays available with
respect to both the bound state energy levels and transition
moments[2] as well as for the continuum properties[6].
Among others, the corresponding data have lead to a conclu-
sive interpretation of the observed spectrum of the white
dwarf GrW+70°8247, which was a key to our understand-
ing of the properties of spectra of magnetic white dwarfs in
general(see, e.g., Refs.[7–11]).

In the late 1990s a powerful computational approach was
developed and implemented in order to study many-electron
atomic problems in the presence of a strong magnetic field.
During the past six years this approach was applied in order
to investigate the electronic structure of the helium atom
thereby covering the complete regime of astrophysically rel-
evant field strengths[12,13]. Approximately 90 excited elec-
tronic states are now known with high accuracy, thereby
yielding 12 000 transition wavelengths. As a consequence
strong evidence arose that the mysterious absorption edges
of the magnetic white dwarf GD229[14–16], which were
unexplained for almost 25 years, are due to helium in a
strong magnetic fieldB<50 000 T [17,18]. Also very re-
cently the newly established helium data were used to ana-
lyze a number of magnetic and suspected magnetic southern
white dwarfs[19,20].

Although our knowledge of the electronic structure of hy-
drogen and helium in a strong magnetic field have allowed

for the interpretation of absorption features of a variety of
magnetic white dwarfs, there are other magnetic objects
whose spectra cannot be explained in terms of these species.
In addition, due to the increasing availability of observatories
with higher resolutions and sensitivities, new spectra have
been obtained that remain unexplained[21], thereby opening
the necessity for studies of heavier atoms exposed to mag-
netic fields: The ongoing Sloan Digital Sky Survey has al-
ready doubled the number of known magnetic white dwarfs
[22]. It is believed that these heavy atoms are present in the
atmospheres of the corresponding stars due to accretion of
interstellar matter, and in particular it is expected that these
objects are quite common[23]. In spite of this interest in
multielectron atoms in strong magnetic fields, there is only a
very scarce literature. One reason for this is certainly the
conceptual and computational difficulties associated with the
competing electron-electron, electron-nuclear-attraction,
paramagnetic, and diamagnetic interactions, which are of
comparable strength under astrophysical conditions.

The present work makes a start at filling the above-
mentioned gap and develops a full configuration interaction
(CI) approach for multielectron systems, thereby focusing on
the lithium atom in a strong magnetic field. Let us comment
at this point on the state of the art of the literature on the
lithium atom exposed to a field, thereby following a chrono-
logical order. In Ref.[24] a combination of an adiabatic and
Hartree-Fock(HF) approach is employed to obtain ground
state energies for four different field strengths in the high
field regime. Reference[25] also provides values of the
ground state energy via a HF adiabatic approach in the high
field regime. Reference[26] equally employs an unrestricted
HF approach in order to obtain the energies of the ground
states of the symmetry subspaces20+, 2s−1d+, 4s−1d+, and
4s−1d− for the weak to intermediate regime of field strengths
g=0–5 (g denotes the magnetic field strength in atomic
units, whereg=1 corresponds to 2.3553105 T). Reference
[27] also contains a HF investigation of the 120+, 1 2s−1d+,
1 4s−1d+, 1 2s−1d−, and 14s−3d+ electronic states in the com-
plete regimeg=0–1000. Neutral atoms for nuclear charge
numbersZ=1–10 in thehigh field regime are investigated in
Ref. [28] also within a HF approach. The crossovers of the
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symmetries of the ground states are discussed and analyzed
in detail. Reference[29] uses a so-called frozen-core ap-
proach to simplify the three-electron problem in a strong
magnetic field. This was the first fully correlated approach to
the lithium atom although it is only valid, i.e. reliable, for not
too strong magnetic fields. The three energetically lowest
states of20+, 2s−1d+, and2s−2d+ symmetry have been studied
for the regimeg=0–5.4. More recently[30] added to these
results a denser grid of field strengths for the same regime of
field strengths and provides also a few oscillator strengths of
the corresponding transitions. Finally,[31] provides some re-
sults on the ground state energies of neutral atomsZ=1–26
for a few field strengths.

The present investigation goes in several respects signifi-
cantly beyond the results in the existing literature on lithium
in a strong magnetic field. First of all it covers the complete
weak to intermediate regime of field strengthsg=0–10 and
more importantly we provide accurate results of the energies
and transition wavelengths for many excited states that have
not been studied so far employing a fully correlated ap-
proach. The ground and many excited states for each of the
symmetry subspaces20+, 2s−1d+, 4s−1d+, 4s−1d−, 2s−2d+,
4s−2d+, and4s−3d+ are investigated, thereby yielding a total
of 28 states and their behavior as a function of the field
strength for a grid of 11 field strengths in the above-
mentioned regime. This multiplies the existing knowledge on
the electronic structure of the lithium atom in strong fields.

In detail we proceed as follows. Section II provides the
electronic Hamiltonian and discusses its symmetries. Section
III contains a description of our full configuration interaction
approach and its implementation as well as remarks on the
basis set of nonlinearly optimized anisotropic Gaussian or-
bitals. Section IV, which is the central part of this work,
presents the results, i.e., the total and ionization energies for
the ground and many excited states for a variety of symme-
tries. Section V yields the wavelengths of the electromag-
netic transitions. We close with a summary in Sec. VI.

II. HAMILTONIAN AND SYMMETRIES

The starting point of our investigations is the electronic
Hamiltonian for infinite nuclear mass, which in atomic units
(a.u.) and for the symmetric gauge of the vector potential
takes the following form:

HsBd = o
i=1

3

HisBd +
1

2o
iÞ j

Hij s1d
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HereHisBd represents the one-particle Hamiltonian of theith
particle andHij is the two-particle interaction between par-
ticles i and j . Specifically,HisBd contains the Zeeman term

1
2B ·l i, which represents the interaction of the magnetic field
with the angular momentum of the electron, the diamagnetic
term 1

8sB3 r id2, the Coulomb interaction with the nuclear
charge −3/ur iu, and the spin Zeeman termsg/2dB ·si. The
two-particle operator represents the electron-electron Cou-
lomb repulsion.

If the magnetic field is chosen to point in thez direction,
the component of the total angular momentum along thez
axis M, the total spinS, thez projection of the total spinSz,
and the totalz parity Pz are conserved. In the following we
use the spectroscopic notationn2S+1MPz for the electronic
states. Heren stands for the degree of excitation, with re-
spect to the specified symmetry. In the following all total
energies are given for the spin maximally polarized antipar-
allel to the direction of the magnetic field(i.e., Sz=−S). The
energies for other spin projections can be obtained by adding
the corresponding spin Zeeman energy difference.

III. NUMERICAL METHOD

The Schrödinger equation is solved by applying a full CI
approach. The basic ingredient is an anisotropic Gaussian
basis set, which was put forward by Schmelcher and Ceder-
baum[32], and which has been successfully applied to sev-
eral atoms, ions and molecules[12,13,33–35]. The corre-
sponding basis functions have been optimized for each field
strength and each symmetry separately, in order to solve dif-
ferent one- and two-particle problems, i.e., H, Li+, and Li2+,
in a magnetic field of the corresponding strength. Therefore a
nonlinear optimization procedure has been applied, which
was worked out in our group(see Refs.[12,13]).

Our lithium calculations were performed using a configu-
rational basis set of three-electron Slater determinants. The
latter are constructed from the canonical orthogonal one-
particle basis set(see Ref.[36]), which is obtained by the
following cutoff technique. In the first step the overlap ma-
trix Ssmj ,pzj

d of the primitive Gaussian orbitals is con-
structed. Its eigenvectorshvsj

smj ,pzj
dj and corresponding ei-

genvalueshesj
smj ,pzj

dj are determined. For the following
calculations we restrict the number of eigenvectorsvsj

to
those that possess eigenvaluesesj

above an appropriately
chosen threshold«. In this way we avoid quasilinear depen-
dencies in the configuration space generated by our opti-
mized basis set. With the remaining vectorsvsk

the
Schrödinger equation for the one-particle HamiltonianHisBd
is mapped on an ordinary matrix eigenvalue problem. The
latter is solved numerically and the resulting eigenvectors
hhismj ,pzj

dj serve as the spatial part of our one-particle basis
set for the electronic structure calculations. The spinorx j is a
products of this orthogonal one-particle basis function
hismj ,pzj

d and the usual spin eigenfunctionsa or b. Three-
electron Slater determinants are constructed from spinors
obeying the correct symmetries, i.e.,

m1 + m2 + m3 = M , s4d

pz1
pz2

pz3
= Pz, s5d
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sz1
+ sz2

+ sz3
= Sz. s6d

In order to keep the one-particle basis set as small as
possible, an appropriate selection scheme for the basis func-
tions is crucial. This concerns the selection of the symmetries
of the one-particle functions as well as the selection from
appropriate sets of orbitals which result from the above men-
tioned nonlinear optimizations.

In general, the core electrons of doublet states of the
lithium atom, i.e., the 1s2 configuration, are well described
by functions optimized for the Li+ 1 10+ state. Therefore we
applied a two-particle optimization procedure to functions
with the one-particle symmetriesmpz=0+ andmpz=0−. Fur-
ther orbitals involved in the calculation of the doublet states
of the lithium atom are obtained by optimizing orbitals for
the hydrogen atomZ=1.

For the fully spin-polarized quartet states, the situation is
different. Electrons are much less correlated and therefore
the computationally demanding two-particle optimizations
are not truely necessary. Core electrons, i.e.,mpz=0+ and
mpz=0−, are described by functions optimized for Li2+, ener-
getically higher orbitals such asmpz=s±1d+, mpz=s±1d− are
taken from basis sets optimized forZ=2, others from basis
sets optimized forZ=1.

Typically the one-particle basis sets consist of approxi-
mately 100 Gaussian functions, which give rise to 8000–
40 000 three-electron Slater determinants, depending on the
addressed symmetry subspace. Very sophisticated algorithms
allow calculation of the full Hamiltonian matrix efficiently.
We exploit the fact that the Hamiltonian matrix is a sparse
and symmetric one and apply a Lanczos algorithm for its
diagonalization.

IV. TOTAL AND IONIZATION ENERGIES

A. Total energies and global ground states

The symmetries of the global ground states of individual
atoms or ions change depending on the field strength
[27,28,37–39]. In different field regimes eigenstates with dif-
ferent symmetries represent the ground state of the system.
Therefore the global ground state of an atom or ion experi-
ences a series of crossovers. These crossovers emerge from
the delicate interplay between the different terms of the
Hamiltonian in the field such as the spin Zeeman, diamag-
netic, and Coulomb interactions. Of particular importance
here are the magnetically tightly bound orbitals that repre-
sent a key ingredient of strongly bound atomic or ionic states
in strong fields. The number of ground state crossovers for a
certain atom or ion in the field cannot be predicted, e.g., on
the grounds of symmetry reasoning but has to determined
through electronic structure calculations in the presence of
the field. The above holds in particular for the lithium atom
considered here.

The total energies of the components of the global elec-
tronic ground state for lithium as a function of the field
strength are depicted in Fig. 1. Forg=0 and in the low field
regime 0,gø0.1929 the state 120+ represents the ground
state. It is a doubly tightly bound state, i.e., it involves two
tightly bound orbitals of 1s character[although we are em-

ploying full CI calculations here, we will occasionally use
the mean-field Hartree-Fock(HF) orbital notation to eluci-
date the character of the fully correlated atomic wave func-
tion]. For doublet statessSz=−1/2d, the total energy de-
creases for weak fields, due to the spin Zeeman term, and it
increases for strong fields, which is a consequence of the
predominance of the increasing(positive definite) kinetic en-
ergy. For the 120+ state the total energy passes through a
minimum atg<0.304 a.u. In the intermediate field regime
s0.1929øgø2.210d the ground state of the lithium atom is
represented by the triply tightly bound state 12s−1d+, which
contains in particular the dominant 1s 22p−1 configuration.
Figure 1 shows that the total energy of this state also passes
through a minimum, which is at higher field strengthssg
<1.466d compared to the position of the minimum of the
low field ground state. The total energy of the triply tightly
bound quartet state 14s−3d+, which represents the ground
state of the lithium atom for high field strengthssg.2.210d,
is dominated by the spin Zeeman termsSz=−3/2d. This re-
sults in a monotonically decreasing total energy.

Our values for the field strengths corresponding to the
crossovers of the global ground state deviate by about 10%

TABLE I. Total energies for Li+ associated with one-particle
ionization thresholds at different field strengths for the considered
lithium states.

g
1 10+

Etot (a.u.)
1 30+

Etot (a.u.)
1 3s−1d+

Etot (a.u.)

0.000 −7.277191 −5.110633 −5.026321

0.001 −7.277189 −5.111640 −5.027815

0.010 −7.277327 −5.120614 −5.041247

0.020 −7.277376 −5.110313 −5.056040

0.050 −7.277336 −5.159107 −5.099595

0.100 −7.276897 −5.204480 −5.169539

0.200 −7.274673 −5.286753 −5.300455

0.500 −7.259522 −5.483980 −5.643726

1.000 −7.205547 −5.727321 −6.119216

2.000 −7.004453 −6.126974 −6.899768

5.000 −5.891947 −7.170075 −8.636273

5.400 −5.704147 −7.292325 −8.827671

10.000 −3.153453 −8.490652 −10.659060

FIG. 1. Total energiesEtot of the global ground states of the
lithium atom in a.u. as functions of the magnetic field strengthg.
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from previously published values for the first crossover and
approximately 3% for the second crossover. Ivanov and
Schmelcher(HF calculations) [27] state for the first crossing
field g=0.17633 and Guan and Li(modified full core plus
correlation method) give 0.1753[30]. The field strength be-
longing to the second crossover is found by Ivanov and
Schmelcher atg=2.153 compared to our value of 2.210.

B. Ionization threshold

In order to calculate one-particle binding energies the ion-
ization threshold has to be defined. In the following, we will
define one-particle ionization as a process that brings one
electron to infinity and thereby conserves all quantum num-
bers of the atomic state. The one-particle ionization threshold

ETsM ,Szd for a state with magnetic quantum numberM and
z projectionSz of the total spin is defined in the following
way:

ETsM,Szd = min
M1,Sz1

ELi+sM1,Sz1
d + Ee−

sM2,Sz2
d s7d

whereELi+sM1,Sz1
d andEe−

sM2,Sz2
d are the total energies of

the Li+ ion and the electron, respectively, depending on their
magnetic quantum numbersMi and z projections Szi

si
=1,2d of the total spin. The quantum numbers for the elec-
tron, M2 andSz2

, can be expressed in terms of the ionic and
atomic quantum numbers as

M2 = M − M1, Sz2
= Sz − Sz1

. s8d

This procedure has to be repeated for each symmetry and
field strength in order to identify the corresponding thresh-
old. Therefore several energy levels of Li+ have to be con-
sidered as a function of the field strength. Table I shows the
total energies for the Li+ states associated with one-particle
ionization thresholds.

In the following, we will present our results for the total
energies and the one-particle ionization energies for a variety
of states of the lithium atom with different symmetries.

C. The symmetry subspace20+

We present in Fig. 2 the one-particle ionization energies
for the n 20+ statessn=1,2,3,4d, and in Table II numerical

FIG. 2. One-particle ionization energies for the statesn 20+ sn
=1,2,3,4d as a function of the magnetic field strengthg.

TABLE II. Total energiesEtot, one-particle ionization energiesEion, and previously published results for the total energiesElit at different
field strengthsg in a.u. for the statesn 20+ sn=1,2,3,4d.

g

1 20+ 2 20+ 3 20+ 4 20+

Etot Eion Elit Etot Eion Etot Eion Etot Eion

0.000 −7.477766 0.200575 −7.47806032310a −7.350744 0.073553 −7.304474 0.272828 −7.280117 0.002925

0 (Lit ) −7.354076e −7.3355235f −7.318315e

0.001 −7.478032 0.200843 −7.43326b −7.352286 0.075097 −7.329739 0.052550 −7.310861 0.033672

0.010 −7.482888 0.205562 −7.43760b −7.357941 0.080615 −7.338823 0.061497 −7.311831 0.034505

0.020 −7.490983 0.21367 −7.44214b −7.363118 0.085743 −7.344767 0.067391 −7.320737 0.043361

0.050 −7.502724 0.213607 −7.365504 0.088169 −7.344529 0.067193 −7.322185 0.044850

0.100 −7.517154 0.240838 −7.5137817c −7.367564 0.090667 −7.317517 0.040620 −7.300920 0.024023

0.200 −7.533495 0.258822 −7.48400b −7.374189 0.099516 −7.326335 0.51662 −7.301269 0.026596

0.500 −7.528055 0.268532 −7.5235946c −7.361991 0.102469 −7.312259 0.052736 −7.285148 0.025626

1.000 −7.458550 0.253003 −7.40879b −7.301070 0.095523 −7.255573 0.050026 −7.233152 0.027605

2.000 −7.244919 0.240466 −7.19621b −7.092907 0.088454 −7.050638 0.046185 −7.033148 0.028695

5.000 −6.136918 0.244971 −6.08811b −5.980919 0.088972 −5.939235 0.047289 −5.919658 0.027712

5.400 −5.949297 0.245150 −5.8772d −5.793212 0.089065 −5.751426 0.047279 −5.731222 0.027075

10.00 −3.406556 0.253103 −3.35777b −3.243308 0.089855 −3.200544 0.047091 −3.181432 0.027979

aReference[40].
bReference[27].
cReference[30].
dReference[26].
eReference[41].
fReference[42].
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values for the corresponding total energies and one-particle
ionization energies, including previously published data for
the total energies. The ionization threshold for these and for
all other considered doublet states is associated with the Li+

state 110+. The energetically lowest of the states in the20+

symmetry subspace represents as mentioned above the global
ground state of the atom for low magnetic field strengths.
Comparing the total energies to the previously published data
shows that the relative accuracy forg=0 for the ground state
is 4310−5, 5310−4 for the state 220+, and 4310−3 for the
3 20+ state. For finite field strengths our results are signifi-
cantly below the Hartree-Fock results[26,27] and at least for
gù0.1 below the correlated results of Guan and Li[30].

In Fig. 2 it can be seen that the one-particle ionization
energy of the ground state only weakly depends on the field
strength. For a vanishing field it amounts to 0.200 58 a.u.,
whereas at a field strength ofg=10 it is 0.253 10 a.u. It
increases for weak to intermediate field strengths and pos-
sesses a maximum in the intermediate field regime. A similar
statement holds for the first excited state of this symmetry

subspace, i.e., for the state 220+. The one-particle ionization
energies for the states 320+ and 420+ exhibit a more pro-
nounced dependence on the field strength. This is especially
true in the intermediate field regime, where an avoided cross-
ing occurs between 220+, 3 20+, and 420+.

D. The symmetry subspacen 2
„−1…+

The ground state of the symmetry subspace2s−1d+ repre-
sents the global ground state of the lithium atom in the in-
termediate field regime. It is a triply tightly bound state,
being predominantly described by the orbitals 1s22p−1.
Therefore its one-particle ionization energy increases much
more rapidly with increasing field strength than the corre-
sponding energy of the low field ground state 120+. This is
shown in Fig. 3 and numerical values for the states
n 2s−1d+ sn=1,2,3,4d are listed in Table III. Compared to
the accurate, zero field results of Sims and Hagstrom[43], it
can be seen that the relative accuracy for the states 12s
−1d+, 2 2s−1d+, and 32s−1d+ is about 4310−4. For finite

TABLE III. Total energiesEtot, ionization energiesEion, and previously published dataElit in atomic units for the statesn 2s−1d+ sn
=1,2,3,4d at different field strengthsg.

g

1 2s−1d+ 2 2s−1d+ 3 2s−1d+ 4 2s−1d+

Etot Eion Elit Etot Eion Elit Etot Eion Elit Etot Eion

0.000 −7.407126 0.129935 −7.41016a −7.334196 0.057005 −7.33716a −7.307804 0.030612 −7.31190a −7.306793 0.029602

0.001 −7.408174 0.130986 −7.36609b −7.335244 0.058055 −7.309562 0.032373 −7.307796 0.030607

0.010 −7.416994 0.139667 −7.37481b −7.342662 0.065336 −7.315155 0.037828 −7.312592 0.035266

0.050 −7.451086 0.173750 −7.356351 0.079016 −7.329477 0.052141 −7.309611 0.032275

0.100 −7.484773 0.207876 −7.4869343c −7.360814 0.083917 −7.328362 0.051465 −7.310557 0.033660

0.200 −7.536032 0.261359 −7.49220b −7.367931 0.093258 −7.322619 0.047946 −7.302308 0.027635

0.500 −7.634547 0.375024 −7.6362483c −7.372074 0.112552 −7.312484 0.052961 −7.285485 0.025962

1.000 −7.716679 0.511132 −7.66653b −7.335940 0.130393 −7.263503 0.057956 −7.236899 0.031352

2.000 −7.715709 0.711256 −7.66246b −7.154170 0.149717 −7.067417 0.062964 −7.038129 0.033676

5.000 −7.002346 1.110399 −6.94230b −6.068381 0.176434 −5.961689 0.069743 −5.927829 0.035882

5.400 −6.855410 1.151263 −6.8361629c −5.882659 0.178512 −5.774341 0.070194 −5.740265 0.036118

10.00 −4.684076 1.530623 −4.61777b −3.348774 0.19532 −3.227581 0.074128 −3.191029 0.037576

aReference[43].
bReference[27].
cReference[30].

FIG. 3. One-particle ionization energies for the statesn 2s−1d+

sn=1,2,3,4d in a.u. as a function of the magnetic field strengthg.
FIG. 4. One-particle ionization energy for the statesn 4s−1d+

sn=1,2,3,4d in a.u. as a function of the magnetic field strengthg.
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fields the comparison of the total energies for the 12s−1d+

state is as follows: our energies are significantly below the
HF energies[27]; for g,0.5 they are above the correlated
results in Ref.[30] and forgù0.5 below them.

Furthermore, Table III shows that the state 12s−1d+ be-
comes forgù0.2 the most tightly bound state, i.e., the state
with the highest one-particle ionization energy. This holds
even for high fields, although there the quartet states have a
much lower total energy. For the state 12s−1d+ the one-
particle ionization energy increases by more than one order
of magnitude in the considered field range: 0.129 935 a.u. at
zero magnetic field, and 1.530 623 a.u. atg=10.

The one-particle ionization energy of the first excited state
2 2s−1d+ also increases monotonically as a function of the
field strength. Atg=0 it is 0.055 81 a.u.; forg=10 it be-
comes 0.195 25 a.u. and therefore has increased by almost
a factor of 4. For the higher excited states 32s−1d+ and
4 2s−1d+ the effect of an avoided crossing can be observed.
Therefore the one-particle ionization energies of these states
show a more complex behavior. As a result their ionization
energy increases fromg=0 to g=10 to a much lower extent
than the ionization energy for the ground and the first excited
states.

E. The symmetry subspace4„−1…+

Our results for the symmetry subspace4s−1d+ are pre-
sented in Fig. 4 and in Table IV. The spin Zeeman term
causes the total energies of all these fully spin-polarized
quartet states to decrease monotonically. On the other hand,
this is not reflected by the one-particle ionization energies,
which increase or decrease weakly. The ground state
1 4s−1d+ is a doubly tightly bound state predominantly con-
sisting of the configuration 1s2s2p−1. An increase of the one-
particle ionization energy can be observed in the field regime
g,0.2, which is similar to the increase in the ionization

energy for the triply tightly bound state 12s−1d+. However,
in the field regimegù0.5 the ionization energy of the state
1 4s−1d+ decreases. The reason for this is the different one-
particle ionization threshold in the different field regimes.
For weak field strengths the ionization threshold involves the
Li+ state 130+, which is a singly tightly bound state, whereas
for g.0.2 it is the 13s−1d+ state of the Li+ ion which is a
doubly tightly bound state.

The decrease in the one-particle ionization threshold can
also be observed for the higher excited states of this symme-
try [n 4s−1d+ with n=2, 3, 4]. Additional avoided crossings
cause the one-particle ionization energies of the states
3 4s−1d+ and 44s−1d+ to decrease. This is very impressive for
the state 44s−1d+, for which the ionization energy atg=0.1
is 0.065 426 a.u. and decreases by about one order of mag-
nitude to 0.006 859 a.u. atg=10.

F. The symmetry subspacen 4
„−1…−

In this subsection we will review the results for the quar-
tet states with magnetic quantum numberM =−1 and nega-
tive z parity, i.e., n 4s−1d− sn=1,2,3,4d. In the low field
regimesg,0.1d all the curves in Fig. 5 behave similarly: we
observe a significant increase of the ionization energies for
all considered states of this symmetry subspace. At higher
field strengths the energies develop differently for the differ-
ent states. The one-particle ionization energy of the state
1 4s−1d− increases monotonically. The ionization energies of
the higher excited states 24s−1d−, 3 4s−1d−, and 44s−1d−

reach a local maximum for 0.1,g,1. At higher field
strengthssg.1d we observe that the one-particle ionization
energies for these states become nearly field independent.

Table V contains the corresponding numerical values. For
this symmetry subspace a crossover for the Li+ threshold
state can be observed, as for the4s−1d+ subspace discussed in
the previous subsection.

TABLE IV. Total energiesEtot, one-particle ionization energiesEion, and previously published dataElit in a. u. for the statesn 4s−1d+

sn=1,2,3,4d, as well as the threshold symmetryTsym for different field strengthsg.

g Tsym

1 4s−1d+ 2 4s−1d+ 3 4s−1d+ 4 4s−1d+

Etot Eion Elit Etot Eion Etot Eion Etot Eion

0.000 30+ −5.366705 0.256072 −5.35888a −5.185835 0.075202 −5.149221 0.038588 −5.141528 0.030895

0.001 30+ −5.368015 0.256375 −5.36088a −5.187601 0.075961 −5.151053 0.039413 −5.143423 0.031783

0.010 30+ −5.385841 0.265227 −5.37871a −5.205247 0.084633 −5.165602 0.044987 −5.159412 0.038798

0.100 30+ −5.550268 0.345788 −5.54149a −5.321977 0.117497 −5.278074 0.073594 −5.269906 0.065426

0.200 3s−1d+ −5.703511 0.403056 −5.69451a −5.416500 0.116045 −5.410188 0.109732 −5.360211 0.059756

0.500 3s−1d+ −6.058463 0.414736 −6.04787a −5.764438 0.120712 −5.698644 0.054917 −5.670565 0.026839

1.000 3s−1d+ −6.494196 0.374980 −6.48029a −6.233729 0.114513 −6.172480 0.053263 −6.149065 0.029849

2.000 3s−1d+ −7.206026 0.306258 −7.18889a −6.997908 0.098140 −6.947211 0.047444 −6.923717 0.023949

5.000 3s−1d+ −8.905985 0.269712 −8.88981a −8.726111 0.089838 −8.680340 0.044067 −8.650224 0.013952

5.400 3s−1d+ −9.096395 0.268724 −9.0035b −8.917195 0.089525 −8.861757 0.034086

10.00 3s−1d+ −10.925976 0.266916 −10.91059a −10.748366 0.0893068 −10.702625 0.043565 −10.665919 0.006859

aReference[27].
bReference[26].
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G. The symmetry subspacen 2
„−2…+

In this subsection, we present our results for the2s−2d+

symmetry subspace. Figure 6 shows the curves for the one-
particle ionization energy and Table VI contains the numeri-
cal results for the total energies and one-particle ionization
energies and as well as previously published data. The
ground state of this symmetry, 12s−2d+, is a triply tightly
bound state. Therefore the one-particle ionization energy in-
creases monotonically. For this state the increase amounts to
more than one order of magnitude in the considered range of
field strengths. At zero field it is 0.0554 a.u. and atg=10
1.017 a.u., i.e., an increase by approximately a factor of 20.

For the first excited state of this symmetryf2 2s−2d+g we
observe in Fig. 6 an increase that is less pronounced than for
the ground state of the same symmetry. We obtain for its
one-particle ionization energy at vanishing field
0.031 106 a.u. and at the highest considered field strength
sg=10d 0.172 684 a.u., which corresponds to an increase by
a factor of 5.

For the two higher excited states of this symmetry
[3 2s−2d+ and 42s−2d+] the situation is different. In the inter-
mediate field regime avoided crossings again take place.

Therefore their one-particle ionization energies pass through
local minima atg<0.1 f3 2s−2d+g and g<0.2 f4 2s−2d+g,
respectively.

H. The symmetry subspacen 4
„−2…+

For the corresponding quadruplet subspace4s−2d+ the ion-
ization energies are shown in Fig. 7 and numerical values are
given in Table VII. The behavior of the one-particle ioniza-
tion energies is different compared to the corresponding be-
havior of the doublet states presented in the previous subsec-
tion. At low fieldssg,0.05d an increase can be observed for
all states considered in this work. For the ground state
1 4s−2d+ the one-particle ionization energy increases from
0.060 17 a.u. atg=0 to 0.190 927 a.u. atg=0.2, where it
reaches a local maximum. At this field strength the ionization
threshold changes, as for the other quadruplet states. Conse-
quently the ionization energy decreases and passes through a
local minimum atg<1. At g<0.5 an avoided crossing oc-
curs, which leads to an increase of the one-particle ionization
energy for the state 14s−2d+ for higher field strengths. On the
other hand, the corresponding energy for the state 24s−2d+,
which increases forg*0.5, acquires a strongly decreasing

FIG. 5. One-particle ionization energy for the statesn 4s−1d−

sn=1,2,3,4d in a.u. as a function of the magnetic field strengthg.

TABLE V. Total energiesEtot, one-particle ionization energiesEion, and previously published dataElit in a.u. for the statesn 4s−1d− sn
=1,2,3,4d and the corresponding threshold symmetryTsym at different field strengthsg.

g Tsym

1 4s−1d− 2 4s−1d− 3 4s−1d− 4 4s−1d−

Etot Eion Elit Etot Eion Etot Eion Etot Eion

0.000 30+ −5.243519 0.1328852 −5.24554a −5.172069 0.0614360 −5.144236 0.0336028 −5.128015 0.0173817

0.001 30+ −5.245744 0.1341042 −5.23386b −5.174078 0.0624380 −5.146267 0.0346276 −5.133621 0.0219813

0.010 30+ −5.262918 0.1423040 −5.25170b −5.191736 0.0711218 −5.161532 0.0409179 −5.146381 0.0257669

0.050 30+ −5.339046 0.1799396 −5.257953 0.0988460 −5.210369 0.0512629 −5.192019 0.0329123

0.100 30+ −5.429067 0.2245868 −5.41643b −5.326415 0.1219344 −5.265077 0.0605963 −5.262003 0.0575226

0.200 3s−1d+ −5.587442 0.2869864 −5.57585b −5.441002 0.1405464 −5.399005 0.0985497 −5.352709 0.0522539

0.500 3s−1d+ −5.983849 0.3401224 −5.96957b −5.748951 0.1052242 −5.697593 0.0538666 −5.691942 0.0482154

1.000 3s−1d+ −6.508527 0.3893105 −6.49248b −6.229901 0.1106850 −6.170544 0.0513275 −6.147671 0.0284546

5.000 3s−1d+ −9.148122 0.5118489 −9.12554b −8.760873 0.1245998 −8.691638 0.0553655 −8.665490 0.0292174

10.00 3s−1d+ −11.204311 0.5452518 −11.17886b −10.787789 0.1287291 −10.715697 0.0566372 −10.688192 0.0291328

aReference[27].
bReference[26].

FIG. 6. One-particle ionization energy for the statesn 2s−2d+

sn=1,2,3,4d in a.u. as a function of the magnetic field strengthg.
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behavior due to this avoided crossing. Further avoided
crossings among the higher excited states cause the
states 34s−2d+ and 44s−2d+ to become unbound for
g.1 f3 4s−2d+g andg.0.5 f4 4s−2d+g, respectively. We re-
mark that to our knowledge there are no prevoiusly calcu-
lated data on states of the4s−2d+ symmetry in the literature.

I. The symmetry subspacen 4
„−3…+

Let us discuss our results for the symmetry subspace
2S+1MPz=4s−3d+. The energetically lowest state in this sub-
space represents the global ground state of the lithium atom
in the high field regime, as mentioned above. It is a triply
tightly bound state containing the orbitals 1s2p−13d−2. In
Fig. 8 it can be seen that its one-particle ionization energy

TABLE VI. Total energiesEtot, one-particle ionization energiesEion, and previously published dataElit in atomic units for the states
n 2s−2d+ sn=1,2,3,4d at different field strengthsg.

g

1 2s−2d+ 2 2s−2d+ 3 2s−2d+ 4 2s−2d+

Etot Eion Elit Etot Eion Etot Eion Etot Eion

0.000 −7.332617 0.055426 −7.335523541a −7.308297 0.031106 −7.297036 0.019845 −7.296823 0.019632

0.001 −7.334097 0.056908 −7.309735 0.032547 −7.297990 0.020801 −7.294566 0.017378

0.010 −7.346296 0.068969 −7.318595 0.041269 −7.306747 0.029421 −7.301231 0.023905

0.050 −7.383648 0.106312 −7.330479 0.053143 −7.314511 0.037175 −7.305505 0.028169

0.100 −7.414207 0.137310 −7.4169780b −7.339471 0.062574 −7.312327 0.035430 −7.296226 0.019329

0.200 −7.455585 0.180912 −7.349825 0.075152 −7.314596 0.039923 −7.291517 0.016844

0.500 −7.524481 0.264958 −7.353984 0.094462 −7.305925 0.046403 −7.284644 0.025122

1.000 −7.562892 0.357345 −7.316557 0.111010 −7.257044 0.051497 −7.231281 0.025735

5.000 −6.633118 0.741172 −6.045774 0.153827 −5.955127 0.063181 −5.923863 0.031917

5.400 −6.472203 0.768057 −6.451608b −5.860240 0.156093 −5.768012 0.063865 −5.736691 0.032544

10.00 −4.170890 1.017437 −3.326137 0.172684 −3.221213 0.067760 −3.186407 0.032955

aReference[40].
bReference[30].

TABLE VII. Total energiesEtot and one-particle ionization energiesEion in a.u. for the statesn 4s−2d+ sn=1,2,3,4d and the threshold
symmetryTsym at different field strengthsg.

g Tsym

1 4s−2d+ 2 4s−2d+ 3 4s−2d+ 4 4s−2d+

Etot Eion Etot Eion Etot Eion Etot Eion

0.000 30+ −5.170803 0.060170 −5.143875 0.033242 −5.131679 0.021046 −5.124827 0.014194

0.001 30+ −5.173261 0.061621 −5.146306 0.034666 −5.134036 0.022396 −5.129671 0.018031

0.010 30+ −5.194678 0.074063 −5.164667 0.044053 −5.150889 0.030275 −5.146865 0.026251

0.050 30+ −5.274146 0.115039 −5.217208 0.058102 −5.207536 0.048430 −5.199501 0.040395

0.100 30+ −5.355652 0.151172 −5.289006 0.084526 −5.271140 0.066660 −5.243141 0.038661

0.200 3s−1d+ −5.491382 0.190927 −5.426277 0.125822 −5.370458 0.070003 −5.362501 0.062046

0.500 3s−1d+ −5.798837 0.155110 −5.778279 0.134552 −5.704042 0.060316 −5.675295 0.031569

1.000 3s−1d+ −6.268653 0.149437 −6.178554 0.059338 −6.173405 0.054189

2.000 3s−1d+ −7.066163 0.166395 −6.959543 0.059775

5.000 3s−1d+ −8.826185 0.189912 −8.674211 0.037938

10.00 3s−1d+ −10.865122 0.206062 −10.666670 0.007610

FIG. 7. One-particle ionization energies for the statesn 4s−2d+

sn=1,2,3,4d in a.u. as a function of the magnetic field strengthg.
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increases strongly as a function of the field strength. At zero
magnetic field it is about 0.031 64 a.u., whereas atg=10 an
energy of 1.3033 a.u. is needed to ionize the state. Therefore
the one-particle ionization energy increases roughly by a fac-
tor of 40. However, if the reader compares the one-particle
ionization energies in Table VIII with Table III, it is evident
that the state 14s−3d+ is not the state with the highest ion-
ization energy for any field strength.

The ionization energies for the excited states 24s−3d+,
3 4s−3d+, and 44s−3d+ all behave very similarly. Their ion-
ization energy increases up tog<0.5, where a local maxi-
mum is reached. For 0.5*g*2 the ionization energy de-
creases, whereas for higher field strengths it increases again
with a lower slope than forg,0.5. Our numerical energy
values for the 14s−3d+ state are always lower than the ener-
gies obtained in the literature(see Table VIII and Refs.
[27,28]).

V. WAVELENGTHS FOR ELECTROMAGNETIC
TRANSITIONS

In this section we present the results for the wavelengths
l of the allowed electric dipole transitions. We will restrict
the wavelengths to the regimel,105 Å in order to avoid

too large uncertainties. In the following we will consider the
linearly polarized transition n 4s−1d+→m 4s−1d− sn ,m
=1,2,3,4d (shown in Fig. 9) and the circularly polarized
transitions n 2S+1M+→m 2S+1sM −1d− sn ,m=1,2,3,4d for
sM ,Sd=s0,2d, s−1,2d, s−1,4d, ands−2,4d in Figs. 10–13.

First, we discuss some general features of the transition
wavelengths. For the circularly polarized transitionssM ,Sd
=s0,2d, s−1,2d, and s−2,4d (presented in Figs. 10, 11, and
13) it can be observed that some transition wavelengths de-
crease in the limit of a strong field, thereby following a
power law, whereas for the linearly polarized transition(Fig.
9), and the circularly polarized transitionsM ,Sd=s−1,4d
(Fig. 12) such a behavior cannot be observed. The transitions
with the strongly decreasing wavelengths are the ones that
involve triply tightly bound states. In our case these are the
states 120+, 1 2s−1d+, 1 2s−2d+, and 14s−3d+. The corre-
sponding wavelengths forg=10 become shorter than 103 Å,
whereas the remaining transition wavelengths are in general
longer than 103 Å. In the symmetry subspaces involved for
the linearly polarized transitions considered here and the cir-
cularly polarized transitions withsM ,Sd=s−1,4d, no triply
tightly bound states exist.

FIG. 8. One-particle ionization energy for the statesn 4s−3d+

sn=1,2,3,4d in a.u. as a function of the magnetic field strengthg.

TABLE VIII. Total energiesEtot, one-particle ionization energiesEion, and previously published dataElit in a.u., as well as threshold
symmetryTsym for the statesn 4s−3d+ sn=1,2,3,4d at different field strengthsg.

g Tsym

1 4s−3d+ 2 4s−3d+ 3 4s−3d+ 4 3s−4d+

Etot Eion Elit Etot Eion Etot Eion Etot Eion

0.000 30+ −5.142319 0.031686 −5.08379a −5.125979 0.015346

0.001 30+ −5.145464 0.033824 −5.08679a −5.133945 0.022305 −5.126540 0.014901 −5.115403 0.003764

0.010 30+ −5.169111 0.048497 −5.11268a −5.152521 0.031907 −5.139446 0.018831 −5.129767 0.009153

0.050 30+ −5.248206 0.089099 −5.218924 0.059818 −5.202450 0.043344 −5.182078 0.022972

0.100 30+ −5.341030 0.136549 −5.32140a −5.306295 0.101815 −5.260565 0.056085 −5.239866 0.035386

0.200 3s−1d+ −5.524939 0.224483 −5.51151a −5.434168 0.133713 −5.384936 0.084481 −5.353290 0.052835

0.500 3s−1d+ −5.982253 0.338527 −5.97952b −5.747212 0.103486 −5.717997 0.074271 −5.693685 0.049959

1.000 3s−1d+ −6.582361 0.463144 −6.57081a −6.240001 0.120785 −6.174336 0.055119 −6.147905 0.028689

2.000 3s−1d+ −7.530125 0.630357 −7.52003a −7.038917 0.139149 −6.959997 0.060229 −6.929553 0.029786

5.000 3s−1d+ −9.591769 0.955496 −9.57694a −8.799910 0.163637 −8.702726 0.066453 −8.670060 0.033787

10.00 3s−1d+ −11.957294 1.298234 −11.93902a −10.841017 0.181957 −10.730105 0.071045 −10.694481 0.035421

aReference[27].
bReference[28].

FIG. 9. Transition wavelengthsl for the linear polarized transi-
tionsn 4s−1d+→m 4s−1d− sn ,m=1,2,3,4d in Å as a function of the
magnetic field strengthg.
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For the linearly polarized transitionsn 4s−1d+→m 4s−1d−

sn ,m=1,2,3,4d shown in Fig. 9 it can be observed that the
wavelengths in the low field regimesg,0.1d are nearly con-
stant. In the regime 0.1øgø5 the spectrum of wavelengths
becomes very complicated. This is due to avoided crossings
of excited states being present in both symmetry subspaces
that are involved in the transitions. In particular, we find
divergences of the transition wavelengths, as a consequence
of crossovers of the energy levels.

In Fig. 10 the transition wavelengths for the circularly
polarized transitions of the formn 2s0d+→m 2s−1d+ sn ,m
=1,2,3,4d are shown. In the high field limit a bunch of
small wavelengths, described above, can be identified easily.
These are transitions of the formn 20+→1 2s−1d+, i.e., those
involving the state 12s−1d+. One of these lines diverges at
g<0.2. It is associated with the transition 120+→1 2s−1d+.
As mentioned above, the energies of these two states become
equal atg=0.1929. Further divergencies can be observed,
which are caused by the fact that energy levels of theMPz

=−1+ symmetry subspace increase much faster as a function
of g than those belonging to theMPz=0+ subspace.

For the case of the circularly polarized doublet transitions
n 2s−1d+→m 2s−2d+ sn ,m=1,2,3,4d, displayed in Fig. 11,
the reader observes eight lines, decreasing in the limit of
strong fields and thereby following a power law. These lines
correspond to the transitions involving the triply tightly
bound states 12s−1d+ and 12s−2d+. Furthermore, the reader
should note that the transitions among the other states show

little variation, compared to the transitionsn 20+→m 2s−1d+,
which is a consequence of the fact that the energy levels in
the participating symmetry subspaces behave in a very simi-
lar way.

The corresponding quadruplet transitionsn 4s−1d+

→m 4s−2d+ sn ,m=1,2,3,4d depicted in Fig. 12 follow a
completely different pattern. Because there are no triply
tightly bound states in either of the subspaces, all the wave-
lengths are longer than 103 Å. On the other hand, the behav-
ior of the wavelengths in the regimeg.0.1 reflects the com-
plicated energy level scheme of both symmetry subspaces,
which is dominated by several avoided crossings. They result
in energy level crossovers and therefore devergencies for the
corresponding wavelengths.

For the transitionsn 4s−2d+→m 4s−3d+ sn ,m=1,2,3,4d
shown in Fig. 13 one observes some very short transition
wavelengths atg=10 sl,400 Åd, which correspond to tran-
sitions involving the high field ground state 14s−3d+, which
is a triply tightly bound state. Forg.0.1 avoided crossings
and the rearrangement of energy levels create a complex pat-
tern.

VI. SUMMARY AND CONCLUSIONS

In the present work we have investigated the electronic
structure of the lithium atom exposed to a strong homoge-
neous magnetic field. We cover the broad regime of field

FIG. 12. Transition wavelengthsl for the circularly polarized
transitionsn 4s−1d+→m 4s−2d+ sn ,m=1,2,3,4d in Å as a function
of the magnetic field strengthg.

FIG. 13. Transition wavelengthsl for the circular polarized
transitionsn 4s−2d+→m 4s−3d+ sn ,m=1,2,3,4d in Å as a function
of the magnetic field strengthg.

FIG. 10. Transition wavelengthsl for the circular polarized
transitionsn 20+→m2s−1d2 sn ,m=1,2,3,4d in Å as a function of
the magnetic field strengthg.

FIG. 11. Transition wavelengthsl for the circularly polarized
transitionsn 2s−1d+→m 2s−2d+ sn ,m=1,2,3,4d in Å as a function
of the magnetic field strengthg.
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strengths 0øgø10, providing data for a grid of ten values
for the field strength. The key ingredient of our computa-
tional method is an anisotropic Gaussian basis set whose
nonlinear variational parameters(exponents) are optimized
for each field strength. These nonlinear optimizations, being
based on a sophisticated algorithmic procedure, are per-
formed forone- and two-electron atomic systemsin the pres-
ence of the field. As a result we obtain a basis set of orbitals
that allows for a rapidly convergent numerical study of the
electronic structure of, in particular, the lithium atom.

Our computational approach to the three-electron problem
is a full configuration interaction method. This approach
yields fully correlated wave functions that can, in principle,
be determined to arbitrary accuracy. To implement it for the
above-mentioned basis set a number of techniques had to be
combined. To avoid linear dependencies of our nonorthogo-
nal orbitals, a cutoff technique with respect to the overlap
and Hamiltonian configuration matrix has been employed.
Employing large configurational basis sets of the order of
several tens of thousands, we arrived at relative accuracies of
the order of 10−4 for the total energies of the lithium atom in
the presence of the field.

Total and one-particle ionization energies as well as tran-
sition wavelengths have been calculated for the ground and
typically three excited states for each of the symmetries20+,
2s−1d+, 4s−1d+, 4s−1d−, 4s−2d+, 4s−2d+, 4s−3d+, thereby yield-

ing a total of 28 states. This has to be compared with the
existing data on the lithium atom in the literature where only
a few states for a few field strengths have been investigated
previously. Also, the predominant part of these investigations
were not on a fully correlated level.

The ground state crossovers of the lithium atom with in-
creasing field strength were redetermined, thereby yielding
more precise values for the crossover field strengths. A clas-
sification and discussion of the one-electron ionization ener-
gies for the ground and excited states for each of the above-
given symmetries has been provided. Particular emphasis has
been put on the effects due to the tightly bound orbitals and
the singly or multiply tightly bound configurations. Only a
very limited number of states show a monotonically increas-
ing one-electron ionization energy in the complete regime of
field strengths considered here. With increasing degree of
excitation, avoided crossings lead to a nonmonotonic behav-
ior of the energies. For the electromagnetic transitions that
involve states with tightly bound orbitals we observe bundles
of short wavelengths that decrease monotonically with in-
creasing field strength.

In principle our approach allows investigations of atoms
with more than three electrons. Furthermore, since it yields
the eigenfunctions, arbitrary properties and in particular os-
cillator strengths for lithium and more-electron atoms can be
obtained.
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