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In the present paper, we model in a fully quantum-mechanical way the dynamics of an atom with one active
electron interacting with a coherent linearly polarized ultrashort photonic pulse. We use path-integral methods.
We derive the system’s propagator in its discrete form and develop a Monte Carlo method to study its
dynamics. To avoid any additional complication, we apply our method to the ionization of atomic hydrogen
from its ground state supposing that the photon energy is greater than the ionization threshold and give the
ionization probability. In fact, the present method can be applied to the ionization of any atom or molecule.
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I. INTRODUCTION

The study of the interaction of atoms with radiation is an
interesting and long-standing area of research in classical,
semiclassical, and quantum physics[1–3]. The development
of lasers opened new horizons in that study. In the past two
decades there have appeared numerous investigations in the
study of laser atom interaction both in theory and in experi-
ment (see, for example,[4–8]) and interesting mechanisms,
such as the dynamical stabilization[9].

A further boost was given by the achievement in labora-
tories of ultraviolet laser pulses in the femtosecond and fur-
ther in the attosecond regime[10,11]. Such pulses have the
possibility to ionize an atom via a single photon. Addition-
ally, due to their short duration the ionization takes place in a
time interval shorter than any relaxation period of the system
under consideration. Many methods have been introduced in
order for such systems to be studied[12,13]. Moreover, such
pulses can be captured in cavities by using certain experi-
mental configurations[14].

In the present paper, we introduce a fully quantum-
mechanical field-theoretical treatment for the interaction of
an atom with an ultrashort coherent pulse, as a rigorous al-
ternative to methods such as the direct solution of the time-
dependent Schrödinger equation. As an application, we con-
sider the photoionization ofH by a coherent pulse in the
subfemtosecond regime. We treat the problem via path-
integral methods. We calculate the photoionization probabil-
ity versus time for various pulse durations. We restrict our-
selves to the weak-field limit as otherwise a system with a
strong field can be treated in a semiclassical way. The solu-
tion of the problem follows with similar steps to those in
Refs.[15–18], i.e., we first integrate the field variables using
the coherent-state path-integral formalism and then we inte-
grate the path integral over the electron space variables. In
fact, by using a Monte Carlo method our method circum-
vents the complete solution of the time-dependent
Schrödinger equation. Since we use a weak field, we are able
to keep only the photonic field-free terms in a possible per-
turbation expansion of the initial and the final state with

respect to the photonic field. Further, we compare our results
with the ones derived from time-dependent perturbation
theory.

The paper proceeds as follows. In Sec. II, we describe the
full Hamiltonian of an electron in both the atomic potential
and a coherent photonic pulse. We give the full propagator
and integrate over the photonic field. In Sec. III, we present
a path-integral formalism for the dynamics of the electron. In
Sec. IV, in order to avoid any additional complications, we
apply the present theory to the ionization of hydrogen from
its ground state due to the applied pulse. Certainly, the
present method is applicable to either the ionization or to any
bound-bound transition of any atom or molecule. Finally, in
Sec. V we give our conclusions.

II. SYSTEM HAMILTONIAN AND PATH INTEGRATION

The system HamiltonianH can be written as a sum of
three terms: The electron HamiltonianHe in the atomic field,
the photonic field partHf, and the interaction termHI,

H = He + Hf + HI . s1d

In particular, the electron Hamiltonian is given as

He =
1

2
pW2 + VsrWd, s2d

whereVsrWd is the atomic potential.
The Hamiltonian of the one-mode coherent light has the

form

Hf = va†a. s3d

Finally, the interaction Hamiltonian in the Power-Zienau-
Woolley formalism is given as

HI = − erW ·EW fsrW,td. s4d

The field operator of the photonic field in a large volumeV is
given as*Email address: egthra@hotmail.com
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EW fsrW,td =
1

ÎV
il svd`std«&faeikW·rW − a†e−ikW·rWg, s5d

where lsvd is a real function of frequency, given aslsvd
=Î"v /2«0, «& is the polarization along thez axis, `std is a
time-dependent function modeling the pulse shape, and«0 is
the vacuum dielectric constant. Then in the dipole(long-

wavelength) approximation[eikW·rW<1 in Eq.(5)], HI takes the
form

HI = gstdsa − a†d, s6d

where

gstd = −
1

ÎV
ielsvd`std«& · rWstd. s7d

Let us combine the photonic field variables in the term

H0sa†,a;td = Hf + HI = va†a + gstda + g*stda†. s8d

The propagator between the initial and final states corre-
sponding to the Hamiltonian(1) can be obtained by integrat-
ing over both the space and photonic field variables. At first
we integrate over the photonic field variables, which appear
only in H0 [Eq. (8)]. Then there results the following path
integral of only the spatial variables[17]:

Ksa f,rW f ;ai,rWi ;td =E DrWstd
DpWstd
s2pd3 expSiE

0

t

dtFpWstd · rẆstd

−
pW2std

2
− V„rWstd…G − iE

0

t

dtgstdZstd

−
1

2
sua fu2 + uaiu2d + Ystda f

*ai

+ Zstda f
* − iaiXstdD , s9d

whereYstd, Xstd, andZstd are given as(cf. [17])

Ystd = expF− iE
0

t

dtvstdG = exps− ivtd, s10d

Xstd =E
0

t

dtgstdYstd, s11d

Zstd = − iE
0

t

dtg*stdexpF− iE
t

t

dt8vst8dG . s12d

The propagator(9) with diagonal field variablessai =a f

=ad can be written as

Ksa,rW f ;a,rWi ;td =E DrWstd
DpWstd
s2pd3 expSiE

0

t

dtFpWstd · rẆstd

−
pW2std

2
− VsrWstddG + A − Buau2

+ D1a + Da*D , s13d

where the parameters are given as

Astd = −
1

V
e2l2svdE

0

t

dtE
0

t

dr`std«̂ · rWstd

3`srd«̂ · rWsrdeivsr−td, s14d

Bstd = 1 −Ystd = 1 −e−ivt, s15d

Dstd =
1

ÎV
elsvdE

0

t

dt`std«̂ · rWstdeivte−ivt, s16d

D1std = −
1

ÎV
elsvdE

0

t

dt`std«̂ · rWstde−ivt. s17d

We consider that we have a field transition between two
coherent statesubl and ugl. We should notice that photonic
transitions between other kinds of states, such as excited co-
herent states, etc., could be treated similarly.

Now we can integrate the propagator(13) over the field
variablea between the finalugl and the initialubl coherent
field states by using their standard projections, e.g.,

kaugl = expS−
1

2
uau2 −

1

2
ugu2 + a*gD s18d

for the ugl state, and similarly for theubl state and integrat-
ing with the coherent-state representation measure, to obtain
the following reduced propagator for the motion of the elec-
tron:

K̃g,bsrW f,rWi,td = CstdE DrWstd
DpWstd
s2pd3 exphiStotfpW ,rW,tgj

; CstdK̃0srW f,rWi,td, s19d

where

Cstd =

expSbg*

Bstd
−

1

2
ubu2 −

1

2
ugu2D

Bstd
, s20ad

the action is
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StotfpW ,rW,tg =E
0

t SpWstd · rẆstd −
pW2std

2
− VsrWstdd

+
1

ÎV
elsvd`stdfust,tdg* − u*st,tdbg«& · rWstdDdt

+
1

V
e2l2svdE

0

t

dtE
0

t

dr`std«& · rWstd`srd«& · rWsrd

3jst,t − rd s20bd

and the functionsust ,td, jst ,t−rd (cf. [17]) are given as

ust,td = − i
eivt

eivt − 1
, s21ad

jst,t − rd = ie−ivst−rd + i
2

eivt − 1
cosfvst − rdg. s21bd

We can use the following identity in order to calculate the
contribution of the factorCstd in Eq. (19). For arbitraryAstd,
on using the identities

1

Bstd
=

1

1 − exps− ivtd

=
1

2
−

1

2
i cotSvt

2
D =

1

2
−

i

v
o

m=−`

`
1

t −
2pm

v

, s22ad

we can obtain the following formula after a direct Fourier
transform:

E
−`

` Astd
Bstd

eiftdt =
1

2
E

−`

`

Astdeiftdt +
p

v
o

m=−`

`

AS2pm

v
D

3expSi f
2pm

v
D . s22bd

Finally, on using an inverse Fourier transform we obtain the
following functional identity:

Astd
Bstd

= AstdF1

2
+

p

v
o

m=−`

`

dS2mp

v
− tDG

= AstdF1

2
+

1

2 o
m=−`

`

dSm−
vt

2p
DG . s22cd

In the above expressions, the summation is to be per-
formed symmetrically. Thed functions do not contribute in
the final expressions as at the specific times introduced by
them the term on the exponent in the Monte Carlo expression
(see Sec. III) becomes −̀ . Moreover, the measure of all
those times is zero.

Now due to the large volumeV, we shall approximate the
exact action(20b) by neglecting in the Taylor expansion

«& · rWsrd = «& · rWstd − sr − td«& · rẆstd + ¯ s23d

higher terms than the first, as they are going to involve pow-
ers of higher order inV in the denominator.

To demonstrate this, we consider the action(20b) and we
derive the equation of motion of the electron by using
Lagrange’s equation and the Lagrangian in Eq.(20b) in the
absence ofVsrWd. So the part of the Lagrangian that interests
us is

L =
rẆ2std

2
+

1
ÎV

elsvd`stdfust,tdg* − u*st,tdbg«& · rWstd

+
1

V
e2l2svd`std«& · rWstdE

0

t

dr`srd«& · rWsrdjst,t − rd

s24d

and the equation of motion reads

rẄstd = 2
1

V
e2l2svd`std«̂E

0

t

dr`srd«& · rWsrdjst,t − rd

+ «̂
1

ÎV
elsvd`stdfust,tdg* − u*st,tdbg. s25d

Therefore,rẆstd is negligible compared withrWstd asV→`.
In the case of the presence ofVsrWd, we perform a full-

order perturbation expansion of the full propagator(19) with
respect to the potential term

K̃0 = T + TVT+ TVTVT+ ¯ . s26d

Then the propagatorT in the expansion will be the one of the
electron in the photonic field[17], for which the approxima-
tion (23) as discussed above is valid. Then, we sum back to
obtain the final full propagator, thus maintaining the same
approximation for the total propagator as well. This is also
intuitively reasonable, because if the change in the positionrW,
due to the photonic interaction, is small when the electron is
free, it is even smaller when it is bound. Notice that the
expansion(26) may converge very slowly, but since it is a
full-order expansion it does not matter.

Following this and by setting

nst,td = `stdE
0

t

`srdjst,t − rddr, s27d

the action(20b) of the atomic electron in the presence of the
photonic field becomes

StotfpW ,rW,tg =E
0

t

dtSpWstd · rẆstd −
pW2std

2
− VsrWstdd

+
1

ÎV
elsvd`stdfust,tdg* − u*st,tdbg«& · rWstdD

+
1

V
e2l2svdE

0

t

dtf«& · rWstdg2nst,td. s28ad

This action corresponds to the effective Hamiltonian

PATH-INTEGRAL APPROACH OF IONIZATION BY… PHYSICAL REVIEW A 70, 033410(2004)

033410-3



Heff = He −
1

ÎV
elsvd`stdfust,tdg* − u*st,tdbg«& · rWstd

−
1

V
e2l2svdf«& · rWstdg2nst,td, s28bd

whereHe in the case of the present problem is defined in(2).
The term of order 1/ÎV is due to the action of the photonic
field on the active electron of the atom, while the term of
order 1/V is due to the electromagnetic vacuum fluctuations.
The latter term, although of higher order, is necessary to
have a consistent path-integral calculation in the present for-
malism.

III. MONTE CARLO METHOD

Now we proceed to obtain a Monte Carlo expression for
the above path integral. In its discrete form, the path integral

K̃0srW f ,rWi .td in Eq. (19) can be written as

K̃0srW f,rWi ;td = lim
N→`

p
n=1

N E
−`

`

drWnp
n=1

N+1FE
−`

` dpWn

s2pd3GexpHi o
n=1

N+1

SnJ ,

s29ad

where«= t / sN+1d.
In spherical coordinates,drWn can be written asdrWn

=rn
2 sin qndrndqndwn.
On supposing that we have directed thez axis along the

direction of the linear polarization«&, Sn can take the form

Sn = SpWn · srWn − rWn−1d − «
pWn

2

2
− «Vsrnd

+ «
Î2pv

ÎV

xn

Î− sgnsnnd
Î− sgnsnndrn cosqn

+ «
2pv

V
f− sgnsnndgnnfÎ− sgnsnndrn cosqng2D

s29bd

in atomic units, wherexn is given as

xn = `stndfunst,tndg* − un
*st,tndbg, s29cd

nn is the discrete form of the variable defined in Eq.(27), and
all the functions with indexn are evaluated at timetn=n«.
Additionally, we notice that we have setrW0=rWi and rWN+1=rW f.

In Eq. (29b), we use the sign term in order to ensure
integrability of the arising Gaussian integral[see Eq.(32)
below].

The exponential term in Eq.(29a) can be written as

eiSn =E
−`

`

dwndfwn − Î− sgnsnndrn cosqngeiSn
w
, s30ad

where

Sn
w = pWn · srWn − rWn−1d − «

pWn
2

2
− «Vsrnd − sgnsnndnnwn

2

+
xn

Î− sgnsnnd
wn. s30bd

The d function can be written as

dfwn − Î− sgnsnndrn cosqng

=
1

2p
E

−`

`

dlne
+ilnwne−ilnÎ−sgnsnndrn cos qn

=
1

2p
o
ln=0

`

s2ln + 1di lnPln
scosqnd

3E
−`

`

dlne
+ilnwnj lnf−

Î− sgnsnndlnrng, s31d

where Pl are Legendre polynomials andj l are spherical
Bessel functions.

In order to transfer the factorÎ2pv /ÎV in Eq. (29b) in
other terms of the propagator and obtain Eq.(30b), we per-
form the transformationln→ sÎ2pv /ÎVdln. Consequently,
by changing the order of integration betweenwn and ln in
Eqs.(30a), (30b), and(31) and using the identity

E
−`

`

dwne
+ilnwn expF«S− sgnsnndnnwn

2 +
xn

Î− sgnsnnd
wnDG

=Î p

«sgnsnndnn
expS− iÎ− sgnsnnd

xnln

2nn
D

3expF−
ln

2 + «2sgnsnndxn
2

4«sgnsnndnn
G , s32d

we conclude that the followingl- andn-dependent function
appears in our final expressions:

Fn
l srnd =Î p

«sgnsnndnn

3E
−`

` dln

2p
H j lS− Î2pv

ÎV
Î− sgnsnndlnrnD

3expS− iÎ− sgnsnnd
xnln

2nn
D

3expS−
ln

2 + «2 sgnsnndxn
2

4« sgnsnndnn
DJ . s33d

Notice that for eachl the definite integral in the above func-
tion can be evaluated analytically[19] in a closed form in-
volving sines, cosines, exponentials, and error functions.

Finally, on performing the integration overpWn, n
=1,2, . . . , andcertain standard manipulations[20], we obtain
the following expression:
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K̃0srW f,rWi ;td =
1

Îs2pi«d3p
n=1

N FE
0

` drnd cosqndwn

Îs2pi«d3 G
3p

n=1

N+1Fo
ln8=0

`

o
ln=0

`

o
mn=−ln

ln

s2ln8 + 1di ln8Fn
ln8srnd

3Pln8
scosqndYlnmn

sqn,wndYlnmn

* sqn−1,wn−1d

3expHiS srn − rn−1d2

2«
− «

lnsln + 1d
2rnrn−1

− «VsrndDJG . s34d

On keeping leading terms inV−1/2 (V is large), i.e., the first
nonzero term with respect toln8 in Eq. (34), we obtain, for a
partition size ofN slices, the following expression:

K̃0srW f,rWi ;td = o
l=0

`

o
q=0

`

o
m=−q

q

K̃lqm
sNd sr f,r i ;tds2l + 1di lPlscosq fd

3Yqmsq f,w fdYqm
* sqi,wid, s35d

where

K̃lqm
sNd sr f,r i ;td = FN+1

l sr fd
1

Î2pi«
p
n=1

N FE
0

` drn

Î2pi«
Gp

n=1

N

fFn
0srndg

3expHi o
n=1

N+1S srn − rn−1d2

2«
− «

qsq + 1d
2rnrn−1

− «VsrndDJ . s36d

Now we write expression(36) in the form

K̃lqm
sNd sr f,r i ;td = FN+1

l sr fdp
n=1

N FE
0

`

drnGp
n=1

N+1FE
−`

` dpn

2p G
3p

n=1

N

fFn
0srndgexpHi o

n=1

N+1 Spnsrn − rn−1d

− «Fpn
2

2
+

qsq + 1d
2rnrn−1

+ VsrndGDJ s37d

and apply the theory appearing in Ref.[21] to obtain a final
standard expression to be used in the next section. It is

K̃lqm
sNd sr f,r i ;td = exps− ikH1DltdFN+1

l sr fdp
n=1

N

fFn
0sr fdgdsr f − r id

+
1

ÎN + 1
FN+1

l sr fdp
n=1

N FE
0

`

drnGp
n=1

N

fFn
0srndg

3Hp
n=1

N+1

ffsrn,rn−1dg + i p
n=1

N+1

fgsrn,rn−1dgJ ,

s38d

where

fsrn,rn−1d =
1

2pÎ2p VarfVcsrdgt sin skH1Dltd

3expH−
1

2
VarSp2

2
Dt2sin2skH1Dltd

3srn − rn−1d2 −
rn

2

2 VarfVcsrdgt2sin2 skH1DldtJ ,

s39ad

gsrn,rn−1d =
1

2pÎ2p VarfVcsrdgt cosskH1Dltd

3expH−
1

2
VarSp2

2
Dt2 cos2skH1Dltd

3srn − rn−1d2 −
rn

2

2 VarfVcsrdgt2 cos2skH1DltdJ ,

s39bd

and the one-dimensional HamiltonianH1D is given as

H1D =
p2

2
+ Vcsrd, s39cd

where

Vcsrd =
qsq + 1d

2r2 + Vsrd. s39dd

The expectations are taken with respect to a standard sam-
pling function relevant to the specific problem under consid-
eration, as discussed in[21] as well.

We notice that in order to apply the above method, we
have replaced the termrn−1 in the centrifugal term in Eq.(37)
with the termrn, a standard step discussed in[20] as well.

IV. APPLICATION TO HYDROGEN

Proceeding to an application of the present theory, we
apply the above formalism to the case of the hydrogen atom.
In that case, the potential is given as

VsrWd = −
1

r
. s40d

Additionally, the finite pulse duration is featured through a
sine-square envelope. Then the`std function of the above
theory has the form

`std = sin2Spt

s
D when t P f0,sg,

`std = 0 otherwise, s41d

wheres is the total duration of the pulse. Then, under the
choice(41), Eq. (27) gives
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nst,td = sin2Spt

s
D 1

2v3s2 − 8p2v
H2v2s2 sin2Spt

s
D

− 8p2 sin2Svt

2
D + 2p cotSvt

2
D

3Fvs sinS2pt

s
D − 2p sinsvtdGJ

when t P f0,sg, s42d

nst ,td=0 otherwise.
We proceed by calculating the probability density of the

ionization from the ground state of hydrogen to its con-
tinuum. As in the present paper, we consider the case of a
weak photonic field; we can suppose that the photonic field
does not affect considerably those states. Then the final state

of the electron with wave vector kW

=kssin qkcoswk,sin qksin wk,cosqkd is

c f
kWsrW,td = c f

kWsrWde−iwpt

= expS p

2k
DGS1 +

i

k
DeikW·rW

1F1

3S−
i

k
;1;− ikr − ikW · rWDe−iwpt s43ad

and it has energy

wp =
k2

2
. s43bd

In our analytical manipulations, we use the expansion

c f
kWsrWd =

4p

k
o
l=0

`

o
m=−l

l GS1 −
i

k
+ lD

UGS1 −
i

k
+ lDU

3Rl
ksrdYlm

* sq,wdYlmsqk,wkd, s44ad

where

Rl
ksrd =

Î8pk
Î1 − exps− 2p/kd

p
s=1

l SÎs2 +
1

k2D 1

s2l + 1d!

3s2krdle−ikr
1F1S i

k
+ l + 1,2l + 2,2ikrD s44bd

and for l =0 the product in Eq.(44b) is replaced by unity.
Further, the initial state, i.e., hydrogen’s ground state, is

ci
1ssrW,td = ci

1ssrWde−i«it

= R1ssrdY00sq,wde−i«it

= 2e−rY00sq,wde−i«it, s45d

where«i =−0.5 is the energy of theHs1sd state.
Then the transition amplitude from the initial statei at t

→−` to the final continuum statef at t→ +` may be evalu-
ated at any timet; it is

Afi = kF f
−stduFi

+stdl, s46d

whereF f
−srW ,td and Fi

+srW ,td are exact solutions of the time-
dependent Schrödinger equation, in which we use the effec-
tive Hamiltonian (28b) derived in Sec. II, subject to the
asymptotic conditions

F f
−srW,td →

t→+`
c f

kWsrW,td, s47ad

Fi
+srW,td →

t→−`
ci

1ssrW,td. s47bd

Then on adopting the prior form of the transition amplitude,
that is

Afi
− = lim

t→−`
kF f

−stduFi
+stdl, s48d

taking into account that the asymptotic initial and final states
are orthogonal and performing some standard calculations,
we finally obtain

Afi
− = −

1
ÎV

elsvdE
0

s

dt`stdfuss,tdg* − u*ss,tdbg

3kF f
−stduK̃0srW f,rWi ;tds«& · rWduc1sstdl

= −
1

ÎV
elsvdE

0

s

dtHexpFiSk2

2
− «iDtG`std

3fuss,tdg* − u*ss,tdbg

3E E drWidrW fc f
kWsrW fdK̃0srW f,rWi ;tds«& · rWidci

1ssrWidJ .

s49d

We notice that we have dropped the last higher-order term
appearing in Eq.(28b). To evaluate Eq.(49), we apply the
Monte Carlo method corresponding to formulas(38) and
(39a)–(39d), and use as a sampling function for each term in
Eq. (35), different from zero after the angular integration, the
corresponding densityuRl

ksrdu2 defined in Eq.(44b).
Finally, we conclude that the angular distribution of

ejected electrons is given by

]2Pfi
−

] wp ] Vk
= kuAfi

− u2, s50d

where wp and Vk are the energy and the direction corre-

sponding to the impulsekW of ejected electrons. Integrating
over Vk we obtain the energy distribution]Pfi

− /]wp, and one
more integration overwp gives the total probability to ionize
an atom with one pulse.

We plot the distribution]Pfi
− /]wp versus the energy of an

ejected electron for various pulse durations of the coherent
photonic pulse in Fig. 1. In the calculations, we usev
=0.855 a.u.[10,12] and s=100 (photonic regime), s=40
(lower limit of photonic regime), or s=8 (collisional re-
gime). We notice that, as expected in the collisional regime,
there is not any apparent above-threshold ionization peak.
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Additionally, in the plots we compare the results of the
present theory with the ones derived by time-dependent per-
turbation theory[22]. As the pulse duration increases, we
have good agreement between the results from time-
dependent perturbation theory and the present method only
around the maximum of the one-photon above-threshold ion-
ization peak. This is a consequence of the Monte Carlo inte-
gration error appearing in the present method, which pre-
vents the exact reproduction of the oscillations appearing in
other methods. See, for example,[12]. We notice that in all
of our calculations we have usedN=8, i.e., eight time slices.
Further, the present method works only for small values ofb
due to machine accuracy. The range ofb for which it is
possible to apply the present method by programming in a 32
bit MATHMATICA environment is between zero and about
three.

Moreover, the amplitudeF0 of the field of the pulse is
related to the various other parameters in the present paper
via the relation

F0
2 = v

ubu2

4pV
. s51d

We notice that in the case of ionization by a coherent
radiation pulse in cavity systems[14], the value of theb
parameter seems more appropriate for the description of the
pulse as the volume value is arbitrary and constant. Then the
value of theb parameter is directly related with the mean
number of photons present. Moreover, for ordinary volume
values the amplitude of the field in Eq.(51) is definitely
weak. So the present method appears as an alternative in the
study of the interaction of pulses of a few photons with at-
oms or molecules, possibly in cavities[14]. Their exact in-
tensity depends on the value of the volume of the experimen-
tal arrangement studied.

Finally, it is easy to observe that the one-photon above-
threshold ionization peak in the plots corresponds to energy

E1 = «i + v − Up, s52d

where«i is the ground-state energy of hydrogen andUp is a
ponderomotive energy. In perturbation conditions, one has

Up =
F0

2

4v2 . s53d

V. CONCLUSIONS

In the present paper, we modeled in a fully quantum-
mechanical way the interaction of a coherent radiation pulse
with an atom of one active electron. We extracted the propa-
gator of the system, and specializing on the hydrogen we
derived the ionization probability from the ground state to
the continuum, for certain radiation parameters. We have re-
stricted our calculations to small values of theb parameter
implying weak fields for ordinary volumes, as on the one
hand, in the case of strong fields a fully quantum-mechanical

FIG. 1. Ionization ofHs1sd: electron distribution(density prob-
ability per energy range) as a function of the energy of the ejected
electron for a photon energyv=0.855, b=1.0 and various pulse
lengths: (a) s=8, (b) s=40, and(c) s=100. Solid line, present
method. Dotted line, time-dependent perturbation theory. We have
also setV=108. We notice that in the present range of the param-
eter’s values the first term in Eq.(38) gives the major contribution
and consequently the overall Monte Carlo error is very small.
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treatment is not necessary and, on the other, the present
method is not applicable for large values ofb due to machine
accuracy.

We notice that in the case of squeezed light what would
have changed is only the specific form[15,16,23] of the

functionsnst ,td andxst ,td in the above theory.
The present model is simple and tractable and gives new

aspects of the theory of photoionization. In the future, we
intend to apply the present model when electric and magnetic
fields are present as well.
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