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Path-integral approach of ionization by ultrashort laser pulses
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In the present paper, we model in a fully quantum-mechanical way the dynamics of an atom with one active
electron interacting with a coherent linearly polarized ultrashort photonic pulse. We use path-integral methods.
We derive the system’s propagator in its discrete form and develop a Monte Carlo method to study its
dynamics. To avoid any additional complication, we apply our method to the ionization of atomic hydrogen
from its ground state supposing that the photon energy is greater than the ionization threshold and give the
ionization probability. In fact, the present method can be applied to the ionization of any atom or molecule.
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[. INTRODUCTION respect to the photonic field. Further, we compare our results
) ) ) o with the ones derived from time-dependent perturbation
The study of the interaction of atoms with radiation is aNtheory.
interesting and long-standing area of research in classical, Tpe paper proceeds as follows. In Sec. II, we describe the
semiclassical, and quantum phys[ds-3]. The development | Hamiltonian of an electron in both the atomic potential
of lasers opened new horizons in that study. In .the.past_twgnd a coherent photonic pulse. We give the full propagator
decades there have appeared numerous investigations in thgq integrate over the photonic field. In Sec. Iil, we present
study of laser atom interaction both in theory and in experi- nath-integral formalism for the dynamics of the electron. In
ment(see, for examplée[4—8|) and interesting mechanisms, gec. |v; in order to avoid any additional complications, we
such as the dynamical stabilizatipa]. _ apply the present theory to the ionization of hydrogen from
A further boost was given by the achievement in labora-g ground state due to the applied pulse. Certainly, the
tories of ultraviolet laser pulses in the femtosecond and furpresent method is applicable to either the ionization or to any

ther in the attosecond reginjé0,11. Such pulses have the o nd-hound transition of any atom or molecule. Finally, in
possibility to ionize an atom via a single photon. Addition- ggc v/ we give our conclusions.

ally, due to their short duration the ionization takes place in a

time interval shorter than any relaxation period of the system

under consideration. Many methods have been introduced in); sYSTEM HAMILTONIAN AND PATH INTEGRATION

order for such systems to be studid@,13. Moreover, such

pulses can be captured in cavities by using certain experi- The system Hamiltoniatd can be written as a sum of

mental configuration§l4]. three terms: The electron Hamiltoni&h in the atomic field,
In the present paper, we introduce a fully quantum-the photonic field part;, and the interaction terrhl,,

mechanical field-theoretical treatment for the interaction of

an atom with an ultrashort coherent pulse, as a rigorous al-

ternative to methods such as the direct solution of the time-

dependent Schrodinger equation. As an application, we corin particular, the electron Hamiltonian is given as

sider the photoionization off by a coherent pulse in the

subfemtosecond regime. We treat the problem via path-

integral methods. We calculate the photoionization probabil- H. = }ﬁ2+V(F) 2)

ity versus time for various pulse durations. We restrict our- ¢ 2 '

selves to the weak-field limit as otherwise a system with a . . .
Y whereV(r) is the atomic potential.

strong field can be treated in a semiclassical way. The solu- h iitoni f1h d h liaht has th
tion of the problem follows with similar steps to those in for-r|1-1 & Hamiltonian of the one-mode coherent light has the

Refs.[15-18, i.e., we first integrate the field variables using
the coherent-state path-integral formalism and then we inte-

grate the p_ath integral over the electron space varia_bles. In H; = wa'a. (3)
fact, by using a Monte Carlo method our method circum-

vents the complete solution of the time-dependenfFinally, the interaction Hamiltonian in the Power-Zienau-
Schrédinger equation. Since we use a weak field, we are abloolley formalism is given as

to keep only the photonic field-free terms in a possible per-
turbation expansion of the initial and the final state with

H=Hg+H;+H,. (1)

H, =-ef-E(f,t). (4)

The field operator of the photonic field in a large volukis
*Email address: egthra@hotmail.com given as
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= Fy= L TadkT — gleike
Ef(r,t):—\rlll(w)go(t)s[aé -a'e™ "], (5)
\/

where [(w) is a real function of frequency, given d&w)

=Vhw!2gq, € is the polarization along the axis, p(t) is a
time-dependent function modeling the pulse shape,sgnsl
the vacuum dielectric constant. Then in the dipdieng-

wavelength approximatione€k*~1 in Eq.(5)], H, takes the
form

Kao o afiot) = f DF(7)
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Dp(7) [{I'fdr{eq— -;T
(Zw)sex [ . p(7) - r(7)

- V(F(T))] +A-Blaf?

_PF)
2

+Dla+Da*>, (13

where the parameters are given as

H,=gt)(a-a), (6)

where

o) = - =iel(@)p() - F(D). )
\V

Let us combine the photonic field variables in the term

Ho(a',a;t) =H; + H, = wa'a+g(t)a+g (ha’.  (8)

The propagator between the initial and final states corre-
sponding to the Hamiltonia¢l) can be obtained by integrat-
ing over both the space and photonic field variables. At first
we integrate over the photonic field variables, which appear

t T
Alt)=- \—]}ezlz(w)f d’TJ dpp (e -1(7)
o Jo

Xp(p)e - F(p)e=r™, 14

Bt)=1-Y(t)=1-€7*t, (15)

t
D(t):irel(w) f drp(7)s - F(r)eee et (16)
VW 0

t
D,(t)=- #el(w)f drp(n)é -F(r)eer. (17
W 0

only in Hy [Eg. (8)]. Then there results the following path

integral of only the spatial variabld47]:

K(ap e afiit) = fD (7) p(gexp<fdr{p(r) f()

AG)

> - V(r( ))} -IJ drg(nZ(7)

1 N
- 5(|C¥f|2 +]ai|?) + YV ar e
+Z(t)a; - iqu(t)), 9

whereY(t), X(t), andZ(t) are given agcf. [17])

t
Y(t) = exp[— if dTw(T)] =z exp-iwt), (10)
0
t
X(t) = f drg(7n)Y(7), (11
0

t t
Z(t):—if d@*(T)EXpl—if dT’w(T’)]. (12
0 T

The propagator(9) with diagonal field variableq ;=
=a) can be written as

We consider that we have a field transition between two
coherent statefs) and|y). We should notice that photonic
transitions between other kinds of states, such as excited co-
herent states, etc., could be treated similarly.

Now we can integrate the propagaids) over the field
variable @ between the finaly) and the initial|8) coherent
field states by using their standard projections, e.g.,

1 1 *
lp=ex{- o= 2pvay) a8

for the |y) state, and similarly for thg3) state and integrat-

ing with the coherent-state representation measure, to obtain
the following reduced propagator for the motion of the elec-
tron:

K¥B(F,, Fi,t) = C(t) f DF(7) ?2‘:5)2 exp{iSof B.1, 71}

= C()K,(FrFib), (19
where
BY 1., 1 )
o e 25 20n
- B(t) ’
the action is
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pA(7)

t .
Stot[ﬁf,ﬂ:f (ﬁ(T) -F(T)—T—V(F(T))
0

+ ,i\—/el(w)go(r)[u(t, Ny —u(t,nplé- F(T))dT
J

t T
+S(0) f dr f dpp (76 - {(Dp(p)5 - F(p)
0 0

X &t - p) (20b)

and the functionsi(t, 7), &(t, 7—p) (cf. [17]) are given as

eiwr
ut,m)=—1i—

gui_1 (213

11

Et,r—p) =il 4 cojw(t—p)]. (21b

2
eiwt_l

We can use the following identity in order to calculate the
contribution of the facto€(t) in Eq. (19). For arbitraryA(t),
on using the identities

1 __ 1
B(t) 1-exg-iot)

CO[<

we can obtain the following formula after a direct Fourier
Apetdt+ =S A

transform:
ditgre L f <2wm>
2)_ — w

1

1
2mm’

w

wt

3

lig

2 wp— t

(222

" A

f - B(H)

2
xexp<ifim (22b)

(O]
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To demonstrate this, we consider the actigf@ib) and we
derive the equation of motion of the electron by using
Lagrange’s equation and the Lagrangian in Efb) in the
absence o¥/(r). So the part of the Lagrangian that interests
us is
(7 1 . o

3+ el 1y ~u g

L=

T

1
+ \—/ezlz(w)xo(T)é : F(T)J dpg(p)e - F(p)é(t, 7~ p)

0

(24
and the equation of motion reads
. 1 R T .
()= 2\—/e2|2(w)p(r)sj dpp(p)e - T(p)&(t, 7= p)
0
1 o
+ év—\r/el(w)so(f)[U(t. 7y —u(t,npl. (25

Thereforef(7) is negligible compared with(7) asV— .

In the case of the presence 9fr), we perform a full-
order perturbation expansion of the full propagat®) with
respect to the potential term

Ko=T+TVT+TVTVT+ «--. (26)
Then the propagatdr in the expansion will be the one of the
electron in the photonic fielfiL7], for which the approxima-
tion (23) as discussed above is valid. Then, we sum back to
obtain the final full propagator, thus maintaining the same
approximation for the total propagator as well. This is also
intuitively reasonable, because if the change in the position
due to the photonic interaction, is small when the electron is
free, it is even smaller when it is bound. Notice that the

Finally, on using an inverse Fourier transform we obtain theexpansion(26) may converge very slowly, but since it is a

following functional identity:

AW a1y amm _
B(t)_A(t)[2 10— 6( [0) t)]
:A(t)[%JE 5( —;’—;ﬂ (220

full-order expansion it does not matter.
Following this and by setting

u(t,7) = @(T)J 9(p)&(t, 7— p)dp, (27)
0

the action(20b) of the atomic electron in the presence of the

In the above expressions, the summation is to be perhotonic field becomes

formed symmetrically. TheS functions do not contribute in

the final expressions as at the specific times introduced by

them the term on the exponent in the Monte Carlo expressio
(see Sec. I)N becomes . Moreover, the measure of all
those times is zero.

Now due to the large volum¥, we shall approximate the
exact action20b) by neglecting in the Taylor expansion

&-F(p)=&-F(D)—(p= )& -F(7) + (23

2

d b 79 - 2 - (e

t
SOt[ﬁtﬁT]:f dT(
0
1 s x S
+ Wel(w)p(T)[U(t,T)V —u (t,7)Ble - F(T))

t
+ lezlz(a))f ddé - r(DPut, 7). (28a)
\ 0

higher terms than the first, as they are going to involve pow-

ers of higher order itV in the denominator.

This action corresponds to the effective Hamiltonian
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1 . -~ o
Her = He = —Zell@lp(A[ut, 7y’ - (t, 9BJé -7(7)

\

- \—:tezlz(w)[é (D Pu(t,7), (28b)

whereH, in the case of the present problem is definein

The term of order 1V is due to the action of the photonic
field on the active electron of the atom, while the term of
order 1MV is due to the electromagnetic vacuum fluctuations. AWy

PHYSICAL REVIEW A70, 033410(2004)

->2

Sév pn rn - - &eV(ry) - sgr(v,) VnWﬁ
RS | B (30b)
V- sgr(vy)

The § function can be written as

— = sgr(vy)r, cos ;]

The latter term, although of higher order, is necessary to 1 (~ N o o SUUN
have a consistent path-integral calculation in the present for- = o N " g™ i mSOT T "
malism. "°°

IIl. MONTE CARLO METHOD

Now we proceed to obtain a Monte Carlo expression for
the above path integral. In its discrete form, the path integral

Ko(f;,F:.1) in Eq. (19) can be written as

N © N+1 0 d—» N+1
Ko(fr, sy =tim [T | df,]] { h }ex i> S,
n=1

Nﬂwn:j_ —o0 n=1 —0 (277)3
(293

wheree=t/(N+1).

In spherical coordinatesdr,, can be written asdr,
=r2 sin 9,dr,d9,den.

On supposing that we have directed thaxis along the
direction of the linear polarizatios, S, can take the form

=2

S= (6n (P = Fe1) = 8% —&V(ry)

—
V21w Xn —
+g—=——=—=——=\-sgr(y,)r, cos ¥,
W \=sgr(y)

)1v[\= sgriwy)r, cos b‘n]z)
(29b)
in atomic units, where,, is given as

Un(t, 7) B, (299
v, is the discrete form of the variable defined in E2j7), and
all the functions with indexn are evaluated at time,=ne.
Additionally, we notice that we have sgj=r; andry.;=r.

Xn= W(Tn)[un(tu ) '}’* -

In Eq. (29b), we use the sign term in order to ensure

integrability of the arising Gaussian integriaee Eq.(32)
below].
The exponential term in Eq29a can be written as

&%= f dw,o[w, = V= sgr(v,)r, cos 9]¢, (30

where

1 o)
=— (2l,+1)i"P, (cosI,)
27T|n:0 n

X f d)\nemnwnhn[— V=sgrvy)\ifnl, (32

where P, are Legendre polynomials ang are spherical
Bessel functions. _

In order to transfer the factof2mw/\V in Eqg. (29b) in
other terms of the propagator and obtain E2pb), we per-
form the transformation\,— (vV2mw/\V)\,. Consequently,
by changing the order of integration betwesp and \,, in
Egs.(309), (30b), and(31) and using the identity

foc dw, gt EXD|:8<— sgn(vy) VnW2 + /LWn>:|
sgrvy)

/ —idz » < Xnhn
ssgr(vn)vnex% = sart n) )

o p[_ Nite sgrtvn»(n]

4esgn(vy) vy
we conclude that the following and n-dependent function
appears in our final expressions:

P =\ o
" esgrivy) v,
—o0 2’7T JI \;’/\_/

Xexp(—n sgr{vn))(n ”)

2w,
Xex4—

)\ﬁ +8° Sgr(Vn)Xn)
4e sgn(vy) vy .
Notice that for each the definite integral in the above func-
tion can be evaluated analyticall¢9] in a closed form in-
volving sines, cosines, exponentials, and error functions.
Finally, on performing the integration ovep, n

=1,2,..., anctertain standard manipulatiofa0], we obtain
the following expression:

(32)

V= Sg'(Vn))\nrn>

(33
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KO(rf1 i )

o) |

On keeping leading terms M2 (V is large, i.e., the first
nonzero term with respect 19 in Eq. (34), we obtain, for a

1 ﬂ f" dr,d cos %, de,
V2mie)n-1| Jo V(2mie)®

NeL[ e oo
x[[| 22 2 @)+nivFr,)

=1 |r/1:0In=0mn=—In
X Plr’](COSﬁ )Y oMy (O, (Pn)anmn(ﬁn—lv(Pn—l)
X ex <(rn rn 1)2 Sln(|n+1)
2¢ 2raro-1

(34)

partition size ofN slices, the following expression:

KolFp.fi;t) = E E E K (r.ris(2l + Di'Py(cos o)

where

1=0 g=0 m=—q
XY am( D1, 01) You 3, 1) (35)
1 ?odr, 0
|qm(rf1|’ut) Frea(re) %}_[l [fo \27T|8:| ITIFrw]
N+1
< ((—re)®  a@+d)
Xexf’{% ( 2e of 20l 1
- 8V(rn)) } (36)

Now we write expressio(136) in the form

N+1

soaesoni{ [+ 2]

and apply the theory appearing in RE21] to obtain a final
standard expression to be used in the next section. It is

N+1

XH [Fg(rn)]ex iz (pn(rn - rn—1)
n=1 n=1

p2
—8[5“+ +V(rn)D (37

q(g+1)

2rnrn—1

N

KN (ro,rist) = exp(= i(Hap)) P (r) TT [FO(r 180 = 1)

where

n=1

- N
f dfn} ITIFrw]
n=1

0

1
+*F r
sl [

n=1

N+1 N+1
x\ T [f(rpra-0] +IH [9(rnFa-1)]

(38)
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1
27y 2m Var V(r) ]t sin ((Hip)t)

X exp{ - %Var( )tzsmz((H S

f(ro,rn-0) =

><(rn - rn—l)2 -

e
2 VaV,(r)]t?sir? (<H1D>)t}'
(393

1
227 VarV,(r)]t cog(H;p)t)

9(rnln-1) =

1
Xexp) — 5Var<g )tz CoZ({H;p)t)

X(rn - rn—1)2 -

2
rn
2 VafV,(r)]t? cof({H;p)t) } ’
(39b)
and the one-dimensional Hamiltoni&h 5 is given as

2

Hip= -+ VelD), (390

where

q(q 1)

Ve(r) = +V(r). (39d)

The expectations are taken with respect to a standard sam-
pling function relevant to the specific problem under consid-
eration, as discussed [21] as well.

We notice that in order to apply the above method, we
have replaced the term_; in the centrifugal term in Eq37)
with the termr,, a standard step discussed[#0] as well.

IV. APPLICATION TO HYDROGEN

Proceeding to an application of the present theory, we
apply the above formalism to the case of the hydrogen atom.
In that case, the potential is given as

Vi ==+ (40)

Additionally, the finite pulse duration is featured through a
sine-square envelope. Then thér) function of the above
theory has the form

o(n) = sinz(”f) when 7 e [0,0],

p(7) =0 otherwise, (42)

where o is the total duration of the pulse. Then, under the
choice(41), Eq. (27) gives
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1 Ag = (D7 (D) D] 4
B = @007, 4o
g /ew @ 7 where ®;(r',t) and ®;(r',t) are exact solutions of the time-
872 sir? T 5 wt dependent Schrddinger equation, in which we use the effec-
- St 2 +2m Co 2 tive Hamiltonian (28b) derived in Sec. Il, subject to the
asymptotic conditions
(27T )
X |:a)0' sm(—) -2 sm(an-)} . <
o O (F1) — YK, (479
t—+
when 7e[0,0], (42
w(t, 7)=0 otherwise. O (F,t) — S0, (47b)
t——o0

We proceed by calculating the probability density of the

ionization from the ground state of hydrogen to its con-Then on adopting the prior form of the transition amplitude,
tinuum. As in the present paper, we consider the case of g4t is

weak photonic field; we can suppose that the photonic field

does not affect considerably those states. Then the final state AL = lim (D7 (1)| D] (1)), (48)
of the electron with wave vector k o
=k(sin $,c0s gy, sin Yysin ¢, Cos By is taking into account that the asymptotic initial and final states
0 : , are orthogonal and performing some standard calculations,
Pr(F,1) = g(Fe™! we finally obtain
w i s o
= — |T( 1+ |k F - 1 .
eXF’( Zk) ( k)é o A== el f drp(D[u(o, )y - (,7)6]
AY 0
i 4. s SO R t _ ~ 5> > ~
x(—E,l, ikr 'k'f>e'wp (433 XD (7)|Ko(F, i 7)(& - F)|¢as(7)
. 1 (o ] k2
and it has energy =-—ellw) | dryexp il =-&|7|p(D
2 % 0 2
Wp = ER (43b) X[u(o, My - u'(o,7)]
In our analytical manipulations, we use the expansion xJ f dﬁdelpf'z(Ff)Ro(Ff,ﬁ;T)(é . ﬁ)lﬂ.-ls(ﬁ)}-
. r<1—'—+|> (49)
: A1 k
%”f((F) = 72 : We notice that we have dropped the last higher-order term
1=0 m=- 1“(1 -+ |> appearing in Eq(28b). To evaluate Eq(49), we apply the
k Monte Carlo method corresponding to formulé8) and
XREYL (9, 0)Yim( O 1), (44 (3989—39d), and use as a sampling function for each term in
R im( 9. €)Yim( D ? Eq. (35), different from zero after the angular integration, the
where corresponding densitlRE(r)|? defined in Eq(44b).
— | Finally, we conclude that the angular distribution of
R(r) = V87k Il ( ,sz+ 12) 1 ejected electrons is given by
V1 - exp— 27/K) =1 k/ (21 +1)! _
_ PPy
. i ——— = KA, (50
X(2kn)le ™| L +1+1,2+2,3kr | (44D I Wp J

where w, and (), are the energy and the direction corre-

sponding to the impuls& of ejected electrons. Integrating
over (), we obtain the energy distributiafPy;/ ow,, and one

and forl=0 the product in Eq(44b) is replaced by unity.
Further, the initial state, i.e., hydrogen’s ground state, is

JAS(F.1) = giS(F)eiet more integration ovew, gives the total probability to ionize
' ' _ an atom with one pulse.
= Ryg(1) Yool 9, )" We plot the distributiordP;;/ w, versus the energy of an
= 267 oo 9, @)ee, (45) ejected electron for various pulse durations of the coherent
photonic pulse in Fig. 1. In the calculations, we use
whereg;=-0.5 is the energy of thel(1s) state. =0.855 a.u.[10,12 and =100 (photonic regimg o=40

Then the transition amplitude from the initial statat t (lower limit of photonic regimg or o=8 (collisional re-
— —o to the final continuum statkatt— +c may be evalu- gime). We notice that, as expected in the collisional regime,
ated at any time; it is there is not any apparent above-threshold ionization peak.
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Additionally, in the plots we compare the results of the
present theory with the ones derived by time-dependent per-
turbation theory[22]. As the pulse duration increases, we
have good agreement between the results from time-
dependent perturbation theory and the present method only
around the maximum of the one-photon above-threshold ion-
ization peak. This is a consequence of the Monte Carlo inte-
gration error appearing in the present method, which pre-
vents the exact reproduction of the oscillations appearing in
other methods. See, for examp|&?2]. We notice that in all
of our calculations we have us&i=8, i.e., eight time slices.
Further, the present method works only for small valueg of
due to machine accuracy. The range @ffor which it is
possible to apply the present method by programming in a 32
bit MATHMATICA environment is between zero and about
three.

Moreover, the amplitudé-, of the field of the pulse is
related to the various other parameters in the present paper
via the relation

18P

0= Y v (5D

We notice that in the case of ionization by a coherent
radiation pulse in cavity systeni44], the value of theg
parameter seems more appropriate for the description of the
pulse as the volume value is arbitrary and constant. Then the
value of theB parameter is directly related with the mean
number of photons present. Moreover, for ordinary volume
values the amplitude of the field in E¢b1) is definitely
weak. So the present method appears as an alternative in the
study of the interaction of pulses of a few photons with at-
oms or molecules, possibly in caviti€$4]. Their exact in-
tensity depends on the value of the volume of the experimen-
tal arrangement studied.

Finally, it is easy to observe that the one-photon above-
threshold ionization peak in the plots corresponds to energy

Ei=gi+w—-U,, (52

whereeg; is the ground-state energy of hydrogen dnglis a
ponderomotive energy. In perturbation conditions, one has

_F
U= E (53

V. CONCLUSIONS

In the present paper, we modeled in a fully quantum-
mechanical way the interaction of a coherent radiation pulse

ability per energy rangeas a function of the energy of the ejected With an atom of one active electron. We extracted the propa-
electron for a photon energy=0.855, 3=1.0 and various pulse gator of the system, and specializing on the hydrogen we

lengths:(a) 0=8, (b) 0=40, and(c) 0=100. Solid line, present

derived the ionization probability from the ground state to

method. Dotted line, time-dependent perturbation theory. We havéhe continuum, for certain radiation parameters. We have re-
also setv=1CP. We notice that in the present range of the param-stricted our calculations to small values of tBeparameter

eter’s values the first term in E¢38) gives the major contribution
and consequently the overall Monte Carlo error is very small.

implying weak fields for ordinary volumes, as on the one
hand, in the case of strong fields a fully quantum-mechanical
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treatment is not necessary and, on the other, the presefinctionsu(t,7) and x(t,7) in the above theory.

method is not applicable for large values@tiue to machine
accuracy.

The present model is simple and tractable and gives new
aspects of the theory of photoionization. In the future, we

We notice that in the case of squeezed light what wouldntend to apply the present model when electric and magnetic

have changed is only the specific forf5,16,23 of the

fields are present as well.
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