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We investigate the relaxation effects on the quantum dynamics in a two-state molecular system interacting
with a single-mode strongly amplitude-squeezed coherent field using the second-order Monte Carlo wave-
function method. The molecular population inversionllapse-revival behavior of Rabi oscillatigris known
to show the echoes after each revival, which are referred to as ringing revivals, in the case of strongly squeezed
coherent fields with oscillatory photon-number distributions due to the phase-space interference effect. Two
types of relaxation effects, i.e., cavity relaxatighe dissipation of an internal single mode to outer madel
molecular coherenfphasg relaxation caused by nuclear vibrations on ringing revivals are investigated from
the viewpoint of the quantum-phase dynamics using the quasiprobakilitynction) distribution of a single-
mode field and the off-diagonal molecular density maffigec 1 4t)|. It turns out that the molecular phase
relaxation attenuates both the entire revival-collapse behavior and the incrdagg.in4t)| during the qui-
escent region, whereas a very slight cavity relaxation particularly suppresses the echoes in ringing revivals
more significantly than the first revival but hardly changes a primary variation in enveldpg.ef 4t)| in the
nonrelaxation case.
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I. INTRODUCTION lecular phase relaxatiofcaused by the nuclear vibrations
effects on the collapse-revival behaviors. These relaxations
have been shown to cause a significant suppression of not
%nly the collapse-revival behavior of molecular population

causes lots of at.tractive dyna_tmical quantum behgviqr, €.9put also the coherenggntanglementbetween the molecular
collapse and revival, of atomic/molecular population inver-

) . lectronic states. This result therefore suggests remarkable
sion[1-19. The mechanism and the features of collapse ange{‘ 99

. . - elaxation effects on the ringing revivals in the case of
revival behaviors have been well analyZéd-13: these two strongly squeezed coherent field.

behaviors are found to originate in the dephasing and the o ; ;
rephasing among Rabi oscillations with slight different fre- cor\rlw\/;oigqg Igg, éntwgs-sstgjtiy,attg%}riggcszucléumglrr;gc?ir%(pev}?tlh a
quencies, respectively. A peculiar collapse-revival beha"iorsingle-mode strongly amplitude-squeezed coherent field. The
appears in the ringing revivals of a single two-state atomt]uantum master equatigB7] is derived for this system and
interacting with a strongly squeezed coherent field with 0Sthe Monte Carlo wave-functiotMCWF) method[38—43 is
cillatory photon-number distribution0]. In this behavior, applied in order to treat a large number of photon-number
the_ collapse foI_Iowing revival exhibits oscillatory _e_ChoeS'bases for the strongly squeezed coherent field. In the MCWF
W.h'.Ch are predicted io be. C*’?‘“S‘?d by the two origins: th‘;1‘*nethod, the dynamics is described by a Schrodinger-like
distinct photon-number distribution peaks with different, .. equation with non-Hermitian Hamiltonian, though the
rHuantum jumps randomly interrupting the coherent motion of
i . *the system have to be introduced. As a result, the MCWF

tended collapse of_the primary revival, . method generates a large number of independent quantum

In general, the Interaction betyveer_l an atomic/ mo'?cu.l"’,‘[rajectories of wave functions. This point provides an advan-
system and a quantized photon field is known to be signifiyaqe of the MCWF method since the numerical effort in the
cantly influenced by various relaxation effects, strongly su

: . SUPdirect integration of the quantum master equation using the
pressing the collapse-revival behavi@1-27. In our previ- - oq,ceq density matrices is proportional 8, which de-
ous paper[28], we have examined the quantum-phase

; . notes the respective state space, while that for the MCWF
dy”?m'cs composed of a weakly amplltude-sque_ezed COhefﬁethod (which treats only the effective wave functiors
ent field[29-3§ and a two-state molecular model in order to

. ; . SN . roportional toN. Although the first-order unravelindgcule
elucidate the cavity relaxatioiithe dissipation of cavity prop g ng-ulen

d de th h wall : d th method is usually employed in the MCWF method, in the
mode to outer mode through walls or mirrpend the mo- present study, a more efficient second-order unraveling

method is applied according to the method developed by
Steinbachet al. [43]. In order to clarify the effects of these
*Email address: mnaka@cheng.es.osaka-u.ac.jp relaxations on the ringing revivals, the molecular coherency

peaks, exhibiting distinct echoes rather than a blurred e
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and photon phase dynamics are examined, as well as mo- Cavity —

lecular and photon field population dynamics, using the dy- System Reservoir2 —

namical behavior of quasiprobabilifQ function) distribu- Two-state Nuclear vibration

tion [21,22 of cavity photon field and off-diagonal molecule

molecular density matricdd4—-53, which represent a coher- l

ency between molecular electronic states. Single-mode strongly amplitude-squeezed
Although the cavity relaxation effects have been studied coherent field

for atomic systems coupled with quantized coherent fields,

there have been few studies on the effects of cavity relax- Reservolr 1 —
ation and pure-phase relaxation, caused by molecular vibra- External field in thermal equilibrium
tion and atom-phonon interaction, on the quantum phase dy- at temperature T

nmaC)r::algiieslnar?(;i/gerlzJaltecl) r&\iéhilugtr]e%!]?mg;g?r: bviir:ﬁvé?rrénof FIG. 1. System composed of a two-state electronic state of a
9 ay, olecule coupled with a single-mode photon field in a cavity and a

Squegzed coherent fields. The present SftUdy th.erefore flr%&servoir composed of nuclear vibrations and an external field in
contributes to the understanding of such interaction dynamthermal equilibrium at temperatufie We consider a two-state mo-
ics though there are not still practical realizations by experijgqyar modelwith transition energyE,;=20 000 cr’, and transi-
ments for our theoretical and computational predictionS¢on moment u,;=15 D) coupled with an strongly amplitude-
Such study will become important from the viewpoint of squeezed field¢p=0 andr=1.5, see Eq(8)]. This field has an
realization of novel control of electronic coherency, whichinitial average photon numbeff)=16 and a frequencyw
will be applied to quantum-information devices, e.g., quan—=20 000 cm?) in a cavity with V=10’ A3 surrounded by outer-
tum computer. Also as an attempt of interdisciplinary studymode reservoir withf=300 K.
between quantum optics and chemistry, the present study is
characterized by two aspects: the relaxation effects, which 2
are seriously important for applying to the molecular sys- He, =3 E»a;‘ai )
tems, and the application of the high-order MCWF method, gec <
which is also essential for treating actual molecular systems
with a large number of freedoms. 1

This paper is organized as follows. In Sec. Il, we show a H field = (bTb+ —)w, (3
molecule-photon coupled modé¢Bec. 1l A), the second- 2
order MCWF methodSec. Il B) as well as explicit forms of g,
relaxation operators for this mod@ec. 1l O. The relaxation
effects on the ringing revivals of molecular populatigii-
agonal molecular density matjixand the average photon Helec—cfield:Z Kd;alay(b" +b), (4)
number are investigated in Sec. Il A. In Sec. Il B, the dy- b
namical behaviors of off-diagonal molecular density matrixyyhere
and Q function distributions of cavity field are examined to

2

analyze the effects of relaxations on the quantum-phase K = 27w M2 (5)
properties of ringing revivals. These results are summarized v '
in Sec. IV. o )
In Eq. (2), E; indicates the energy of the molecular electronic
Il. METHODOLOGY gtatei, a{r, andaI are, respec.tively, the crea}tion.and annihila-
_ _ _ tion operators for the quantized electron field in itieelec-
A. Molecule-photon coupling, system-reservoir coupling, tronic energy state. In E@3), b" andb are the creation and
and a strongly squeezed cavity field annihilation operators for the single-mode photon field with

Figure 1 shows a calculated model composed of a mo2 frequencyw. In Eq. (4), d; is the matrix element of the
lecular electronic-state model, nuclear vibrations, a singleMolecular electronic dipole moment operator in the direction
mode strongly amplitude-squeezed photon figtthvity of the polarization of a single-mode photon field. In Es),
field), and an external fielébutside a cavity We regard the V is the volume of a cavity containing the single-mode pho-
molecular electronic-state model and a cavity field as a “syston field.
tem” that we focus on, while do the nuclear vibratigpbo- We here consider two types of reservoirs composed of an
non bath and an external fielgthermal photon bathas two ~ ensemble of harmonic oscillators, phota(f®, an external
types of “reservoirs” with an infinite number of bosons.  field) and phonongR,, nuclear vibrationg respectively. The

The Hamiltonian of a systerHs is expressed by interaction between cavity field and;Rand that between
electronic states and,Rare described, respectively, by the
Hs=Helect Hefield + Helec—cfieto (1) Hamiltonians

whereHgeo Hefields @NdHgec—cieigrepresent Hamiltonians for

a two-state molecular model, a cavity field, and an interac-
tion between them, respectively. The explicit forms of these
Hamiltonians are given by and

Hefela-r, = 2 (& br]; + &b'ry)) (6)
J
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0.20

Helec- R~ E Yija aj I +r2|) (7)

whererlJ andr represent the photon creation and annihila-

tion operators of reservoir (external field, andr} andr,, 015
represent the phonon creation and annihilation operators 06
reservoir 2(nuclear vibrationg respectively. The& and Y
indicate the coupling constant between a cavity field and arn
external field and that between electrons and V|brat|onal
phonons, respectively.

The squeezed coherent field is generated by various nonz
linear optical processes including optical parametric oscilla-2
tion and four-wave mixing29—-3§. Theoretically, the single-
mode ideally squeezed coherent field can be generated fror  0.05 -
the vacuum field0) by operating squeezing and displace-
ment operator$29-39:

0 10 20 30 40 50 60 70 80
Photon number state

tributl

0.10 -

umb:

on-|

Photo

where ¢ can be expressed b§=re'¢ using real modulus
and argumend. Ther and ¢/2 represent squeezing intensity
and direction, respectively. The direction gfis taken to be FIG. 2. Photon-number distributions for a strongly amplitude-
aligned with R¢p) axis in the comple)3 plane. In this field, ~Squeezed field.

the variance of the quadrature operaig(X,) can be less

than the value 1/2 for the vacuum and the coherent field We consider a two-state molecular model with an energy
states. From the Heisenberg uncertainty relation betgen interval E,(=E,~E;)=20 000 cm* and a transition mo-
and X,, the variance of another quadrature operatgk,) = mentd,;=15 D along the polarization of cavity field. The
exceeds 1/2. I#=0 in Eq.(8) with a relatively small squeez- cavity volumeV [Eq. (5)] is assumed to be 1IR3 The

ing intensity r, the squeezed coherent field has larger phag&veraged photon number and the squeezing intensity of the
uncertainty than a coherent field with the same average phanitial strongly amplitude-squeezed field are fixed (i)

ton number and exhibits a narron@ub-Poissonigrphoton- =16 andr=1.5, respectively. These values satisfy the above
number distribution. Such field is referred to as ancondition: exjg2r)/|8%3~8.907> 1. Figure 2 shows the os-
amplitude-squeezed coherent field. The elements of theillatory photon-number distribution for this strongly

squeezed field density matrix are represented29y-35 amplitude-squeezed coherent field. It is noted that the distri-
W2/ %\ 2 bution is super-Poissonian overall, while individual peaks
- 1 v v _1pa2 within this distribution are sub-Poissonian.
Pphotonn mto) = [ * exp( |:8 | )
|[Vnt m\2u 2u |
. B. Second-order Monte Carlo wave-function method
v o 1v o\ . B . . . . .
xXexp =B+ =B |H| — In this section, we briefly explain our calculation scheme.
2 p 2p V2uv The quantum master equation can be written by
XH ( A ) 9 ps=ilps,Hsl+ Lreiaps, (10
V2uv

where the Hamiltonian for the systemHk;, and £, jax indi-
whereu=coshr, v=€¢ sinhr, g’=upB+vg’, andH, is Her-  cates the relaxation superoperator, describing the system re-
mite function. The diagonal part of Eq9) indicates the laxation through its coupling to the reservoirs. The atomic
photon-number distribution of squeezed coherent field. Sadnit (Z=m,=e=1) is used throughout this paper. In the Born-
tyanarayanat al. [20] designate the amplitude-squeezed co-Markov approximation{37], the relaxation superoperator is
herent fields as strongly squeezed coherent fields if they satepresented by the Lindblad forfa5]:
isfy the condition: ex(@r)=|?%, where the variance in L
photon number originating in the squeezing part matches the —_= i i t
contribution originating in coherent field part. The strongly Lreiwps 22 (CrCops * pCrCr) +Em CrnbsCr
squeezed coherent field is characterized by the feature that its (11)
photon-number distribution is oscillatory. Such oscillatory
distribution is explained in terms of interference in the phaseThis type of relaxation operator is widely applied in dissipa-
space[54]: the oscillatory photon distribution is caused by tive dynamics in quantum optics, chemical physics, biology,
the interference between contribution from two regions inand so on. The Lindblad operato('ﬁn and C,,, act on the
phase space where an elongated ellijgg® theQ function  system, and their forms depend on the nature of problem.
shown in Fig. §l)] overlaps the annuli indicating the number  The original MCWF method simulates the evolution of
states. quantum trajectories in Hilbert space conditioned on continu-
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ous photodetection involving two types of elements: one is i St
smooth evolution by the non-Hermitian Hamiltoniddy, P3m=(¥(H)[U CmCmU|‘I’(t)>E, (17)
which originates in the first terms on the right-hand side of
Egs.(10) and(11), and another represents the random inter-and
ruptions of the non-Hermitian evolution by projections

(quantum jumppdescribed by the second term on the right- (M) |W(t+ )= w

hand side of Eq(11). The higher-order unravelings in the \,/épm/(gtz/z)

MCWF method are advantageous to obtaining more accurate

and stable numerical result8,43. In this study, the 5t
second-order unraveling method is employed to provide a ép4mn:<\If(t)|C§CLU*UCan|\P(t)>?. (18

feasible approach treating a large humber of photon bases.
From the integration of the quantum master equatid) to  petails of the numerical calculation procedure of the wave-

second order int, the following form is obtained43]: function at timet+& using the Monte Carlo method are
1 presented in Ref.28].
ps(t+ ) = Upg(thUT + 55{2 UCmps(t)CluT After obtaining a sufficiently large number of trajectories
m

pg)(t)[=|‘I’(i)(t)><‘1’(l)(t)|] constructed by the Monte Carlo
1 ot Wavefunctions|\lf(')(t)>, in which i indicates the trajectory
+ E&Em CrlUps(HU'Cy, number(i=1, ... M¢), we average their density-matrix ele-
ments at each time using the basis of the system
{lk,n)(=|k)®|n))} spanned by the direct product of the mo-
lecular electronic staték)}(k=1,2,... N) and the cavity-
mode photon number stafi)}(n=0,1, ... »):

1
+ 5&22 UC,Crps(t)CICTUT +O(8t3).

m,n

(12)
Mc
Here,U indicates the non-Hermitian evolution, which is re- / - (i) r o
ferred to as the “no-jump” evolution, under the influence of PSknk'n’ (1) = (k,nlpg(t)[K',n") = ClEl (k,nlpg'(H)|K’",n").
the effective Hamiltonian Eq.14): (19
= ex(= iHeyd), (13 The molecular electronic-state and cavity-mode photon re-
where duced density matrices are, respectively, calculated by
i ’ = et
Hyy = He - EE cle,, (14) Peleckk’ (1) En Psknik’ (b, (20)
m

and
Each term on the right-hand side of H42) represents the

“minitrajectory” [43]. The density-matrix evolution can be Pphotonn (1) => Psinkn (1) (21)
simulated with pure states by using an expansion of the den- ’ o

sity matrix into minitrajectories. The procedure for evolving
wave functions of a system is described as follows. The nor-
malized wave functionW(t+4t)) of a system(molecular
electronic stater- cavity single modgand the probabilitysp

to choose its evolution in time step for each minitrajectory
in Eq. (12) is represented by

Varlous properties concerning molecular electronic state and
cavity mode photon can be calculated using these reduced
density matrices.

The Q function of a cavity photon field is defined (h87]

1
Q(B.Y) = 7_T<,8|Pphotor(t)|ﬁ>

U|w(t
(m1) |W(t+a))= |,$E)>, L 3*“/3n
Y
' = 7—Texp( BZ) E Pphotonnn (1), (22
L =(TOUUTW®), (nojump, (15 o
where|B) is a coherent stateg is its complex amplitude, and
UC,|W(t)) nis a photon number. Th@ functions in the complex plane
(M2 |P(t+d))=— m , B at the timet are useful for gaining an insight into the
V Opor (81/2) dynamics of the field-amplitude and -phase probability dis-
tributions for the a single-mode photon field coupled with
- St molecular electronic state in a cavity.
8Pam= (¥ (1)|CrU UCmI‘I’(t)>E, (16)
C. Relaxation terms
(M3 |W(t+s))= CrU[W (1) The relaxation of a system into two types of reservoirs is
V’épgnl(étIZ)' described by Eq(11) in the quantum master equation Eg.
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(10). We here consider two types of relaxation terms: cavity . RESULTS AND DISCUSSION
relaxation (Lgiegre) @nd molecular phase relaxation
(Lphase-ra- The former represents the Ieakagg Qf sihglg-mode photon number
photons from the cavity to outer modes originating in the P . .
coupling between a cavity single mode and external modes At the initial time, the molecule is assumed to be in the
while the latter describes the phase relaxation in a moleculground state and not 10 be coupled with the strongly

caused by the coupling among molecular electronic Stateamplitude-squeezed fiedee Sec. Il A In a numerical cal-
y upiing gr . éulation, the size of a photon-number basis is fixed to be 81,
and nuclear vibrations. The explicit forms of these relaxatio

. b Mwhich is found to be sufficient for our study. The effects of
terms are given by2s] two types of relaxations(i) cavity relaxation andii) mo-
lecular phase relaxation are examined as well as the nonre-

A. Dynamics of molecular population and average

L cfield-relPs = %/(prst ~ b'bps = psh'h) + yng(b'psh laxation case. The cavity relaxation rateyis 0.5 cm* [see
Eq. (23)]1 and the molecular phase relaxation ratells
T hhe + =10 cm ™ [see Eqs(24)]. The temperature of the outer mode
+bpgb” = b bps = psbl) 23 reservoir is fixed to be 300 K. It is well known that the
and sample sizeM of Monte Carlo trajectories and time stép
have a significant influence on the numerical error of the
Lonaserdts== 2 TjiPjpsPi, (24)  results. In the non-Hermitian evolutidieg. (13)], we em-
L) ploy the sixth-order Runge-Kutta method with the time step,
whereP;; is a projection operator concerning molecular elec-8t~0.0345 a.u(a period of a cavity field/2000 which is
tronic states: found to provide a sufficiently converged and quantitatively
. correct results for a dynamical behavior of molecular popu-
Py = [l (25) lation and average photon number for the nonrelaxation

In Eq. (23), y indicates the relaxation rate of the cavity model. The numerical error for the relaxation case also origi-
mode, andTR stands for the average photon number in therﬂates in the Monte Carlo method, in which the error is found

mal equilibrium at temperatur@ at the cavity-mode fre- t0 be proportional to 1YM¢ [43]. We have checked the con-

quencyw: vergence behaviors of molecular ground-state population_and
N average photon numbers for a model system with relaxations
— _ o) and have found tham-=10 000 can provide qualitatively
R=|€ex 1] , (26) .
keT converged behavior.

Figure 3 shows the variation in the ground-state molecular
rbopulation for a nonrelaxatiofa), cavity relaxation(b), and
molecular phase relaxatioft) cases. In the nonrelaxation
i ) / case(a), similarly to the previous study20], the revivals
noted that these relaxation ratesandI'j, are functions of  ager the first collapsé(l)<(1ll )] exhibit ringing behavior: a
system-reservoir coupling constangs.and y;, respectively  |5rge revival [(IV)] followed by a series of echogafter
[57]. ) . _ (IV)] in contrast to the initial coherent field case, which ex-

Using Eqs.(23) and(24), the explicit forms of Lindblad  hipits a simple collapse envelope. Such ringing revivals are
operatorsCr, in Eq. (11) in the second-order MCWF method (4nq to be caused by the fact that the different peaks in

are described as follows. For the cavity relaxafiBn. (23)],  photon-number distributiotFig. 2) give different rephasing
we have to deal with the following two operatdel]: times for the cosines ct®\tyn) (\: atom/molecule-field

wherekg is the Boltzmann’s constant. The phase relaxatio
(the relaxation of off-diagonal molecular density matrjdes
Eq.(24) is described by a phase relaxation rBf¢=I";,). It is

C;=[y(1+nr)]"%b (27) coupling constant, and: photon number and also each
echo is not independent but interferes with each other in
and phase space, leading to the distinct echoes rather than a
C,=[yng]* 2", (29) blurred, extended collapse of the primary revif20]. In the

cavity relaxation caséb), the revival amplitudes are shown
which describe the quantum jumps corresponding to a dissto be much reduce¢about 70% reduction for the maximum
pation by a spontaneous or a stimulated emission and avival amplitude than those in the nonrelaxation cagg
excitation by the absorption of a reservoir photon at temperathough the cavity relaxation ratg=0.5 cn1' is very slight.
ture T, respectively. The Lindblad operators for the dephasThis remarkable attenuation of revival is also observed for

ing part[Eqg. (24)] are expressed bib6] the initial coherent field and the initial weak amplitude-
" squeezed field casg28]. It is shown that the molecular

C,= _i'L(pjj -Py), (\C,+2=n=3), (29 phase relaxation(c) with larger relaxation ratel';;
2 =10 cn1! gives a similar reduction of the primary revival

where N represents the number of molecular electroni am_plitudes[(IV)] to that in the_cfavity requqtion caqa)l,
stateeg, and?%grsr:spsondg toL; pb;r o(; stat%ig:)(i <j)e. ?I'heo thlle the.echoe$afyer (V)] e_xh|b|t more dlst|nct beha}wor
new factorT, is related to the dephasing rdt¢, as than Fhat in the cavity rengaﬂon caét@:.the ratio of revival

g ! amplitudegVI)/(IV)=0.1 in casgb), while 0.23 in cas&c).
I _1 S eSS +}F” (30 For the variation in average photon numbers shown in
K= 4<i(¢k) ik e il) o K Fig. 4, the nonrelaxation cage) shows the collapse-revival
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FIG. 3. Time evolutions of the molecular ground-state popula-(C _ _
tions [p (t)] for a model(Fig. 1) in the case ofa) nonrelax- FIG. 4. Time evolutions of the average photon numbers for a
elec 1,1 model(Fig. 1) in the case ofa) nonrelaxation(b) cavity relaxation

ation, (b) cavity relaxation(y=0.5 cnT?), and(c) molecular phase .
®) y (v ) © b (y=0.5 cni1), and(c) molecular phase relaxatidii’y;=10 cni?).

relaxation (T'5,;=10 cnil). One optical cycle corresponds ®
=27/ w~=69.0 a.u.

B. Dynamics of quasiprobability (Q function) distributions of
behaviors involving ringing revival betwegn)=16 and 15 a cavity field
similarly to the molecular population dynamics in the nonre-
laxation case[Fig. 3a@)]. The cavity relaxation casgrig. . O ; )
4(b)] shows a decrease of the average photon number as w fpns of a cavity field |n.the nonrelalxat_|on cagdg. 5). The
as the significant reduction of revival-collapse amplitudes or|zonFaI and perpendl_cular axes indicate/Beand In(5),
particularly in the echoegIV)—VII)]. On the other hand, it respectively. These times are taken as &_m/w(m
turns out that the molecular phase relaxafibiy. 4c)] does 01,2, ..) to remove the phaskot) of the free field. The
not decay the average photon number, but only reduces irfe funcpon dynarmcs is known to be useful for obtaining a
amplitudes of the revival-collapse behaviors similarly to thedynamical behavior of average photon number and phase
molecular ground-state populatidfig. 3c)]. The features dlstr|but_|ons for photon f|¢|d54.4—561. The mmaleunctlon.
of the nondecay behaviors in the average photon number f& @mplitude-squeezed field is shown to provide an ellipse
phase relaxation can be understood by the fact that there fistribution centered aroung, (=/(f), (")=16) [see Fig.
no energy exchange between the system and its environmebfi)]. The dotted circle corresponds to the average photon
by the molecular phase relaxation since the phase relaxatigiimber(i)=16. A single peak a$=0 is found to split into
operators commutes with the system Hamiltonian. two peaks and then counterrotate on the cit@le= 8, until

We first investigate the dynamics @f function distribu-
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(1) V) ¢==x [Fig. XIV)] and its splitting does to the collapse of
the largest revival, while the collision of smaller peaks with
longer periods aty=+ 7 [Figs. 5VI) and(VII)] correspond
to the echoes of revivals &¥l) and(VIl ) shown in Fig. 8a).
This feature corresponds to the fact that the photon states
with a large number of photons require the longer times for
changing the photon phase through the interaction with a
molecule[20]. It is also found that in the quiescent region
[see Fig. 8ll)], the primary split peaks on the complex
plane are located at=+/2 and -r/2 [Fig. X111)], respec-
{n (V1) tively, similarly to the coherent field case, the feature of
which implies the decoupling between molecule and photon
field in the quiescent region, leading to the generation of an
optical Schrodinger cat staf8].

We second examine the relaxation effects on@hfinc-
tion distribution dynamics. Figure 6 shows tefunction
distributions for the cavity relaxation cagge=0.5 cni?l). It
turns out that there are almost no differences between non-
relaxation caséFig. 5 and cavity relaxation casg@-ig. 6)
until (111, while the gradual decrease of the distribution in
({D)] (VI the cavity relaxation case appears particularly in the outer
regions corresponding to the components with larger photon
numbers[see Figs. 8V)—~VIl) and &IV)—(VII)]. This can
be understood by the fact that the components with a larger
number of photons more significantly suffer from the cavity
relaxation, whose rate is in proportionne (n: photon num-
ben [see EQgs.27) and (28)]. As a result, the smalle@
function distribution peaks originating in the oscillatory
photon-number distribution peaks with larger numbers are
shown to be reduced and thus are predicted to cause the
(V) attenuation of the revival amplitudes particularly in the ech-
oes[see Fig. &)]. On the other hand, the molecular phase
relaxation (I";=10 cni?) is shown to remarkably blur the
phase distributions, the feature of which is represented by the
delocalized distributions along the dotted cirdleee Fig.
7(11H—V1)]. Such increase in the photon-phase uncertainty
leads to the suppression of the amplitudes for the entire ring-
ing revivals[see Fig. &)].

C. Dynamics of off-diagonal molecular density matrix

FIG. 5. Q function distributions of the amplitude-squeezed field
in a cavity at timegl)<(VIl) (see Figs. 3 and)4or a coupled model

(Fig. 1) in the case of nonrelaxation. The horizontal and vertical fi it laxation(b d | | h |
axes represent the real and imaginary partg,afhich is an eigen- ation (a), cavity relaxation(b), and molecular phase relax-

value of annihilation operatdy for a cavity mode. The dotted circle ation (). The |peiec 1,it)| represents t[he degree of coherency

with a radius|8|=4 represents the photon number 16. The 30 conPetween the ground and the excited molecular electronic

tours are drawn from values 0.0 to 1.0. states. For all the cases, the splitting and approaching to
=+7/2 of Q function [(1)—lll) shown in Figs. 5-7 corre-

they collide at¢=+. After this collision, they split again SPond to the oscillatory increase [iuie. 1 41)], at the maxi-
and collide at=0. These splitting and colliding processes mum point of which the cavity-mode photon field is in a
are known to repeat though such behavior gradually getSchrddinger cat state composed of the entanglement of two
blurred due to the number-phase uncertainty princjgt§. ~ Phase state&$=+/2) in the nonrelaxation case. The suc-
In contrast to the coherent field and weakly squeezed fiel@essive decrease in the amplitudespeg. 1.4t)| corresponds
cases[44-53, plural smallerQ function distribution peaks to the colliding process of th@ function distribution[(Ill )—
with different periods appear after the collision @t +7  (IV) shown in Figs. 5-7. The split of the prima@y function
[(IV)]. These smaller distributions are predicted to be causedistribution peak and subsequent approach dte + /2

by the oscillatory photon-number distribution peaks with a[(IV)—VII) shown in Figs. 5-7 are found to cause a gradual
different rotating speed i® function[21]. Actually, the larg-  increase injpeec 1 4t)| @gain though it accompanies the os-
est revival aroundlV) corresponds to a single sharp peak atcillations of |peec 1 4t)| corresponding to the echogig.

The magnitudes of off-diagonal molecular density matri-
ces|peec 1.41)| are shown in Fig. 8 in the case of nonrelax-
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U] W) () V)

(1) (Vi) (1) v

i ) () (Vi)

(Iv) (1V)

~ FIG. 6. Q function distributions of the amplitude-squeezed field  FIG. 7. Q function distributions of the amplitude-squeezed field
in a cavity at timegl)—(VIl) (see Figs. 3 and)4or a coupled model  in a cavity at timegl)~(VIl ) (see Figs. 3 and)4or a coupled model

(Fig. 1) in the case of cavity relaxaticy=0.7 cni?). See Fig. 6 for  (Fig. 1) in the case of molecular phase relaxati@®,=10 cnt?).
further legends.

3(a)] in the nonrelaxation casfrig. 8a)]. Although such
primary variation in|peiec 1 4t)| is shown to be preserved in
the case of cavity relaxation caf€ig. 8b)] except for the
oscillations in|pelec 1 4t)| corresponding to the echoes of re-  We have investigated the effects of two types of relax-
vivals. In contrast to these two casgsonrelaxation, Fig. ations, i.e., cavity relaxation and molecular phase relaxation,
8(a), and cavity relaxation, Fig.(B) case} the molecular on the dynamics of a coupled system composed of a two-
phase relaxation exhibits a significant reductiahout 36%  state molecular model and a strongly amplitude-squeezed co-
of amplitudes of the increase ipec 1 4t)| at (Ill) in the  herent field in a cavity using the second-order Monte Carlo
nonrelaxation case. Particularly, the increase behaviors iwave-function(MCWF) method. In a cavity relaxation, a
Ipeiec 1 41)| after (IV) in the case of nonrelaxation and cavity very slight cavity relaxation rate is found to significantly
relaxation are shown to almost disappear in the moleculaattenuate the ringing revivals, particularly the echoes. This
phase relaxation cag€ig. 8c)]. This feature corresponds to can be understood by the fact that ®Qefunction distribu-

the significant uncertainty of the phase distributions@n tions corresponding to oscillatory photon-number distribu-
function distributions at that time regidifrig. 7(V)—VII)]. tions with larger photon numbers suffer from more signifi-

IV. CONCLUDING REMARKS
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Non-relaxation case ized phase distributions i@ functions, the feature of which
(V) (\()(V,) : significantly attenuates the entire ringing revivals. Judging
P (VD from the present results, if the cavity relaxation could be

’\’: \/\/\WM\N sufficiently suppressed, the molecule coupled with a strongly

aiy

amplitude-squeezed coherent field has a possibility of exhib-
iting ringing revivals similarly to the relaxation-free atomic
case though the magnitudes of entire revival amplitudes are
fairly reduced as compared to the atomic case. On the other
hand, the generation of Schrédinger cat state in the quiescent
. L A P region is predicted to be more significantly suppressed for a
0 125 250 375 500 625 750 875 1000  Mmolecular system with a phase relaxation originating in

Magnitude of
off-diagonal molecular density

@ Optical cycle nuclear vibrations than for an atomic system with only a
05 Cavity relaxation case (y =0.5cm ') cavity relaxation.
N an) V) V) ; On the basis of our present results, attractive effects of
: ' | TV ized field h d field i
: _ : RVAI) quantized fields such as squeezed fields on atomic systems

are also expected on the coherency dynamics of molecular
electronic systems though molecular vibrational effects,
which tend to destroy the electronic coherency, strongly af-
fect the dynamical behavior of off-diagonal molecular den-
sity matrices particularly. This suggests a possibility of direct
control of molecular electronic coherency by a reflection of
various quantum statistics of quantized photon fields.

: —— — — : We should finally mention the possibility of experimental
0 125 250 375 500 625 750 875 1000 .
®) Optical cydle observation of the present results. Unfortunately, the present
model, i.e., two-level atom/molecule coupled with a single-
05 | ; . mode strongly squeezed coherent light, is hard to be realized
) () (I\() (Y)(\'/|) (Vil) in experiments at the present time. However, the model with

0.3

0.2

0.1

Magnitude of
off-diagonal molecular density

0.0

Molecular phase-relaxation case (1"2'1=10 cm'1)

04 F the same mathematical structure, i.e., the Jaynes-Cummings
; : : P ; model, has been realized using the laser cooled trapped ions
03 ¥ ; : : A by the Wineland grouj58—6(Q. They have created various
nonclassical states, e.g., thermal, Fock, coherent, and
squeezed states, of motion of a harmonically botBef ion,
and have measured the collapse-revival behaviors caused by
the Jaynes-Cummings-type interaction between its motional
. L : ! . and internal states, i.e., two hyperfine ground states, due to
© 0 125 250 375 Opﬁf;(’c cle625 750 875 1000 gpplied(classical radiation[58]. They have also realized a
Y decoherence induced by coupling the atom to controllable
FIG. 8. Time evolutions of the magnitudes of off-diagonal mo- €ngineered reservoirs, i.e., amplitude and phase reservoirs,
lecular density matricedpeec 1 41)|) for a model(Fig. 1) in the and have measured the decoherence of superposed motional
case of(a) nonrelaxation(b) cavity relaxation(y=0.5 cmt}), and  states, i.e., Schrédinger cat states, of a single trapped atom
(c) molecular phase relaxatidiry;=10 cni?). [59,60. These experiments using trapped ions are useful for
the detailed comparisons between theory and experiment and
the profound understanding of the relation among quantum
ephase dynamics and relaxations in the Jaynes-Cummings

the primary behaviors of the degree of coherency betweefﬂOdels involving the coupling with reservoirs._Jquing fr.om
molecular electronic states, which is represented by the off1€se results, the relaxation effects on the ringing revivals
diagonal molecular density matricépeec 1 41)|, turn out to and the coherency between states obtained in this study have
be preserved in the cavity relaxation case since such echo#lte sufficient possibility of being realized using the trapped
only give the oscillations with smaller amplitudes in enve-ions with engineered reservoirs. Although in the present
lopes of [peiec 1 41)|- In the case of molecular phase relax- model the generation and decoherence of quantum super-
ation, although the entire amplitudes of ringing revivals areposed state appear in the photon phase dynamics with two
suppressed, the echoes appear more distinctively than thoseitually antirotatingQ function distributions, i.e., “optical

in the cavity relaxation case. The coherency between moSchrédinger cat,” such behavior is usually observed in me-
lecular electronic states, however, turns out to be more asoscopic systems because the macroscopic superposition de-
tenuated than that in the cavity relaxation case. It is predicteday so quickly[59,60. Considering the large number of de-
that this decoherency between molecular electronic states afrees of freedom in the mesoscopic systems, the present
fects the photon phase properties and thus provides delocaiecond-order MCWF approach is expected to be an effective

02 H

0.1 H

Magnitude of
off-diagonal molecular density

0.0

cant cavity relaxation effects since the cavity relaxation rat
is in proportion tony (n: photon number On the other hand,
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