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We investigate the relaxation effects on the quantum dynamics in a two-state molecular system interacting
with a single-mode strongly amplitude-squeezed coherent field using the second-order Monte Carlo wave-
function method. The molecular population inversion(collapse-revival behavior of Rabi oscillations) is known
to show the echoes after each revival, which are referred to as ringing revivals, in the case of strongly squeezed
coherent fields with oscillatory photon-number distributions due to the phase-space interference effect. Two
types of relaxation effects, i.e., cavity relaxation(the dissipation of an internal single mode to outer mode) and
molecular coherent(phase) relaxation caused by nuclear vibrations on ringing revivals are investigated from
the viewpoint of the quantum-phase dynamics using the quasiprobability(Q function) distribution of a single-
mode field and the off-diagonal molecular density matrixurelec 1,2stdu. It turns out that the molecular phase
relaxation attenuates both the entire revival-collapse behavior and the increase inurelec 1,2stdu during the qui-
escent region, whereas a very slight cavity relaxation particularly suppresses the echoes in ringing revivals
more significantly than the first revival but hardly changes a primary variation in envelope ofurelec 1,2stdu in the
nonrelaxation case.
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I. INTRODUCTION

It is well known that the interaction among quantized
photon fields with various statistics and atomic systems
causes lots of attractive dynamical quantum behavior, e.g.,
collapse and revival, of atomic/molecular population inver-
sion [1–19]. The mechanism and the features of collapse and
revival behaviors have been well analyzed[6–13]: these two
behaviors are found to originate in the dephasing and the
rephasing among Rabi oscillations with slight different fre-
quencies, respectively. A peculiar collapse-revival behavior
appears in the ringing revivals of a single two-state atom
interacting with a strongly squeezed coherent field with os-
cillatory photon-number distributions[20]. In this behavior,
the collapse following revival exhibits oscillatory echoes,
which are predicted to be caused by the two origins: the
distinct photon-number distribution peaks with different
rephasing times and the interference among the different
peaks, exhibiting distinct echoes rather than a blurred ex-
tended collapse of the primary revival.

In general, the interaction between an atomic/molecular
system and a quantized photon field is known to be signifi-
cantly influenced by various relaxation effects, strongly sup-
pressing the collapse-revival behavior[21–27]. In our previ-
ous paper [28], we have examined the quantum-phase
dynamics composed of a weakly amplitude-squeezed coher-
ent field[29–36] and a two-state molecular model in order to
elucidate the cavity relaxation(the dissipation of cavity
mode to outer mode through walls or mirrors) and the mo-

lecular phase relaxation(caused by the nuclear vibrations)
effects on the collapse-revival behaviors. These relaxations
have been shown to cause a significant suppression of not
only the collapse-revival behavior of molecular population
but also the coherency(entanglement) between the molecular
electronic states. This result therefore suggests remarkable
relaxation effects on the ringing revivals in the case of
strongly squeezed coherent field.

We employ, in this study, the Jaynes-Cummings model[1]
composed of a two-state atom/molecule interacting with a
single-mode strongly amplitude-squeezed coherent field. The
quantum master equation[37] is derived for this system and
the Monte Carlo wave-function(MCWF) method[38–42] is
applied in order to treat a large number of photon-number
bases for the strongly squeezed coherent field. In the MCWF
method, the dynamics is described by a Schrödinger-like
wave equation with non-Hermitian Hamiltonian, though the
quantum jumps randomly interrupting the coherent motion of
the system have to be introduced. As a result, the MCWF
method generates a large number of independent quantum
trajectories of wave functions. This point provides an advan-
tage of the MCWF method since the numerical effort in the
direct integration of the quantum master equation using the
reduced density matrices is proportional toN2, which de-
notes the respective state space, while that for the MCWF
method (which treats only the effective wave function) is
proportional toN. Although the first-order unraveling(Euler)
method is usually employed in the MCWF method, in the
present study, a more efficient second-order unraveling
method is applied according to the method developed by
Steinbachet al. [43]. In order to clarify the effects of these
relaxations on the ringing revivals, the molecular coherency*Email address: mnaka@cheng.es.osaka-u.ac.jp
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and photon phase dynamics are examined, as well as mo-
lecular and photon field population dynamics, using the dy-
namical behavior of quasiprobability(Q function) distribu-
tion [21,22] of cavity photon field and off-diagonal
molecular density matrices[44–53], which represent a coher-
ency between molecular electronic states.

Although the cavity relaxation effects have been studied
for atomic systems coupled with quantized coherent fields,
there have been few studies on the effects of cavity relax-
ation and pure-phase relaxation, caused by molecular vibra-
tion and atom-phonon interaction, on the quantum phase dy-
namics, in particular, the ringing revival behavior, of
molecules and/or atomic clusters interacting with strongly
squeezed coherent fields. The present study therefore first
contributes to the understanding of such interaction dynam-
ics though there are not still practical realizations by experi-
ments for our theoretical and computational predictions.
Such study will become important from the viewpoint of
realization of novel control of electronic coherency, which
will be applied to quantum-information devices, e.g., quan-
tum computer. Also as an attempt of interdisciplinary study
between quantum optics and chemistry, the present study is
characterized by two aspects: the relaxation effects, which
are seriously important for applying to the molecular sys-
tems, and the application of the high-order MCWF method,
which is also essential for treating actual molecular systems
with a large number of freedoms.

This paper is organized as follows. In Sec. II, we show a
molecule-photon coupled model(Sec. II A), the second-
order MCWF method(Sec. II B) as well as explicit forms of
relaxation operators for this model(Sec. II C). The relaxation
effects on the ringing revivals of molecular population(di-
agonal molecular density matrix) and the average photon
number are investigated in Sec. III A. In Sec. III B, the dy-
namical behaviors of off-diagonal molecular density matrix
andQ function distributions of cavity field are examined to
analyze the effects of relaxations on the quantum-phase
properties of ringing revivals. These results are summarized
in Sec. IV.

II. METHODOLOGY

A. Molecule-photon coupling, system-reservoir coupling,
and a strongly squeezed cavity field

Figure 1 shows a calculated model composed of a mo-
lecular electronic-state model, nuclear vibrations, a single-
mode strongly amplitude-squeezed photon field(cavity
field), and an external field(outside a cavity). We regard the
molecular electronic-state model and a cavity field as a “sys-
tem” that we focus on, while do the nuclear vibrations(pho-
non bath) and an external field(thermal photon bath) as two
types of “reservoirs” with an infinite number of bosons.

The Hamiltonian of a systemHS is expressed by

HS = Helec+ Hcfield + Helec−cfield, s1d

whereHelec, Hcfield, andHelec−cfieldrepresent Hamiltonians for
a two-state molecular model, a cavity field, and an interac-
tion between them, respectively. The explicit forms of these
Hamiltonians are given by

Helec= o
i

2

Eiai
†ai , s2d

Hcfield = Sb†b +
1

2
Dv, s3d

and

Helec−cfield= o
i,j

2

Kdijai
†ajsb† + bd, s4d

where

K = S2pv

V
D1/2

. s5d

In Eq. (2), Ei indicates the energy of the molecular electronic
statei, ai

†, anda
i
are, respectively, the creation and annihila-

tion operators for the quantized electron field in theith elec-
tronic energy state. In Eq.(3), b† andb are the creation and
annihilation operators for the single-mode photon field with
a frequencyv. In Eq. (4), dij is the matrix element of the
molecular electronic dipole moment operator in the direction
of the polarization of a single-mode photon field. In Eq.(5),
V is the volume of a cavity containing the single-mode pho-
ton field.

We here consider two types of reservoirs composed of an
ensemble of harmonic oscillators, photons(R1, an external
field) and phonons(R2, nuclear vibrations), respectively. The
interaction between cavity field and R1 and that between
electronic states and R2 are described, respectively, by the
Hamiltonians

Hcfield−R1
= o

j

sj j
*br1j

† + j jb
†r1jd s6d

and

FIG. 1. System composed of a two-state electronic state of a
molecule coupled with a single-mode photon field in a cavity and a
reservoir composed of nuclear vibrations and an external field in
thermal equilibrium at temperatureT. We consider a two-state mo-
lecular model(with transition energyE21=20 000 cm−1, and transi-
tion moment m21=15 D) coupled with an strongly amplitude-
squeezed field[f=0 and r =1.5, see Eq.(8)]. This field has an
initial average photon numberkn̂l=16 and a frequencyv
=20 000 cm−1) in a cavity with V=107 Å3 surrounded by outer-
mode reservoir withT=300 K.
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Helec−R2
= o

i,j
gi jaj

†ajsr2i + r2i
† d, s7d

wherer1j
† andr

1j
represent the photon creation and annihila-

tion operators of reservoir 1(external field), and r2i
† and r

2i
represent the phonon creation and annihilation operators of
reservoir 2(nuclear vibrations), respectively. Thej

j
and g

i j
indicate the coupling constant between a cavity field and an
external field and that between electrons and vibrational
phonons, respectively.

The squeezed coherent field is generated by various non-
linear optical processes including optical parametric oscilla-
tion and four-wave mixing[29–36]. Theoretically, the single-
mode ideally squeezed coherent field can be generated from
the vacuum fieldu0l by operating squeezing and displace-
ment operators[29–35]:

ub,zl = expsbb† − b*bdexpfsz*b2 − zb†2d/2gu0l, s8d

wherez can be expressed byz=reif using real modulusr
and argumentf. Ther andf /2 represent squeezing intensity
and direction, respectively. The direction ofb is taken to be
aligned with Resbd axis in the complexb plane. In this field,
the variance of the quadrature operatorx̂1sx̂2d can be less
than the value 1/2 for the vacuum and the coherent field
states. From the Heisenberg uncertainty relation betweenx̂1
and x̂2, the variance of another quadrature operatorx̂2sx̂1d
exceeds 1/2. Iff=0 in Eq.(8) with a relatively small squeez-
ing intensity r, the squeezed coherent field has larger phase
uncertainty than a coherent field with the same average pho-
ton number and exhibits a narrower(sub-Poissonian) photon-
number distribution. Such field is referred to as an
amplitude-squeezed coherent field. The elements of the
squeezed field density matrix are represented by[29–35]

rphoton n,mst0d =
1

umuÎn ! m!
S n

2m
Dn/2S n*

2m* Dm/2

exps− ub8u2d

3 expS1

2

n*

m
b82 +

1

2

n

m* b82DHm
* S b8

Î2mn
D

3Hn
*S b8

Î2mn
D , s9d

wherem=coshr, n=eif sinh r, b8=mb+nb* , andHn is Her-
mite function. The diagonal part of Eq.(9) indicates the
photon-number distribution of squeezed coherent field. Sa-
tyanarayanaet al. [20] designate the amplitude-squeezed co-
herent fields as strongly squeezed coherent fields if they sat-
isfy the condition: exps2rdù ubu2/3, where the variance in
photon number originating in the squeezing part matches the
contribution originating in coherent field part. The strongly
squeezed coherent field is characterized by the feature that its
photon-number distribution is oscillatory. Such oscillatory
distribution is explained in terms of interference in the phase
space[54]: the oscillatory photon distribution is caused by
the interference between contribution from two regions in
phase space where an elongated ellipse[see theQ function
shown in Fig. 5(I)] overlaps the annuli indicating the number
states.

We consider a two-state molecular model with an energy
interval E21s;E2−E1d=20 000 cm−1 and a transition mo-
ment d21=15 D along the polarization of cavity field. The
cavity volume V [Eq. (5)] is assumed to be 107 Å3. The
averaged photon number and the squeezing intensity of the
initial strongly amplitude-squeezed field are fixed tokn̂l
=16 andr =1.5, respectively. These values satisfy the above
condition: exps2rd / ubu2/3<8.907.1. Figure 2 shows the os-
cillatory photon-number distribution for this strongly
amplitude-squeezed coherent field. It is noted that the distri-
bution is super-Poissonian overall, while individual peaks
within this distribution are sub-Poissonian.

B. Second-order Monte Carlo wave-function method

In this section, we briefly explain our calculation scheme.
The quantum master equation can be written by

ṙS = ifrS,HSg + LrelaxrS, s10d

where the Hamiltonian for the system isHS, andLrelax indi-
cates the relaxation superoperator, describing the system re-
laxation through its coupling to the reservoirs. The atomic
unit s"=me=e=1d is used throughout this paper. In the Born-
Markov approximation[37], the relaxation superoperator is
represented by the Lindblad form[55]:

LrelaxrS = −
1

2o
m

sCm
† CmrS + rSCm

† Cmd + o
m

CmrSCm
† .

s11d

This type of relaxation operator is widely applied in dissipa-
tive dynamics in quantum optics, chemical physics, biology,
and so on. The Lindblad operatorsCm

† and Cm act on the
system, and their forms depend on the nature of problem.

The original MCWF method simulates the evolution of
quantum trajectories in Hilbert space conditioned on continu-

FIG. 2. Photon-number distributions for a strongly amplitude-
squeezed field.
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ous photodetection involving two types of elements: one is
smooth evolution by the non-Hermitian HamiltonianHeff,
which originates in the first terms on the right-hand side of
Eqs.(10) and (11), and another represents the random inter-
ruptions of the non-Hermitian evolution by projections
(quantum jumps) described by the second term on the right-
hand side of Eq.(11). The higher-order unravelings in the
MCWF method are advantageous to obtaining more accurate
and stable numerical results[28,43]. In this study, the
second-order unraveling method is employed to provide a
feasible approach treating a large number of photon bases.
From the integration of the quantum master equation(10) to
second order indt, the following form is obtained[43]:

rSst + dtd = UrSstdU† +
1

2
dto

m

UCmrSstdCm
† U†

+
1

2
dto

m

CmUrSstdU†Cm
†

+
1

2
dt2o

m,n
UCmCnrSstdCn

†Cm
† U† + Osdt3d.

s12d

Here,U indicates the non-Hermitian evolution, which is re-
ferred to as the “no-jump” evolution, under the influence of
the effective Hamiltonian Eq.(14):

U = exps− iHeffdtd, s13d

where

Heff = HS −
i

2o
m

Cm
† Cm. s14d

Each term on the right-hand side of Eq.(12) represents the
“minitrajectory” [43]. The density-matrix evolution can be
simulated with pure states by using an expansion of the den-
sity matrix into minitrajectories. The procedure for evolving
wave functions of a system is described as follows. The nor-
malized wave functionuCst+dtdl of a system(molecular
electronic state1 cavity single mode) and the probabilitydpl
to choose its evolution in time stepdt for each minitrajectory
in Eq. (12) is represented by

sm1d uCst + dtdl =
UuCstdl
Îdp1

,

dp1 = kCstduU†UuCstdl, sno jumpd, s15d

sm2d uCst + dtdl =
UCmuCstdl

Îdp2m/sdt/2d
,

dp2m = kCstduCm
† U†UCmuCstdl

dt

2
, s16d

sm3d uCst + dtdl =
CmUuCstdl

Îdp3m/sdt/2d
,

dp3m = kCstduU†Cm
† CmUuCstdl

dt

2
, s17d

and

sm4d uCst + dtdl =
UCmCnuCstdl
Îdp4m/sdt

2
/2d

,

dp4mn= kCstduCn
†Cm

† U†UCmCnuCstdl
dt2

2
. s18d

Details of the numerical calculation procedure of the wave-
function at time t+dt using the Monte Carlo method are
presented in Ref.[28].

After obtaining a sufficiently large number of trajectories

rS
sidstdf=uCsidstdlkC

sid
stdug constructed by the Monte Carlo

wavefunctionsuCsidstdl, in which i indicates the trajectory
numbersi =1, . . . ,MCd, we average their density-matrix ele-
ments at each timet using the basis of the system
huk,nls;ukl ^ unldj spanned by the direct product of the mo-
lecular electronic statehukljsk=1,2, . . . ,Nd and the cavity-
mode photon number statehunljsn=0,1, . . . ,̀ d:

rSk,n;k8,n8std ; kk,nurSstduk8,n8l >
1

MC
o
i=1

MC

kk,nurS
sidstduk8,n8l.

s19d

The molecular electronic-state and cavity-mode photon re-
duced density matrices are, respectively, calculated by

releck,k8std = o
n

rSk,n;k8,nstd, s20d

and

rphotonn,n8std = o
k

rSk,n;k,n8std. s21d

Various properties concerning molecular electronic state and
cavity mode photon can be calculated using these reduced
density matrices.

TheQ function of a cavity photon field is defined by[37]

Qsb,td =
1

p
kburphotonstdubl

=
1

p
exps− b2d o

n,n8=0

b*nbn8

În ! n8!
rphoton n,n8std, s22d

whereubl is a coherent state,b is its complex amplitude, and
n is a photon number. TheQ functions in the complex plane
b at the timet are useful for gaining an insight into the
dynamics of the field-amplitude and -phase probability dis-
tributions for the a single-mode photon field coupled with
molecular electronic state in a cavity.

C. Relaxation terms

The relaxation of a system into two types of reservoirs is
described by Eq.(11) in the quantum master equation Eq.
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(10). We here consider two types of relaxation terms: cavity
relaxation sLcfield-reld and molecular phase relaxation
sLphase-reld. The former represents the leakage of single-mode
photons from the cavity to outer modes originating in the
coupling between a cavity single mode and external modes,
while the latter describes the phase relaxation in a molecule
caused by the coupling among molecular electronic states
and nuclear vibrations. The explicit forms of these relaxation
terms are given by[28]

Lcfield-relrS =
g

2
s2brSb† − b†brS − rSb†bd + gn̄Rsb†rSb

+ brSb† − b
+
brS − rSbb†d s23d

and

Lphase-relrS = − o
i,jsiÞ jd

G ji8PjjrSPii , s24d

wherePij is a projection operator concerning molecular elec-
tronic states:

Pij = uilk j u. s25d

In Eq. (23), g indicates the relaxation rate of the cavity
mode, andn̄R stands for the average photon number in ther-
mal equilibrium at temperatureT at the cavity-mode fre-
quencyv:

n̄R = FexpS v

kBT
D − 1G−1

, s26d

wherekB is the Boltzmann’s constant. The phase relaxation
(the relaxation of off-diagonal molecular density matrices) in
Eq. (24) is described by a phase relaxation rateGi j8 s=G ji8 d. It is
noted that these relaxation rates,g andGi j8 , are functions of
system-reservoir coupling constants,j j and gi j , respectively
[57].

Using Eqs.(23) and (24), the explicit forms of Lindblad
operatorsCm in Eq. (11) in the second-order MCWF method
are described as follows. For the cavity relaxation[Eq. (23)],
we have to deal with the following two operators[41]:

C1 = fgs1 + n̄Rdg1/2b s27d

and

C2 = fgn̄Rg1/2b†, s28d

which describe the quantum jumps corresponding to a dissi-
pation by a spontaneous or a stimulated emission and an
excitation by the absorption of a reservoir photon at tempera-
ture T, respectively. The Lindblad operators for the dephas-
ing part [Eq. (24)] are expressed by[56]

Cn =ÎGi j9

2
sPjj − Piid, sNC2 + 2 ù n ù 3d , s29d

where N represents the number of molecular electronic
states, andn corresponds to a pair of statessi , jdsi , jd. The
new factorGi j9 is related to the dephasing rateGkl8 as

Gkl8 =
1

4So
isÞkd

Gik9 + o
isÞld

Gil9D +
1

2
Gkl9 . s30d

III. RESULTS AND DISCUSSION

A. Dynamics of molecular population and average
photon number

At the initial time, the molecule is assumed to be in the
ground state and not to be coupled with the strongly
amplitude-squeezed field(see Sec. II A). In a numerical cal-
culation, the size of a photon-number basis is fixed to be 81,
which is found to be sufficient for our study. The effects of
two types of relaxations,(i) cavity relaxation and(ii ) mo-
lecular phase relaxation are examined as well as the nonre-
laxation case. The cavity relaxation rate isg=0.5 cm−1 [see
Eq. (23)] and the molecular phase relaxation rate isG218
=10 cm−1 [see Eqs.(24)]. The temperature of the outer mode
reservoir is fixed to be 300 K. It is well known that the
sample sizeMC of Monte Carlo trajectories and time stepdt
have a significant influence on the numerical error of the
results. In the non-Hermitian evolution[Eq. (13)], we em-
ploy the sixth-order Runge-Kutta method with the time step,
dt<0.0345 a.u.(a period of a cavity field/2000), which is
found to provide a sufficiently converged and quantitatively
correct results for a dynamical behavior of molecular popu-
lation and average photon number for the nonrelaxation
model. The numerical error for the relaxation case also origi-
nates in the Monte Carlo method, in which the error is found
to be proportional to 1/ÎMC [43]. We have checked the con-
vergence behaviors of molecular ground-state population and
average photon numbers for a model system with relaxations
and have found thatMC=10 000 can provide qualitatively
converged behavior.

Figure 3 shows the variation in the ground-state molecular
population for a nonrelaxation(a), cavity relaxation(b), and
molecular phase relaxation(c) cases. In the nonrelaxation
case(a), similarly to the previous study[20], the revivals
after the first collapse[(I)–(III )] exhibit ringing behavior: a
large revival [(IV )] followed by a series of echoes[after
(IV )] in contrast to the initial coherent field case, which ex-
hibits a simple collapse envelope. Such ringing revivals are
found to be caused by the fact that the different peaks in
photon-number distribution(Fig. 2) give different rephasing
times for the cosines coss2ltÎnd (l: atom/molecule-field
coupling constant, andn: photon number), and also each
echo is not independent but interferes with each other in
phase space, leading to the distinct echoes rather than a
blurred, extended collapse of the primary revival[20]. In the
cavity relaxation case(b), the revival amplitudes are shown
to be much reduced(about 70% reduction for the maximum
revival amplitude) than those in the nonrelaxation case(a)
though the cavity relaxation rateg=0.5 cm−1 is very slight.
This remarkable attenuation of revival is also observed for
the initial coherent field and the initial weak amplitude-
squeezed field cases[28]. It is shown that the molecular
phase relaxation (c) with larger relaxation rateG218
=10 cm−1 gives a similar reduction of the primary revival
amplitudes[(IV )] to that in the cavity relaxation case(a),
while the echoes[after (IV )] exhibit more distinct behavior
than that in the cavity relaxation case(b): the ratio of revival
amplitudes(VI )/(IV )<0.1 in case(b), while 0.23 in case(c).

For the variation in average photon numbers shown in
Fig. 4, the nonrelaxation case(a) shows the collapse-revival

SECOND-ORDER MONTE CARLO WAVE-FUNCTION… PHYSICAL REVIEW A 70, 033407(2004)

033407-5



behaviors involving ringing revival betweenknl=16 and 15
similarly to the molecular population dynamics in the nonre-
laxation case[Fig. 3(a)]. The cavity relaxation case[Fig.
4(b)] shows a decrease of the average photon number as well
as the significant reduction of revival-collapse amplitudes
particularly in the echoes[(IV )–(VII )]. On the other hand, it
turns out that the molecular phase relaxation[Fig. 4(c)] does
not decay the average photon number, but only reduces the
amplitudes of the revival-collapse behaviors similarly to the
molecular ground-state population[Fig. 3(c)]. The features
of the nondecay behaviors in the average photon number for
phase relaxation can be understood by the fact that there is
no energy exchange between the system and its environment
by the molecular phase relaxation since the phase relaxation
operators commutes with the system Hamiltonian.

B. Dynamics of quasiprobability (Q function) distributions of
a cavity field

We first investigate the dynamics ofQ function distribu-
tions of a cavity field in the nonrelaxation case(Fig. 5). The
horizontal and perpendicular axes indicate Resbd and Imsbd,
respectively. These timest are taken as 2pm/vsm
=0,1,2, . . .d to remove the phasesvtd of the free field. The
Q function dynamics is known to be useful for obtaining a
dynamical behavior of average photon number and phase
distributions for photon fields[44–53]. The initialQ function
of amplitude-squeezed field is shown to provide an ellipse
distribution centered aroundb0 (;Îkn̂l, kn̂l=16) [see Fig.
5(I)]. The dotted circle corresponds to the average photon
numberkn̂l=16. A single peak atf=0 is found to split into
two peaks and then counterrotate on the circleubu=b0 until

FIG. 3. Time evolutions of the molecular ground-state popula-
tions [r

elec 1,1
std] for a model(Fig. 1) in the case of(a) nonrelax-

ation, (b) cavity relaxationsg=0.5 cm−1d, and(c) molecular phase
relaxation sG218 =10 cm−1d. One optical cycle corresponds toT
=2p /v<69.0 a.u.

FIG. 4. Time evolutions of the average photon numbers for a
model(Fig. 1) in the case of(a) nonrelaxation,(b) cavity relaxation
sg=0.5 cm−1d, and(c) molecular phase relaxationsG218 =10 cm−1d.
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they collide atf= ±p. After this collision, they split again
and collide atf=0. These splitting and colliding processes
are known to repeat though such behavior gradually gets
blurred due to the number-phase uncertainty principle[21].
In contrast to the coherent field and weakly squeezed field
cases[44–53], plural smallerQ function distribution peaks
with different periods appear after the collision atf= ±p
[(IV )]. These smaller distributions are predicted to be caused
by the oscillatory photon-number distribution peaks with a
different rotating speed inQ function[21]. Actually, the larg-
est revival around(IV ) corresponds to a single sharp peak at

f= ±p [Fig. 5(IV )] and its splitting does to the collapse of
the largest revival, while the collision of smaller peaks with
longer periods atf= ±p [Figs. 5(VI ) and (VII )] correspond
to the echoes of revivals at(VI ) and(VII ) shown in Fig. 3(a).
This feature corresponds to the fact that the photon states
with a large number of photons require the longer times for
changing the photon phase through the interaction with a
molecule[20]. It is also found that in the quiescent region
[see Fig. 3(III )], the primary split peaks on the complex
plane are located atf= +p /2 and −p /2 [Fig. 5(III )], respec-
tively, similarly to the coherent field case, the feature of
which implies the decoupling between molecule and photon
field in the quiescent region, leading to the generation of an
optical Schrödinger cat state[5].

We second examine the relaxation effects on theQ func-
tion distribution dynamics. Figure 6 shows theQ function
distributions for the cavity relaxation casesg=0.5 cm−1d. It
turns out that there are almost no differences between non-
relaxation case(Fig. 5) and cavity relaxation case(Fig. 6)
until (III ), while the gradual decrease of the distribution in
the cavity relaxation case appears particularly in the outer
regions corresponding to the components with larger photon
numbers[see Figs. 5(IV )–(VII ) and 6(IV )–(VII )]. This can
be understood by the fact that the components with a larger
number of photons more significantly suffer from the cavity
relaxation, whose rate is in proportion tong (n: photon num-
ber) [see Eqs.(27) and (28)]. As a result, the smallerQ
function distribution peaks originating in the oscillatory
photon-number distribution peaks with larger numbers are
shown to be reduced and thus are predicted to cause the
attenuation of the revival amplitudes particularly in the ech-
oes[see Fig. 3(b)]. On the other hand, the molecular phase
relaxationsG218 =10 cm−1d is shown to remarkably blur the
phase distributions, the feature of which is represented by the
delocalized distributions along the dotted circle[see Fig.
7(III )–(VII )]. Such increase in the photon-phase uncertainty
leads to the suppression of the amplitudes for the entire ring-
ing revivals[see Fig. 3(c)].

C. Dynamics of off-diagonal molecular density matrix

The magnitudes of off-diagonal molecular density matri-
ces urelec 1,2stdu are shown in Fig. 8 in the case of nonrelax-
ation (a), cavity relaxation(b), and molecular phase relax-
ation (c). The urelec 1,2stdu represents the degree of coherency
between the ground and the excited molecular electronic
states. For all the cases, the splitting and approaching tof
= ±p /2 of Q function [(I)–(III ) shown in Figs. 5–7 corre-
spond to the oscillatory increase inurelec 1,2stdu, at the maxi-
mum point of which the cavity-mode photon field is in a
Schrödinger cat state composed of the entanglement of two
phase statessf= ±p /2d in the nonrelaxation case. The suc-
cessive decrease in the amplitudes ofurelec 1,2stdu corresponds
to the colliding process of theQ function distribution[(III )–
(IV ) shown in Figs. 5–7. The split of the primaryQ function
distribution peak and subsequent approach tof= ±p /2
[(IV )–(VII ) shown in Figs. 5–7 are found to cause a gradual
increase inurelec 1,2stdu again though it accompanies the os-
cillations of urelec 1,2stdu corresponding to the echoes[Fig.

FIG. 5. Q function distributions of the amplitude-squeezed field
in a cavity at times(I)–(VII ) (see Figs. 3 and 4) for a coupled model
(Fig. 1) in the case of nonrelaxation. The horizontal and vertical
axes represent the real and imaginary parts ofb, which is an eigen-
value of annihilation operatorb for a cavity mode. The dotted circle
with a radiusubu=4 represents the photon number 16. The 30 con-
tours are drawn from values 0.0 to 1.0.
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3(a)] in the nonrelaxation case[Fig. 8(a)]. Although such
primary variation inurelec 1,2stdu is shown to be preserved in
the case of cavity relaxation case[Fig. 8(b)] except for the
oscillations inurelec 1,2stdu corresponding to the echoes of re-
vivals. In contrast to these two cases[nonrelaxation, Fig.
8(a), and cavity relaxation, Fig. 8(b) cases], the molecular
phase relaxation exhibits a significant reduction(about 36%)
of amplitudes of the increase inurelec 1,2stdu at (III ) in the
nonrelaxation case. Particularly, the increase behaviors in
urelec 1,2stdu after (IV ) in the case of nonrelaxation and cavity
relaxation are shown to almost disappear in the molecular
phase relaxation case[Fig. 8(c)]. This feature corresponds to
the significant uncertainty of the phase distributions inQ
function distributions at that time region[Fig. 7(V)–(VII )].

IV. CONCLUDING REMARKS

We have investigated the effects of two types of relax-
ations, i.e., cavity relaxation and molecular phase relaxation,
on the dynamics of a coupled system composed of a two-
state molecular model and a strongly amplitude-squeezed co-
herent field in a cavity using the second-order Monte Carlo
wave-function(MCWF) method. In a cavity relaxation, a
very slight cavity relaxation rate is found to significantly
attenuate the ringing revivals, particularly the echoes. This
can be understood by the fact that theQ function distribu-
tions corresponding to oscillatory photon-number distribu-
tions with larger photon numbers suffer from more signifi-

FIG. 6. Q function distributions of the amplitude-squeezed field
in a cavity at times(I)–(VII ) (see Figs. 3 and 4) for a coupled model
(Fig. 1) in the case of cavity relaxationsg=0.7 cm−1d. See Fig. 6 for
further legends.

FIG. 7. Q function distributions of the amplitude-squeezed field
in a cavity at times(I)–(VII ) (see Figs. 3 and 4) for a coupled model
(Fig. 1) in the case of molecular phase relaxationsG218 =10 cm−1d.
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cant cavity relaxation effects since the cavity relaxation rate
is in proportion tong (n: photon number). On the other hand,
the primary behaviors of the degree of coherency between
molecular electronic states, which is represented by the off-
diagonal molecular density matrices,urelec 1,2stdu, turn out to
be preserved in the cavity relaxation case since such echoes
only give the oscillations with smaller amplitudes in enve-
lopes of urelec 1,2stdu. In the case of molecular phase relax-
ation, although the entire amplitudes of ringing revivals are
suppressed, the echoes appear more distinctively than those
in the cavity relaxation case. The coherency between mo-
lecular electronic states, however, turns out to be more at-
tenuated than that in the cavity relaxation case. It is predicted
that this decoherency between molecular electronic states af-
fects the photon phase properties and thus provides delocal-

ized phase distributions inQ functions, the feature of which
significantly attenuates the entire ringing revivals. Judging
from the present results, if the cavity relaxation could be
sufficiently suppressed, the molecule coupled with a strongly
amplitude-squeezed coherent field has a possibility of exhib-
iting ringing revivals similarly to the relaxation-free atomic
case though the magnitudes of entire revival amplitudes are
fairly reduced as compared to the atomic case. On the other
hand, the generation of Schrödinger cat state in the quiescent
region is predicted to be more significantly suppressed for a
molecular system with a phase relaxation originating in
nuclear vibrations than for an atomic system with only a
cavity relaxation.

On the basis of our present results, attractive effects of
quantized fields such as squeezed fields on atomic systems
are also expected on the coherency dynamics of molecular
electronic systems though molecular vibrational effects,
which tend to destroy the electronic coherency, strongly af-
fect the dynamical behavior of off-diagonal molecular den-
sity matrices particularly. This suggests a possibility of direct
control of molecular electronic coherency by a reflection of
various quantum statistics of quantized photon fields.

We should finally mention the possibility of experimental
observation of the present results. Unfortunately, the present
model, i.e., two-level atom/molecule coupled with a single-
mode strongly squeezed coherent light, is hard to be realized
in experiments at the present time. However, the model with
the same mathematical structure, i.e., the Jaynes-Cummings
model, has been realized using the laser cooled trapped ions
by the Wineland group[58–60]. They have created various
nonclassical states, e.g., thermal, Fock, coherent, and
squeezed states, of motion of a harmonically bound9Be+ ion,
and have measured the collapse-revival behaviors caused by
the Jaynes-Cummings-type interaction between its motional
and internal states, i.e., two hyperfine ground states, due to
applied(classical) radiation[58]. They have also realized a
decoherence induced by coupling the atom to controllable
engineered reservoirs, i.e., amplitude and phase reservoirs,
and have measured the decoherence of superposed motional
states, i.e., Schrödinger cat states, of a single trapped atom
[59,60]. These experiments using trapped ions are useful for
the detailed comparisons between theory and experiment and
the profound understanding of the relation among quantum
phase dynamics and relaxations in the Jaynes-Cummings
models involving the coupling with reservoirs. Judging from
these results, the relaxation effects on the ringing revivals
and the coherency between states obtained in this study have
the sufficient possibility of being realized using the trapped
ions with engineered reservoirs. Although in the present
model the generation and decoherence of quantum super-
posed state appear in the photon phase dynamics with two
mutually antirotatingQ function distributions, i.e., “optical
Schrödinger cat,” such behavior is usually observed in me-
soscopic systems because the macroscopic superposition de-
cay so quickly[59,60]. Considering the large number of de-
grees of freedom in the mesoscopic systems, the present
second-order MCWF approach is expected to be an effective

FIG. 8. Time evolutions of the magnitudes of off-diagonal mo-
lecular density matricessurelec 1,2stdud for a model(Fig. 1) in the
case of(a) nonrelaxation,(b) cavity relaxationsg=0.5 cm−1d, and
(c) molecular phase relaxationsG218 =10 cm−1d.
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method for investigating the features of Schrödinger cat
states, e.g., size and distribution dependency of its generation
and collapse, in the mesoscopic systems coupled with reser-
voirs.
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