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The nonlinear magneto-optical rotation in a medium consisting ofJ=1→J=0 atoms placed in a static
magnetic field is studied. The density matrix approach and irreducible atomic basis are used to describe the
state of the atomic system. The stationary propagation equations for two collinear laser beams with perpen-
dicular circular polarizations are derived and analyzed in the case of the magnetic field perpendicular to the
light propagation direction. The effect of the linear polarization rotation toward the direction parallel or
perpendicular to the magnetic field vector and lossless propagation of the resulting light are predicted. The
conversion of the circularly polarized beam into linearly polarized one is shown. The propagation of the
leading edges of switched on cw-laser beams and their stationary propagation are analyzed numerically. The
dependence of the considered effects on the light detuning and on the additional magnetic field component
parallel to the light propagation direction is discussed. The destructive role of the collisional relaxation is
demonstrated.
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I. INTRODUCTION

The nonlinear modification of the polarization of light due
to its traveling through an atomic medium placed in a mag-
netic field has been the subject of extensive studies, both
experimental and theoretical[1–3]. Usually the nonlinear
Faraday effect when the linearly polarized light propagates
along the magnetic field direction is considered. The differ-
ent experimental geometry in which the magnetic field is
perpendicular to the direction of propagation—e.g., the Voigt
effect [4]—is rarely considered.

In typical experiments the magneto-optical rotation is
studied as a function of light detuning in the presence of the
constant magnetic field or the change of the rotation angle as
a function of magnetic field intensity for the laser light tuned
to the atomic resonance is measured. Spectra obtained in
such a way are valuable sources of atomic data. In general,
the modification of radiation polarization due to propagation
in a medium is studied.

Recently the nonlinear magneto-optical rotation is a sub-
ject of growing interest[1]. It is linked to coherent popula-
tion trapping(CPT) and electromagnetically induced trans-
parency(EIT). For example, in the atom with the statesJ
=1→J=0, CPT occurs in the absence of the magnetic field.
A nonzero magnetic field parallel to the light beam direction
disturbs the CPT and nonlinear polarization rotation appears
[5]. In the same system the subluminal and superluminal
propagation was predicted[6] under the assumption that lin-
early polarized pump and probe fields and the magnetic field
are mutually orthogonal. It was shown that in this system one
can generate a large atomic coherence to enhance the reso-
nant nonlinear magneto-optical effect by several orders of
magnitude[7].

The atomic systemsJ=1/2→J=1/2, J=0→J=1, andJ
=1→J=0 are frequently used as realistic models for an ex-
planation of various physical phenomena. They are the sim-
plest four-level systems but they are usually called degener-
ate two-level systems. In many cases their degeneracy is not
important; e.g., when theJ=1/2→J=1/2 atom is driven by
a linearly polarized light it behaves like a two-level atom.
However, in many interesting(from the physical point of
view) effects the degeneracy of these atoms is very important
or plays a crucial role. The magneto-optical rotation is one of
such phenomena[1,2,5].

In the present paper we study the nonlinear optical rota-
tion in the medium composed ofJ=1→J=0 atoms. We
solve the density matrix equations for the atomic state. We
use the conventional expansion in a basis of multipole mo-
ments, which are represented by contractions of tensors con-
structed from light polarizations vectors and atomic irreduc-
ible tensor operators. We solve the Maxwell equations in the
framework of the slowly varying amplitude and phase ap-
proximation to account for light propagation effects. We re-
strict practically our considerations to steady-state solutions
of the Liouville equation for the density matrix and to sta-
tionary solutions of the propagation equations. Even in such
a case the exact solutions are cumbersome or impossible to
obtain. Therefore some of our results are calculated numeri-
cally.

If the collisional relaxation processes are absent, there is
no Faraday effect in theJ=1→J=0 system. This is due to
the optical pumping which transfers all atoms to a dark state.
However, even very small collisional relaxation redistributes
atoms among Zeeman sublevels of the ground state and the
Faraday rotation appears[4,7].

When the magnetic field is perpendicular to the propaga-
tion direction—e.g., for the Voigt geometry—there is no dark
state and even in the absence of the collisional relaxation the
magneto-optical rotation occurs. However, as we show, dur-
ing stationary propagation the linear polarization of light ro-
tates to the final one for which the medium is transparent.
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Moreover, we show that circularly polarized light is con-
verted in the course of stationary propagation into the lin-
early polarized one propagating without losses. We also
study the influence of the detuning, nonzero longitudinal
magnetic field component and the collisional relaxation on
the considered nonlinear magneto-optical rotation effect.

II. THEORETICAL MODEL

We consider atoms illuminated by two collinear laser
beams with perpendicular circular polarizations. Both beams
have the same frequency and are resonant with theJ=1
→J=0 transition(see Fig. 1). This configuration can be ex-
perimentally realized for example in atomic samarium[8].
The atoms are placed in a static magnetic field. The laser
electric field, propagating along thez axis, is given by

EWsz,td =
1

2
fE1sz,tdeW1 + E2sz,tdeW2geisvt−kzd + c.c., s1d

whereeW1=s1/Î2dsx̂+ iŷd and eW2=s1/Î2dsx̂− iŷd are orthogo-
nal circular polarization vectors. We expand the static mag-
netic field according to

BW = B−eW1 + B+eW2 + Bzẑ, s2d

whereB±=s1/Î2dsBx± iByd=s1/Î2dÎBx
2+By

2e7ifB and fB is
the angle between thex axis and the transverse component of
the magnetic field.

The interaction of the atom with the electric and magnetic
fields is in the dipole approximation given by[1]

V = − dW ·EW − mW ·BW , s3d
wheredW andmW are the electric and magnetic dipole moments,
respectively.

The state of the atom is described by the density matrix
rsz,td which we expand in a Liouville space basisheij of
rotationally irreducible tensors[9–11] according to

rsz,td = o
i

risz,tdei . s4d
This basis consisting of 16 vectors, which are contractions of
spherical vectors constructed from the polarization vectors
and atomic operators, is given by

e1 = e11s00d,

e2 = e22s00d,

e3 = o
m

s− 1dmsẑd−me11s1md,

e4 = Î6o
m

s− 1dmseW1,eW2d−m
2 e11s2md,

e5 = e6
† = o

m

s− 1dmse1,e1d−m
2 e11s2md,

e7 = e8
† = o

m

s− 1dmseW1d−me12s1md,

e9 = e10
† = o

m

s− 1dmseW2d−me12s1md,

e11 = e12
† = o

m

s− 1dmsẑd−me12s1md,

e13 = e14
† = o

m

s− 1dmseW1d−me11s1md,

e15 = e16
† = Î2o

m

s− 1dmsẑ,eW1d−m
2 e11s2md,

wheresaWdm is the spherical component of a vectoraW:

ekisJmd = o
mi,mk

s− 1dJk−mkCsJiJkJ;mi,− mk,mduJimilkJkmku

s5d
and

saW,bWdm
2 = − o

m1,m2

Cs112,m1,m2,mdsaWdm1
sbWdm2

. s6d

The symbolCsJ1J2J;m1,m2,md denotes the Clebsch-Gordan
coefficient anduJml is the atomic state from the Hilbert
space.

The components of the density matrix defined by Eq.(4)
have defined physical meaning. The populations of the
ground and excited levels are given byÎ3r1 andr2, respec-
tively. The atomic coherences between these levels are de-
scribed byr7, r9, andr11 and their complex conjugates. The
orientation in the ground level is given byr3, r13, andr14.
The componentsr4, r5, r6, r15, andr16 represent the align-
ment in the ground state.

The evolution of the density operatorr is governed by the
Liouville equation[1,10]

i
d

dt
r = L̂r = fH,rg + iF̂r = s− Ĥ + iF̂dr, s7d

where L̂ and H=HA+V denote the Liouvillian and the
Hamiltonian of the system, respectively(we put "=1). The
operatorHA stands for the atomic Hamiltonian andV repre-
sents the interaction of the atom with the light beams and

magnetic field. In our approach the relaxation operatorF̂ is
determined phenomenologically by spontaneous damping
rates and experimental collisional cross sections. We neglect
the effects of atomic motion.

We construct the matrixL=−isei ,L̂ejd, where sA,Bd
=TrsA†Bd denotes the scalar product in Liouville space[10].
This matrix governs the evolution of the density matrix in
the framework of the rotating-wave approximation(RWA):

L = S A D

− D† C
D , s8d

where

FIG. 1. TheJ=1−J=0 atomic system interacting with two cir-
cularly polarized laser beams.
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HereG=g /2+gcoll denotes the perpendicular relaxation rate.
The spontaneous relaxation rate is denoted byg andgcoll is
the collisional dephasing rate. The detuning of the driving
fields from the atomic transition is given byD=v−v21 and
D±=D±bz. The collisional damping of the orientation and
alignment in the ground state are described by the ratesG1
and G2, respectively. The couplings of the light beams with

the atom are given byvi =dW ·EW i /Î3, i =1,2, and thecoupling
with the magnetic field is given byb±,z=m0gB±,z (m0 is the
Bohr magneton andg denotes the Lande factor).

In general the amplitudesE1 are E2 are complex-valued
functions and they can be expressed in the exponential form

Ei = E0ie
ifi, i = 1,2. s9d

The total electric field can be rewritten as

E1eW1 + E2eW2 = 2E01e
if+eW12 + sE02 − E01deW2e

if2, s10d

where f+=sf1+f2d /2, «W12=xW cosfsf1−f2d /2g−yW sinfsf1

−f2d /2g. In other words, the total electric field being gener-
ally elliptically polarized can be treated as a sum of linearly
and circularly polarized components.

The electric field of the light induces the medium polar-

ization PW which is described by the components of the den-
sity matrix r representing the atomic coherences:

PW = sP1eW1 + P2eW2deisvt−kzd + c.c.

=
Nd2

3
srv1

eW1 + rv2
eW2deisvt−kzd + c.c., s11d

whereN is the density of atoms,rv1
=r7 andrv2

=r9.

The propagation of the fieldsEW 1 and EW 2 can be treated
independently and the respective propagation equations in
the framework of the slowly varying amplitude and phase
approximation are as follows:

dvisz,td
dz

=
2pv

c
Pisz,td = arvi

sz,td, s12d

where for simplicity we use the couplings instead of the field
amplitudes,i =1,2, anda=s2p /3cdNvd2. The retarded time
is denoted byt= t−z/c.

III. RESONANT STATIONARY PROPAGATION

Let us assume that both propagating cw-laser beams are
in resonance with the atomic transitionsD=0d. Moreover, we
assume that the light interacts with the medium being in the
steady state[12–14]. It means that the intensities of both
circular components are functions of the distance only—i.e.,
Ei =Eiszd, i =1,2. One canimagine that two collinear cw-
laser beams enter the medium. The leading edge of the field
drives the atoms to the steady steady in the time much
greater than the atomic lifetime 1/g and then the light propa-
gates in the medium being in the steady state.

The steady-state density matrix is the solution of the

steady-state Liouville equationL̂ r=0 [see Eq.(7)] with the
normalization Trr=Î3r1+r2=1. We assume that the static
magnetic field is perpendicular to the light propagation di-

rection sBz=0d and that collisional effects can be neglected
(G=g /2, G1=G2=0). Since we are interested in the light
propagation, we present only the density matrix components
rv1

andrv2
:

rv1
= −

4A
b2B , s13d

A = gb−s3b−v1
* + b+v2

*dsb+
2v1

2 − b−
2v2

2d,

B = 8sv01
2 + v02

2 + 2v01v02 cos 2f−df2sv01
2 + v02

2 − b2d2

+ 3b2sv01
2 + v02

2 − 2v01v02 cos 2f−dg + b2g2f5sv01
2 + v02

2 d

+ 6v01v02 cos 2f−g,

rv2
= rv1

sv1 → v2,v2 → v1,b± → − b7d, s14d

wherev0i = uviu, i =1,2, b=Î2ub±u, and f−=sf1−f2d /2−fB.
Note thatB is always positive. Obviously, when the mag-
netic field is absent, the atoms are in the dark state due to the
optical pumping and the medium is transparent for the laser
beams.

We derive from Eq.(12) equations describing propagation
of the moduli and phases of the respective laser fields,

dv0i

dz
= a Refrvi

e−ifig, s15d

v0i
dfi

dz
= a Imfrvi

e−ifig, s16d

and we rewrite them using new variables

v± = v01 ± v02 s17d

and the phasesf+ andf−. Finally we obtain

dv−

dz
= − a

gb2

4B fs9 + 4 cos 2f− + 3 cos 4f−dv+
2

+ 6 sin2s2f−dv−
2gv−, s18d

dv+

dz
= − a

gb2

4B fs9 − 4 cos 2f− + 3 cos 4f−dv−
2

+ 6 sin2s2f−dv+
2gv+, s19d

df−

dz
= a

gb2

2B
sv+

2 + v−
2d2

v+
2 − v−

2 D, s20d

df+

dz
= − a

gb2

B
v+v−sv+

2 + v−
2d

v+
2 − v−

2 D, s21d

where

D = − S1 + 3
v+

2 − v−
2

v+
2 + v−

2 cos 2f−Dsin 2f−. s22d

Since the right-hand sides of Eqs.(18)–(21) do not de-
pend on the mean phasef+, its stationary propagation is
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described by the amplitudesv+ and v− and by the relative
phasef−. Therefore we restrict our considerations to Eqs.
(18)–(20).

The analysis of the propagation equation forv− [see Eq.
(18)] shows that this difference of the amplitudes tends to
zero. It means that the intensities of both fields equalize and
the light polarization becomes linear along the direction de-
scribed by the phase difference[see Eq.(10)].

The sign of the derivativedf−/dzdepends on the function
D which for the laser beams giving linearly polarized light
sv−=0d is a function off− only:

Dlin = Dsv− = 0d = − s1 + 3 cos 2f−dsin 2f−. s23d

This function has eight roots in the intervalf−p ,pd (see Fig.
2):

Dlinsf−d = 0 for 5f− =
kp

2
, k = ± 1, ± 2

f− = ± f−
s0d, ±sp − f−

s0dd,
6 s24d

wheref−
s0d<0.304p.

The character of the stationary propagation of the linearly
polarized light is determined by the functionDlin. It is easy
to notice that the polarization vector rotates until it becomes
parallel or perpendicular to the direction of the static trans-
verse magnetic field. If we assume that the linearly polarized
light enters the medium, the final polarization direction is
related to the initial relative phase differencef−sz=0d in the
following way (see Fig. 3):

lim
z→`

f− =5
− p for − p , f−s0d , − p + f−

s0d,

−
p

2
for − p + f−

s0d , f−s0d , − f−
s0d,

0 for − f−
s0d , f−s0d , f−

s0d,

p

2
for f−

s0d , f−s0d , p − f−
s0d,

p for p − f−
s0d , f−s0d , p.

6
s25d

The sum of the amplitudesv+ also decreases in the course
of the propagation[see Eq.(19)]. However, if the relative
phasef− achieves its asymptotic value and both propagating
fields have equal amplitudessv−=0d, one can expect the loss-
less propagation—i.e.,v+=const.

Let us assume that only one circularly polarized beam
enters the mediumfv2sz=0d=0g. In such a case an atomic
coherence

rv2
=

gb2v01e
isf1−2fBd

8f2sv01
2 − b2d2 + 3b2v01

2 g + 5g2b2 s26d

appears forz=0 [see Eq.(14)]. According to Eq.(12) this
coherence is the source of the circularly polarized light de-
scribed by the couplingv2 and having an initial phase
f2s0d=f1s0d−2fB—i.e., f−s0d=0. It should be stressed that
this coherence is created only when the transverse magnetic
field is presentsbÞ0d.

Since the amplitudes of both circularly polarized fields
equalize during stationary propagation[compare Eq.(18)],
circularly polarized light entering the medium is converted
into light polarized linearly in the direction parallel to the
transverse magnetic field.

IV. NUMERICAL SIMULATION

A. Nonstationary propagation

In order to verify obtained results we have solved the set
of equations(7) and(12) numerically. We have implemented
the method described in[15]. We assume that initially all
atoms of the medium are in the ground state with equally
populated Zeeman sublevels; i.e., onlyr1=1/Î3 is nonzero.
Two circularly polarized laser beams propagate through this
medium. Their polarizations are orthogonal. The medium is

placed in the static magnetic fieldBW perpendicular to the
propagation direction. The time and distance are measured in
g−1 and z0=a−1 units, respectively. The rest of necessary
parameters are related to the spontaneous decay rateg.

The beams with the envelopes, which are represented by
the function

fstd = 5v0

2
F1 − cosS t

Dt
pDG for 0 ø t ø Dt,

v0 for t ù Dt,
6 s27d

enter the medium atz=0. The parametersv0 andDt describe
the final amplitude and the switching on time of the laser
beam, respectively. Obviously the leading edge of such an
envelope is absorbed in the course of the propagation but
later the field amplitude stabilizes(see Fig. 4) and its change
is described by the stationary propagation equations

FIG. 2. The functionDlin Eq. (23), in the intervalf−p ,pg. FIG. 3. The asymptotic relative phase differencef−sz→`d ver-
sus the initial onef−s0d for beams giving linearly polarized light.
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(18)–(21). Since we have chosen a relative weak input field
with v01=g for our simulation, the leading edge of the beam
behaves relatively smoothly during propagation. For stronger
incident light damped oscillations, due to the Rabi oscilla-
tions, appear on this edge. However, the stationary regime is
achieved approximately at the same time. If we use much
weaker beam, we have to wait much longer for the steady
state of the medium atoms.

Let us consider two cases. In the first one the fieldv1
enters the medium in the presence of the fieldv2sz=0d
=v1

*sz=0d; i.e., both components form the linearly polarized
beam. In the second casev2

*sz=0d=0; i.e., the incident light
is circularly polarized. As is shown in Fig. 4 the component
v1 of the linearly polarized incident beam has at the same
distance much greater amplitude than this field in the case
when the incident beam is circularly polarized. In the second
case the orthogonal circular field appears and increases due
to the energy transfer from the fieldv1 and the stationary
amplitudes of these two fields are practically equal for the
distancez=200z0. As it is expected the resulting light is lin-
early polarized.

B. Stationary propagation

The process of conversion of the circularly polarized light
into linearly polarized one in the course of the stationary
propagation is presented in Fig. 5 where we have plotted the
stationary amplitudes of both circularly polarized fields as

functions of the propagation distance for three values of the
magnetic field. Only the fieldv1 enters the medium but later
the fieldv2 grows up and finally these two fields have equal
amplitudes. The phasef− is always equal to zero.

In such a case we can derive from Eqs.(18) and(19) the
following constant of motion:

2v+
2szd − v−

2szd = const. s28d

Since the functionv−szd monotonically tends to zero and as
we assume only the fieldv1 enters the medium, the
asymptotic values of the amplitudes of both circularly polar-
ized beams are equal(see Figs. 4 and 5):

v01sz→ `d = v02sz→ `d =
1

2Î2
v01sz= 0d. s29d

The role of the magnetic field is more complicated than it
is suggested by the results presented in Fig. 5, where it is
shown that the propagation distance necessary for the equal-
ization of both circularly polarized fields increases with the
magnetic field. In Fig. 6 we present the beam amplitudes as
functions of the static magnetic field intensity for the fixed
propagation distancez=50z0 when only one circularly polar-
ized beam enters the medium. It is clear that for this distance
the amplitude equalization is practically finished in the inter-
mediate range of the magnetic fields(plateau in Fig. 6). Out-
side this interval this process is much slower.

We can look at these last results from the other point of
view. Let us assume that the length of medium is finite.
Changing the intensity of the magnetic field we can control
the intensities of both beams. In this way we can influence
the polarization of the resulting field.

In the course of the propagation the amplitudes of both
circularly polarized components of the linearly polarized
light behave in the same way—i.e.,v−szd=0 (see Fig. 7).
Therefore only the rotation of the polarization direction oc-
curs; i.e.,f−szd tends to zero. For sufficiently large distances
the propagation is practically lossless. The intensity of such a
beam depends on the initial light intensity forz=0 and on the
initial relative phasef−sz=0d.

Using Eqs.(19) and(20) we derive the following constant
of motion in the case of linearly polarized light:

v+szdÎ1 + 3 cos 2f−szd = const, s30d

from which we obtain

FIG. 4. The envelope of the fieldv01 for z=0 andz=200z0. The
solid line: the envelope of the incident light. The dotted line: the
final envelope in the absence of the incident fieldv2sz=0d=0. The
dashed line: the final envelope in the presence of the incident field
with v01sz=0d=v02sz=0d and f1sz=0d=f2sz=0d=0. The static
magnetic field is characterized byb=2g andfB=p /6. The switch-
ing on timeDt=10/g.

FIG. 5. The stationary propagation of the amplitudesv01 andv02

when only the fieldv1 with the phasef1=p /18 enters the medium.
The direction of the static magnetic is defined byfB=p /6.

FIG. 6. The amplitudesv01 and v02 vs magnetic field forz
=50z0. Only the beamv1 enters the medium.
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v+szd = v+s0dÎ1 + 3 cosf2f−s0dg
1 + 3 cosf2f−szdg

. s31d

Asymptotically the phasef−szd (for z→`) tends to the one
of four values given by Eq.(25) which depends onf−s0d
(see also Fig. 3). Therefore the amplitude of the losslessly
propagating linearly polarized light is determined by these
values according to Eq.(31) (see Fig. 8). The incident light
energy losses are biggest forf−s0d close to the zeros of the
function Dlin. Obviously, this light is not influenced by the
stationary propagation if the phasef−s0d is equal to one of
its four possible asymptotic values.

Also the final direction of the linear polarization depends
on the initial value of the relative phasef−s0d (see Fig. 9).
When the input phaseuf−s0du is less thanf−

s0d the linear
polarization vector has the same direction as the magnetic
field. But whenf−s0d passesf−

s0d the final polarization direc-
tion suddenly changes orientation to the perpendicular one.
This effect repeats for the bigger values of the initial relative
phasef−s0d. It should be noted that to orient its polarization
in direction parallel to the magnetic field, the light has to
travel much longer distance than to orient itself perpendicu-
larly.

In next subsections we analyze the influence of additional
factors: the light detuning, the longitudinal magnetic field,
and the collisional relaxation on the magneto-optical rotation
in the J=1→J=0 system in the presence of the transverse
magnetic field.

C. DÅ0

If linearly polarized light is slightly detuned from the
resonance and the magnetic field is parallel to the light

propagation direction, the Macaluso-Corbino effect can be
observed[2]. As a result the incident linearly polarized light
evolves into elliptically polarized one.

When the magnetic field is absent self-rotation of resonant
elliptically polarized light can take place[16]. However, the
systemsJ=1→J=0 and J=0→J=1 do not exhibit self-
rotation.

In order to find whether the effect of equalization of the
intensities of circular components shown in Fig. 5 is still
present when the incident circular beam is detuned from the
resonance we performed numerical simulation of the station-
ary propagation of the light in such conditions(Fig. 10). As
in the previous case circularly polarized light entering the
medium is finally converted into a linearly polarized one
with direction parallel to the magnetic field—i.e.,f−=0. But
now this process has an oscillatory character. The intensities
of both circular components oscillate with decreasing ampli-
tudes which tend to the asymptotic value. The relative phase
f−=0 is not now equal to zero from the beginning but tends
oscillating to zero. It means that during stationary propaga-
tion the elliptical polarization of the light changes periodi-
cally. Asymptotically the resulting linearly polarized light
propagates without losses.

D. BzÅ0

It is well known that the efficiency of the optical pumping
is decreased by the presence of a transverse magnetic field.
In order to increase this efficiency one uses a longitudinal
magnetic field. However, the effects described in the previ-
ous sections are caused by the transverse magnetic field and
are modified by the magnetic field componentBz. Let us

FIG. 8. The relative sum of the amplitudes of the stationary and
losslessly propagating linearly polarized light vs the relative phase
f−sz=0d [see Eq.(31)].

FIG. 9. The stationary propagation of the relative phasef− for
the initial relative phases shifted from the zeros of the functionDlin

by ±p /18.

FIG. 10. The stationary propagation of the amplitudesv01 and
v02 when only the fieldv1 with the phasef1=p /18 enters the
medium. The direction of the static magnetic field is defined by
fB=p /6 and its intensity byb=2. The detuningD=5.

FIG. 7. The stationary propagation of the linearly polarized laser
beam sv1=v2

*d with initial phasef−=p /6. The direction of the
static magnetic field is characterized byfB=p /6.
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define an angleQB=arctansb/bzd which is the angle between
the light propagation direction and the direction of the mag-
netic field. The stronger is the longitudinal component of the
magnetic field in relation to the transverse one, the smaller is
the angleQB.

In principle, one can find the steady-state density matrix
and derive the stationary propagation equations in such a
case. However, they are so complex that practically only a
numerical treatment is possible.

Let us assume that only one circularly polarized beam
enters the medium. As is expected a beam with orthogonal
circular polarization is produced during stationary propaga-
tion (see Fig. 11). The initial relative phasef−s0d is not zero,
but as the numerical simulation shows, it tends to zero. The
amplitudes do not equalize asymptotically and the resulting
beam propagating without losses is elliptically polarized.
One can say using Eq.(10) that in general the contribution of
the circular component to this elliptically polarized light de-
creases when the longitudinal magnetic field component de-
creases but this behavior is strongly influenced by the inci-
dent light intensity when the magnetic field becomes the
transverse one.

Assuming thatf−s0d=0 we derive from the propagation
equations the following constant of motion:

v−szd2kf2sk + 1dv+
2szd − v−

2szdg = const, s32d

wherek= 3
2 cos2 QB. Our numerical calculations showed that

Eq. (32) is fulfilled asymptotically for every considered val-
ues of the phasesf1s0d andfB.

The lossless propagation takes place whenf−s0d=0 and

v− = ± v+ cosQB, s33d

which explains the relation between the respective curves
presented in Fig. 11.

Let us consider a linearly polarized beam entering the
medium. In such a case the light finally also propagates with-
out losses. When the longitudinal magnetic field is relatively
large in comparison with the transverse one the final polar-
ization direction tends to be perpendicular to the transverse
magnetic field component—i.e.,f−= ±p /2 (see Fig. 12).
Obviously when the longitudinal magnetic field component
is very small final linear polarization direction can be also
parallel to the transverse magnetic field component.

The asymptotic amplitude of this linearly polarized light
depends on the initial relative phasef−s0d but in general it
decreases whenBz component decreases. In the region where
Bz is very small this amplitude increases since for vanishing
Bz the medium should be transparent(compare Figs. 12 and
8).

E. Collisional relaxation

If the collisional relaxation is present the lossless station-
ary propagation is not possible. The collisions redistribute
population among the ground-state sublevels. In other words
the orientation and alignment in the ground state are de-
stroyed. Therefore the propagating light is always absorbed.

Let us assume that the magnetic field is perpendicular to
the light beam propagation direction and that collisional
dumping rates are of the order of the spontaneous relaxation
rate g. We solve the stationary propagation equations nu-
merically. Our calculations show that the rotation of the po-
larization direction still occurs(Fig. 13) but now the polar-
ization tends to be perpendicular to the direction of the
transverse magnetic field. When the initial linear polarization
of the light is parallel to the magnetic field the polarization
does not rotate. However, even a small deviation of the phase
f−s0d from zero causes the light polarization rotation. It
means that the polarization perpendicular to the transverse
magnetic field is privileged.

V. DISCUSSION AND CONCLUSION

We have investigated the effect of the static magnetic field
on the nonlinear stationary and nonstationary propagation of

FIG. 11. The asymptotic relative amplitudesv0i8 =v0iszd /v0is0d,
i =1,2, asfunctions of the magnetic field direction for different
input field amplitudes. The relative phase differencef−=0. Only
beamv1 enters the medium. The transverse component of the mag-
netic field is described by the relationÎb2+bz

2=2. The scale in the
right part of the figure is magnified.

FIG. 12. The final amplitudesv10, v20 and final relative phase
f− vs the angleQB for different values of the input phasef−s0d.
The transverse component is given by the relationÎb2+bz

2=2 and
v01sz=0d=v02sz=0d. The scale in the right part of the figure is
magnified.

FIG. 13. The steady-state propagation of the linearly polarized
laser beamsv1=v2

*d for different initial phasesf−s0d. The transverse
magnetic field is characterized byb=2. The collisional relaxation is
described by the ratesG=G1=1 andG2=1.2.
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orthogonally polarized circular light beams in the medium
composed of theJ=1→J=0 atoms. We have assumed that
the magnetic field is perpendicular to the propagation direc-
tion. Using the density matrix technique we have derived the
stationary propagation equations for the amplitudes and
phases of the light beams for the case in which we can ne-
glect collisional relaxation and the motion of the atoms.

The analysis of these equations has shown that the circu-
larly polarized beam, which traveled sufficiently long dis-
tance in the medium, is transformed into linearly polarized
one with the precisely defined amplitude and with the polar-
ization parallel to the direction of the magnetic field. The
lossless propagation of such light has been predicted.

When two circularly polarized beams contributing into
the linearly polarized light enter the medium the effect of the
polarization rotation occurs. The final result of this rotation
depends on the relation between incident beam phases and
the magnetic field direction. The asymptotic polarization di-
rection can be parallel or perpendicular to the magnetic field
vector. If one choses the direction of the magnetic field as the
quantization axis, the linear polarization parallel to the mag-
netic field means that the light couples the sublevels with
m=0 and due the optical pumping the atoms occupy the
sublevels of the ground-state sublevel withm= ±1, whereas
at the linear polarization perpendicular to the magnetic field
the sublevels withm= ±1 are coupled to the upper level and
the atoms are repumped to the ground-state sublevel with
m=0. In both cases the atoms are in the dark state. One can
say that during stationary propagation a consistency between
the light parameters and the steady state of the atoms of the
medium appears. As a result the medium becomes transpar-
ent.

A similar effect was predicted for the homogeneously
broadened 1/2→1/2 transition[17,18]. The stationary inter-
action of a resonant elliptically polarized light with atoms in
the ground state placed in a longitudinal magnetic field was
considered. It was shown that for the propagation distances
tending to infinity the light polarization due to the self-
rotation always tends to be circular; i.e., a resonance medium
of 1/2→1/2 atoms is always permeable for an elliptically
polarized light. This result is also valid in the presence of the
longitudinal magnetic field and when the atomic motion is
taken into account[18]. Analogous transparency was pre-
dicted also for the 1→1 transition[19]. In these two systems
optical multipole moments in the ground state couple the
circular components of the light.

In the considered here systemJ=1→J=0 the orientation
and alignment in the ground state couple the circular com-
ponents of the light but only when the transverse magnetic
field component is present. This coupling disturbs the optical
pumping process but results in modification of the intensity
and polarization of light and the medium properties. One can

say that induced by the transverse magnetic field transpar-
ency appears.

It seems that the medium consisting of samarium atoms is
a reasonable system where these effects could be observed.
This atom was used in the experiment in which inversionless
amplification of picosecond pulses due Zeeman coherence
was demonstrated[8]. Unfortunately in this experiment the
collisional damping of the orientation and alignment in the
ground state due to the collisions with the argon buffer gas
atoms could not be avoided. However, as we have shown
(see Fig. 13) the nonlinear polarization rotation occurs also
in such a case but the medium is not permeable.

Our numerical calculations show that the thermal motion
of optically active atoms does not change qualitatively the
features of the effect. The polarization rotation and
asymptotic transparency take place but the Doppler broaden-
ing changes the distance necessary for transformation of the
incident beam.

The stationary propagation of light in the considered me-
dium is influenced by several factors: the incident light in-
tensity, polarization, phase and its detuning from the reso-
nance transition, the intensity and direction of the magnetic
field, the density and the temperature of the atomic vapor,
and the pressure of the buffer gas. It seems that these param-
eters can be adjusted in an optimal way to enable the experi-
mental observation of effects predicted in the present papers.

There are several mechanisms of inducing transparency of
the medium, e.g., the self-induced transparency—the enve-
lope of propagating in a two level resonant inhomogeneously
broadened medium pulse is transformed into the 2np one
which propagates without losses, the electromagnetically in-
duced transparency—pumping light changes, due to the
quantum interference, the absorption coefficient for probe
light, and the optical pumping—pumping light transfers at-
oms to a dark state. We have shown that when the optical
pumping process in the systemJ=1→J=0 is disturbed by
the transverse magnetic field the polarized light changes its
intensity and polarization to reestablish the conditions for the
optimal atomic population transfer to a dark state. However,
the atomic orientation and alignment generated in this way
are different from the ones which would be generated in the
absence of this magnetic field.

In our opinion such induced by the magnetic field trans-
parency occurs also in the system with different level con-
figurations. It seems that the effect described by us can be
important in the interpretation of the experimental results
and can be used in the engineering of the light and medium
states.
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