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In this work we have measured the electronic energy loss of9Be and11B ions for thek100l and k110l
directions in Si as a function of the incident ion energy. The channeling measurements cover a wide energy
range between 100 keV/amu and 1 MeV/amu. The Rutherford backscattering technique has been employed in
the present experiments. An overall compilation of channeling energy loss values for several ions, including
those for He, Li, and O measured previously, provides a clear picture of the Barkas contribution to the stopping
power due to valence electrons in the present energy regime. A maximum of the relative contribution occurs for
Be ions around 250 keV/amu while a saturation effect is observed for heavier ions. These results are inter-
preted in terms of a self-consistent nonlinear calculation based on the transport cross-section approach together
with the unitary convolution approximation model, which describe the present data reasonably well at high
projectile energies.
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I. INTRODUCTION

The measurement of the energy loss of light projectiles
under axial channeling conditions is of primary interest in
order to improve the understanding of fundamental ion-solid
interactions. Channeled ions attain a very particular distribu-
tion along the channel, being pushed towards its center, giv-
ing rise to what is known as flux peaking[1]. As a conse-
quence, the incoming ion interacts mostly with valence
electrons of the crystal under study, providing a relatively
simple scenario where, for instance, an electron gas model is
realized and auxiliary effects such as shell corrections and
electron capture play a minor role in the interaction of the
ions with the crystal. Therefore, the study of polarization
effects in ionizing collisions becomes attractive, since the
theoretical approach is simplified in this case.

The Barkas effect, in particular, accounts for the differ-
ence in the stopping powers of particles and their respective
antiparticles and was first observed by Barkas when studying
hyperon masses[2]. Barkas himself suggested that this dif-
ference might stem from higher-order terms relative to the
Bethe theory[3] (namely, from the interference between the
first- and second-order terms). At lower energies and for pro-
jectiles carrying bound electrons, the definition of the Barkas
effect is somewhat controversial[4] due to the interplay of
other effects. In this work, it is assumed that the Barkas
effect stands for the different way the electron cloud is po-
larized when identical ions(with the same internal structure)
but with opposite charges pass by. Other polarization effects
also appear in multiple ionizing collisions due to highly
charged projectiles and have been recently investigated for
gas targets[5,6].

Initially, the observation of the Barkas effect relied upon
indirect measurements only, where the ranges of positively

charged particles in emulsions were observed to be smaller
than those of negatively charged ones[2]. Later on, with the
advent of antiproton beams, a direct measurement of the Bar-
kas effect was possible using both proton and antiprotons
beams[7,8]. Although some attempts were made for direct
measurements using ion beams, it was found that the Barkas
contribution to the stopping power in such cases was ex-
tremely small and difficult to quantify[9].

Recently, after some attempts[10,11], the channeling
technique was proven to be a powerful tool to extract the
Barkas contribution to the valence stopping power from ex-
perimental data. Indeed, it has been shown[12] that for He
and Li ions traveling in axial channels in Si, the Barkas
effect is responsible for a sizable fraction of the total stop-
ping power. For Li ions in Si along thek110l direction, this
contribution amounts to 50%, characterizing what has been
termed as the giant Barkas effect[12]. Later a similar study
was carried out for O ions channeling in the Sik100l direc-
tion [13]. In this case, the relative contribution of the Barkas
effect to the stopping power was found to be smaller than
those observed for He and Li ions in the same channel in Si
at low velocities.

At this point, it became clear that the gap between Li and
O projectile should be filled, in order to provide a clear pic-
ture of the behavior of the absolute and relative contributions
of the Barkas effect to the stopping power. In particular, the
question whether there is a smooth behavior of these contri-
butions should be clarified by new measurements. Therefore,
we have embarked on measurements of the channeling stop-
ping power of11B and 9Be in Si k100l and k110l directions
as a function of the ion energy. While11B has been measured
along the Sik100l previously [14,15], this is the first mea-
surement of9Be under channeling conditions in Si. The the-
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oretical background used to interpret the data relies on a
binary collision approximation combining self-consistent
nonlinear calculations based on the transport cross-section
approach[16] with the unitary convolution approximation to
describe the impact-parameter dependence of the energy loss
[17]. Atomic units sa.u.d will be used throughout the text
unless otherwise stated.

II. EXPERIMENTAL AND ANALYSIS PROCEDURES

For the channeling experiments we have used SIMOX-
type samples consisting of 2000-Å Sik100l crystal layers on
top of 4000-Å SiO2 buried layers, produced ink100l Si wa-
fers. Given the quality of the Si/SiO interface, it was pos-
sible to develop a simple method to extract the channeling
stopping power of ions in Si from their respective Rutherford
backscattering(RBS) measurements[19]. The backscattered
particles were detected by Si surface-barrier detectors lo-
cated at 170° with respect to the incident beam. The overall
resolution of the detection system was about 20 and 23 keV
for beryllium and boron, respectively. Typical RBS spectra
are shown in Fig. 1 for Be ions with primary energyE0
impinging on Sik100l and for random directions. In this
case, the random direction is defined according to the proce-
dure developed by Dygoet al. [20], which takes as refer-
ences thek100l axissC=0d and theh100j planesf=0d, lead-
ing to a random direction defined byC=6° andf=15°. In
Fig. 1,Ec andEr stand for the detected mean energies of the
backscattered particles at the Si/SiO2 interface for the chan-
neled and random incidence, respectively. These energies

were determined by fitting the channeling and random spec-
tra with an algorithm[19] which includes, in addition to the
error function(accounting for particle straggling and detector
resolution), the Rutherford cross-section dependence on the
energy. Finally, in the framework of the mean energy ap-
proximation, it can be shown[19] that the specific channel-
ing energy loss along the incoming projectile path(before
the backscattering) is a function of the energiesE0, Ec, and
Er of the specific energy loss in the random direction and of
geometrical factors. For this particular purpose, the specific
energy loss of beryllium and boron in random directions has
been already measured and presented elsewhere[21,22].

At this point, it is important to stress that the channeling
stopping power depends indeed on the target thickness be-
cause of the variation of the ion-flux distribution and projec-
tile charge state. For very thin crystals, the ion-flux distribu-
tion is nearly uniform and the projectile charge state is equal
to the incident one. After less than a few hundred nanom-
eters, equilibrated ion-flux distributions and projectile charge
states are achieved. Then, for a thin film, assuming that the
effect of the preequilibrium projectile charge state is of mi-
nor importance(because an incident charge state close to the
equilibrium value can be chosen), the channeling stopping
power will be nearly identical to the random one. On the
other hand, if the crystal is too thick, the channeling stopping
power also may approach the random one due to dechannel-
ing at crystal defects, thermal vibrations, and electronic mul-
tiple scattering. For the present experimental conditions
(light ions at kinetic energies of a few hundred keV per
nucleon), SIMOX targets of 2000 Å can be considered thick
enough to prevent preequilibrium ion-flux distributions as
well as thin enough to avoid enhanced dechanneling effects.

III. THEORETICAL FORMULATION

Under channeling conditions, the energy loss due to the Si
inner-shell electrons is strongly suppressed, since the ion-
flux distribution along a Si major axial direction has a peak
in the middle of the channel(flux peaking). With the excep-
tion of the widest channel of Si(the Sik110l channel), there
is nearly no influence of the flux distribution on the valence-
electron energy loss, since the distribution of the valence
electrons across the channel varies only by a few percent
[23]. Therefore, measurements of the electronic energy loss
along the Sik100l axial direction are representative of an
electron-gas system(featured by an electron radiusrs=2).

Here we will use a combination of two theoretical ap-
proaches to compare to the experimentalk100l channeling
data—namely, theHISTOP [16] self-consistent nonlinear cal-
culations based on the transport cross-section approach and
the unitary convolution approximation(UCA) [17,18]. The
first approach is one of the few models that provides the
Barkas effect in a nonperturbative way(another example of a
nonperturbative approach is the binary model described in
Ref. [24]) but relies on the homogeneous electron-gas ap-
proximation. The second model has been used[12] to extract
the Barkas effect from the experimental data, since it ac-
counts for other higher-order terms and for the crystal struc-
ture very accurately[17,25]. We have also used the coupled-

FIG. 1. RBS spectra for 2-MeV9Be+ ions in a nonaligned ge-
ometry and channeled in thek100l axial direction in SIMOX.Ec

andEr stand for the detected energies of the particles backscattered
at the Si/SiO2 interface for channeling and random(nonaligned)
conditions, respectively. Lines represent the results of the fitting
procedure[19] used to determine the corresponding energy loss.
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channel method[26,27] to calculate the electronic energy
loss for the Si inner-shell electrons. This time-consuming
approach takes into account fully the Barkas effect as well as
all other higher-order effects for inner-shell electrons.

A. Nonlinear stopping approach

The self consistent nonlinear model to represent the en-
ergy loss of nonrelativistic ions was derived in previous pa-
pers, both for light and heavy ions[28,29]. The target is
considered as a free-electron-like medium, and the energy
loss process is described on the basis of the following as-
sumptions:(a) the extended Friedel sum rule(EFSR), used
as a procedure to optimize the screening potential in a self-
consistent way for each ion velocity, and(b) the transport
cross-section method(TCS) to calculate the energy transfer
from the moving ion to the valence electrons of the target.
The scattering calculations are made using the phase-shift
method, by numerically solving the radial Schrödinger equa-
tion for the electron-ion scattering process. These procedures
have been condensed in a recently developed program that
incorporates a practical software to evaluate theHISTOP [16]
due to their interaction with the valence electrons in solids.

The definition of the Barkas effect for bare ions at high
projectile energies is pretty clear by considering either the
difference between the stopping of particles and antiparticles
or the difference between the particle stopping and the Bloch
formula. Both methods result in an identical leading term
proportional toZ3, purely due to polarization effects(here
when referring topolarizationwe include, in a general con-
text, the nonlinear effects arising from close collisions, as
well as the long-range target polarization).

However, at intermediate and lower velocities the ions are
no longer bare, and therefore the first procedure is no longer
appropriate as a mean to obtain the polarization contribution
to the stopping(what we denote by Barkas polarization ef-
fect). The corresponding difference between the stopping
cross sections for a particle and its antiparticle at charge-state
equilibrium is not adequate for this purpose, because it mixes
two effects: screening by bound electrons and polarization.

Therefore, we calculate the Barkas polarization stopping
powerfsdE/dxdBarkasg by reversing the sign of the interacting
potentialV (even for screened ions), according to

SdE

dx
D

Barkas
= 0.5SdE

dx
sVd −

dE

dx
s− VdD . s1d

In this way, all even higher-order terms in aZ expansion are
removed at high energies and only the odd(polarization)
terms are kept for all ion energies. Although measurements
involving an ion with reversed interacting potential or an
“antiparticle carrying bound positrons” are not feasible, the
use of Eq.(1) avoids the mixture of effects and leads to a
clear theoretical determination of the polarization effect at
any energy. Moreover, in order to avoid any further semantic
misunderstandings, in what follows we will use the term
Barkas-polarization effect instead of Barkas effect.

B. Unitary convolution approximation

A detailed description of the UCA model for bare and
screened ions may be found elsewhere[17,18] and imple-

mented in Ref.[30]. This model provides a simple formula
for the impact-parameter-dependent energy loss realizing the
Bloch formula[31] for bare ions at high velocities. The for-
mula for the energy transferQ at a given impact parameterb
reads

Qsbd =E d2rTKsbW − rWTd E dz rsrWT,zd, s2d

which is a convolution of the electronic densityr integrated
along the ion path(along thez direction perpendicular torWT)
with a given kernelK [17] that interpolates distant and close
collisions smoothly and depends on the projectile screening
and target oscillator-strengths[17]. Recently, this model has
been extended to include shell corrections[32]. Thus, the
major limitations of this model are the absence of electron
capture and polarization effects. Nevertheless, accurate
coupled-channel benchmark calculations have shown[17]
that other higher-order effects are very well described in this
simple approach.

The mean energy lost by the projectile after passing a
certain thicknesst is given by

DE =

E
A

d2rcE
0

t

dz
dEsrWcd

dz
FsrWc,zd

E
A

d2rcE
0

t

dzFsrWc,zd
, s3d

whereA is the transversal area of the Si axial channel,rWc is
the position relative to the center of the channel, andFsrWc,zd
is the ion flux distribution at the distancerWc and channel-
ing direction z. The energy loss per traversed distance
sdE/dzdsrWcd may be divided into two contributions:

dE

dz
srWcd = SdE

dz
srWcdD

direct
+ SdE

dz
srWcdD

e loss
. s4d

The first contribution corresponds to the energy loss involv-
ing the Si electrons, while the second one is due to energy
loss from electrons originally bound to the projectile(projec-
tile ionization and excitation). Both contributions are ob-
tained from Eq.(2) for a projectile with charge stateq and a
neutral Si atom. Finally, an average over the projectile
charge statesq has to be performed. The B charge-state dis-
tributions were taken from experiments performed under
channeling conditions[15] and extrapolated down to
100 keV/nucleon. For Be ions, an interpolation procedure
has been carried out using the experimental values of charge
fractions for elements close to Be[15]. We have also used
semiempirical charge-state fractions obtained from theCASP

program[30].
In order to obtain the ion flux distribution, we have used

standard Monte Carlo calculations[33] with thermal vibra-
tions given bys=0.083 Å(root mean square of thermal dis-
placements) according to the Debye temperatureT=490 K
extracted from the work of Dygo and collaborators[20].

C. Coupled-channel method

Coupled-channel(CC) calculations are the best tool to
describe inner-shell ionization and excitation of atoms
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[26,27] as a function of the impact parameter. These time-
consuming calculations are based on the semiclassical
method[34]. The projectile following a classical trajectory
provides a time-dependent electrostatic perturbation on the
target electrons. Hence, the time-dependent Schrödinger
equation is solved by expanding the electronic wave function
in a truncated basis of states—namely, atomic orbitals. A set
of first-order ordinary coupled differential equations for the
coefficients originating from this expansion, the so-called
coupled-channel equations, is integrated numerically along
the classical trajectory of the projectile for a given impact
parameterb. For inner-shell electrons the projectile screening
(due to bound electrons) plays a minor role and thus the
active-electron interaction is just the Coulomb potential. De-
tails of the coupled-channel calculations for the Si subshells
may be found elsewhere[35].

IV. RESULTS AND DISCUSSIONS

According to the procedure outlined in Sec. II, we have
determined the energy loss of9Be and11B ions along the
Si k100l andk110l directions. These results are presented in
Figs. 2 and 3. In the case of B and thek100l direction, other
channeling data measured by Jianget al. [15] and dos Santos
et al. [14] are displayed as well. The quoted errors have been
estimated from several measurements. The stopping powers
at random directions[21,22] (which have been used as input
to the data analysis) are also shown in Figs. 2 and 3. An

inspection of these figures indicates that the channeling stop-
ping powers are about 20%(for thek100l direction) and 30%
(for the k110l direction) lower than the random results for
both ions around the stopping maximum. Moreover, the rela-
tive difference increases with increasing ion energy. This be-
havior reflects the role of the valence and inner-shell elec-
trons. Indeed, for increasing projectile energies, the
contribution of the inner-shell electrons to the random stop-
ping power increases(influence of the kinematical ionization
threshold), whereas the contribution from these electrons is
strongly suppressed under axial channeling conditions. The
variation of the ion-flux distribution has a counteracting but
very small influence on the total channeling energy loss.

A comparison of our results for B with previous experi-
mental channeling data(open symbols) [15], obtained using
the transmission technique, is also depicted in Fig. 3. As can
be observed, the channeling experimental data by Jianget al.
[15] are systematically larger(by 10%–20%) than the present
experimental results. This fact probably comes from the fact
that transmission-channeling data by Jianget al. have been
measured employing thick targets(about 10 000 Å), which
may introduce an overestimation of the channeling energy
loss due to dechanneling at crystal defects and electronic
multiple scattering.

The results of the UCA model are also presented in Figs.
2 and 3. In the case of Be ions we show the UCA results for
two charge-state distributions(solid and dotted lines) accord-

FIG. 2. Electronic stopping power of9Be ions as a function of
energy for thek100l and k110l directions in Si. Solid squares: this
work. Dashed line: measured random stopping[21]. Solid line:
UCA model with the interpolation approach for the charge-state
fractions. Dotted line: UCA model with charge-state fractions from
the CASP program [30]. The Barkas-polarization enhancement is
given by the difference in thedE/dx value between the squares and
solid line.

FIG. 3. Electronic stopping power of11B ions as a function of
energy for thek100l and k110l directions in Si. Solid squares: this
work. Dashed line: measured random stopping[22]. Solid line:
UCA model. Open circles: channeling data by Jianget al. [15].
Open triangles: channeling data by dos Santoset al. [14]. The
Barkas-polarization enhancement is given by the difference in the
dE/dx value between the squares and solid line.
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ing to Sec. III B. The uncertainties of the charge-state frac-
tions on the UCA calculations amount to 10% at lower en-
ergies. As shown in these figures, the UCA calculations are
in better agreement with the data at higher energies. Con-
versely, for energies around 200–500 keV/amu, the UCA
calculations strongly underestimate the measured stopping-
power values. It has been shown[12] that this difference,
amounting to about 40% for Be and 30% for B, comes from
polarization effects which are not included in the calcula-
tions. These differences are similar to those observed for Li
[12] and show that the giant Barkas-polarization enhance-
ment is extended to those ions with atomic number close to
Li. In what follows we will discuss only the Sik100l direc-
tion data because the nonlinear calculations(HISTOP) are
only strictly valid when a homogeneous electron gas is real-
ized.

Here, the determination of the Barkas-polarization en-
hancement relies, as performed previously[12,13], on the
difference of the experimental channeling stopping data and
the corresponding UCA calculations. Figure 4 legitimizes
this approach, by showing Be and B data measured in this
work together with other experimental channeling data(He,
Li, and O) for Si k100l and k111l directions measured pre-
viously [13,15,25,36,37] (see the figure caption for details).
The UCA calculations have been redone here to include shell
corrections and to improve the projectile screening of O ions
with DHFS screening functions[18]. In the figure, the UCA

values were subtracted from the data and the results were
divided by the mean third power of the projectile charge
state. This scaled Barkas-polarization term is plotted as a
function of the projectile velocity. An inspection of the figure
shows that most data collapse into a narrow band(deter-
mined by a best fit) independent of the projectile species.
The average curve is close to the prediction of the Lindhard
model [38] (dashed curve) and Pitarke calculations[39]. It
must be pointed out that we also could have divided the data
in Fig. 4 by the projectile nuclear charge state to the third
power sZ3d. Even in this case, we obtain the data well
grouped around an average curve. However, the scaling fac-
tor kq3l is more meaningful since it takes into account dif-
ferent projectile charges.

As can be observed from Fig. 4 there are some remaining
deviations at energies around 0.15–0.3 MeV/amu. For each
projectile there is a low-energy cutoff beyond which the data
fall below the average curve. The cutoff energy increases
strongly with the projectile nuclear charge. This clearly indi-
cates a breakdown of theq3 scaling and the influence of
other higher-order terms in the polarization.

Figure 5 shows the experimental channeling data as func-
tion of the projectile energy for Li, Be, B, and O ions in
comparison with theoretical results discussed in Sec. III. The
data for Li and O were published previously[13,25] and are

FIG. 4. Compilation of experimental channeling data(He, Li,
Be, B, and O) for the k100l andk111l directions in Si after subtrac-
tion of the UCA results and division by the mean third power of the
projectile charge state as a function of the projectile energy. Data
taken from Azevedoet al. [25] (open up triangles, open circles,
open left triangles, solid up triangles), Lulli et al. [37] (open down
triangles), Eisenet al. [36] (open squares), Jianget al. [15] (open
right triangles), Araujo et al. [13] (solid squares), and this work
(solid down triangles, filled circles).

FIG. 5. Experimental channeling data fordE/dx as a function of
projectile energy per nucleon compared to the theoretical models.
Symbols: experimental data. Solid lines: UCA calculations for the
all electrons added with the Barkas valence contributions obtained
from HISTOP. Dashed lines: fullHISTOP calculations for the valence
band added with inner-shell and electron loss contributions from
UCA. See text for further details.
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included here only for the sake of completeness. The solid
curves correspond to the UCA results plus the Barkas con-
tribution obtained by the nonlinear calculationsHISTOP
through the method of charge reversal. The agreement with
the experimental data is quite good at high Li and Be ener-
gies but deviations are observed for B and O ions. The ex-
perimental results can also be compared(see dashed lines) to
results of the nonlinear calculationsHISTOP by adding the
contribution of the inner shells and electron loss from the
UCA calculations. This method yields a much better agree-
ment, in particular for O ions, but seems to overestimate the
data at higher projectile energies for Li and Be. The differ-
ence between these two theoretical approaches comes from
the treatment of the valence electrons. The first model(solid
line) uses a much better description of the spatial dependence
of the valence-electron energy loss(through the impact pa-
rameter dependence and ion-flux distribution), while the sec-
ond avoids the use of the method of charge reversal to cal-
culate the Barkas effect(the polarization effect is inherent to
the model) but relies on the homogeneous electron-gas pic-
ture.

The Barkas-polarization effect obtained from He, Li, Be,
B, and O experimental channeling data are shown in Fig. 6
for four different velocities. Since in this energy range all
these ions have many non-negligible charge states, we have
plotted all curves as a function of the mean charge state
qmean. The left panel shows the absolute Barkas enhancement
while the right one presents the relative effect. The open
squares correspond to the experimental data after subtraction

of the UCA results and represent the Barkas-polarization ef-
fect due to the valence as well as inner-shell electrons. The
quoted error bars account for the experimental and theoreti-
cal (effect of different charge-state distributions in the case
of Be) uncertainties.

The Barkas-polarization contribution due to the Si inner
shells is quite large(because of its large binding energy) but
it is only important for close collisions and plays a minor
role for ions under channeling conditions. For the present
case the Si inner shells contribute less than 10%(8% for
400 keV/u B ions). Nevertheless, in order to keep the focus
on the valence electrons only, we have performed full CC
calculations(according to Sec. III C) of the mean energy loss
Qsbd for each innerL subshell of Si. The corresponding
dE/dx [through Eq.(3)] has been added to the UCA results
for the valence electrons and electron loss. This procedure,
named UCA-CC, was used to provide theoretical stopping-
power values which have been removed from the experimen-
tal data. Then, the present experimental data minus the
UCA-CC results(the solid squares in Fig. 6) should deliver
the Barkas-polarization effect due to the valence electrons
only. It should be stressed that the energy loss results from
the coupled-channel calculations for the Si inner-shell elec-
trons are much larger than the ones from the UCA calcula-
tions not only because of polarization effects but also due to
the capture ofL-shell target electrons into projectile bound
states.

As discussed above, the solid squares as well as the solid
lines, which correspond to the nonlinear Barkas calculations

FIG. 6. Absolute(on the left panel) and rela-
tive (on the right panel) values of the Barkas-
polarization contribution to the stopping power as
a function of the mean charge state at four differ-
ent energies per nucleon. Open squares: experi-
mental minus full UCA results. Solid squares: ex-
perimental data minus UCA-CC calculations.
Lines: Barkas calculations fromHISTOP.
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from Sec. III A, in Fig. 6 concern the valence electrons only.
As can be observed, the experimental Barkas data(on the left
panel) seems to increase with the mean charge state and the
solid lines reproduce the experimental points quite well at
larger energiessEù500 keV/nucleond but underestimate the
Li, Be, and B data at lower energies.

The relative Barkas-polarization contribution(right panel
in Fig. 6) at high energies increases with ion charge since the
perturbative channeling stopping power and the lowest-order
Barkas contribution increase with different power lawsq2

andq3, respectively.
Nevertheless, at the nonperturbative regime they increase

with the mean charge state at different rates. The relative
Barkas-polarization effect tends to saturate within the frame-
work of the nonlinear calculations. The experimental points
follow the same trend but a small maximum can be observed
at 300 keV/nucleon for Be. The corresponding value of the
Barkas contribution is about 40% at 300 keV/nucleon and
thus even larger than the one for Li reported recently in Ref.
[12].

V. CONCLUSIONS

In the present work, we have measured the channeling
stopping power of9Be and11B along the Sik100l andk110l
directions. For the channeling measurements we have used

the RBS technique associated with a SIMOX target. The
main point ofthis work is the determination of the Barkas-
polarization effect for the Si valence electrons with chan-
neled light and heavy projectiles. In the analysis, we have
used the combination of the channeling RBS method and the
recent theoretical realization of the impact-parameter depen-
dence of the Bethe-Bloch contribution(the UCA calcula-
tions). We have also used the recent development of self-
consistent nonlinear calculations for valence-band electrons.
These energy losses for screened ions and their respective
image (inverting interaction sign) yield the Barkas-
polarization effect in the regime where the projectiles are
screened by bound electrons.

At high energies the Barkas-polarization enhancement for
the valence electrons is well described by the nonlinearHIS-

TOP calculations. However, the maximum polarization en-
hancement(mainly for Be ions) could not be reproduced by
theHISTOPcalculations. This may indicate a limitation of the
present Barkas valence-electron calculations which are based
on two-body scattering under central forces.
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