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When cold atoms approach a surface, they can be quantum reflected by quantal regions in the tail of the
atom-surface potential. We study the phase of the reflection amplitude for Casimir–van der Waals potential
tails, depending on the critical parameterr=rsC3,C4d, which describes the relative importance of the −C3/ r3

and −C4/ r4 parts of the potential. The phase is related to observable kinematic quantities, the space and time
shifts, the reflected atom experiences. We study three different models for the shape of the potential between
the asymptotic limits and observe that the phases are more sensitive to the potential shape than the quantum
reflection probabilities. At threshold, there are always time delays in comparison to the free movement. This is
in contrast to the classical movement, which shows time gains. Further above threshold, the quantum reflected
atom experiences a time gain relative to free motion, but this time gain is generally smaller than that of the
classical particle.

DOI: 10.1103/PhysRevA.70.032711 PACS number(s): 34.10.1x, 34.50.Dy, 03.65.2w, 03.75.Be

I. INTRODUCTION

Quantum reflection happens to a particle moving through
a classically allowed region without reaching a classical turn-
ing point—it is a pure quantum effect. It is most intense for
particles moving with small velocity and is thus connected to
the large and rapidly growing field of research with ultracold
atoms. The asymptotic free motion of such particles is clas-
sical, but the motion becomes increasingly quantum me-
chanical, when the potential becomes non-negligible. When
the potential tail falls off faster than −1/r2, the motion again
becomes classical atsmalldistances, which may still be large
compared with a few atomic units, where the interaction
structure is more complicated. The inner classical region and
the asymptotic free classical region are seperated by the
quantalregion, where the motion is nonclassical. This region
lies typically hundreds or thousands of atomic units distant
from the inner potential region, and the interactions there are
well described by attractive local potential tails. In this quan-
tal region, quantum reflection occurs. To treat the reflection
problem, it is thus sufficient to know the potential tail, be-
cause all inner effects, e.g., inelastic reactions or sticking, do
not come into play.

For large distances, a stationary solution of the
Schrödinger equation at energy"2k2/2M has the form

csrd ,
1

Î"k
hexpf− ikrg + Rskdexpfikrgj, s1d

whereR is the reflection amplitudeRskd= uRskduexpfifskdg.
The quantum reflection probabilityuRskdu2 approaches unity
at threshold and is thus always non-negligible, when the ve-
locities of incident particles are small enough. It has been
subject to intense recent research, theoretically[1–6], and
experimentally[7,8]. Its behavior at threshold for potentials
falling off faster than −1/r2 is universal and given by

lim
k→0

uRskdu , 1 − 2bk= expf− 2bkg + Osk2d. s2d

The parameterb, the threshold length, is a characteristic

property of the potential tail and also determines properties
of bound states just below threshold. For an exhaustive re-
view on this topic, see[9]. In a recent Letter[10], we inves-
tigated the behavior of a wave packet being quantum re-
flected at atomic potential tails of type

Vsrd = −
Ca

ra = −
"2

2M

sbada−2

ra , a . 2. s3d

What makes the phase of the quantum reflection amplitude
an interesting quantity is its close relation to observable ki-
nematical quantities, namely, the space and time shifts the
wave packet undergoes during the reflection process. For a
wave packet with a narrow momentum distribution peaked
around"k0, the space shiftDr and the time shiftDt are given
by [11]

Dr = U −
1

2

dfskd
dk

U
k=k0

,

Dt =
2Dr

v0
= U −

M

"k0

dfskd
dk

U
k=k0

= U − "
dfsEd

dE
U

E="2k0
2/2M

.

s4d

The space and time shifts(time gain forDt.0 or loss for
Dt,0 during the reflection process) are to be seen in com-
parison to a free moving wave packet. We want to emphasize
that the space shift the reflected atom experiences is an ap-
parent quantity. Its apparent character becomes clear by the
schematic picture of the quantum reflection process shown in
Fig. 1. The reflection occurs in the quantal region around the
point rE, which is defined by

E =
"2k2

2M
= uVsrEdu, s5d

where the absolute value of the potential equals the
(asymptotic) kinetic energy[3,12]. The time evolution of the
reflected wave packet corresponds to a reflection of a free
wave at the pointr =Dr rather thanr =0, where it would be

PHYSICAL REVIEW A 70, 032711(2004)

1050-2947/2004/70(3)/032711(8)/$22.50 ©2004 The American Physical Society70 032711-1



reflected without potential. When the sign ofDr is positive,
the quantum reflected particle appears to be reflected in front
of the surface and experiences a time gain in comparison to
the free particle. But when the sign ofDr is negative, the
quantum reflected particle behaves as if it would enter the
region behind the surface. The negative sign corresponds to a
time delay relative to the free moving particle. While the
movement parallel to the surface is not affected by quantum
reflection, the particle continues its free movement parallel to
the surface, but the perpendicular motion is delayed in the
quantal region so that the reflected wave appears to have
been reflected atDr ,0, as illustrated in Fig. 1. The general
threshold law for the phase of the reflection amplitude is[10]

lim
k→0

fskd , p − 2āk, lim
k0→0

Dr = ā, s6d

where ā is the mean scattering length of the potential tail.
This quantity is determined only by the potential tail[13]
and should not be confused with the(total) scattering length
a. For homogeneous potentials and high energies, the phase
behaves as

lim
k→`

fskd ~ − k1−2/a. s7d

In this paper, we focus on Casimir–van der Waals poten-
tial types, which give a realistic description of the atom-
surface interaction. Their structure can be understood as a
mixture of two potential tails, the van der Waals tail, propor-
tional to −1/r3, and the highly retarded or Casimir-Polder
tail, proportional to −1/r4. As was shown in[10], the behav-
ior of these tails is as different as can be. In the case of a pure
−1/r3 interaction, the space and time shift tend to minus
infinity for small incoming velocities, which means that the
motion is strongly delayed. In contrast, in a pure −1/r4 po-
tential, the space shift tends to zero and the time shift re-
mains finite for small incoming velocities. Thus we have no
significant difference from a free motion at threshold. In the
present paper, we investigate how the presence of both pow-

ers changes the kinematic behavior of a quantum reflected
particle.

Our paper is organized as follows. In Sec. II we outline
the Casimir-Polder theory and give scaling arguments for the
relative importance of the two intrinsic length scales to be
found in the Casimir–van der Waals problem. In Sec. III,
which is the main section of our article, we examine the
phase of the quantum reflection amplitude and the space and
time shifts for three model potentials in detail, focusing es-
pecially on the transition region from one dominant scale to
the other. In Sec. IV we conclude by summarizing our re-
sults.

II. GENERAL ASPECTS OF CASIMIR–VAN DER WAALS
INTERACTION

The Casimir–van der Waals potential describing the inter-
action between a spherically symmetric ground state atom
and a perfectly conducting surface can be calculated by
knowledge of the dynamical atomic dipole polarizability
adsivd [14]. In atomic units it reads[15]

VCvdWsrd = −
1

4pr3E
0

`

dvadsivdf1 + 2a fsvr

+ 2sa fsvrd2gexpf− 2a fsvrg,

adsivd = o
n

2sEn − Emd
zkmuo j=1

Z
zjunlz2

sEn − Emd2 + v2 . s8d

a fs is the fine-structure constant. The asymptotic behavior for
small and large distances is given by the limits

lim
r→0

VCvdWsrd , −
C3

r3 = −
"2

2M

b3

r3 ,

lim
r→`

VCvdWsrd , −
C4

r4 = −
"2

2M

b4
2

r4 , s9d

and the strength parameters are

C3 =
1

4p
E

0

`

adsivddv, C4 =
3

8pa fs
ads0d. s10d

When the interaction of polarizable atoms and a dielectric
surface is considered, the above formulas become a little
more complicated. The full interaction now is given by(see,
e.g.,[16,17])

Vsr,ed = −
a fs

3

2p
E

0

`

dvadsivdv3E
1

`

dpexpf− 2vrpa fsghsp,ed,

hsp,ed =
Îe − 1 + p2 − p
Îe − 1 + p2 + p

+ s1 − 2p2d
Îe − 1 + p2 − ep
Îe − 1 + p2 + ep

.

s11d

Heree is the dielectric constant. From this, the strength pa-
rameters in the dielectric case follow as[16,18]

FIG. 1. Schematic illustration of the quantum reflection process.
An advanced reflected wave travels as a free wave reflected in front
of the surface. When the quantum reflection process involves a time
delay, the reflected wave travels as a free wave reflected behind the
surface.
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C3sed =
e − 1

e + 1
C3s`d, C4sed =

e − 1

e + 1
FsedC4s`d, s12d

where the characteristic functionFsed is given by

Fsed =
e + 1

2se − 1dE0

`

dp
hsp + 1,ed
sp + 1d4 . s13d

The characteristic functionFsed increases monotonically
from Fs1d=23/30 toFs`d=1.

For homogeneous potentials(3), the Schrödinger equation
depends not onE="2k2/2M andba independently, but only
on skbad. In contrast, Casimir–van der Waals potentials con-
tain two different quantum mechanical length scalesb3,b4,
which define an intrinsic energy-independent lengthl [3],

l =
C4

C3
=

b4
2

b3
. s14d

The intrinsic lengthl allows us to define two dimensionless
variables

x =
r

l
, k = kl. s15d

A strength parameterK0 for the potential can be intro-
duced in full generality as

"2K0
2

2M
=

C3

l3
=

C4

l4
⇒ K0 =

sb3d2

sb4d3 , s16d

allowing the Casimir–van der Waals potential to be written
as

VCvdWsrd = −
"2K0

2

2M
vS r

l
D . s17d

The transformation of the Schrödinger equation for
c=csx=r / ld gives

F d2

dx2 + k2 + r2vsxdGcsxd = 0,

r = K0l =
b3

b4
=

Î2M

"

C3

ÎC4

. s18d

The parameterr is the critical parameter of the system.
Whenr,1, the −1/r3 contribution is dominant for quantum
reflection and retardation effects become negligible, whereas
for r.1, the −1/r4 contribution is dominant and the pure
van der Waals interaction becomes less important.

If rs`d is the critical parameter for the Casimir–van der
Waals interaction of a given atom with a perfectly conduct-
ing surface, then for a dielectric surface it is

rsed = rs`d
1

ÎFsed
Îe − 1

e + 1
. s19d

A dielectric surface shortens the two relevant length scales of
the Casimir–van der Waals potential, and thus ther param-
eter also decreases. The two limiting cases are given by

lim
e→`

rsed = rs`d, lim
e→1

rsed = 0. s20d

III. CALCULATION OF THE PHASE OF R„k…

In the following main section of our article, we discuss
phases, and space- and time-shifts for Casimir–van der
Waals-potentials. Since the exact shape of the potential is not
known in general, we study three models suggested in the
literature. The potential assumed by Shimizu[7] found its
validation by fitting well the experimental quantum reflection
data [7,8], and can be regarded as a simpler form of the
rational approximtion given by Friedrich, Jacoby, and Meis-
ter [3] and improved by Friedrich and Trost[9]. The rational
approximation was derived by fitting the exact potential for a
hydrogen atom, interacting with a conducting surface, given
by Marinescuet al. [19]. Last, we investigated the behavior
of a potential calculated by Feinberg and Sucher[20], and
later Holstein[21], which we have adapted for our present
purposes, and which we will refer to as the arctan formula. A
detailed examination of the potentials now follows.

A. Model potentials

In terms of dimensionless variablesx=r / l, r=K0l, the
potential used by Shimizu[7] is

VSsxd = − r2 1

x3s1 + xd
. s21d

It has the advantage of allowing analytical treatment of the
threshold behavior of the phase of the quantum reflection
amplitude. According to the above scaling laws, the wave
function at threshold can be expressed in terms of Hankel
functions[22]

csxd = Îxsx + 1dH1
s1dS2rÎx + 1

x
D . s22d

Its asymptotic expression,x→`, follows readily as

lim
x→`

csxd , c`sxd, c`sxd , rH0
s1ds2rd + xH1

s1ds2rd.

s23d

Matching the asymptotic wave functionc`sxd to asymptotic
plane waves(1) in the limit kr=kx→0, the reflection coef-
ficient is found to be

Rskd = −
H1

s1ds2rd + ikrH0
s1ds2rd

H1
s1ds2rd − ikrH0

s1ds2rd
< − 1 − i2kr

H0
s1ds2rd

H1
s1ds2rd

.

s24d

When decomposing the Hankel functions into Bessel and
Neumann functions, the reflection coefficient can be ex-
pressed in real and imaginary parts:
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Rskd = − 1 + 2k
1

pfJ1
2s2rd + N1

2s2rdg

− i2kr
J0s2rdJ1s2rd + N0s2rdN1s2rd

J1
2s2rd + N1

2s2rd
. s25d

The second term, giving the threshold length, has already
been derived in[3] by a different calculation. From the
above expression, the phase at threshold follows as

lim
k→0

fskd , p + 2kr
J0s2rdJ1s2rd + N0s2rdN1s2rd

J1
2s2rd + N1

2s2rd
.

s26d

According to the general threshold law for phases given in
[10], Eq. (6), the potential, Eq.(21) has a negative mean
scattering length

ā/l = − r
J0s2rdJ1s2rd + N0s2rdN1s2rd

J1
2s2rd + N1

2s2rd
. s27d

A rational approximation fitting the Casimir–van der Waals
interaction for hydrogen and hydrogenlike atoms was first
introduced in[3] and was brought into an improved from in
[9],

VRAsxd = − r2 1 + zx

x3s1 + x + zx2d
, z = 0.316 08. s28d

The arctan formula[20,21] is given by

Varcsxd = − r2 2

px3 arctanF p

2x
G . s29d

For the rational approximation and the arctan formula, ana-
lytical treatment is not even available for threshold behavior
and we have to rely on numerical calculations only.

B. Phases, space shifts, and time shifts

For a given shape of the atom-surface potential, the
phases of the quantum reflection amplitudes we have calcu-
lated in this section are functionsf=fsk,b3,b4d. Applying
the scaling laws[see Eq.(18)], we find

fsk,b3,b4d = fSkl,
b3

b4
D = fsk,rd. s30d

This can be seen easily by calculating the space shift

Dr

l
= −

1

2

1

l

dfsk,b3,b4d
dk

= −
1

2

dfsk,rd
dk

. s31d

Every single value ofr represents many possible combina-
tions ofb3,b4, although only few of these may be realized in
nature. The phases and space shifts we have calculated are
for valuesr=0.5, 1, 3. This parameter range covers the most
interesting regions of the interaction, namely,r,1, where
the −1/r3 tail is dominant,r.1, where the −1/r4 part is
dominant, andr=1, where both parts of the interaction are of
equal influence. Although we will always discuss the behav-
ior of the time shifts too, we decided to plot just the space

shifts. The time shifts always diverge to negative infinity at
threshold, indicating strong time delays, but the space shifts
remain finite there, and thus are easier to study.

Figures 2 and 3 show the phases and the space shifts for
r=0.5. The phases show a similar behavior as was calculated
for a pure van der Waals potential in[10]. They show a
characteristic maximum, typical for a −1/r3 potential, which
indicates the dominance of the van der Waals part of the
interaction. The space shifts for small energies are negative
until k0<0.8, meaning that quantum reflected atoms withk0
smaller than approximately 0.8 are delayed in comparison to
free moving atoms. For a pure −1/r3 potential the threshold
behavior of the space shift is logarithmically divergent[10],
but the space shift remains finite at threshold for a Casimir–
van der Waals interaction, although the −1/r3 part is domi-
nant for r=0.5, because the highly retarded tail −1/r4 is
present forr →`. Figures 4 and 5 show phases and space

FIG. 2. Phases of the quantum reflection amplitude atr=0.5.
Shimizu’s potential(21) (full line), rational approximation(28)
(dashed line), and arctan formula(29) (dotted line).

FIG. 3. Quantum space shifts atr=0.5. Shimizu’s potential(21)
(full line), rational approximation(28) (dashed line), and arctan
formula (29) (dotted line).
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shifts for r=3, where the −1/r4 contribution dominates the
reflection process up to quite high energies. The characteris-
tic van der Waals maximum at threshold has almost disap-
peared and the region of negative space shifts has shrunk to
energiesk0,0.02. For larger energies, the shape of the
phases shows a behavior very similar to a pure −1/r4 inter-
action, as was calculated in[10]. The relative dominance of
the −1/r4 interaction favors time gains for the reflected atom.
The tendency for time gains is largest for energies
0.1,k0,1, where the space shift shows its maximum. Fig-
ures 6 and 7 show phases and space shifts forr=1. We are
now in the parameter range where both parts of the potential
show comparable influences for quantum reflection. Again
we find the characteristic van der Waals maximum in the
threshold region, but it is already reduced and not as domi-
nant as it was atr=0.5. For largerk the phases fall off much
faster, which already indicates similarity with the pure −1/r4

shape calculated in[10]. This behavior becomes clearer
when we consider the space shifts. The space shift remains
negative only for valuesk0,0.1. Thus, there is a time delay
for a reflected atom only very close to threshold, whereas for
k0.0.1 there is already a time gain, compared to the free
movement.

C. Comparison to the classical motion

The classical time shift can be calculated by comparing a
classical free motion with the classical motion in the poten-
tial. The time gain of the classical particle moving in the
potential relative to the free particle is

FIG. 4. Phases of the quantum reflection amplitude atr=3.
Shimizu’s potential(21) (full line), rational approximation(28)
(dashed line), and arctan formula(29) (dotted line).

FIG. 5. Quantum space shifts atr=3. Shimizu’s potential(21)
(full line), rational approximation(28) (dashed line), and arctan
formula (29) (dotted line).

FIG. 6. Phases of the quantum reflection amplitude atr=1.
Shimizu’s potential(21) (full line), rational approximation(28)
(dashed line), and arctan formula(29) (dotted line).

FIG. 7. Quantum space shifts atr=1. Shimizu’s potential(21)
(full line), rational approximation(28) (dashed line), and arctan
formula (29) (dotted line).
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Dtcl = 2 lim
r→`

E
0

r S 1

v0
−

1

uvsr8du
Ddr8

= 2ME
0

` S 1

"k0
−

1

psrd
Ddr . 0. s32d

Applying scaling as above, this expression can be cast into
the following suitable form:

Dtcl =
2M

"k0
lE

0

`

dxS1 −
1

Î1 + sr2/k0
2dvsxd

D . s33d

This integral cannot be calculated analytically for any of the
model potentials. Abbreviating the integral ast,

Dtcl =
2M

"k0
ltS r

k0
D , s34d

this corresponds to the classical space shift

Drcl/l = tS r

k0
D . s35d

The classical space shift in units ofl depends only on the
ratio r /k0, as given by the functiontsr /k0d. This is in con-
trast to our results found in[10], where the classical space
shift is given by a simple power law. But in the Casimir–van
der Waals interaction we have effectively a mixture of two
powers a=s3,4d, and thus the space shift cannot be de-
scribed by a pure power law.

In Fig. 8, we plotted the quantum space shift and the
classical space shift for Shimizu’s potential forr=1. We ob-
serve that the quantum space shift is smaller than the classi-
cal one, which diverges to positive infinity at threshold. Near
threshold, the classical particle experiences large time gains,
whereas the quantum particle experiences a finite negative
space shift, corresponding to large time delays relative to the
free particle. We remind the reader that the threshold region
of Casimir–van der Waals potentials is the anticlassical limit
of the Schrödinger equation(see[9]). Thus we indeed would

expect the most distinct differences between quantum and
classical behavior to occur there. For large scaled momenta
k0, the behavior becomes more and more classical, and a
close examination of the curve shape indeed supports this
conjecture. Generally, the results presented in[10] for homo-
geneous potentials, stating that the quantum space shift is
always smaller than the classical one, indicating the quantum
movement to be always slower than the classical one, is con-
firmed for Shimizu’s potential. For the rational approxima-
tion (28) and the arctan formula(29), the qualitative behav-
ior is the same.

D. The mean scattering length

The mean scattering length is an important quantity, be-
cause it determines the behavior of the phase ofRskd at
threshold. Figure 9 showsā/ l for our model potentials as a
function of r. For smallr, their behavior is similar, but asr
grows to unity and beyond, distinct differences between the
model potentials arise. For Shimizu’s potential,ā/ l con-
verges to a finite value −0.25, while the rational approxima-
tion and the arctan formula show a tendency to zero, asr
grows beyond all bounds. It is interesting to compare the

FIG. 8. Comparison between quantum space shift and classical
space shift obtained with Shimizu’s potential(21).

FIG. 9. Mean scattering length(above) and threshold length
(below) as functions ofr. Shimizu’s potential(21) (full line), ratio-
nal approximation(28) (dashed line), and arctan formula(29) (dot-
ted line).
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behavior of the mean scattering lengthā/ l with the behavior
of the threshold lengthb/ l, which determines the near
threshold behavior of the reflection probability[see Eq.(2)].
We clearly see that the behavior of the phases and thus the
behavior of the space shifts and mean scattering lengths are
much more sensitive to the shape of the potential than is the
behavior of the reflection probability. In Figs. 10 and 11, we
plotted the mean scattering lengths in unitsb3,b4. The quan-
tity ā/b3 grows to minus infinity for smallr, indicating the
increasing dominance of the −1/r3 tail. It rapidly approaches
zero whenr grows larger than unity, indicating a more and
more decreasing influence of the −1/r3 tail and a more and
more growing contribution of the −1/r4 tail. In contrast, the
quantity ā/b4 goes to zero for smallr, indicating a negli-
gible contribution of the −1/r4 tail. This might be somewhat
counterintuitive, but we remind the reader that smallr means
small b3 means largeb4, describing a relative dominance of
the van der Waals contribution. Thus, a mean scattering
length on theb4 scale in this limit is of no weight compared
to theb3 scale, and thus should vanish. Quantitatively speak-
ing,

ā

b4
=

ā

b3
r, s36d

and this vanishes, asr→0.
For larger, we find the reverse situation. Figure 11 shows

that ā/b4 tends to zero, but its value is always larger than the
corresponding value ofā/b3. Experimental[7,8] and theo-
retical (e.g., [6]) investigations of the quantum reflection
probabilitiessuggest that the nonretarded van der Waals part
of the potential is important only forhigh energies well away
from threshold whenr.1. In this context it may seem sur-
prising that the scattering lengths are negative for allr val-
ues. This shows that the influence of the nonretarded van der
Waals potential on thephaseof the quantum reflection am-
plitude is not negligible at threshold for any value ofr.

IV. SUMMARY AND CONCLUSION

For three different model potentials for the Casimir–van
der Waals interaction, we have calculated the phase of the
quantum reflection amplitude and the associated space shifts
for a narrow momentum distributed wave packet that is
quantum reflected at the given potentials. We used a scaling
theory that was invented especially for these types of inho-
mogeneous potentials, and examined the behavior of a quan-
tum reflected atom depending on the critical parameterr. In
analyzing the behavior of the reflected atom, we focused
especially on the transition region in the vincity ofr<1,
where the intrinsic length scales change dominance. For
r,1, the −1/r3 tail shows more dominant behavior, where
for r.1 the −1/r4 tail is dominant for quantum reflection.
This behavior, deducible from simple scaling arguments, is
confirmed by the numerical results for the phase of the quan-
tum reflection amplitude. The strong influence of the van der
Waals regime is mirrored in the phase by characteristic
maxima, which indicate negative space shifts over a wide
range of energy, corresponding to large time delays of the
reflected atom for small velocities. Forr.1 the highly re-
tarded −1/r4 tail is more dominant. The characteristic van
der Waals maximum flattens more and more, indicating a
loss of the influence of the −1/r3 potential, which is more
and more confined to very small velocities of the atom. Nev-
ertheless, it is surprising, that the influence of the short
ranged −1/r3 part of the potential persists at very small in-
cident energies. One might expect that especially particles
with incident energy just above threshold would experience
only the long ranged −1/r4 part of the potential, because they
are reflected before entering the short ranged region. But, as
the foregoing examination has shown, the presence of a full
Casimir–van der Waals interaction is more than a composi-
tion of its limiting regimes.

For larger velocities, the atom experiences a positive
space shift, implying a time gain compared to a free moving
atom. Recalling the results given in[10] for powers a
=s3,4d, we clearly see that a Casimir–van der Waals inter-
action lies between these two cases. Which of the intrinsic
scales is dominant depends strongly on the atomic properties.

By comparing the behavior of the mean scattering length
of all three model potentials, we were able to work out the

FIG. 10. Mean scattering length onb3 scale. Shimizu’s potential
(21) (full line), rational approximation(28) (dashed line), and
arctan formula(29) (dotted line).

FIG. 11. Mean scattering length onb4 scale. Shimizu’s potential
(21) (full line), rational approximation(28) (dashed line), and
arctan formula(29) (dotted line).
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most distinct differences between the three models, which
are shown most clearly in this quantity. The phases of the
reflection amplitude, i.e., the time and space shifts involved
in the quantum reflection process, are a more sensitive test of
the potential shape than the reflection probabilities.
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