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Quantum reflection times and space shifts for Casimir—van der Waals potential tails

Alexander Jurisch and Harald Friedrich
Physik-Department, Technische Universitat Minchen, 85747 Garching bei Minchen, Germany
(Received 7 May 2004; published 23 September 2004

When cold atoms approach a surface, they can be quantum reflected by quantal regions in the tail of the
atom-surface potential. We study the phase of the reflection amplitude for Casimir—van der Waals potential
tails, depending on the critical paramete¥p(C3,C,), which describes the relative importance of th@;+3
and -C,/r* parts of the potential. The phase is related to observable kinematic quantities, the space and time
shifts, the reflected atom experiences. We study three different models for the shape of the potential between
the asymptotic limits and observe that the phases are more sensitive to the potential shape than the quantum
reflection probabilities. At threshold, there are always time delays in comparison to the free movement. This is
in contrast to the classical movement, which shows time gains. Further above threshold, the quantum reflected
atom experiences a time gain relative to free motion, but this time gain is generally smaller than that of the
classical patrticle.
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I. INTRODUCTION property of the potential tail and also determines properties
Quantum reflection happens to a particle moving througho.f bound states just below threshold. For an exhgustive re-
a classically allowed region without reaching a classical turns oW on this topic, _se@Q]. In a recent Lette[lQ], we Inves-
) X )" : . tigated the behavior of a wave packet being quantum re-
ing point—it is a pure quantum effect. It is most intense for

particles moving with small velocity and is thus connected toflected at atomic potential tails of type
Ca h2 (Ba)a—z

the large and rapidly growing field of research with ultracold

atoms. The asymptotic free motion of such particles is clas- V() =- e oM e 0 ¢ >2. 3)
sical, but the motion becomes increasingly quantum me-

chanical, when the potential becomes non-negligible. WheNVhat makes the phase of the quantum reflection amplitude
the potential tail falls off faster than —f7, the motion again an interesting quantity is its close relation to observable ki-
becomes classical amalldistances, which may still be large nematical quantities, namely, the space and time shifts the
compared with a few atomic units, where the interactionwave packet undergoes during the reflection process. For a
structure is more complicated. The inner classical region anwave packet with a narrow momentum distribution peaked
the asymptotic free classical region are seperated by th@roundfiko, the space shifar and the time shifi\t are given
quantalregion, where the motion is nonclassical. This regionby [11]

lies typically hundreds or thousands of atomic units distant 1de(k)
from the inner potential region, and the interactions there are Ar= —-——— ,
well described by attractive local potential tails. In this quan- 2 dk k=ko
tal region, quantum reflection occurs. To treat the reflection
problem, it is thus sufficient to know the potential tail, be- _2ar_ _Mdelk) _ _,deE)
cause all inner effects, e.g., inelastic reactions or sticking, do = v, %k, dk k=k0_ dE | esaom
not come into play. o
For large distances, a stationary solution of the (4)
Schrodinger equation at energ§k?/2M has the form The space and time shif§ime gain for At>0 or loss for
1 At<0 during the reflection procesare to be seen in com-
(r) ~ ﬁ({exp[— ikr] + R(k)exdikr]}, (1)  parison to a free moving wave packet. We want to emphasize
N

that the space shift the reflected atom experiences is an ap-
whereR is the reflection amplitud®(k)=|R(K)|exdip(k)].  Parent quantity. Its apparent character becomes clear by the

The quantum reflection probabilitiR(k)[2 approaches unity schematic picture of the quantum reflection process shown in

at threshold and is thus always non-negligible, when the Vel_:ig. 1. The reflection occurs in the quantal region around the

locities of incident particles are small enough. It has beePCiNtre. which is defined by
subject to intense recent research, theoreticglly6], and 72K
experimentally{7,8]. Its behavior at threshold for potentials E= oM
falling off faster than —1¢2 is universal and given by

=|V(rg)l, 5

) 5 where the absolute value of the potential equals the

L[T(‘)|R(k)| ~ 1 - 2bk=exd - 2bk] + O(k"). (2)  (asymptotig kinetic energy[3,12]. The time evolution of the
reflected wave packet corresponds to a reflection of a free

The parameteb, the threshold lengthis a characteristic wave at the point=Ar rather tharr=0, where it would be
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ers changes the kinematic behavior of a quantum reflected
particle.
AWl Our paper is organized as follows. In Sec. Il we outline
s the Casimir-Polder theory and give scaling arguments for the
relative importance of the two intrinsic length scales to be
found in the Casimir—-van der Waals problem. In Sec. lll,
et ¥ which is the main section of our article, we examine the
ﬁéqaoce" phase of the quantum reflection amplitude and the space and
- time shifts for three model potentials in detail, focusing es-
pecially on the transition region from one dominant scale to
ey the other. In Sec. IV we conclude by summarizing our re-
2 Way sults.
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Il. GENERAL ASPECTS OF CASIMIR-VAN DER WAALS
INTERACTION

FIG. 1. Schematic illustration of the quantum reflection process. h . | ial I he i
An advanced reflected wave travels as a free wave reflected in front The Casimir—van der Waals potential describing the inter-

of the surface. When the quantum reflection process involves a tim@Ction between a spherically symmetric ground state atom

delay, the reflected wave travels as a free wave reflected behind ynd a perfectly conductin_g surface_ can be calcqlate_d_ by
surface. knowledge of the dynamical atomic dipole polarizability

ag(iw) [14]. In atomic units it read§l5]

reflected without potential. When the sign &f is positive, 1 (”

the quantum reflected particle appears to be reflected in front Vevawlh) = - —3 f doay(io)[1 + 2a;s0r

of the surface and experiences a time gain in comparison to 4m=Jo

the free particle. But when the sign afr is negative, the + 2(ays0r)2]exd — 2arcr ],

quantum reflected particle behaves as if it would enter the

region behind the surface. The negative sign corresponds to a z )

time delay relative to the free moving particle. While the . |<m|2j:121|n>|
movement parallel to the surface is not affected by quantum aglio) = % 2(Eq-En) (E,—E )2+ w? (8)

reflection, the particle continues its free movement parallel to

the surface, but the perpendicular motion is delayed in thex is the fine-structure constant. The asymptotic behavior for
quantal region so that the reflected wave appears to hawamall and large distances is given by the limits

been reflected akr <0, as illustrated in Fig. 1. The general

2
threshold law for the phase of the reflection amplitudil § lim Veyaw(r) ~ - %? -_ ﬁ_B_g»
_ _ - r 2M 3’
lim ¢(k) ~ w—2ak, lim Ar=a, 6) o
k—0 ko—0 2 92
_ C h
wherea is the mean scattering length of the potential tail. lim Veygu(r) ~ = —f =- —%‘, (9)
This quantity is determined only by the potential tgiB3] r—e r 2Mr

and should not be confused with tftetal) scattering length  anq the strength parameters are
a. For homogeneous potentials and high energies, the phase

1 (" 3
behaves as Cs= —f afiw)dw, C;=——ay0). (10
lim (k) o — ki 2, 7) 4mJo omas

k—o0

_ o When the interaction of polarizable atoms and a dielectric
In this paper, we focus on Casimir—van der Waals potensyrface is considered, the above formulas become a little

tial types, which give a realistic description of the atom-more complicated. The full interaction now is given (sge,
surface interaction. Their structure can be understood as @g.,[16,17)

mixture of two potential tails, the van der Waals tail, propor- 5
tional to —143, and the highly retarded or Casimir-Polder _a T N _
tail, proportional to —1¢4. As was shown irj10], the behav- vir.e = 2w, doag(io)o L dpex - 2wrpassl(p,€),
ior of these tails is as different as can be. In the case of a pure
-1/r3 interaction, the space and time shift tend to minus — —
P . . L. . \‘"6_1+p2_p \,"E—l+p2—€p
infinity for small incoming velocities, which means that the | === Fi1-20)——==F

ity f . (p.e)= ————+(1-2p)——5—.
motion is strongly delayed. In contrast, in a pure F1po- ve—1+p°+p Ve—1+p°+ep
tential, the space shift tends to zero and the time shift re- (11)
mains finite for small incoming velocities. Thus we have no
significant difference from a free motion at threshold. In theHere € is the dielectric constant. From this, the strength pa-
present paper, we investigate how the presence of both powameters in the dielectric case follow 5,18
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e-1 e-1 lim p(e) = p(), lim p(e) =0. (20)
Cs(€) =——C4(), Cyle)=——D(e)Cy(0), (12 e e—1
e+l e+l
where the characteristic functiah(e) is given by
(o~ e+l o h(p+1,e) 13 Ill. CALCULATION OF THE PHASE OF R(k)
= 2(e-1J, (p+1)* In the following main section of our article, we discuss

o ) ) ) phases, and space- and time-shifts for Casimir—van der

The characteristic functiorb(e) increases monotonically \yaals-potentials. Since the exact shape of the potential is not
from ®(1)=23/30 tod(2)=1. known in general, we study three models suggested in the

For homogeneous potentid), the Schrodinger equation |iterature. The potential assumed by ShimiZ found its
depends not o&=7*k*/2M and B, independently, but only  validation by fitting well the experimental quantum reflection
on (kﬂa) In contrast, Casimir—van der Waals potentials CoNn-gata [7’8]’ and can be regarded as a Simp|er form of the
tain two different quantum mechanical length scaigsBs,  rational approximtion given by Friedrich, Jacoby, and Meis-
which define an intrinsic energy-independent lenigf8], ter [3] and improved by Friedrich and Tro]. The rational

c > approximation was derived by fitting the exact potential for a
=24 &‘_ (14) hydrogen atom, interacting with a conducting surface, given

C: Bs by Marinescuet al. [19]. Last, we investigated the behavior
of a potential calculated by Feinberg and Sucf®4], and
later Holstein[21], which we have adapted for our present
purposes, and which we will refer to as the arctan formula. A

r detailed examination of the potentials now follows.
x=-, k=Kl (15)

The intrinsic length allows us to define two dimensionless
variables

A strength parametek, for the potential can be intro- A. Model potentials

duced in full generality as In terms of dimensionless variablesr/l, p=Kgl, the
potential used by Shimiz[ir] is

K2 C; C 2
0. Gy - (/5’3)3, (16)
M T (B 1
. . . . Vs(X) == p“— : (21)
allowing the Casimir—van der Waals potential to be written x°(1+x)

as
o2 It has the advantage of allowing analytical treatment of the
__ Ko (T threshold behavior of the phase of the quantum reflection
Vevawdr) = vl ~ . (17) . . .
2M A\ amplitude. According to the above scaling laws, the wave

. . , function at threshold can be expressed in terms of Hankel
The transformation of the Schrddinger equation forfunctions[22]

Y=y(x=rll) gives

d? L) Xx+1
d—X2+K2+pzv(x) ¥(x) =0, #(X) = Vx(x+ )H| 2p —~ ) (22)
k- By \ﬂ Cs s Its asymptotic expression,— «, follows readily as
=Kol ="7=—""7.
e NGy lim g0 ~ (9, ) ~ pHE(2p) + xHP(2p).
The parametelp is the critical parameter of the system. “
Whenp<1, the -1 3 contribution is dominant for quantum (23

reflection and retardation effects become negligible, whereas

for p>1, the —14* contribution is dominant and the pure Matching the asymptotic wave functiof.(x) to asymptotic

van der Waals interaction becomes less important. plane waveg1) in the limit kr=xx—0, the reflection coef-
If p(s) is the critical parameter for the Casimir-van der ficient is found to be

Waals interaction of a given atom with a perfectly conduct-

ing surface, then for a dielectric surface it is R(9 HY(2p) +ixkpHP (2p) - HO(2p)
K)=— - ~-1-i2kp— .
1 fe-1 H{"(2p) =i kpHG (2p) HY(2p)
&=p) T - 19
PO =P TN i (19 o

A dielectric surface shortens the two relevant length scales dfvhen decomposing the Hankel functions into Bessel and
the Casimir—van der Waals potential, and thus ghgaram-  Neumann functions, the reflection coefficient can be ex-
eter also decreases. The two limiting cases are given by pressed in real and imaginary parts:
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1 p=05
R(k)=—1+ 2
= 2 20 + Ne20)]
. Jo(2p)J1(2p) + No(2p)N1(2p) N RN
i2kp Ji(zp) N Ni(Zp) . (25) 3.2:_ ......

The second term, giving the threshold length, has already
been derived in[3] by a different calculation. From the 31

above expression, the phase at threshold follows as 2
<
Jo(2p)31(2p) + No(2p)N4(2
lim (k) ~ m+ 2xp 0(2p) 12( p) c;( p)N1(2p) ;
0 FB(2p) + N2(2p)
(26) 29 ]

According to the general threshold law for phases given in
[10], Eq. (6), the potential, Eq(21) has a negative mean 28

B o e e e o e

. 1 2 3 4 5
scattering length K

—_ Jo(2p)31(2p) + No(2p)Ny(2p) FIG. 2. Phases of the quantum reflection amplitude=0.5.

al=-p Ji(Zp)+Nf(2p) : (27) Shimizu’s potential(21) (full line), rational approximation(28)

(dashed ling and arctan formul&29) (dotted ling.
A rational approximation fitting the Casimir—van der Waals . . . -
interaction for hydrogen and hydrogenlike atoms was firsshifts. The time shifts always diverge to negative infinity at

introduced in[3] and was brought into an improved from in threshold, indicating strong time delays, but the space shifts

[9], remain finite there, and thus are easier to study.

Figures 2 and 3 show the phases and the space shifts for

Vea(X) == pP5———-, ;
RA) =P (L +x+ P for a pure van der Waals potential [10]. They show a
characteristic maximum, typical for a —£/potential, which

The arctan formuld20,2] is given by

1+ £=0.316 08 (28) p=0.5. The phases show a similar behavior as was calculated

indicates the dominance of the van der Waals part of the

interaction. The space shifts for small energies are negative

2 T
VardX) == Zﬁ, arctar{&] (290 until k,=~0.8, meaning that quantum reflected atoms with

smaller than approximately 0.8 are delayed in comparison to

For the rational approximation and the arctan formula, anafree moving atoms. For a pure —/potential the threshold
lytical treatment is not even available for threshold behaviotbehavior of the space shift is logarithmically divergéh@],

and we have to rely on numerical calculations only. but the space shift remains finite at threshold for a Casimir—

van der Waals interaction, although the 3 part is domi-
nant for p=0.5, because the highly retarded tail +4is

B. Phases, space shifts, and time shifts present forr — . Figures 4 and 5 show phases and space

For a given shape of the atom-surface potential, the
phases of the quantum reflection amplitudes we have calcu
lated in this section are functions=¢(k, B3, 84). Applying 0.05 —————————————
the scaling lawgsee Eq(18)], we find - i

(k. Bs, o) = ¢(kl,§—j) = $(x.p). (30

This can be seen easily by calculating the space shift 0.05

Ar __11d¢(k.Bs By _ _1dd(x,p) T

—=-—= =-= . (31 o1 ff

| 21 dk 2 dk )
Every single value op represents many possible combina-
tions of B3, B4, although only few of these may be realized in
nature. The phases and space shifts we have calculated a
for valuesp=0.5, 1, 3. This parameter range coversthemost L. . ~ . ¢ v v v 0 v v v v 0 v Ly
interesting regions of the interaction, nameby< 1, where 0 K
the —143 tail is dominant,p>1, where the -1/”* part is 0
dominant, angh=1, where both parts of the interaction are of  FIG. 3. Quantum space shifts @t 0.5. Shimizu’s potential21)
equal influence. Although we will always discuss the behav<full line), rational approximation28) (dashed ling and arctan
ior of the time shifts too, we decided to plot just the spaceformula(29) (dotted ling.

p=05

Ar/l

-0.15 %
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p=3
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-0.50

1 2 3 4 5
K

FIG. 4. Phases of the quantum reflection amplitudepa8.
Shimizu’s potential(21) (full line), rational approximation(28)
(dashed ling and arctan formul@29) (dotted ling.
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P TR R R R SR EAR S B
0 1 2 3 4 5
X

FIG. 6. Phases of the quantum reflection amplitudeai.
Shimizu’s potential(21) (full line), rational approximation28)
(dashed ling and arctan formul#29) (dotted ling.

shifts for p=3, where the -1/ contribution dominates the

reflection process up to quite high energies. The characterighape calculated iff10]. This behavior becomes clearer
tic van der Waals maximum at threshold has almost disapyhen we consider the space shifts. The space shift remains
peared and the region of negative space shifts has shrunk fgative only for valueg,<0.1. Thus, there is a time delay
energies«y<<0.02. For larger energies, the shape of thefor 3 reflected atom only very close to threshold, whereas for

phases shows a behavior very similar to a purerilrlter- ko>0.1 there is already a time gain, compared to the free
action, as was calculated jd0]. The relative dominance of movement.

the —1/* interaction favors time gains for the reflected atom.
The tendency for time gains is largest for energies
0.1< kg<1, where the space shift shows its maximum. Fig-
ures 6 and 7 show phases and space shiftpfdr. We are
now in the parameter range where both parts of the potential ) ) ) )
show comparable influences for quantum reflection. Again The classical time shift can be calculated by comparing a
we find the characteristic van der Waals maximum in theclassical free motion with the classical motion in the poten-
threshold region, but it is already reduced and not as domitial- The time gain of the classical particle moving in the
nant as it was gv=0.5. For largei the phases fall off much Potential relative to the free particle is

faster, which already indicates similarity with the pure 1/

C. Comparison to the classical motion

p=3

) o e e

— T B e T B

.......

ol

Ar/l

-0.1

021

R T RN T B R E o0 by e by Ly

0 1 2 3 4 5 0 1 2 3 4

% %

FIG. 5. Quantum space shifts at3. Shimizu’s potentia(21)
(full line), rational approximation28) (dashed ling and arctan
formula (29) (dotted line.

3

FIG. 7. Quantum space shifts at1. Shimizu’s potentia(21)
(full line), rational approximation28) (dashed ling and arctan
formula (29) (dotted line.
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p=1 0 ' T T I T ' T
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-0.251— —
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FIG. 8. Comparison between quantum space shift and classica 253
space shift obtained with Shimizu’s potenti2ll).

1 1 ) I
Aty=21i — - dr’ =
. rLrUC fo (UO |v(r’)| ' "01.5_
—2Mfm<i—i)dr>0 (32
o \fiky p(r) '

0.5
Applying scaling as above, this expression can be cast intc
the following suitable form:

At ZMIde (1 ! ) (33

I = — X -_ /= .

< ko Jo \'1+(p2/KS)v(X) FIG. 9. Mean scattering lengttebove and threshold length
(below) as functions op. Shimizu’s potentia(21) (full line), ratio-
nal approximation(28) (dashed ling and arctan formul&29) (dot-
ted line.

This integral cannot be calculated analytically for any of the
model potentials. Abbreviating the integral as

Aty =24, <£> (34)
ik \ko)’
this corresponds to the classical space shift

expect the most distinct differences between quantum and
classical behavior to occur there. For large scaled momenta
ko, the behavior becomes more and more classical, and a
p close examination of the curve shape indeed supports this
Argll = r(—). (35)  conjecture. Generally, the results presented 6} for homo-
Ko geneous potentials, stating that the quantum space shift is
The classical space shift in units bfdepends only on the always smaller than the classical one, indicating the quantum
ratio p/ ko, as given by the function(p/ ky). This is in con- movement to be always slower than the classical one, is con-
trast to our results found ifil0], where the classical space firmed for Shimizu's potential. For the rational approxima-
shift is given by a simple power law. But in the Casimir-vantion (28) and the arctan formule29), the qualitative behav-
der Waals interaction we have effectively a mixture of twoior is the same.
powers «=(3,4), and thus the space shift cannot be de-
scribed by a pure power law.

In Fig. 8, we plotted the quantum space shift and the
classical space shift for Shimizu’s potential for 1. We ob- The mean scattering length is an important quantity, be-
serve that the quantum space shift is smaller than the clasgtause it determines the behavior of the phaseR@) at
cal one, which diverges to positive infinity at threshold. Nearthreshold. Figure 9 showa/| for our model potentials as a
threshold, the classical particle experiences large time gaingynction of p. For smallp, their behavior is similar, but gs
whereas the quantum particle experiences a finite negativgrows to unity and beyond, distinct differences between the
space shift, corresponding to large time delays relative to thenodel potentials arise. For Shimizu's potential|l con-
free particle. We remind the reader that the threshold regiowmerges to a finite value —0.25, while the rational approxima-
of Casimir—van der Waals potentials is the anticlassical limittion and the arctan formula show a tendency to zerop as
of the Schrédinger equatiqisee[9]). Thus we indeed would grows beyond all bounds. It is interesting to compare the

D. The mean scattering length
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05 T T T T T a a
; - — ==, 36
B B3 (38

and this vanishes, gs— 0.
For largep, we find the reverse situation. Figure 11 shows

4k thata/ 8, tends to zero, but its value is always larger than the
o | | corresponding value od/B3. Experimental[7,8] and theo-
N i retical (e.g., [6]) investigations of the quantum reflection
i probabilitiessuggest that the nonretarded van der Waals part
2 ff of the potential is important only fdrigh energies well away
o 1 from threshold whemp> 1. In this context it may seem sur-

. prising that the scattering lengths are negative fopalbl-
] ues. This shows that the influence of the nonretarded van der
s S S Waals potential on thphaseof the quantum reflection am-

0 0.5 1 15 2 2.5 3
p plitude is not negligible at threshold for any value of

FIG. 10. Mean scattering length ¢ scale. Shimizu’s potential
(21) (full line), rational approximation(28) (dashed ling and

arctan formula(29) (dotted ling. ] . o
For three different model potentials for the Casimir—van

behavior of the mean scattering length with the behavior  der Waals interaction, we have calculated the phase of the
of the threshold lengthb/I, which determines the near quantum reflection amplitude and the associated space shifts
threshold behavior of the reflection probabilisee Eq(2)].  for a narrow momentum distributed wave packet that is
We clearly see that the behavior of the phases and thus thgiantum reflected at the given potentials. We used a scaling
behavior of the space shifts and mean scattering lengths atReory that was invented especially for these types of inho-
much more sensitive to the shape of the potential than is thenogeneous potentials, and examined the behavior of a quan-
behavior of the reflection probability. In Figs. 10 and 11, wetum reflected atom depending on the critical paramgtén
plotted the mean scattering lengths in urts ;. The quan-  analyzing the behavior of the reflected atom, we focused
tity a/ 83 grows to minus infinity for smalp, indicating the  especially on the transition region in the vincity pfs1,
increasing dominance of the —Aail. It rapidly approaches where the intrinsic length scales change dominance. For
zero whenp grows larger than unity, indicating a more and p<1, the -1 tail shows more dominant behavior, where
more decreasing influence of the +3 tail and a more and for p>1 the —1/* tail is dominant for quantum reflection.
more growing contribution of the —17 tail. In contrast, the ~ This behavior, deducible from simple scaling arguments, is
quantity a/ 8, goes to zero for smalp, indicating a negli- confirmed by the numerical results for the phase of the quan-
gible contribution of the —1r* tail. This might be somewhat tum reflection amplitude. The strong influence of the van der
counterintuitive, but we remind the reader that srpatieans  Waals regime is mirrored in the phase by characteristic
small 83 means larggs,, describing a relative dominance of maxima, which indicate negative space shifts over a wide
the van der Waals contribution. Thus, a mean scatteringange of energy, corresponding to large time delays of the
length on theB, scale in this limit is of no weight compared reflected atom for small velocities. Fpr>1 the highly re-

to the B3 scale, and thus should vanish. Quantitatively speaktarded —1r* tail is more dominant. The characteristic van
der Waals maximum flattens more and more, indicating a

Ing,

. . . . loss of the influence of the —t7 potential, which is more
and more confined to very small velocities of the atom. Nev-
ertheless, it is surprising, that the influence of the short
ranged —1¢2 part of the potential persists at very small in-
cident energies. One might expect that especially particles
with incident energy just above threshold would experience
only the long ranged —x# part of the potential, because they
are reflected before entering the short ranged region. But, as
the foregoing examination has shown, the presence of a full
Casimir—van der Waals interaction is more than a composi-
tion of its limiting regimes.

For larger velocities, the atom experiences a positive
space shift, implying a time gain compared to a free moving
. , , . , atom. Recalling the results given if10] for powers «
0 05 ! ‘p5 2 = 3 =(3,4), we clearly see that a Casimir—van der Waals inter-
action lies between these two cases. Which of the intrinsic
scales is dominant depends strongly on the atomic properties.
By comparing the behavior of the mean scattering length
of all three model potentials, we were able to work out the

IV. SUMMARY AND CONCLUSION

-0.5

FIG. 11. Mean scattering length gh scale. Shimizu’s potential
(21) (full line), rational approximation(28) (dashed ling and
arctan formula29) (dotted ling.
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