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I. INTRODUCTION

Following Ref.[1], there has been renewed interest in the
semiclassical description of reactive systems consisting of
three or more atoms[2–4]. Although it is difficult to obtain
accurate atom-diatomS-matrix elements using semiclassical
techniques, ana posteriorisemiclassical analysis is possible
once theS matrix has been computed, e.g., in coupled-
channel[5] or time-dependent[6] calculations. In this vein, a
semiclassical complex angular momentum(CAM) method
for analyzing reactive differential cross sections(DCS’s) has
been developed and applied to a wide range of atom-diatom
systems in Refs.[7–15]. In the CAM approach, the scattering
amplitude is decomposed into subamplitudes describing cap-
ture into a number of Regge states and the remnant “optical”
term, often containing contributions from direct reactive tra-
jectories. The method requires therefore the knowledge of
the analytical properties of anS-matrix element, and relies
on the Padé reconstruction[16] in the CAM plane. Some
aspects of the Padé reconstruction have been discussed in
Ref. [12]. The success, or otherwise, of such semiclassical
analysis depends on the complexity of the scattering system
and the accuracy with which the scattering data have been
computed. It is desirable, for this reason, to test the method
on a number of well-studied benchmark cases, as will be
done below. Further information about the application of the
CAM approach to potential scattering can be found in Refs.
[17] and [18]. The purpose of this paper is thus threefold:
first, to give clear illustrations for the use of the CAM ap-
proach employed in Refs.[9–15]. Second, to investigate the
properties of the Padé method for the cases when analytical
properties of theS matrix are known in advance. And, third,
to provide where possible, a further insight into the physics
of well-studied scattering phenomena, such as rainbows and
forward glories. The rest of the paper is organized as follows:
in Sec. II we briefly outline our CAM approach for central
scattering problems. Section III describes semiclassical
evaluation of the “unfolded” scattering amplitude. In Sec. IV
the theory is applied to a single scattering resonance and the
analytical properties of the corresponding Padé approximant
are studied in some detail. In Sec. V, the CAM approach is

applied to a model designed to mimic a reactive scattering
system. A generic type of angular distributions encountered
in atom-diatom reactions as well as the success of the qua-
dratic approximation for the potential phase[9] are ex-
plained. In Sec. VI the theory is applied to the rainbow scat-
tering off a rectangular potential well with a refraction index
close to that of water. Section VII analyzes the Eckart thresh-
old model recently used to explain time-delayed forward
scattering in theH+D2→HD+D reaction[15]. Section VIII
contains our conclusions and discussion.

II. SEMICLASSICAL UNFOLDING OF THE SCATTERING
AMPLITUDE

The theory of this section closely follows a similar ap-
proach developed in Refs.[9–11] and[14] for reactive atom-
diatom collisions. For a particle scattered by a central field
Vsrd, the differential cross section(DCS) ssud,

ssud = ufsudu2, s1d

can be obtained from the partial wave sum(PWS) for the
scattering amplitudefsud,

fsud = s2ikd−1o
J=0

`

s2J + 1dPJfcossudgsSJ − 1d, s2d

where k, J, u, PJfcossudg, and SJ are the wave vector, the
angular momentum quantum number, the scattering angle, a
Legendre polynomial of degreeJ, and the scattering matrix
element, respectively. For largeJ and 1/J,u,p−1/J,
PJfcossudg can be written as a sum of two traveling-wave
components[18,19],

PJ < PJ
+ + PJ

−, s3d

PJ
± ; f1/2pl sinsudg1/2expf± islu − p/4dg. s4d

As usual, in the semiclassical analysis[19] we can use
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o
J=0

`

sJ + 1/2dPJscosud = ds1 − cosud, s5d

to replace in Eq.(2) SJ−1 by SJ for any uÞ0. Inserting Eq.
(3) into Eq. (2) and applying the Poisson sum formula
[19,20] we obtain a representation for the scattering ampli-
tude[19,9] fSJ=SsJ+1/2dg

fsud = s1/ikds2p sin ud−1/2 o
m=−`

`

s− 1dm

3E
0

`

dll1/2Ssldhexpfilsu + 2mpd − ip/4g

+ expf− ilsu − 2mpd + ip/4gj, s6d

valid for a semiclassical collision dominated by large angular
momenta excluding small vicinities of the forwardsu=0d
and backwardsu=pd scattering angles. Now it is convenient
to rewrite Eq.(6) in an equivalent form,

fsud = sikd−1f2p sinsudg−1/2 o
m=−`

`

f̃swmdexps− ip/4 − imp/2d,

s7d

where

wmsud ; s− 1dm+1u + pfm+ 1/2 +s− 1dm/2g,

m= ¯ − 1,0,1̄ s8d

and

f̃swd ; E
0

`

expsilwdSsldl1/2dl, − ` ù w ø `. s9d

It can now be seen[9] that w can be interpreted as the angle
by which the position vectorrW of the particle rotates in the
course of collision around the direction of the angular mo-
mentum,wm give all values ofw consistent with the scatter-
ing angleu, and the scattering amplitude can be found by

summing (with appropriate phases) f̃swd over all wm. The

summation can be seen as “folding”f̃swd into a finite interval

f0,pg and we refer tof̃ as an “unfolded” scattering ampli-
tude. Semiclassically,rW rotates in the positive direction

around the angular momentum vectorJW and we expect the
mù0 terms to dominate the sum in Eq.(7). Among these we
will distinguish thenearsideterms withm=0,2,4. . . andfar-
side terms withm=1,3,5. . .,respectively. Finally, note that

the geometrical factorssin ud1/2 has been removed fromf̃swd
for convenience.

III. UNFOLDED SCATTERING AMPLITUDE

The unfolded amplitudef̃swd contains contributions from
various direct and resonance processes which determine the
shape of the DCS, Eq.(1), and we will briefly discuss its
properties next. In the semiclassical limit, the integral(6) can

be evaluated by the stationary phase method, provided the
phase shiftdsld,

SsE,ld = expfidsE,ldg, l ; J + 1/2, s10d

is a slowly varying function ofl, udsE,l+1d−dsE,ldu!1.
For a given energyE (we will omit the energy dependence of
S), Ssld may have polesln, n=0,1,2. . . in thefirst quadrant
of the complexl plane. In the single-channel case consid-
ered here, any such pole is complemented by a complex
conjugate zero,ln

* [21], so that a pole-zero pair contributes to
dsld a term −i lnfsl−ln

*d / sl−lndg. For a resonance pole lo-
cated close to the reall axis, this contribution rapidly varies

with l and, to find the semiclassical asymptote forf̃swd, it is
convenient to write

Ssld = p
n=0

Nres sl − ln
*d

sl − lnd
expfifsldg, s11d

wherefsld is the slowly varying “potential” phase andNres

is the number of resonance poles. Equivalently,Ssld can be
written as a sum of pole terms,

Ssld = o
n=0

Nres rn

sl − lnd
expfifsldg. s12d

with the quantitiesrn given by

rn ; 2i Im lnp
jÞn

sln − l j
*d

sln − l jd
. s13d

The expression, Eq.(6), for f̃swd thereby reduces to a sum of
oscillatory integrals of the form

E gsld
sl − lnd

expfifsld + ilwgdl, s14d

wheregsld;l1/2 is a slowly varying function away from the
origin, the denominator has a pole in the first quadrant of the
complex l plane, and expfifsldg oscillates rapidly.
Asymptotic approximations for such integrals are well
known (see, for example, Ref.[22]) and are discussed in
detail in Appendix B of Ref.[8]. Typically, they contain three
contributions [see Eq.(B15) of Ref. [8]], and combining
those corresponding to the stationary point results for the

expression(14) yields the direct, or “optical,” part off̃swd,

f̃ optswd ; H 2p

− fllslsd
J1/2

p
n=0

Nres sls − ln
*d

sls − lnd

3expfifslsd + ilsf − ip/4g, s15d

where the classical value ofl corresponding to the rotation
anglew is given by the stationary phase condition

flslsd = − w s16d

and a subscript(s) l denote(s) differentiation with respect to
l. Equation(15) implies that a single trajectory leads to a
given anglew and yields the primitive semiclassical approxi-
mation to the unfolded amplitude. Note that it differs, in
general, from the usual Ford-Wheeler result[18] in that only
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the smooth part of the phase,fsld, rather than the full phase
shift dsld is used to determinels. The two expressions agree,
however, in the absence of resonance polessNres=0d.

For a resonance pole atln, we combine the two remaining

terms in Eq.(B.15) of Ref. [8] into a correction termd f̃ nswd,

d f̃ nswd ; − iprnerfcsundexpfifslnd + ilnwg

+ p1/2rnun
−1expfifslsd + ilswg, s17d

where

un ; ffslsd − fslnd + sls − lndwg1/2 s18d

and erfcszd;2p−1/2ez
`exps−t2ddt is the complementary error

function [23]. The lifetime correction function(LCF),
d f̃ nswd, has a simple physical meaning. Consider a repulsive
collision such thatlsswd increases withw, i.e., the higher
angular momenta correspond to smaller scattering angles,u
=p−w. Let

wres; w„Reslnd…

be the angle corresponding to the direct trajectory with the
angular momentum equal to real part of thenth Regge pole
position. Then forw,wres [cf. Eqs.(B16) and(B17) of Ref.

[8]] d f̃ n vanishes, while forw@wres it reduces to a single
exponential term[cf. Eq. (B18) of Ref. [7]]

d f̃ nswd < 2prnexpfifslndgexpsiwReln − w Im lnd.

s19d

It is seen therefore thatd f̃ n describes exponential angular
decay of a resonance Regge state which is formed forl
<Reln, i.e., the metastable state of a particle rotating in the
positive direction around the direction of the total angular
momentum(see Refs.[9,10], and the discussion in Sec. IV
below). For a pole with a shorter angular lifeDw, Dw
;1/s2Imlnd, the LCF may have no pronounced exponential
tail but would still describe the effect of capture in the cor-
responding Regge state[15]. Finally, if several resonance
poles are present, the unfolded amplitude is a coherent sum
of the optical and severalsNresd correction terms,

f̃swd < f̃ optswd + o
n=0

Nres

d f̃ nswd. s20d

“Folding” f̃ into the interval 0,u,p as in Eq.(7) allows us
to relate the structure observed in the angular distributions to
interference between various resonance and direct pathways
leading to the scattering angleu. Next we apply this ap-
proach to an isolated potential resonance.

FIG. 1. Schematic diagram showing particles with wave vector
k scattered off a penetrable layer surrounding a hard-sphere poten-
tial. Most trajectories bounce off the outer layer(thin solid), while
the particle with the impact parameter close tob0 can penetrate the
barrier and continue propagating around the hard core as it decays
into the outer region(thick solid). One direct(1) and two resonant
(2, 3) pathways lead to the same scattering angleu. Inset: relation
between the scattering angleu and the rotation anglew.

FIG. 2. (a) DCS for the model in Fig. 1 withkR8=20, kd=3.5,
and VR8=3: exact (solid) and obtained by the CAM approach
(dashed). Also shown for comparison is the DCS(dot-dashed) for
an impenetrable sphere with a radius equal to that of the outer
potential layer;(b) first nearside and farside components of the LCF

d f̃0swd for the above model;(c) the direct componentf̃optswd for the
above model(ignoring the diffraction effects of the outer layer); (d)

coherent sum off̃optswd andd f̃0swd.
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IV. SINGLE RESONANCE AND ITS PADÉ
RECONSTRUCTION

We consider a simple model which provides an illustra-
tion for the application of CAM method described above as
well as a benchmark case for the study of more complex
systems. This consists of a flux of particles with a wave
vector k scattered off a hard-sphere potential of a radiusR
augmented by a thin semitransparent spherical layer of ra-
dius R8=R+d,

Vsrd = `, for r , R andVsrd = VdsR+ dd for r . R,

whereVdszd is the Diracd function of magnitudeV. In the
semiclassical limit,kR8@1, [note thatkR8 is approximately
the number of partial waves needed to converge the PWS in
Eq. (2)] the scattering can be described as follows. For a
large V, the potential well between the outer layer and the
hard core supports a number of energy levels. Most of the
trajectories incident on theVsrd are reflected off the outer
layer as if it were impenetrable. However, a particle with an
impact parameterb0 (angular momentum"kb0) such that,

when it impacts on the outer shell, the energy of its radial
motion is close to that of a level in the well, may penetrate
the barrier. It will then initiate a wave(Regge state) which
creeps around the hard core while leaking into the outer re-
gion, Fig. 1, The angular distance traveled by the wave(life
angle or angular life) Dw depends on the transparency of the
barrier determined by theV. As shown in Fig. 1, for
Dw,2p and u.wres there are three pathways leading to
scattering intou: (i) directly off the outer potential layer(first
nearside direct), (ii ) via capture in the Regge state and sub-
sequent decay atw=p−u (first nearside resonance), and(iii )
via capture in the Regge state and subsequent decay atw
=p+u (first farside resonance). A resonance with a larger
lifeangle could result in a larger number of resonance path-
ways, and interference between them would determine the
shape of the corresponding DCS.

TheS-matrix element for the potential in Eq.(21) is easily
evaluated by requiring that the radial wave function vanish at
r =R and has a discontinuity in the logarithmic derivative at
r =R8,

Ssk,ld = −
4Hl

2skRd + pVR8fHl
1skRdHl

2skR8d − Hl
2skRdHl

1skR8dgHl
2skR8d

4Hl
1skRd + pVR8fHl

1skRdHl
2skR8d − Hl

2skRdHl
1skR8dgHl

1skR8d
, s21d

whereHl
1s2dszd are the Hankel functions of the first(second)

kind [23]. The exact DCS forkR8=20, kd=3.5, andVR8
=3 obtained by the partial wave summation up toJ=39 is
shown in Fig. 2(a). In the middle of the angular range, it
shows a pronounced structure whose origin we seek to ex-
plain. We note first that for a pure hard-sphere potential the
DCS in this region has nearly constant value of<R82/4
=100 so that the pattern must be related to the presence of a
resonance.

Consider the analytical properties ofSsld in Eq. (21). For
V=0 andV→`, the matrix element reduces to that for a
hard-sphere potential of the radiiR andR+d, respectively. In
the complexl plane,Ssld has poles associated with the ze-
roes of the denominator in Eq.(21). For V large but finite,
these fall into two categories: poles associated with an infi-
nite number of zeroes ofHl

1skR8d which are slightly per-
turbed by the presence of the 4Hl

1skRd term, and the pole
associated with the zero of the expression in the square
bracket. The poles of the first kind are the diffraction poles
responsible for the diffraction effect in scattering off the
outer sphere[20], and we will not discuss them further in
this work. The pole of the second kind is the resonance pole
of interest responsible for trapping the penetrated wave be-
tween the outer and inner spheres. It is readily seen that in
Eq. (21) the expression in the square brackets is the value of
the regular radial wave function atr =R8=R+d and the con-
dition that it vanishes gives the position of a bound state
which exists forV→`. Due to the presence of the 4Hl

1skRd
term the corresponding pole acquires an imaginary part, typi-

cally, of orderV−1 so that it describes a metastable, rather
than a bound state.

Given the analytic form of theS matrix, it is a relatively
simple matter to calculate both the pole positions and the
corresponding residues. In numerical modeling of realistic
chemical reactions no simple analytic form is available for
the S-matrix element and one has to rely on numerical ana-
lytic continuation of the scattering data computed for physi-
cal integer values ofJ (half-integer values ofl) [7]. In order
to study the properties and accuracy of such continuation, we
will construct for our model a diagonalfK /Kg Padé approx-
imant [9,10,15,16],

SPadesld = Cp
j=1

K
sl − j jd
sl − l jd

expfiFsldg s22d

using 2K+1 values ofSsJ+1/2d, J=0,1,2, . . . ,2K to deter-
mine pole positionsl j, zero positionsj j and the constantC
[12,16]. Note that in Eq.(22) the data have been “precondi-
tioned” by extracting a rapidly oscillating phaseFsld,

Fsld ; − p/2Ksl − 1/2d2 + psl − 1/2d, s23d

in order to improve accuracy of the Padé method[12]. The
poles and zeroes of the Padé approximant are, in general, not
the same as the true poles of theS matrix in Eq.(11). How-
ever, at least some of the true poles must be reproduced
correctly and we will use Eq.(22) to obtain their positions
and residues. Note also that the phaseFsld is different from
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the potential phasefsld in Eq. (11), which can, however, be
easily calculated once the Padé approximant has been ob-
tained.

For the system Eq.(21) the pole /zero structure resulting
from such reconstruction forkR8=20, kd=3.5, VR8=3, and
K=19 is shown in Fig. 3. The Padé approximant has at its
disposal 19 poles and one might expect it to correctly repro-
duce the resonance pole and the first 18 of the diffraction
poles sequence[20,24] starting atl<kR=20. Remarkably,
this is not what happens. As shown in Fig. 3(a), only the
resonance pole with Rel0<10.4+0.5i and the first four of
the diffraction poles are reproduced correctly. The 14 re-
maining poles, together with the complex zeroes, form an
oval “boundary,” beyond which the Padé approximation
fails. Its failure is obvious since the diffraction poles with
n.5 are absent, and can also be verified by plottingSsld
along a given direction in the complex plane. The size of the
boundary is determined by the accuracy(in this case, the
machine accuracy) to which the analytic functionSsld is
computed. This is further illustrated by adding to the input
valuesSsJ+1/2d a random noise,

SsJ + 1/2d → SsJ + 1/2d + afz1sJd + iz2sJdg, s24d

wherez1 andz2 are real random variables taking values be-
tween −1/2 and 1/2. For the data contaminated with noise
sa=0.001d the border shrinks, the number of correctly repro-
duced diffraction poles reduces to two and more poles and
zeroes form Froissart doublets(pole-zero pairs mimicking

high-frequency noise of the modeled function[16]) in the
vicinity of the real axis. Fora=0.05, i.e., the error of about
5% expected to be present in realistic reactive scattering cal-
culations, the border disintegrates into a loose collection of
spurious poles and zeroes with only the resonance and the
first diffraction poles reproduced with some accuracy. Impor-
tantly for our analysis, the resonance pole position and resi-
due given in Table I are not sensitive to low noise levels and
we can continue with the analysis of the DCS with either set
of data.

We choose, however,a=0 and obtain the parameters re-
quired in Eqs.(15) and(17) from the Padé approximant Eq.
(22). Figure 4(b) shows the deflection function(solid)

usld = p − flslsd, s25d

which yields the direct scattering angle for an angular mo-
mentuml, as well as the derivative of the full phase of the
S-matrix element, ArghSsldjl (dashed). While the former is
essentially that for a hard sphere of radiusR8, the latter con-

FIG. 3. Poles(circles) and zeroes(crosses) obtained by Padé
reconstruction for the model in Fig. 1 withkR=20, kd=3.5, and
VR8=3: (a) with no extra noise;(b) with extra noise of 0.1%,sa
=0.001d; (c) with more noisesa=0.05d. Also shown(joined closed
circles) are exact diffraction poles.

TABLE I. The resonance pole positionl0 and the residuer0

=expfifsl0dgr0 as function of the noise parametera for the model
in Sec. IV withkR8=20, kd=3.5, andVR8=3.

kR8 a Rel Iml Rer0 Imr0

0.0 10.3924 0.5043 0.6262 0.2254

20 0.001 10.3884 0.5046 0.6289 0.2336

0.05 10.3920 0.5394 0.1416 0.0040

FIG. 4. (a) Real part of theS-matrix element(solid) for the
model in Fig. 2 withkR8=20 kd=3.5, andVR8=3. Also shown are
the real part(dashed) and modulus(solid) of the “reactive“ matrix
element obtained by Gaussian truncation Eq.(26); (b) derivative of
the phase of the sameS-matrix element(solid), the smooth deflec-
tion function (dashed), and the linear deflection function resulting
from quadratic approximation Eq.(28) (dot-dashed) for the phase.
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tains a sharp dip associated with the resonance pole in Table
I. (It is this dip which prevents us from usingp
−ArghSsldjl itself as a deflection function.) Various compo-

nents of the unfolded amplitudef̃swd are given in Figs. 2(b)
and 2(c). Figure 2(b) shows the formation, atwres<60°, and
subsequent angular decay of the creeping wave trapped be-
tween the outer and inner spheres. The angular life of the
corresponding Regge state isDw=57°,p and there are
only the first nearside and farside resonance pathways[la-
beled 2 and 3 in Figs. 1 and 2(b)] leading to an angle

u.p−wres. Figure 2(c) shows f̃ optswd resulting from direct
scattering off the outer sphere and valid forw,140°, beyond
which the scattering amplitude is dominated by diffraction
not accounted for in our analysis. A coherent sum of the
direct optical and resonance components is plotted in Fig.
2(d). We therefore have the following explanation for the
DCS in Fig. 2(a). For u.p−wres, it is dominated by direct
scattering off the outer potential sphere, with small oscilla-
tion arising from interference with the first nearside decay of
the resonance wave creeping around the inner hard core. For
40°,u,p−wres<120° the slow oscillations of the DCS
result from interference between the nearside decay of the
creeping wave and the nearside scattering off the outer po-
tential sphere[cf. Fig. 2(d)], while the small oscillations su-
perimposed on the structure are due to interference with far-
side decay of the wave. Foru,40° our model needs to be
modified to include the Regge states(surface waves) associ-
ated with diffraction on the outer sphere. Outside this region
the full semiclassical result plotted in Fig. 2(a) (dashed) re-
produces the exact DCS to the graphical accuracy.

V. REACTIVE SCATTERING RESONANCES AND THE
QUADRATIC APPROXIMATION FOR THE

POTENTIAL PHASE

As mentioned in the Introduction, the CAM approach has
been developed for applications in atom-diatom reactions
theory. We can modify the model of the previous section to
mimic reactive scattering if we multiply theS-matrix ele-
ment Eq.(21) by the probability amplitude for reaction to
take place at a given total angular momentum,

Sreactsld = TsldSsld. s26d

To simulate a resonance reaction, the factorTsld must be
chosen so as to make the reaction probability rapidly de-
crease for large angular momenta(impact parameters) of the
collision partners, yet to retain a sufficient amplitude for cap-
ture in the resonance Regge state at Rel0<10.4,

Tsld = exps− l2/Dl2d. s27d

Physically, the exponential cutoff Eq.(27) results in suppres-
sion of direct scattering in the mid-angle range, as well as
quenching of the small angle diffraction effects associated
with large impact parameters. Mathematically, it means that
we can replace the potential phasefsld by its Taylor expan-
sion aroundl=0 up to quadratic terms(linear approximation
is insufficient, as all angular momenta would be scattered
into a single angleu)

fsld < al2 + bl + c, a , 0. s28d

The deflection function in Fig. 4(b) is almost linear for
l,10 and only shows some curvature forl.15 where re-
activity is negligible. Approximation Eq.(28), widely used in
atom-diatom reactive scattering[9–15], simplifies Eqs.
(15)–(17) and now for the angular momentum leading to a
rotation anglew (scattering angleu) we have

ls = sw + bd/2uau = sp + b − ud/2uau, s29d

the variableu0 in Eq. (18) becomes(cf. the Appendix of Ref.
[8])

u0 = expsip/4duau1/2sl0 − lsd, s30d

and the LCFd f̃0swd is reduced to the difference between the
error function term and the primitive semiclassical approxi-
mation for the corresponding pole term in Eq.(17),

d f̃0swd = lm
1/2rmhip expfifsl0dgerfcfexps− ip/4duau1/2sl0

− lsdg − p1/2uau−1/2sls − l0d−1expfiFslsd − ip/4gj,

s31d

whereFsld;fsld+lw.
We have repeated the analysis of the previous section for

the “reactive” model Eq.(26) with Dl=10, a=0 (no extra
noise), and other parameters chosen as in Sec. IV. Since the
exponential cutoff function Eq.(27) has no poles, we found
the pole /zero structure very similar and the deflection func-
tion identical to those shown in Fig. 3(b). The resonance
contribution in Fig. 5(b) is also similar to that shown in Fig.
2(b), however, reduced in magnitude(note the difference in
scales of the two figures). The optical part in Fig. 5(c) is
reduced by the cutoff and vanishes forw.140°. A coherent
sum of the two components, Fig. 5(d) follows the curve in
Fig. 5(c) up to w<60°, shows an interference minimum at
w<85°, and for larger angles coincides with the resonance
term in Fig. 5(b). Accordingly, the DCS in Fig. 5(a) has two
distinct parts. Foru,80°, only two resonance pathways(la-
beled 2 and 3 in Fig. 5) are available and the oscillatory
pattern observed in this region is due to nearside-farside in-
terference of resonance decay with itself. Foru.110°, the
shape of the DCS is determined by direct scattering off the
outer potential with small oscillations superimposed on it
due to the farside decay of the Regge state. For
80°,u,110°, the DCS is very small because of destructive
interference between the nearside direct and resonance com-
ponents, seen in Fig. 5(d). Angular distributions of this type
have been obtained for the Cl+HCl→ClH+Cl [7,8], I+HI
→ IH+I [16,14], and F+H2→FH+H [11] reactive systems.
Our simple model also suggests an explanation for the suc-
cess of the quadratic phase approximation applied to atom-
diatom reactive systems[9–15]. It appears that for such sys-
tems the reaction probability,Psld= uSsldu2, effectively
restricts the reactants angular momenta to the range where
the deflection function can be considered linear(and the
phase quadratic) and suppresses higher impact parameters
for which the deviation from the quadratic model may be
considerable.

D. SOKOLOVSKI AND A. Z. MSEZANE PHYSICAL REVIEW A70, 032710(2004)

032710-6



VI. SEVERAL RESONANCES: AN OPTICAL RAINBOW

The CAM analysis can be applied in cases when a par-
ticular structure in an angular distribution results from inter-
ference between decays of many, rather than just one, Regge
states. One such example is the rainbow effect observed in
scattering of particles(or electromagnetic waves) with a
wave vectork from a largeskR@1d spherical potential well,

Vsrd = − V0 for r , R and 0 otherwise. s32d

The rainbow effect has been studied in great detail. For a
systematic analysis we refer the reader to Refs.[20] and[24],
and references therein. Theprimary rainbow[24] is usually
explained in terms of classical trajectories(rays) which pen-
etrate the interior of the potential and are scattered, after one
internal reflection, into the first farside zone. The dependence
of the rotation anglew on the impact parameterb (angular
momentum l) is such that, for w less that somewr,
2p,wr ,p, there exist two trajectories with different values
of b sld, while for w.wr no such trajectories can be found.
As a result, the corresponding DCS exhibits an Airy function
structure with the main Airy peak atur <wr −p and the
shadow(classically forbidden) region atu,ur. Thesecond-
ary rainbow[24] has a similar explanation in terms of paths
experiencing two internal reflections from the potential edge
and ending up in the second nearside zone.

The full DCS is shown in Fig. 6(a) by the thin solid line.
For u,90°, it contains a large forward scattering peak which
we will not discuss further. The rainbow part of the cross

section occupies the regionu.120° where it contains sev-
eral narrowly spaced peaks. Replacing the Legendre polyno-
mials in the PWS Eq.(2) by their traveling-wave compo-
nents, PJ

+sud and PJ
−sud, we decompose the DCS into the

nearside(thick dashed) and farside(thick solid) parts, re-
spectively. It is readily seen that the farside term contains the
first three oscillations of the Airy function, and that the high-
frequency structure results from nearside-farside interference
between the two components. While the description of the
rainbow scattering in terms of classical paths is, without a
doubt, most natural, it requires the knowledge of the trajec-
tories as well as the phases associated with each of them. For
a realistic atom-diatom system such information may not be
available, although the value of theS-matrix element can be
computed to high accuracy using, for example, a coupled
channels method. It is useful therefore to develop a compli-
mentary approach to rainbowlike phenomena, based on
Regge poles rather than the classical paths.

For kR@1, the effective potential combining the rectan-
gular well Eq. (32) with a centrifugal barriersl2−1/4d / r2

[see the inset in Fig. 7(b)] supports a large number of meta-
stable levels[20,24]. Accordingly, the S-matrix element
s8 denotes differentiation with respect to the argument)

FIG. 5. The same as Fig. 2 but for a reactiveS-matrix element
Eq. (26) with Gaussian truncationDl=10.

FIG. 6. (a) DCS’s for a rectangular potential well withkR=39
and refractive index equal to that of watersN=1.33d: exact(solid)
and obtained by the CAM approach(dashed). The rainbow region
starts atu<120°. Also shown are the nearside(thick dashed) and
farside(thick solid) components of the DCS.(b) The first and sec-

ond nearside and the first farside components of the LCFond f̃nswd
(solid) and the direct partf̃optswd (dashed) for the same model(ig-
noring diffraction effects of the potential well). (c) Coherent sum of

f̃optswd andond f̃0swd.
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Ssld = −
Hl

28skRdJlsk1Rd − NHl
2skRdJlsk1Rd

Hl
18skRdJlsk1Rd − NHl

1skRdJlsk1Rd
, N ; k1/k

s33d

(k;s2mEd1/2,k1;f2msE−V0dg1/2, and Jlszd is the Bessel
function of the first kind[23]) has a number of resonance
Regge poles. The poles arise from the zeroes of the denomi-
nator of Eq.(33) and are usually divided into narrow and
broad resonances[20,24] which exist below and above the
centrifugal barrier, respectively. The poles of the third kind
are associated with diffraction(surface waves) on the outer
edge of the potential well[24]. We can therefore proceed
with the analysis of rainbow scattering as in Sec. IV, allow-
ing for several, rather than just one, LCF terms in Eq.(20).
The pole/zero structure for a potential wellkR=39 andN
=1.33 (equal to the refraction index of water[24]) obtained
with the help off31/31g Padé approximant is shown in Fig.
7(a). Figure 7(a) shows a total of 19 broad and narrow reso-
nances located just above the reall axis and two of the
diffraction poles nearl<39. The rest of the available poles
form a boundary broadly similar to the one discussed in Sec.
IV. The broad resonances strongly affect the derivative of the
phase of theS-matrix element as shown in Fig. 7(b)
(dashed). The derivative of the potential phase in Eq.(11)
obtained after separating the 19 pole terms is shown in Fig.
7(b) by a solid line. The deflection function is similar to that
for a hard impenetrable sphere of the same radius, also

shown in Fig. 7(b) for comparison(dot-dashed). This illus-
trates the mixed nature of our CAM representation: the op-

tical term f̃ optswd describes nearside trajectories scattered off
the edge of the potential in the inset of Fig. 7(a). The effect
of those trajectories which penetrate the potential well is de-
scribed in terms of capture in decaying Regge states. In this
language, the farside and remaining nearside regions are ac-
cessible via resonance pathways only. A coherent sum of 19

resonance terms,on=0
18 d f̃ sndswd is shown in Fig. 6(b) (solid).

The resonance part of the unfolded amplitude has a struc-
tured nearside component and a large forward scattering
peak in the first nearside region. It is followed by clearly
resolved oscillations of the primary rainbow structure
swr

prim<322°d which extend into the second nearside region.
These are, in turn, followed by a weaker secondary Airy
structureswr

sec<322°d. Thus, in terms of Regge representa-
tion Eq. (20), emergence of the rainbow structures in the
unfolded amplitude and the DCS is an interference effect
involving exponential angular decay of many Regge states
supported by the effective potential. This is somewhat simi-
lar to the “weak” measurement effect well known in quan-
tum measurement theory. When applied to measure a vari-
able with a spectrumAn, a weak von Neumann meter with a
broad initial stateGsfd can produce a reading well away
from the regionJ containing allAi [25,26], because a coher-
ent sum ofGsf −And peaked aroundAi may peak outsideJ.

Similarly, a coherent sum ofd f̃ nswd each centered atwres
n ,p

produces the primary rainbow peak in the first nearside re-
gion p,w,2p, as well as the secondary rainbow structure
in the second nearside region, etc. As shown in Fig. 6(c),
destructive interference between thef̃ opt and the resonance

terms reduces the first nearside components off̃. The semi-

classical DCS obtained by foldingf̃swd [Fig. 6(a), dashed] is
in fair agreement with the exact DCS(thin solid). Some dis-
crepancy occurs at largeu due to the fact that our description
of resonance scattering becomes inaccurate for poles with
small wres. We note that an equivalent semiclassical descrip-
tion in terms of classical paths can be obtained if we replace
in Eq. (9) Ssld by its Debye expansion[24] and evaluate the
integrals with the help of the stationary phase approximation.
However, if the analytic form of theS-matrix element is
unknown, a CAM analysis could be the only option
available.

VII. REACTIVE THRESHOLDS AND THE
THRESHOLD-INDUCED GLORY

The threshold model analyzed in this section has recently
been discussed in connection with the enhanced small angle
scattering and time delay observed in the benchmarkH
+D2→HD+D reaction and its isotopomers[6,27]. The clas-
sical explanation of these effects is as follows[27]. If the
energy of the reactants is close to the adiabatic barrier top,
the motion along the reaction coordinate is slowed down
giving the collision partners time to rotate towards smaller
scattering angles. This behavior can be mimicked in a model
consisting of an Eckart barrier[15]

FIG. 7. (a) Poles(circles) and zeroes(crosses) obtained by Padé
reconstruction for the rainbow withkR=39 andN=1.33. Poles cor-
responding to the narrow(inset, solid) and broad(inset, dashed)
resonances are indicated. Inset: schematic diagram showing the
metastable states in a combination of the rectangular well and cen-
trifugal potentials;(b) derivative of the phase of the sameS-matrix
element(solid) and the smooth deflection function(dashed). Also
shown for comparison(dot-dashed) is the derivative for the matrix
element for a hard sphere of the same radius.
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Vssd = W0/cosh2ss/s0d,

wheres is the reaction coordinate. The centrifugal potential
is chosen to be nearly constant in the vicinity of the barrier
top, adding to the potential a constant termBsl2−1/4d,
whereB is the rotational constant. Thus theS-matrix element
is given by the product of the barrier transmission amplitude
T [28] and an additional potential phasef, which, as dis-
cussed in Sec. V, can be chosen quadratic inl,

SsE,ld = C expsiFdTsE,ld, s34d

TsE,ld ;
Gs− ik + iq + 1/2dGs− ik − iq + 1/2d

Gs− ikdGs1 − ikd
, s35d

Fsld = al2 + bl, a , 0, s36d

where

ksld2 = e−1fE − Bsl2 − 1/4dg, s37d

q ; sW0/e − 1/4d1/2, s38d

e ; "2/2ms0
2, s39d

m is the reduced mass,Gszd is the Gamma function[23], and
C is an arbitrary constant.

Defined in this way,SsE,ld has simple analytical proper-
ties. Its complex energy poles are well studied(see, for ex-
ample, Refs.[29] and [30]). For J=0, SJ=0sEd is single val-
ued in the complexE plane cut along the positive real axis.
On the second Riemann sheet, the polesEn

J=0,n=0,1,2. . . of
Gs−ik+ iq+1/2d given by

En
J=0/e = fq − isn + 1/2dg2, n = 0,1,2. . . s40d

correspond to the quasistationary states near the barrier top.
These poles form an infinite sequence along the parabola
E1=q2−E2

2/4q2,E/e=E1+ iE2, which approaches the real
axis atE<W0−e /4. For a broad barrier,W0/e@1, the first
few poles lie along the line perpendicular to the real axis,
and retaining the leading terms in Eq.(40) yields [29,30]

En
J=0 < W0 − 2ie1/2W0

1/2sn + 1/2d, n = 0,1,2 . . . . s41d

Equations(34) and(37) also show that for a givenE, SsE,ld
is analytic in the complexl plane cut from ±lmax, where
initial translational energy of the system vanishes,k2slmaxd
=0,

lmax; fB−1E + 1/4g1/2. s42d

The first and the second Gamma functions in the numerator
of Eq. (34) contribute poles in the first and third quadrants of
the first Riemann sheet, and the second and fourth quadrants
of the second sheet, respectively. Regge poles in the first
quadrant of the first Riemann sheet, which affect the DCS
most, are found with the help of theJ-shifting condition

E − Bsln
2 − 1/4d = En

J=0, n = 0,1,2 . . . , s43d

with En
J=0 given by Eq.(40). The poles form an infinite string

along the linel1
2−l2

2−Bsl1l2d2/q2=sE−q2d /B+1/4; l=l1

+ il2. The line starts at the right angle nearl<lB,

lB ; fB−1sE − W0d + 1/4g1/2, s44d

where initial translational energy equals the barrier height,
k2slBd=W0/e. It then bends to the right and eventually runs
parallel to the real axis atl2=q/B1/2. For a broad barrier, one
has[19]

ln < lB + isn + 1/2d/u0, s45d

where

u0 ; s2md1/2Bs0lB/"W0
1/2. s46d

Finally, asE increases from zero, thenth poleln follows the
Regge trajectory[18] l2=eqsn+1/2d /Bl1.

Consider next the angular distribution for theJ-shifted
Eckart model just described. It can be obtained with the help
of Eq. (2) where the sum over partial waves is restricted to
the open channels,k2sld.0. For our semiclassical treatment
we shall requirelmax@1, lB@1 andlmax−lB@1. The DCS
for the model specified by the parameterssC=0.03d

lB = 25 lmax= 43, u0 = 0.25, a = − p/60, and b = p

s47d

is shown in Fig. 8(a). For smallu, it exhibits a pronounced
oscillatory structure associated, as discussed above, with the
time delay experienced by the partial waves withl<lB near
the barrier top. Our aim is to relate this structure to the
Regge poles Eq.(43).

As before, we will assume that the numerical values of
the S-matrix element are available for a number of physical
angular momenta sufficient to converge the PWS Eq.(2).
Thus for the model(47) we use the first 35 partial waves to
construct a f17/17g Padé approximant. The resulting
pole /zero structure with the first four poles of the barrier
sequence(closed circles) reproduced correctly and a charac-
teristic “border” defining the region of validity is shown in
Fig. 9(a). The derivative of the phase of theS-matrix element
(dashed) and the smooth deflection function(solid) obtained
after removal of the three leading poles,sNres=2d, are shown
in Fig. 6(b).

We note first that the combined effect of the poles forces
hArgSsldjl below the real axis at the glory angular momen-
tum, lgl<24, and it remains negative thereafter. This behav-
ior is indicative of a glory effect[15,28,31], and for suffi-
ciently small angles we may use the glory approximation for
the DCS[19,28],

sglsud = 2/psuClluki
2d−1lgl

2 uSsE,lgldu2uJ0slgludu2, s48d

where Cll is the second derivative of the phaseC
;ArgSsld. For the Eckart model Eq.(47) a numerical evalu-
ation giveslgl=23.7;uCllu=0.028;uSsE,lgldu=0.26, and the
corresponding glory DCS plotted in Fig. 8(a) by a dashed
line is in good agreement with the exact one in the small
angle region.

This glory effect is clearly induced by the barrier thresh-
old and can equivalently be described in terms of capture in
a number of barrier Regge states. Proceeding as in Secs. II

and III, we obtain the optical part,f̃ opt and the first three
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LCF’s, d f̃ n, n=0,1,2 for theunfolded amplitudef̃swd which

are shown in Fig. 8(b). The optical partf̃ optswd is contained
within the first nearside region. The LCF’s, describing the
capture in the first three Regge states associated with the
barrier top, rapidly decrease in magnitude asn increases.
Although their angular lives are short, they havewres

n close to
180° and extend into the first farside region. The coherent
sum of all four terms in Fig. 8(c) is smooth and contains
considerable first nearside and farside components. Thus the
small angle oscillations in Fig. 8 have a nearside-farside ori-
gin and can be seen to result from the barrier top resonance.
We note that the short angular lives of the barrier Regge

states prevent us from relatingf̃ opt to a particular class of
classical trajectories, the way it has been done in Secs. IV
and VI. Nevertheless, the CAM analysis, in its general form,
successfully describes the glory effects in reactive collisions
[15].

VIII. DISCUSSION AND CONCLUSIONS

In summary, we have found that the semiclassical CAM
approach outlined in Secs. II and III provides a convenient
procedure for analyzing angular scattering by a range of po-

tentials possessing one or several significant Regge poles. In

doing so, it decomposes the scattering amplitudef̃ into (usu-

ally nearside) “direct” component f̃ opt and the correction

term d f̃ associated with the poles which are not correctly
described by the primitive semiclassical approximation. The
correction term can extend beyond the first nearside region
and is often responsible for nearside-farside oscillatory pat-
tern observed in the DCS’s. The meaning of the two terms
and, in particular, their relation to the classical trajectories
varies with the model analyzed. Thus for the single reso-
nance case in Secs. IV and V the optical part comprises all
trajectories reflected by the outer sphere and is consistent
with the result one would obtain in a classical trajectories
simulation. The LCF term, on the other hand, contains ef-
fects of tunneling and cannot be described in terms of clas-
sical trajectories. This changes when one considers the opti-
cal rainbow of Sec. V. There the optical part contains only
the trajectories reflected by the edge of the potential well and
are similar to those scattered off an impenetrable sphere. The
correction term, on the other hand, contains contributions
which can equivalently be described in terms of paths pen-
etrating the interior of the well. A different semiclassical rep-
resentation, e.g., based on the Debye expansion[24], could
help redefine it in terms of such paths rather than resonances.

The relation betweenf̃ opt and the classical paths becomes
even more vague for the threshold model of Sec. VII. Nev-
ertheless, in this case, the LCF retains its meaning of a cor-
rection arising from, however short, capture in the barrier
states. It is therefore broadly consistent with the picture of
reactants rotating further while being detained near the bar-
rier top. Spectacular enhancement of small angle scattering is

FIG. 8. DCS’s for the Eckart threshold model with parameters
given in Eq. (47). (a) exact (thick solid), obtained by CAM ap-
proach(dashed) and the glory approximation Eq.(48) (thin solid).
(b) The first nearside and farside components of the LCF

d f̃nswd ,n=0,1,2 and thedirect componentf̃optswd for the above

model; (c) coherent sum off̃optswd andon=0
2 d f̃0swd.

FIG. 9. (a) Poles(circles) and zeroes(crosses) obtained by Padé
reconstruction for the Eckart threshold model with parameters given
by Eq.(47). Also shown(joined closed circles) are the exact barrier
poles. (b) Derivative of the phase of the sameS-matrix element
(solid) and the smooth deflection function(dashed).
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due to the fact that since the captures occur for large impact
parameters, the reactants do not have to rotate far to enter the
first farside region and cause nearside-farside oscillations. In
this region, the combined effect of the barrier poles can al-
ternatively be described as a threshold-induced glory. In
short, the present CAM approach is seen as complimentary
to other, sometimes more straightforward, techniques devel-
oped to describe semiclassical angular scattering. It should
be noted, however, that in a situation where a realistic
S-matrix element has been evaluated numerically, the CAM
method may be the only practical tool for such an analysis.

We conclude with a few remarks about the Padé recon-
struction. As discussed in Ref.[12], the poles of a Padé ap-
proximant fall into three categories: the true poles of the
S-matrix element, those forming the Froissart doublets, and
the background poles. The Froissart doublets mimic rapid
noiselike variation ofSsld on the real axis and usually lie
close to the axis. Their number increases with the amount of
nonanalytical noise contained in the input values ofSsld. It
is the behavior of the background poles that we found most
interesting. For low levels of noise(high accuracy data) they
form a well-defined border around the subset of the complex
plane where the Padé approximant reproducesSsld and
therefore its true poles correctly. Beyond the boundary, the
approximant fails. The role of the finite number of border
poles is to imitate the effect of an infinite number of true(in
our case, diffraction) poles within a finite region of the com-
plex plane. The border poles are unstable with respect to a
change in the input data or the level of noise. In particular,
adding a larger amount of nonanalytical noise to the input
causes the border to shrink(Fig. 3). The fact that the border
poles are nonphysical does not restrict the validity of the
CAM representation Eq.(20) as long as only the true physi-
cal poles are included into the LCF terms. Indeed, in this

case, the border poles contribute to only the direct partf̃ opt

which itself is computed by applying the stationary phase
method on the reall axis and does not rely on any reference

to the pole positions. It can, however, happen[15] that the
accuracy of the input data is such that the approximant fails
to reproduce some of the true poles(in the case of Ref.[15],
threshold poles withn.0) whose LCF’s are needed in order
to reproduce the DCS to a sufficient accuracy. If so, several
background polesln may occur close to a physical pole and

their correctionsd f̃ n can be included in Eq.(20). It has been
shown [15] that even though some of the individual terms

d f̃ n would be wrong, their coherent sumond f̃ n is correct. In
this case, the method describes the combined effect of all
poles without resolving individual Regge states. Since the
quality of the scattering data obtained in numerical simula-
tions of realistic systems is usually not very high(an error of
<5–10%), it seems reasonable to depart from the usual
practice of trying to compute individual Regge pole and resi-
dues to a very high accuracy[18], and to concentrate instead
on the general shape of pole/zero configurations and evalua-
tion of the corresponding semiclassical asymptotes to the
scattering amplitude. To this end, we found it sufficient to
use in our calculations the normal machine, rather than mul-
tiple precision, suggested in Ref.[12]. Also, the elaborate
preconditioning procedure described in Sec. II of Ref.[16]
appears, in most cases, unnecessary and a simple removal of
a part of the potential phase as described by Eq.(23) can be
used instead. A more detailed study of the use of the Padé
approximation for analytical continuation ofS-matrix ele-
ments will be given in our future work.
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