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A semiclassical complex angular momentum theory, used to analyze atom-diatom reactive angular distribu-
tions, is applied to several well-known potentiahe-particlg¢ problems. Examples include resonance scatter-
ing, rainbow scattering, and the Eckart threshold model. Padé reconstruction of the corresponding matrix
elements from the values at physi¢aitegra) angular momenta and properties of the Padé approximants are
discussed in detail.
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[. INTRODUCTION applied to a model designed to mimic a reactive scattering
system. A generic type of angular distributions encountered
Following Ref.[1], there has been renewed interest in thein atom-diatom reactions as well as the success of the qua-
semiclassical description of reactive systems consisting ofiratic approximation for the potential pha$@] are ex-
three or more atomg2—4]. Although it is difficult to obtain  plained. In Sec. VI the theory is applied to the rainbow scat-
accurate atom-diator§-matrix elements using semiclassical tering off a rectangular potential well with a refraction index
techniques, am posteriorisemiclassical analysis is possible close to that of water. Section VIl analyzes the Eckart thresh-
once theS matrix has been computed, e.g., in coupled-old model recently used to explain time-delayed forward
channel5] or time-depender6] calculations. In this vein, a scattering in thed+D,— HD+D reaction[15]. Section VIII
semiclassical complex angular momenty@AM) method  contains our conclusions and discussion.
for analyzing reactive differential cross sectiqbsCS’s) has
been developed and applied to a wide range of atom-diatom
systems in Refd7—15. In the CAM approach, the scattering !l SEMICLASSICAL UNFOLDING OF THE SCATTERING
amplitude is decomposed into subamplitudes describing cap- AMPLITUDE
ture into a number of Regge states and the remnant “optical”
term, often containing contributions from direct reactive tra-
{Eggﬁj)‘/tlg? ;;]rqoeptyztr)t?egeg:Iz;gsmt:t?i;efglfmt:r?t,kgr?(\jNIree?i?az 0giatom coI_Iisions.. For a particlg scattered by a central field
on the Padé reconstructidi6] in the CAM plane. Some V(r), the differential cross sectioCS) o(6),
aspects of the Padé reconstruction have been discussed in
Ref. [12]. The success, or otherwise, of such semiclassical
analysis depends on the c_omplexny of th_e scattering syster(rgan be obtained from the partial wave SURWS for the
and the accuracy with which the scattering data have beenCatterin amplitudé(6)
computed. It is desirable, for this reason, to test the method g amp '
on a number of well-studied benchmark cases, as will be o
done below. Further information about the application of the — o1 _
CAM approach to potential scattering can be found in Refs. f(6)=(2ik) JE::’)(ZJ +DPfcog ]S’ - D), @
[17] and [18]. The purpose of this paper is thus threefold:

first, to give clear illustrations for the use of the CAM ap- wherek, J, 6, Pj{cog6)], and S’ are the wave vector, the
proach employed in Ref$9-1. Second, to investigate the angular momentum quantum number, the scattering angle, a
properties of the Padé method for the cases when analyticfbgendre polynomial of degrek and the scattering matrix
properties of thes matrix are known in advance. And, third, glement, respectively. For largé and 10<9<wz—-1/J,

of well-studied scattering phenomena, such as rainbows angymponentg18,19

forward glories. The rest of the paper is organized as follows:

The theory of this section closely follows a similar ap-
roach developed in Reff9—11 and[14] for reactive atom-

a(6) = f(9)?, 1)

in Sec. Il we briefly outline our CAM approach for central P.~ P+ p-
; : . : ; y=Pj+Pj, 3
scattering problems. Section Il describes semiclassical
evaluation of the “unfolded” scattering amplitude. In Sec. IV
the theory is applied to a single scattering resonance and the Pj = [1/27\ sin(6)]Y%exp£i(\ 6 — m/4)]. (4)

analytical properties of the corresponding Padé approximant
are studied in some detail. In Sec. V, the CAM approach iAs usual, in the semiclassical analygl®] we can use
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* be evaluated by the stationary phase method, provided the
> (J+1/2)Py(cos ) = 8(1 - cosh), (5)  phase shiftd(\),
J=0

S(E,N) =exdis(EN)], N=J+1/2, (10

to replace in Eq(2) -1 by S for any 6+ 0. Inserting Eq.

(3) into Eq. (2) and applying the Poisson sum formula is @ slowly varying function of\, |S(E,\+1)-&E,N)[<1.

[19,20 we obtain a representation for the scattering ampliFor a given energiz (we will omit the energy dependence of

tudg19,9 [S'=S(J+1/2)] S), S(\) may have polea,, n=0,1,2... in thdirst quadrant
of the complexi plane. In the single-channel case consid-

i e ered here, any such pole is complemented by a complex
— 1/2 _ * . .
f(6) = (1/ik)(27 sin 6) E_m " conjugate zeroy, [21], so that a pole-zero pair contributes to
™ S(\) a term In[()\—)\;)/()\—)\n)]. For a resonance pole lo-
Xf INL2S(\ ) {exefiA (0 + 2m) - i /] cz_ited close to 'Fhe real aX|s_, this _contrlbutlon rapidly \_/a_rles
0 with N and, to find the semiclassical asymptote ffiap), it is
convenient to write
+exd—iN(6-2mm) +in/4]}, (6) "
valid for a semiclassical collision dominated by large angular sn =11 Mexr{i s, (11)
momenta excluding small vicinities of the forwafd=0) n=o (\ = Ap)

and backward 6=1r) scattering angles. Now it is convenient

to rewrite Eq.(6) in an equivalent form where¢()\) is the slowly varying “potential” phase anidjqg

is the number of resonance poles. Equivalergy,) can be

< written as a sum of pole terms,
f(6) = (ik) 27 sin(0) ]2 D, f(emexp(—imld —immi2),

Nres
m=-o Pn .
s =2 explig(\)]. (12
™ 2 - Y
where with the quantitiesp, given by
0) = (- )™+ alm+ 1/2 +(- )2], A=A
(Pm( )=(-1) 77[ -1 ] p = 2 Im AnH E)\n - ; . (13)
m=----1,0,1 ®) e
and The expression, E@6), for f(¢) thereby reduces to a sum of
oscillatory integrals of the form
] = ; 1/2, — == A
2 fo SXHINGISIATN,  —2 =g == (9) —(Ag( ; Jexian + ieldh, (14)
~An

It can now be seefB] that ¢ can be interpreted as the angle whereg(\) =\"2is a slowly varying function away from the

by Whichfthe”pqsition Ve%toL ofdt'he particlfe rr10tates iln the origin, the denominator has a pole in the first quadrant of the
course of collision around the direction of the angular MO-complex A plane, and expp(M)] oscillates rapidly.

_mentum,gom give all values O.f‘P con5|s_tent with the scatter- Asymptotic approximations for such integrals are well
ing angle, and the scattering anlplltude can be found byknown (see, for example, Ref22]) and are discussed in
summing (with appropriate phasgs(¢) over all ¢ The  detail in Appendix B of Ref[8]. Typically, they contain three
summation can be seen as “foldinff’) into a finite interval ~ contributions[see Eq.(B15) of Ref. [8]], and combining
[0,7] and we refer tof as an “unfolded” scattering ampli- those cgrrespohdlng to thg statlonary_ point resu~lts for the
tude. Semiclassicallyf rotates in the positive direction €xpression(14) yields the direct, or “optical,” part of(¢),
around the angular momentum vectbiand we expect the _ 2 1/2Nres = \1)

m= 0 terms to dominate the sum in E@). Among these we foPY(p) = >n

will distinguish thenearsideterms withm=0,2,4... andar- ~EaS) ) nmo (As=An)
sideterms withm=1,3,5...,respectively. Finally, noLe that xexpli p(\g) +iNep — i /4], (15)
the geometrical factafsin 6)/? has been removed frofite)
for convenience.

where the classical value af corresponding to the rotation
angleg is given by the stationary phase condition

H)=-¢ (16)

- and a subscrigs) N denotés) differentiation with respect to
The unfolded amplitudé(¢) contains contributions from \. Equation(15) implies that a single trajectory leads to a
various direct and resonance processes which determine tigéven anglep and yields the primitive semiclassical approxi-
shape of the DCS, Eql), and we will briefly discuss its mation to the unfolded amplitude. Note that it differs, in
properties next. In the semiclassical limit, the integflcan  general, from the usual Ford-Wheeler regaB] in that only

IIl. UNFOLDED SCATTERING AMPLITUDE
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FIG. 1. Schematic diagram showing particles with wave vector g
k scattered off a penetrable layer surrounding a hard-sphere poten- 360

tial. Most trajectories bounce off the outer lay@min solid), while

the particle with the impact parameter closebgocan penetrate the ‘P(deg)

barrier and continue propagating around the hard core as it decays o .

into the outer regiorithick solid). One direct(1) and two resonant FIG. 2. (a) DCS for the model in Fig. 1 wittkR' =20, kd=3.5,
(2, 3) pathways lead to the same scattering arglnset: relation ~ and (R’=3: exact(solid) and obtained by the CAM approach

between the scattering angeand the rotation angle. (dashegl Also shown for comparison is the DQ8ot-dashey for
an impenetrable sphere with a radius equal to that of the outer

potential layer{b) first nearside and farside components of the LCF

5~f°(<p) for the above modeli) the direct componer?Ppt(cp) for the
above mode{ignoring the diffraction effects of the outer laygefd)

coherent sum of°P{(¢) and 51%(¢).

the smooth part of the phasg¢(\), rather than the full phase
shift 8(\) is used to determinks. The two expressions agree,

however, in the absence of resonance pOis=0).
For a resonance pole ®r{, we combine the two remaining
terms in Eq.(B.15) of Ref.[8] into a correction term‘ff“(qo), ~
ot"(p) = 2mp exrip(\y) JexpligReN, — ¢ Im \).

5"(@) = —imperfa(u,)exdid(hy) +iNne] (19
+ 7 2pauntexdip(Ng) +iksp], (17) It is seen therefore tha#f" describes exponential angular
decay of a resonance Regge state which is formed\for
where ~Re\,, i.e., the metastable state of a particle rotating in the
B 2 positive direction around the direction of the total angular
Un =[d(Ag) = d(Ap) + (As= N ] (18) momentum(see Refs[9,10], and the discussion in Sec. IV

) below). For a pole with a shorter angular lifAep, Ag

and erfdz) = 27 V/%fexp(~t?)dt is the complementary error —1 /(2imx.), the LCF may have no pronounced exponential
function [23]. The lifetime correction function(LCF), il hut would still describe the effect of capture in the cor-
o6f"(¢), has a simple physical meaning. Consider a repulsiveesponding Regge stafd5]. Finally, if several resonance
collision such that\y(¢) increases withe, i.e., the higher poles are present, the unfolded amplitude is a coherent sum
angular momenta correspond to smaller scattering angles, of the optical and severaN,.¢ correction terms,

=m7—¢. Let

Nres

~ fopt n
oe= o(REN) flo) =T7e) + 2 3o, (20)
be the angle corresponding to the direct trajectory with thepo|ding” f into the interval 0¢< = as in Eq.(7) allows us
angular momentum equal to real part of #fitt Regge pole tg relate the structure observed in the angular distributions to
position. Then fory < ¢yes [Cf. Es.(B16) and(B17) of Ref.  interference between various resonance and direct pathways
[8]] Sf" vanishes, while forp> ¢ it reduces to a single leading to the scattering anglé Next we apply this ap-
exponential ternmjcf. Eq. (B18) of Ref. [7]] proach to an isolated potential resonance.
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IV. SINGLE RESONANCE AND ITS PADE when it impacts on the outer shell, the energy of its radial
RECONSTRUCTION motion is close to that of a level in the well, may penetrate
We consider a simple model which provides an illustra-the barrier. It will then initiate a waveRegge statewhich
tion for the application of CAM method described above ascr€eps around the hard core while leaking into the outer re-
well as a benchmark case for the study of more complegion, Fig. 1, The angular distance traveled by the wdie
systems. This consists of a flux of particles with a waveangle or angular lifeA¢ depends on the transparency of the
vectork scattered off a hard-sphere potential of a radtus barrier determined by th&). As shown in Fig. 1, for
augmented by a thin semitransparent spherical layer of rad¢<2m and 6> ¢ there are three pathways leading to
diusR'=R+d, scattering intod: (i) directly off the outer potential lay&first
_ _ nearside diregt (ii) via capture in the Regge state and sub-
V(r) =, forr <RandV(r) = Q&R+d) for r > R, sequent decay at=m— 0 (first nearside resonangendy(iii )
where §(z) is the Diracé function of magnitud€). In the  via capture in the Regge state and subsequent decay at
semiclassical limitkR'>1, [note thatkR' is approximately ==+ 6 (first farside resonangeA resonance with a larger
the number of partial waves needed to converge the PWS ilifeangle could result in a larger number of resonance path-
Eqg. (2)] the scattering can be described as follows. For avays, and interference between them would determine the
large (), the potential well between the outer layer and theshape of the corresponding DCS.
hard core supports a number of energy levels. Most of the TheS-matrix element for the potential in E(R1) is easily
trajectories incident on th®(r) are reflected off the outer evaluated by requiring that the radial wave function vanish at
layer as if it were impenetrable. However, a particle with anr=R and has a discontinuity in the logarithmic derivative at
impact parameteb, (angular momentunkkb,) such that, r=R’,

4HZ(kR) + TQR[HX(KRH2(KR') — H2(kRH}(KR') JH2(kR')
4H}(KR) + TQR[HE(KRHA(KR') — H3(kRH}(KR') JHL(kR')

S(k,\) =~ . (21)

whereH!®(2) are the Hankel functions of the firssecong  cally, of orderQ™* so that it describes a metastable, rather
kind [23]. The exact DCS fokR =20, kd=3.5, andQR’  than a bound state.
=3 obtained by the partial wave summation upJto39 is Given the analytic form of th& matrix, it is a relatively
shown in Fig. 2a). In the middle of the angular range, it simple matter to calculate both the pole positions and the
shows a pronounced structure whose origin we seek to excorresponding residues. In numerical modeling of realistic
plain. We note first that for a pure hard-sphere potential thehemical reactions no simple analytic form is available for
DCS in this region has nearly constant value ®R'?/4  the Smatrix element and one has to rely on numerical ana-
=100 so that the pattern must be related to the presence ofigtic continuation of the scattering data computed for physi-
resonance. _ _ ) cal integer values oJ (half-integer values ok) [7]. In order
Consider the analytical properties 8f) in Eq. (21). For g study the properties and accuracy of such continuation, we

(=0 and () —, the matrix element reduces to that for a || construct for our model a diagon&k /K] Padé approx-
hard-sphere potential of the rafiandR+d, respectively. In ;1 [9,10,15,16,

the complex\ plane,S(\) has poles associated with the ze-

roes of the denominator in E¢R1). For Q large but finite, K (N-§&)
these fall into two categories: poles associated with an infi- sPadq\) =Cc][ —Lexdi®(\)] (22
nite number of zeroes df-li(kR’) which are slightly per- =1 (A=)

turbed_ by the. presence of theH%(kR) term, anq the pole using X +1 values ofSJ+1/2), J=0,1,2,...,K to deter-
associated with the zero of the expression in the square”. - o
bracket. The poles of the first kind are the diffraction polesmlne pole positions;, zero positions; and the cc‘)‘nstarﬁ: .
responsible for the diffraction effect in scattering off the [_12,1(3”. Note that n Eq(22)_ the daf[a h_ave been “precondi-
outer spherd20], and we will not discuss them further in tioned” by extracting a rapidly oscillating phade),

this work. The pole of the second kind is the resonance pole B(\) = — w2KO\ = 1/2)2 + 7(\ - 1/2) (23)

of interest responsible for trapping the penetrated wave be- ’

tween the outer and inner spheres. It is readily seen that iim order to improve accuracy of the Padé metlidg]. The

Eqg. (21) the expression in the square brackets is the value gboles and zeroes of the Padé approximant are, in general, not
the regular radial wave function atR’'=R+d and the con- the same as the true poles of tBenatrix in Eq.(11). How-
dition that it vanishes gives the position of a bound stateever, at least some of the true poles must be reproduced
which exists for() — . Due to the presence of the-lé(kR) correctly and we will use Eq22) to obtain their positions
term the corresponding pole acquires an imaginary part, typiand residues. Note also that the phdga) is different from
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FIG. 3. Poles(circles and zeroegcrossey obtained by Padé
reconstruction for the model in Fig. 1 witkR=20, kd=3.5, and
QR’=3: (a) with no extra noise(b) with extra noise of 0.1%(«
=0.00D; (c) with more noisg«=0.09. Also shown(joined closed
circleg are exact diffraction poles.

the potential phase(\) in Eq. (11), which can, however, be
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TABLE |. The resonance pole positiox, and the residue
=exdi¢(N\g)pg as function of the noise parameterfor the model
in Sec. IV withkR' =20, kd=3.5, andQR’=3.

kR’ a Rex Im\ Rerg Imrg

0.0 10.3924 0.5043 0.6262 0.2254
20 0.001 10.3884 0.5046 0.6289 0.2336
0.05 10.3920 0.5394 0.1416 0.0040

high-frequency noise of the modeled functiptg]) in the
vicinity of the real axis. Fow=0.05, i.e., the error of about
5% expected to be present in realistic reactive scattering cal-
culations, the border disintegrates into a loose collection of
spurious poles and zeroes with only the resonance and the
first diffraction poles reproduced with some accuracy. Impor-
tantly for our analysis, the resonance pole position and resi-
due given in Table | are not sensitive to low noise levels and
we can continue with the analysis of the DCS with either set
of data.

We choose, howevery=0 and obtain the parameters re-
quired in Eqs(15) and(17) from the Padé approximant Eq.
(22). Figure 4b) shows the deflection functiofsolid)

6(N) = 7= (o), (25)

which yields the direct scattering angle for an angular mo-
mentum\, as well as the derivative of the full phase of the
Smatrix element, ArgS(\)}, (dashegl While the former is
essentially that for a hard sphere of radRis the latter con-

easily calculated once the Padé approximant has been ob- 0 10 20 30 40

tained.

For the system Eq21) the pole /zero structure resulting

from such reconstruction f&tR' =20, kd=3.5, QOR’=3, and

K=19 is shown in Fig. 3. The Padé approximant has at its < [ A T
disposal 19 poles and one might expect it to correctly repro- ‘2 L
duce the resonance pole and the first 18 of the diffraction o

poles sequencf0,24 starting at\ =kR=20. Remarkably,
this is not what happens. As shown in Figaj3 only the
resonance pole with Rg=10.4+0.% and the first four of

1 T T T T T T (a)

0.5 h -

reactive

(b)

the diffraction poles are reproduced correctly. The 14 re-
maining poles, together with the complex zeroes, form an
oval “boundary,” beyond which the Padé approximation
fails. Its failure is obvious since the diffraction poles with
n>5 are absent, and can also be verified by ploti8iy)
along a given direction in the complex plane. The size of the
boundary is determined by the accuragy this case, the
machine accuragyto which the analytic functiorS(\) is
computed. This is further illustrated by adding to the input
valuesS(J+1/2) a random noise,

S(J+1/2) — S(I+ 1/2) + a[z,(J) +iz,(I)], (24)

Phase derivative

40

FIG. 4. (a) Real part of theS-matrix element(solid) for the

) ] model in Fig. 2 withkR' =20 kd=3.5, andQR’ =3. Also shown are
wherez; andz, are real random variables té_‘k'”g valges b_e'the real pari{dashegl and modulugsolid) of the “reactive” matrix
tween —-1/2 and 1/2. For the data contaminated with Nois@|ement obtained by Gaussian truncation @4); (b) derivative of
(«=0.001 the border shrinks, the number of correctly repro-the phase of the sanf@matrix elemenysolid), the smooth deflec-
duced diffraction poles reduces to two and more poles an¢lon function (dasheg, and the linear deflection function resulting
zeroes form Froissart doublefpole-zero pairs mimicking from quadratic approximation E@28) (dot-dashejifor the phase.
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tains a sharp dip associated with the resonance pole in Table d(\) =ar?+br+c, a<DO. (28
[. (It is this dip which prevents us from usingr ) N . .
—Arg{S(\)}, itself as a deflection functionVarious compo- The deflection function in Fig. () is almost linear for

ts of th folded litudk . in Fi A <10 and only shows some curvature for- 15 where re-
nents ot the unfolded ampli ud) are given in ~igs. @) activity is negligible. Approximation Eq28), widely used in
and Zc). Figure 2b) shows the formation, ap,.s~60°, and

; atom-diatom reactive scattering9—15, simplifies Egs.
subseql:]ent angularddecay of :]he creeﬁlng wa\qe tﬁppe}drl]) 5—(17) and now for the angular momentum leading to a
tween the outer and inner spheres. The angular life of the,ioion anales (scattering angle) we have
corresponding Regge state dsp=57°<s and there are glep ( g angle)
only the first nearside and farside resonance pathviiays As=(@+h)/2|a|=(7+b-60)/2]a, (29

beled 2 and 3 in Figs. 1 and(t8] leading to an angle h iableu in Eq.(18) b f the A dix of Ref
6> 17— ¢res Figure 2c) showsfoPY(¢) resulting from direct @ variableto In Eq. (18) becomesct. the Appendix of Ref.

scattering off the outer sphere and valid §o« 140°, beyond (&)

which the scattering amplitude is dominated by diffraction Uo = expli/4)|aY2(\g— \g), (30)

not accounted for in our analysis. A coherent sum of the -

direct optical and resonance components is plotted in Figand the LCF5f%(¢) is reduced to the difference between the
2(d). We therefore have the following explanation for the error function term and the primitive semiclassical approxi-
DCS in Fig. 2a). For 6> 7— ¢, it is dominated by direct mation for the corresponding pole term in Ed7),

scattering off the outer potential sphere, with small oscilla- _

tion arising from interference with the first nearside decay of 8f%(¢) = \X?p.{im exdid(\o) lerfd exp(— im/4)|a] (Ao

the resonance wave creeping around the inner hard core. For 12l 1-1/2 1 . .

40° < < - @,es~120° the slow oscillations of the DCS =M1 = 7@l s~ o) exili® () —im/4l},
result from interference between the nearside decay of the (31
creeping wave and the nearside scattering off the outer po- _
tential spherdcf. Fig. 2d)], while the small oscillations su- whered(A) = G(A) +A¢. . . .
perimposed on the structure are due to interference with far- V\{e ha\{e r”epeated the anal)_/5|s of_the pre_wous section for
side decay of the wave. F#<40° our model needs to be thg reactive” model Eq(26) with A)\_lo.’ @=0 (no extra
modified to include the Regge stat@sirface wavesassoci- noise, and other parameters chosen as in Sec. IV. Since the

ated with diffraction on the outer sphere. Outside this regionexponential cutoff function Eo[_27) has no poles, we_found
the full semiclassical result plotted in Fig(a® (dashedl re- the pole /zero structure very similar and the deflection func-

; tion identical to those shown in Fig.(13. The resonance
roduces the exact DCS to the graphical accuracy. AR . S g
produ X graph uracy contribution in Fig. %b) is also similar to that shown in Fig.

2(b), however, reduced in magnitudeote the difference in

V. REACTIVE SCATTERING RESONANCES AND THE scales of the two figur@sThe optical part in Fig. &) is
QUADRATIC APPROXIMATION FOR THE reduced by the cutoff and vanishes for-140°. A coherent
POTENTIAL PHASE sum of the two components, Fig(d follows the curve in

Fig. 5(¢) up to ¢=60°, shows an interference minimum at
~85°, and for larger angles coincides with the resonance
erm in Fig. §b). Accordingly, the DCS in Fig. &) has two
Sdistinct parts. Fo®<80°, only two resonance pathwagla-
beled 2 and 3 in Fig. bare available and the oscillatory
pattern observed in this region is due to nearside-farside in-
terference of resonance decay with itself. For110°, the
Sea)\) = T(\)S\). (26) shape of the DCS is determined by direct scattering off the
) _ outer potential with small oscillations superimposed on it
To simulate a resonance reaction, the fackgx) must be  gue to the farside decay of the Regge state. For
chosen so as to make the reaction probability rapidly degp°< #<110°, the DCS is very small because of destructive
crease for large angular momertbapact parameteyof the  interference between the nearside direct and resonance com-
collision partners, yet to retain a sufficient amplitude for cap-ponents, seen in Fig(&). Angular distributions of this type
ture in the resonance Regge state akRel0.4, have been obtained for the Cl+HGICIH+CI [7,8], I+HI
_ CN2/AN 2 —IH+I1 [16,14, and F+H— FH+H [11] reactive systems.
T(\) = exp(=A/ANY). @7 Our simple model also suggests an explanation for the suc-
Physically, the exponential cutoff E€R7) results in suppres- cess of the quadratic phase approximation applied to atom-
sion of direct scattering in the mid-angle range, as well agliatom reactive systeni9-15. It appears that for such sys-
quenching of the small angle diffraction effects associatedems the reaction probabilityP(\)=|S(\)[?, effectively
with large impact parameters. Mathematically, it means thatestricts the reactants angular momenta to the range where
we can replace the potential phag@\) by its Taylor expan- the deflection function can be considered lingand the
sion arounch =0 up to quadratic term@inear approximation phase quadratjcand suppresses higher impact parameters
is insufficient, as all angular momenta would be scatteredor which the deviation from the quadratic model may be
into a single angle) considerable.

As mentioned in the Introduction, the CAM approach has
been developed for applications in atom-diatom reaction
theory. We can modify the model of the previous section t
mimic reactive scattering if we multiply th&matrix ele-
ment Eq.(21) by the probability amplitude for reaction to
take place at a given total angular momentum,
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FIG. 6. (a) DCS’s for a rectangular potential well witkR=39
FIG. 5. The same as Fig. 2 but for a reactienatrix element  and refractive index equal to that of wat@t=1.33: exact(solid)

Eq. (26) with Gaussian truncatioA\=10. and obtained by the CAM approa¢tiashegl The rainbow region
starts atf~120°. Also shown are the nearsidéick dashegland
VI. SEVERAL RESONANCES: AN OPTICAL RAINBOW farside(thick solid) components of the DC$b) The first and sec-

) o ond nearside and the first farside components of the Egﬁ”(cp)
The CAM analysis can be applied in cases when a par-,

i i rfor )
ticular structure in an angular distribution results from inter-(SOHd) and the direct parf>"i(¢) (dashegifor the same modeiig
ference between decays of many, rather than just one, Reg%%t( 4S50
states. One such example is the rainbow effect observed i ¢) and2not(e).

scattering of particlegor electromagnetic waveswith a  section occupies the regiofi>120° where it contains sev-
wave vectork from a large(kR> 1) spherical potential well, eral narrowly spaced peaks. Replacing the Legendre polyno-
_ : mials in the PWS Eq(2) by their traveling-wave compo-
V(r) ==V for r <Rand 0 otherwise. (32) nents, P;(6) and P;(#), we decompose the DCS into the
The rainbow effect has been studied in great detail. For aearside(thick dashey and farside(thick solid) parts, re-
systematic analysis we refer the reader to R&®] and[24],  spectively. It is readily seen that the farside term contains the
and references therein. Tlpgimary rainbow[24] is usually first three oscillations of the Airy function, and that the high-
explained in terms of classical trajectorigays which pen-  frequency structure results from nearside-farside interference
etrate the interior of the potential and are scattered, after ongetween the two components. While the description of the
internal reflection, into the first farside zone. The dependenceainbow scattering in terms of classical paths is, without a
of the rotation anglep on the impact parametdr (angular  doubt, most natural, it requires the knowledge of the trajec-
momentum \) is such that, fore less that someg,,  tories as well as the phases associated with each of them. For
27 < ¢, < m, there exist two trajectories with different values a realistic atom-diatom system such information may not be
of b (\), while for ¢> ¢, no such trajectories can be found. available, although the value of ti&ematrix element can be
As a result, the corresponding DCS exhibits an Airy functioncomputed to high accuracy using, for example, a coupled
structure with the main Airy peak a#,~¢,—m and the channels method. It is useful therefore to develop a compli-
shadow(classically forbiddepregion atd< 6,. Thesecond- mentary approach to rainbowlike phenomena, based on
ary rainbow[24] has a similar explanation in terms of paths Regge poles rather than the classical paths.
experiencing two internal reflections from the potential edge For kR>1, the effective potential combining the rectan-
and ending up in the second nearside zone. gular well Eq.(32) with a centrifugal barrie \?>-1/4)/r?
The full DCS is shown in Fig. @) by the thin solid line.  [see the inset in Fig.(B)] supports a large number of meta-
For 6<90°, it contains a large forward scattering peak whichstable levels[20,24. Accordingly, the Smatrix element
we will not discuss further. The rainbow part of the cross(’ denotes differentiation with respect to the argument

noring diffraction effects of the potential wgl(c) Coherent sum of
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Re A shown in Fig. {b) for comparison(dot-dasheyd This illus-
trates the mixed nature of our CAM representation: the op-

. tical term~f°p‘(<p) describes nearside trajectories scattered off

- the edge of the potential in the inset of Figa) The effect

of those trajectories which penetrate the potential well is de-

ol r““g“” eee e e o es o x scribed in terms of capture in dgqaying Regge states. In this
* x Jigrrow o° language, the farside and remaining nearside regions are ac-

80l o ;,o‘de‘— cessible via resonance pathways only. A coherent sum of 19
i (@ resonance term&; 8 5fM(¢) is shown in Fig. @) (solid).
60 i | , L The resonance part of the unfolded amplitude has a struc-
Sy hard sphere = Droad tured nearside component and a large forward scattering
S e peak in the first nearside region. It is followed by clearly
| resolved oscillations of the primary rainbow structure
fa D (P"™M=~322° which extend into the second nearside region.
These are, in turn, followed by a weaker secondary Airy
. structure(¢; =~ 322°. Thus, in terms of Regge representa-
tion EqQ. (20), emergence of the rainbow structures in the
(b) unfolded amplitude and the DCS is an interference effect
0 20 20 60 involving exponential angular decay of many Regge states
A supported by the effective potential. This is somewhat simi-
lar to the “weak” measurement effect well known in quan-
FIG. 7. (a) Poles(circles and zeroegcrossepobtained by Padé  tym measurement theory. When applied to measure a vari-
reconstryction for the rain_bow with:39 anszl._33. Poles cor-  gple with a spectrun,,, a weak von Neumann meter with a
responding to the narrowinset, solig and broad(inset, dashed  proad initial stateG(f) can produce a reading well away
resonances are indicated. Inset: schematic diagram showing ”fFom the regiorE containing allA, [25,26, because a coher-

metastable states in a combination of the rectangular well and cen; o
. X o . nt sum ofG(f-A,) peaked around;, may peak outsidé&.
trifugal potentialsyb) derivative of the phase of the sarBematrix ( ) P & yp &

element(solid) and the smooth deflection functigdashegl Also  Similarly, a coherent sum aff"(¢) each centered o< T

shown for comparisordot-dashejlis the derivative for the matrix ~produces the primary rainbow peak in the first nearside re-

element for a hard sphere of the same radius. gion < o< 27, as well as the secondary rainbow structure
in the second nearside region, etc. As shown in F(g),6

H}Z\'(kR)Jx(klR) _ NHf(kR)JA(klR) destructive interference between tH#' and tDe resonance
SN =-—7 n » N=ky/k terms reduces the first nearside componentt @he semi-
Hi (KRJ,(kiR) = NHy (kRJL (kR) classical DCS obtained by foldirfge) [Fig. 6@a), dashedlis
(33)  in fair agreement with the exact DGghin solid). Some dis-

(k=(2mBY2,k, =[2m(E-Vy)]*2 and J,(2) is the Bessel crepancy occurs at largedue to the fact that our description
function of the first kind[23]) has a number of resonance of resonance scattering becomes inaccurate for poles with

Regge poles. The poles arise from the zeroes of the denom?—ma” ¢res We note that an equivalent semiclassical descrip-

nator of Eq.(33) and are usually divided into narrow and tion in terms of classical paths can be obtained if we replace

broad resonance20,24 which exist below and above the ™ Ed-(9) S(\) by its Debye expansiof24] and evaluate the
centrifugal barrier, respectively. The poles of the third kindintegrals with the help of the stationary phase approximation.
are associated with diffractiofsurface waveson the outer ~HOWeVer, if the analytic form of th&matrix element is
edge of the potential well24]. We can therefore proceed Unknown, a CAM analysis could be the only option
with the analysis of rainbow scattering as in Sec. IV, allow-2vailable.

ing for several, rather than just one, LCF terms in E2f).

The pole/zero structure fqr a.potential w&lR=39 an'dN VIl. REACTIVE THRESHOLDS AND THE

:_1.33(equal to the refractlo,n index pf waté24]) obta!ned_ THRESHOLD-INDUCED GLORY

with the help off31/31] Padé approximant is shown in Fig.

7(a). Figure 7a) shows a total of 19 broad and narrow reso- The threshold model analyzed in this section has recently
nances located just above the realaxis and two of the been discussed in connection with the enhanced small angle
diffraction poles neak = 39. The rest of the available poles scattering and time delay observed in the benchmtdrk
form a boundary broadly similar to the one discussed in SectD,—HD+D reaction and its isotopomef6,27]. The clas-

IV. The broad resonances strongly affect the derivative of theical explanation of these effects is as folloj2¥]. If the
phase of theSmatrix element as shown in Fig.(3)  energy of the reactants is close to the adiabatic barrier top,
(dashegl The derivative of the potential phase in E41) the motion along the reaction coordinate is slowed down
obtained after separating the 19 pole terms is shown in Figgiving the collision partners time to rotate towards smaller
7(b) by a solid line. The deflection function is similar to that scattering angles. This behavior can be mimicked in a model
for a hard impenetrable sphere of the same radius, alseonsisting of an Eckart barrig¢i5]

Phase derivative
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+i\,. The line starts at the right angle nees \g,

wheres is the reaction coordinate. The centrifugal potential \g = [BHE - Wp) + 1/4]", (44)

is chosen to be nearly constant in the vicinity of the barrie

top, adding to the potential a constant teB\?—1/4),
whereB is the rotational constant. Thus tBanatrix element

'where initial translational energy equals the barrier height,
k2(\g) =W/ €. It then bends to the right and eventually runs
arallel to the real axis at,=q/B2. For a broad barrier, one

is given by the product of the barrier transmission amplitudeﬁas[lg]

T [28] and an additional potential phagg which, as dis-
cussed in Sec. V, can be chosen quadratik,in

S(E,N) =C expli®) T(E,N), (34

I'(-ik+ig+1/2I'(-ik—iq+1/2)

TEN = I(- k)T (L - ik) - 9
d(\)=an?+bn, a<O0, (36)

where
k(\)?= € {E-B(\2-1/4)], (37)
q= (Wy/e—1/42, (39)
e=h22uss, (39

w is the reduced maskjz) is the Gamma functiof23], and
C is an arbitrary constant.

Defined in this wayS(E,\) has simple analytical proper-
ties. Its complex energy poles are well studisde, for ex-
ample, Refs[29] and[30]). For J=0, S=%E) is single val-
ued in the comple plane cut along the positive real axis.
On the second Riemann sheet, the p@¥s,n=0,1,2... of
I'(-ik+ig+1/2) given by

EX%=[q-i(n+ 12 n=0,12... (40

)\nz )\B+i(n+ 1/2)/00, (45)
where
0o = (21)?Bsohg/ W52, (46)

Finally, asE increases from zero, thrgh pole\,, follows the
Regge trajectory18] A,=eq(n+1/2)/B\;.

Consider next the angular distribution for tleshifted
Eckart model just described. It can be obtained with the help
of Eq. (2) where the sum over partial waves is restricted to
the open channel&?(\) > 0. For our semiclassical treatment
we shall requiré\ 5,21, A\g>1 and\ ..~ A\g>1. The DCS
for the model specified by the parameté@s=0.03

Me=25 Amax=43, 6,=0.25, a=-m/60, and b=
(47)

is shown in Fig. 8). For small#, it exhibits a pronounced
oscillatory structure associated, as discussed above, with the
time delay experienced by the partial waves witly A\g near

the barrier top. Our aim is to relate this structure to the
Regge poles Eq43).

As before, we will assume that the numerical values of
the Smatrix element are available for a number of physical
angular momenta sufficient to converge the PWS &9.
Thus for the mode{47) we use the first 35 partial waves to
construct a[17/17) Padé approximant. The resulting
pole /zero structure with the first four poles of the barrier

correspond to the quasistationary states near the barrier togequenceclosed circlesreproduced correctly and a charac-
These poles form an infinite sequence along the parabolgristic “border” defining the region of validity is shown in

E,=q?-E3/40? E/e=E,+iE,, which approaches the real
axis atE=Wy—e€/4. For a broad barriei\y/ e> 1, the first

Fig. 9a). The derivative of the phase of tisematrix element
(dashegland the smooth deflection functigsolid) obtained

few poles lie along the line perpendicular to the real axisafter removal of the three leading poléhl,..=2), are shown

and retaining the leading terms in E40) yields [29,3Q
E0~W,- 21’ W5 n+1/2), n=0,1,2.... (41)

Equationg34) and(37) also show that for a giveR, S(E,\)
is analytic in the complex plane cut from x,,,, where
initial translational energy of the system vanish€¥) .,
:0,

Amax= [B1E + 1/4]*/2, (42)

in Fig. &b).

We note first that the combined effect of the poles forces
{ArgS(\)}, below the real axis at the glory angular momen-
tum, Aq;=24, and it remains negative thereafter. This behav-
ior is indicative of a glory effec{15,28,31, and for suffi-
ciently small angles we may use the glory approximation for
the DCS[19,29,

a9(6) = 2/m(|W 5, [k)) NG IS(ENg)|Hdo(Ngi0)%,  (48)

The first and the second Gamma functions in the numeratovhere ¥,, is the second derivative of the phasg

of Eq. (34) contribute poles in the first and third quadrants of =ArgS(\). For the Eckart model Eq47) a numerical evalu-
the first Riemann sheet, and the second and fourth quadraragion givesky=23.7;¥,,|=0.028 |S(E, \y)|=0.26, and the

of the second sheet, respectively. Regge poles in the firgiorresponding glory DCS plotted in Fig(a88 by a dashed
guadrant of the first Riemann sheet, which affect the DCSine is in good agreement with the exact one in the small

most, are found with the help of thkshifting condition
E-B\2-1/4=E° n=0,1,2..., (43)

with E2=° given by Eq.(40). The poles form an infinite string
along the lineN2—\3-B(\{\»)?/0?=(E-0?)/B+1/4; A=)\,

angle region.

This glory effect is clearly induced by the barrier thresh-
old and can equivalently be described in terms of capture in
a number of barrier Regge states. Proceeding as in Secs. |l

and Ill, we obtain the optical parﬁﬁz,Opt and the first three

032710-9



D. SOKOLOVSKI AND A. Z. MSEZANE PHYSICAL REVIEW A70, 032710(2004)

6 (deg)
0 60 120 180
T I T I T
a)
P
T =
< E
CAM
>
o . - . <
1™ 1st nearside .-~ 3 1st farside ]
z:— . ’ ] b) g
= \ resonance <
- =0 . 5
% direct e ';:;
= V¥ n=2 a3
£
a
0 = ? -
1+ C) ||||||l||||||||||l||||||||;‘1-1‘7'|"l“
— resonance + 7 0 10 20 30
= irp
,‘Q direct A
[\
<+t [ 7 FIG. 9. (a) Poles(circley and zeroegcrossegobtained by Padé
Q' . . .
T— reconstruction for the Eckart threshold model with parameters given
by Eq.(47). Also shown(joined closed circlesare the exact barrier
00 — 180 360 poles. (b) Derivative of the phase of the sang&matrix element

(solid) and the smooth deflection functigdashegl
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FIG. 8. DCS’s for the Eckart threshold model with parameterstentlals possessing one or several Slgnlflcant~Regge poles. In

given in Eq.(47). (a) exact(thick solid), obtained by CAM ap- ~ d0ing so, it decomposes the scattering amplitfieo (usu-
proach(dashegl and the glory approximation E@48) (thin solid). ally nearsidg “direct” componentf°Pt and the correction

(b) The first nearside and farside components of the LCFerm 5f associated with the poles which are not correctly

&f"(¢),n=0,1,2 and thedirect component°?{(¢) for the above  described by the primitive semiclassical approximation. The

model; (c) coherent sum of°P{ ) andzﬁzoﬁfo(cp). correction term can extend beyond the first nearside region
and is often responsible for nearside-farside oscillatory pat-

LCF's, 8", n=0,1,2 for theunfolded amplitudd(¢) which €™M observed in the DCS's. The meaning of the two terms
and, in particular, their relation to the classical trajectories

are shown in Fig. @). The optical parf°®{(¢) is contained yaries with the model analyzed. Thus for the single reso-
within the first nearside region. The LCF’s, describing thenance case in Secs. IV and V the optical part comprises all
capture in the first three Regge states associated with theajectories reflected by the outer sphere and is consistent
barrier top, rapidly decrease in magnitude rasncreases. wjth the result one would obtain in a classical trajectories
Although their angular lives are short, they hapg, close to  simulation. The LCF term, on the other hand, contains ef-
180° and extend into the first farside region. The coherenfects of tunneling and cannot be described in terms of clas-
sum of all four terms in Fig. @) is smooth and contains sjcal trajectories. This changes when one considers the opti-
considerable first nearside and farside components. Thus th@| rainbow of Sec. V. There the optical part contains only
small angle oscillations in Fig. 8 have a nearside-farside orithe trajectories reflected by the edge of the potential well and
gin and can be seen to result from the barrier top resonancgre similar to those scattered off an impenetrable sphere. The
We note that the short angular lives of the barrier Reggeorrection term, on the other hand, contains contributions
states prevent us from relatinf§P to a particular class of which can equivalently be described in terms of paths pen-
classical trajectories, the way it has been done in Secs. I\¥trating the interior of the well. A different semiclassical rep-
and VI. Nevertheless, the CAM analysis, in its general formresentation, e.g., based on the Debye expangdj could
successfully describes the glory effects in reactive collisiondielp redefine it in terms of such paths rather than resonances.

[13]. The relation betweeri°® and the classical paths becomes
even more vague for the threshold model of Sec. VII. Nev-
ertheless, in this case, the LCF retains its meaning of a cor-
rection arising from, however short, capture in the barrier
In summary, we have found that the semiclassical CAMstates. It is therefore broadly consistent with the picture of
approach outlined in Secs. Il and Il provides a convenienteactants rotating further while being detained near the bar-
procedure for analyzing angular scattering by a range of porier top. Spectacular enhancement of small angle scattering is

VIIl. DISCUSSION AND CONCLUSIONS
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due to the fact that since the captures occur for large impadb the pole positions. It can, however, hapgés] that the
parameters, the reactants do not have to rotate far to enter thecuracy of the input data is such that the approximant fails
first farside region and cause nearside-farside oscillations. Ito reproduce some of the true pol@s the case of Refl.15],

this region, the combined effect of the barrier poles can althreshold poles witm> 0) whose LCF’s are needed in order
ternatively be described as a threshold-induced glory. Ino reproduce the DCS to a sufficient accuracy. If so, several
short, the present CAM approach is seen as complimentanyackground polea, may occur close to a physical pole and

to other, sometimes more straightforward, techniques devel; eir correctionsSt™ can be included in Eq20). It has been

oped to describe semiclassical angular scattering. It shoul g
be noted, however, that in a situation where a realisticiown[l's] that even though some of the individual terms

Smatrix element has been evaluated numerically, the CAMSf" would be wrong, their coherent suliof" is correct. In
method may be the only practical tool for such an analysisthis case, the method describes the combined effect of all
We conclude with a few remarks about the Padé reconp0|es without rESOIVing individual Regge states. Since the
struction. As discussed in RgflL2], the poles of a Padé ap- quality of the scattering data obtained in numerical simula-
proximant fall into three categories: the true poles of thetions of realistic systems is usually not very higim error of
S-matrix element, those forming the Froissart doublets, and=5—10%, it seems reasonable to depart from the usual
the background poles. The Froissart doublets mimic rapidractice of trying to compute individual Regge pole and resi-
noiselike variation ofS(\) on the real axis and usually lie dues to a very high accura¢$8], and to concentrate instead
close to the axis. Their number increases with the amount d?n the general shape of pole/zero configurations and evalua-
nonanalytical noise contained in the input valuessof). It ~ tion of the corresponding semiclassical asymptotes to the
is the behavior of the background poles that we found mostcattering amplitude. To this end, we found it sufficient to
interesting. For low levels of noiséigh accuracy dajghey ~ Use in our qalculatlons the normal machine, rather than mul-
form a well-defined border around the subset of the compleXiPle precision, suggested in Rdfl2]. Also, the elaborate
plane where the Padé approximant reprodusés and precondltl_onlng procedure described in Sec. I of RéB)
therefore its true poles correctly. Beyond the boundary, th@PP€ars, in most cases, unnecessary and a simple removal of
approximant fails. The role of the finite number of border @ Part of the potential phase as described by(E§) can be
poles is to imitate the effect of an infinite number of tie ~ USed instead. A more detailed study of the use of the Pade
our case, diffractionpoles within a finite region of the com- @PProximation for analytical continuation @matrix ele-
plex plane. The border poles are unstable with respect to 21€Nnts will be given in our future work.
change in the input data or the level of noise. In particular,
adding a larger amount of nonanalytical noise to the input ACKNOWLEDGMENTS
causes the border to shriikig. 3). The fact that th.e_border One of us(D.S) gratefully acknowledges the support by
poles are nonphysmal does not restrict the validity of Fhf’che EPSRC(UK), Grant No. GR/S03799/01 and by the
CAM representation E¢20) as long as only the true physi- cTSPS, Clark Atlanta University, as well as the kind assis-
cal poles are included into the LCF terms. Indeed, in thisance of Professor Ray Flannery. Discussions with Dr. Daniel
case, the border poles contribute to only the direct f%t Bessis are appreciated. A.Z.M. was supported by the U.S.
which itself is computed by applying the stationary phaseDOE, Division of Chemical Sciences, Office of Basic Re-
method on the real axis and does not rely on any reference search.

[1] W. H. Miller, Adv. Chem. Phys.25, 69 (1974). [11] D. Sokolovski and J. F. Castillo, Phys. Chem. Chem. Plys.
[2] T. Yamamoto and W. H. Miller, J. Chem. Phy418 2335 507 (2000.
(2003. [12] D. Vrinceanu, A. Z. Msezane, D. Bessis, J. N. L. Connor, and
[3] Y. Zhao and W. H. Miller, J. Chem. Phy4.18 9605(2002. D. Sokolovski, Chem. Phys. LetB824, 311(2000.
[4] T. Yamamoto, H. Wang, and W. H. Miller, J. Chem. Ph{486, [13] F. J. Aoiz, L. Bafares, J. F. Castillo, and D. Sokolovski, J.
7335(2002. Chem. Phys.117, 2546(2002.
[5] D. Skouteris, J. F. Castillo, and D. E. Manolopoulos, Comput.[14] D. Sokolovski, Russ. J. Phys. Chem6, Suppl. 1, 21(2002.
Phys. Commun133 128(2000. [15] D. Sokolovski, Chem. Phys. Let870, 805(2003.
[6] S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers,[16] D. Bessis, A. Hafad, and A. Z. Msezane, Phys. Rev49,
A. E. Pomerantz, R. N. Zare, and E. Wrede, Natiiendon 3366(1994).
416, 67 (2002. [17] H. J. Korsh and K. E. Thylwe, J. Phys. B6, 793(1983.
[7] D. Sokolovski, J. N.L. Connor, and G. C. Schatz, Chem. Phys[18] J. N.L. Connor, J. Chem. Soc., Faraday Tra@§ 1627
Lett. 238 127(1995. (1990.
[8] D. Sokolovski, J. N. L. Connor, and G. C. Schatz, J. Chem.[19] D. M. Brink, Semi-classical Methods in Nucleous-Nucleous
Phys. 103 5979(1995. Scattering(Cambridge University Press, Cambridge, England,
[9] D. Sokolovski, J. F. Castillo, and C. Tully, Chem. Phys. Lett. 1985
313 225(1999. [20] H. M. NussenzveigDiffraction Effects in Semiclassical Scat-
[10] D. Sokolovski, Phys. Rev. A2, 024702(2000. tering (Cambridge University Press, Cambridge, England,

032710-11



D. SOKOLOVSKI AND A. Z. MSEZANE PHYSICAL REVIEW A70, 032710(2004)

1992 [25] Y. Aharonov, D. Z. Albert, and L. Vaidman, Phys. Rev. Lett.
[21] R. G. Newton,The Complex j-Plane: Complex Angular Mo- 60, 1351(1988.

mentum in Non-relativistic Quantum ScatteriiBenjamin,  [26] Y. Aharonov and L. Vaidman, Phys. Rev. A1, 11 (1990.

New York, 1964 [27] S. A. Harich, D. Dai, C. C. Wang, X. Yuang, S. D. Chao, and
[22] L. B. Felsen and M. MarcuvitzRadiation and Scattering of R. T. Skodje, NaturéLondon 419, 281(2002.

Waves(Prentice-Hall, Englewood Cliffs, NJ, 19¥,3Chap. 4.4  [28] L. D. Landau and E. M. LifshitzQuantum Mechani¢cs3rd ed.
[23] M. Abramowitz and I. A. Steguriiandbook of Mathematical (Pergamon, Oxford, 1937

Functions Applied Mathematics Seried).S. GPO, Washing- [29] R. Sadeghi and R. T. Skodje, J. Chem. Phi82, 193(1995.

ton, DC, 1964 [30] R. Sadeghi and R. T. Skodje, Phys. Rev52 1996(1995.
[24] J. A. Adam, Phys. Rep356, 229 (2000. [31] J. N. L. Connor, Phys. Chem. Chem. Ph¥s.377 (2004).

032710-12



