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We consider a pair of identical two-level atoms interacting with a scalar field in one dimension, separated by
a distancex21. We obtain collective decaying states, belonging to a complex spectral representation of the
Hamiltonian. The imaginary parts of the eigenvalues give the decay rates, and the real parts give the average
energy of the collective states. In one dimension there is strong interference between the fields emitted by the
atoms, producing cooperative effects even when the atoms are far apart. The decay rates and the energy
oscillate with the distancex21. Depending onx21, the decay rates will either decrease, vanish, or increase as
compared with the one-atom decay rate. We have sub- and superradiance at periodic intervals. Our model may
be used to study two-cavity electron waveguides. The vanishing of the collective decay rates then suggests the
possibility of obtaining stable configurations, where an electron is trapped inside the two cavities.
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I. INTRODUCTION

Systems of interacting atoms form collective states where
the atoms behave differently from isolated ones[1,2]. For
atoms in their ground states the collective effects are rela-
tively small. They produce the van der Waals or Casimir-
Polder forces between atoms[3], associated with the cloud of
virtual photons surrounding the atoms.

When the atoms are in excited states they can exchange
real photons originated by spontaneous emission. Depending
on the situation, the real photons can give strong collective
effects, altering the forces between atoms and also their rate
of spontaneous emission[1,4,5]. For example, for identical
atoms in three dimensions separated by small distances, the
decay rate will essentially double or vanish, depending on
whether the initial state is symmetric or antisymmetric with
respect to exchange of atoms[4,6]. We have “superradiance”
or “subradiance,” respectively. If the atoms are not identical
[7], or if the distance between the atoms is larger than their
characteristic wavelengths, the effects become much smaller
[4].

Previous studies on two atoms(see, e.g., Refs.[1–10])
have mainly focused on three-dimensional(3D) systems. In
this paper we will study a model of two atoms in one dimen-
sion. Our motivation is to understand how the field emitted
by an excited atom(real photon) influences another atom,
using an exactly solvable model.

In 1D, the effects of real photon exchange are expected to
be large, as compared with higher-dimensional systems, be-
cause interference effects are stronger. In 1D the real photons
emitted by a single atom are associated with a field growing
exponentially with the distance from the atom, up to the light
cone[11]. The growth in space is related to the exponential
decay of the atom in time. As we will show, this exponential
field produces significant effects on the collective states that,
in contrast to 3D systems, are not limited to the near zone of
the atoms.

The exponential component of the emitted field can be
separated through complex spectral representations of the
Hamiltonian [12–15], including complex eigenvalues and
eigenstates. The complex eigenvalues are obtained through

the solutions of integral equations for the Green’s function
poles. They give the decay rates and average energies of the
complex eigenstates.

Since the Hamiltonian is a Hermitian operator, it can have
only complex eigenstates outside the Hilbert space. In one-
atom systems the non-Hilbertian nature of these states is
manifested in their field intensity, which includes the expo-
nentially growing factor mentioned above.1

For the two-atom model we consider here, the exponen-
tially growing field itself appears in the equations for the
Green’s function poles. By solving these equations we obtain
explicit forms of the complex collective states and their de-
cay rates.

Our main result is that the decay rates of the collective
states oscillate with the distance between the atoms, even for
large separations. For distances that are roughly integer mul-
tiples of the atom wavelength, the collective decay rates van-
ish, leading to collective stable states. Our results are verified
by numerical simulations. In contrast to Dicke’s states[1],
both symmetric and antisymmetric states of the two atoms
can become subradiant and superradiant as the distance be-
tween the two atoms is varied.

From a physical point of view, the present study is of
interest because our model can be mapped to electron
waveguides consisting of two cavities connected by a lead
[17,18]. As discussed in Sec. VII, our result shows the exis-
tence of approximate bound states, due to the resonance ex-
citation transfer between cavities. These bound states may be
used as electron traps.

The paper is organized as follows. In Sec. II we briefly
discuss the complex spectral representation of the Hamil-
tonian for a one-atom system. In Sec. III we introduce our
two-atom model and its complex collective eigenstates. In

1Including the complete set of eigenstates in the complex repre-
sentation of the Hamiltonian, the exponential field outside the light
cone is canceled by renormalized field states. This is consistent with
causality[11]. One can introduce complex states that are truncated
outside the light cone, using distributions dependent on the test
functions or observables. These are considered in Ref.[16].
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Secs. IV and V we discuss the emergence of the collective
states and the bouncing of photons between the atoms. In
Sec. VI we consider the decay rate and average energy of the
collective states as a function of the distance between the
atoms. We discuss superradiance and subradiance, including
the stable collective states mentioned above. We also give a
heuristic discussion of the force between the atoms. In Sec.
VII we discuss the mapping of our model to a two-cavity
electron waveguide, and, within some approximations, show
that this system allows stable collective states.

II. ONE-ATOM SYSTEM

In order to introduce the complex spectral representation
of the Hamiltonian, we consider first a single two-level atom
interacting with a field in one-dimensional space. This is the
Friedrichs-Lee model in one dimension. We briefly review
the main results. More details can be found in Ref.[15].

For convenience hereafter we use units wherec="=1.
We write the Hamiltonian as

H8 = v0H, s1d

where v0 is a characteristic atomic frequency andH is a
dimensionless Hamiltonian. For this dimensionless Hamil-
tonian, the dynamical variables time, space, energy, and mo-
mentum are dimensionless too.

We have

H = H0 + lV = v1u1lk1u + o
k

vkuklkku

+ lo
k

Vksuklk1u + u1lkkud. s2d

The stateu1l represents the bare atom in its excited level with
no field present, while the stateukl represents a bare field
mode(“photon”) of momentumk together with the atom in
its ground state.

The energy of the ground state is chosen to be zero;v1 is
the bare energy of the excited level andvk;uku is the photon
energy. The coupling constantl!1 is dimensionless. For the
field modes we use box normalization. We put the system in
a “box” of sizeL and use periodic boundary conditions. For
L finite the momentak are discrete. Hereafter we will con-
sider the limitL→`. In this limit the field modes become
continuous, i.e.,

2p

L
o
k

→E dk. s3d

We havekaubl=da,b (Kroenecker delta). In the limit L→`,

L

2p
dk,k8 → dsk − k8d. s4d

The interaction term is obtained through the dipole ap-
proximation as well as the rotating-wave approximation. The
potentialVk is of orderL−1/2. For convenience we write

Vk = s2p/Ld1/2vk, s5d

wherevk is of order 1 in the continuous spectrum limitL
→`. As a specific example we will assume that[19,20]

vk = vsvkd =
vk

1/2

f1 + svk/vMd2gn s6d

with n=1. The constantvM
−1 determines the range of the in-

teraction. We shall assume that the interaction is of short
range, i.e.,vM @v1.

The stateu1l is unstable if

v1 . E
−`

`

dk
l2vk

2

vk
. s7d

Otherwise, it is stable[21]. Hereafter we will consider the
unstable case.

In the unstable case one can construct renormalized field
eigenstates that diagonalize the Hamiltonian as

H = o
k

uf̃k
±lvkkf̃k

±u, s8d

where

lim
l→0

uf̃k
±l = ukl, s9d

and hereafter we use the summation over field modes in the
sense of Eq.(3). The index6 refers to either “in” or “out”
scattering eigenstates.

The explicit form of the eigenstates is given by[15]

uf̃k
±l = ukl +

lVk

h±svkd
Fu1l + o

l

lVl

vk − vl ± ie
ullG , s10d

wheree is an infinitesimal positive number. The limite→0
is taken after the limitL→`. In Eq. (10),

h±szd ; z− v1 − o
k8

l2Vk8
2

sz− vk8d
± = z− v1 − 2E

0

`

dk8
l2vk8

2

sz− k8d±

s11d

is the inverse of the Green’s function. The1 (or 2) super-
script in Eq. (11) indicates analytic continuation from the
upper (or lower) half plane ofz [15]. Using the complex
delta functiondC [12] we can write

1

sz− k8d± = Hsz− k8d−1, ±Im z. 0,

sz− k8d−1 7 2pidCsk8 − zd, ±Im z, 0.
J
s12d

Whenz=v is real, we have

h±svd ; v − v1 − 2E
0

`

dk8
l2vk8

2

v − k8 ± ie
. s13d

With the form factor in Eq.(6), the Green’s function has
one polez1 in the lower half plane, i.e.,h+sz1d=0,
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z1 ; ṽ1 − ig1, s14d

which reduces tov1 when l→0. The negative imaginary
part −ig1 describes decay fort.0.2 The real partṽ1 gives
the shifted average energy of the excited state. For the other
branch we haveh−sz1

*d=0, with z1
* describing decay fort,0.

Note that in the representation(8) the decay rate and
shifted energy of the excited state do not appear in the spec-
trum. One can incorporatez1 (or z1

*) into the spectrum by
extracting the residue of Eq.(8) at the polevk=z1 (or z1

*).
This gives the complex spectral decompositions[12–15]

H = uf1lz1kf̃1u + o
k

ufk
+lvkkf̃k

+u = uf̃1lz1
*kf1u + o

k

ufk
−lvkkf̃k

−u.

s15d

The stateuf1l and its dualkf̃1u are complex eigenstates ofH.
Their explicit forms are[15]

uf1l = N1
1/2Fu1l + o

k

ukl
lVk

sz1 − vkd+G , s16d

uf̃1l = fN1
*g1/2Fu1l + o

k

ukl
lVk

sz1
* − vkd−G ,

N1 = F1 + o
k

l2Vk
2/fsz1 − vkd+g2G−1

. s17d

The stateufk
+l has the same form as the stateuf̃k

+l with the
replacement

1

h+svkd
⇒

1

h+svkd
vk − z1

svk − z1d+ , s18d

and similarly the stateufk
−l has the same form as the state

uf̃k
−l with the complex conjugate replacement.
The states in Eq.(15) form a biorthormal set, with the

relations

kf̃1uf1l = 1, kf̃k
+uf1l = 0,

kf̃k
+ufk8

+ l = dk,k8 s19d

and their complex conjugate relations.

III. TWO-ATOM SYSTEM

In this section we discuss the complex spectral represen-
tation of a one-dimensional, two-atom system with dimen-
sionless Hamiltonian

H = v1u1lk1u + v2u2lk2u + o
k

vkuklkku + o
k

l1sV1ku1lkku

+ V1k
c.cuklk1ud + o

k

l2sV2ku2lkku + V2k
c.cuklk2ud. s20d

The stateu1l represents atom 1 in its excited state, while

atom 2 is in the ground state and no field is present. Con-
versely, the stateu2l represents atom 2 in its excited state,
while atom 1 is in the ground state and no field is present.
The stateukl represents a field modek with both atom 1 and
atom 2 in their ground states. We denote the location of the
atoms 1 and 2 byx1 andx2, respectively. We will first assume
that the two atoms are at fixed positions, so that the distance
between them

x21 = ux2 − x1u s21d

is fixed. This can happen if the atoms are heavy.
We will consider the case where the two atoms are iden-

tical,

l1 = l2 = l,

v1 = v2, s22d

and the potentialsV1k andV2k have the forms

V1k = Vke
ikx1, V2k = Vke

ikx2. s23d

For Vk we use the potential in Eq.(6). We introduce the
symmetric and antisymmetric states

usl =
u1l + u2l

Î2
, ual =

u1l − u2l
Î2

, s24d

which are degenerate eigenstates of the unperturbed Hamil-
tonianH0=Hsl=0d, as

H0u jl = v ju jl, j = s,a, s25d

vs = va = v1. s26d

We will use the notation

s j ; H 1 for j = s,

− 1 for j = a,
J s27d

With this notation we haveu jl=su1l+s ju2ld /Î2.
As for the one-atom system, we can diagonalize the

Hamiltonian as

H = o
k

uF̃k
±lvkkF̃k

±u, s28d

where

uF̃k
±l = ukl + bsk

± usl + bak
± ual + o

k8

bk8k
± uk8l s29d

and

b jk
± =

1
Î2

lVk

h j
±svkd

seikx1 + s je
ikx2d, s30d

bk8k
± =

1
Î2

lVk8

vk − vk8 ± ie
o
j=s,a

b jk
± se−ik8x1 + s je

−ik8x2d, s31d

2There are other poles associated with the potentialvk. We will not
extract them in the complex representation ofH, as they give short-
time effects vanishing after a timet~vM

−1.
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h j
±szd = z− v1 − 2E

0

`

dk8
l2vk8

2

sz− k8d± f1 + s j cossk8x21dg.

s32d

Following a procedure similar to one found in Ref.[15], one

can show that the new diagonalized statesuF̃k
±l satisfy the

orthogonality and completeness relations

o
k

uF̃k
±lkF̃k

±u = u1lk1u + u2lk2u + o
k

uklkku, s33d

kF̃k
+uF̃k8

+ l = kF̃k
−uF̃k8

− l = dk,k8. s34d

The Green’s functionfh j
+szdg−1 has poles in the lower half

plane, and converselyfh j
−szdg−1 has poles in the upper half

plane. From now on we discuss only the1 branch with poles
on the lower half plane.

A new feature with respect to the one-atom system is that
due to the cosine term in Eq.(32) there are infinitely many
poles of the Green’s function, as shown in Fig. 1. We label
the poles as

zj ,n = ṽ j ,n − ig j ,n, s35d

wheren is an integer.3

The poleszj ,n are solutions of the equation

h j
+szj ,nd = 0. s36d

In the following we discuss this equation and its solutions.
From Eqs.(12) and (32) we obtain

zj ,n = v1 + 2E
0

`

dk8
l2vk8

2

zj ,n − k8
f1 + s j cossk8x21dg

− 4pil2fvzj ,n
g2f1 + s j cosszj ,nx21dg. s37d

Assuming weak coupling and taking only the pole contribu-
tion in thek8 integral we obtain the set of equations

ṽ j ,n < v1 + 2pflvsṽ j ,ndg2s je
g j ,nx21 sinsṽ j ,nx21d, s38d

g̃ j ,n < 2pflvsṽ j ,ndg2f1 + s je
g j ,nx21 cossṽ j ,nx21dg. s39d

Note the factor expsg j ,nx21d, which grows exponentially with
the distancex21 between the atoms.

In Fig. 1, the pole offhs
+szdg−1 with real part closest to the

unperturbed frequencyv1 is also closest to the real axis. We
call this polezs;zs,0. Similarly, for fha

+szdg−1 we denote the
pole closest tov1 asza;za,0. Both these poles are obtained
by a perturbation expansion aroundl=0. We have

zj ,0 = zj → v1 asl → 0. s40d

If x21 is not too large(x21,g1
−1 or smaller), one can show by

substitution into Eqs.(38) and (39) that the poleszj ,n are
given by

zj ,n = Hzj + 2np/x21 + dzj ,n for s jn . 0,

zj + s2n + s jdp/x21 + dzj ,n for s jn , 0,
J s41d

where dzj ,n is an Osl2d correction. The approximate value
Reszj ,n−zjd predicted by this equation agrees with Fig. 1(for
j =s) and a similar figure forj =a, which we omit.

We write the poleszj as

zj = ṽ j − ig j . s42d

The poleszj, having the smallest decay ratesg j, will give a
dominant contribution to the time evolution after a few
bounces of the field between the atoms, when the complex
collective states defined in Eq.(43) emerge.

As in the one-atom system we can obtain complex eigen-
statesuf jl of the total Hamiltonian, such that

Huf jl = zjuf jl. s43d

Their explicit forms are given by

uf jl = Nj
1/2Fu jl + o

k

2−1/2lVk

szj − vkd+se−ikx1 + s je
−ikx2duklG ,

s44d

where

Nj = F1 + o
k

l2Vk
2

fszj − vkd+g2s1 + s j coskx21dG−1

. s45d

For these states we haveuf jl→ u jl asl→0.
The dual states satisfyingkf̃ juH=zjkf̃ ju are given by

kf̃ ju = Nj
1/2Fk j u + o

k

2−1/2lVk

szj − vkd+seikx1 + s je
ikx2dkkuG . s46d

As in the one-atom case, we have the complex spectral rep-
resentation

3As in the one-atom system there are in addition poles associated
with the potential.

FIG. 1. Contour plot of lnf1/uhs
+szdug. The contours concentrate

around the poleszs,n of the Green’s function. The uppermost pole is
zs. The complex frequencyz is dimensionless. The contours corre-
spond to the values −3.5,−3.0, . . .,3 ,3.5 of lnf1/uhs

+szdug. Param-
eters arex21=29.025,v1=2, l=0.05,vM =5.
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H = o
j=s,a

uf jlzjkf̃ ju + o
k

uFk
+lvkkF̃k

+u, s47d

where uFk
+l has the same form as the stateuF̃k

+l with the
replacement

1

h j
+svkd

⇒
1

h j
+svkd

vk − zj

svk − zjd+ . s48d

We have as well the complex conjugate representation, tak-
ing the complex conjugates of Eqs.(47) and (48).

IV. EMERGENCE OF THE COMPLEX
COLLECTIVE STATES

The time evolution of the two-atom system can be solved
by using Eq.(28) or Eq. (47). As an example we assume the
atoms are initially in the symmetric stateusl and the initial
field is zero(similar calculations can be done if the initial
state isual). We will calculate the survival probability of state
u1l,

P1std = zk1ue−iHtuslz2. s49d

Before we go into details, we can guess the behavior the
system will show. Since the initial state is symmetric, the
following discussion also applies with atoms 1 and 2 ex-
changed. Say atom 1 is to the left of atom 2. At the begin-
ning, atom 1 decays and emits a field. Half of this field will
be radiated away to the left, while the other half will reach
and excite atom 2. Atom 2 will then decay and emit its own
field, part of which will be radiated away to the right, the rest
going to the left, back toward atom 1. Continuing this pro-
cess, we see that energy will bounce back and forth between
the two atoms. As time passes, this energy will decrease due
to the outgoing radiation. Eventually both atoms will decay
to the ground state. Noting that the time it takes for the field
of one atom to reach the other atom ist=x21 (with c=1) we
conclude that, as it decreases, the survival probability should
oscillate with periodx21.

This behavior is shown in Fig. 2. This was obtained
through a numerical solution of Schrödinger’s equation. The
field was discretized into 2501 modes. The eigenvalues and
eigenfunctions of the Hamiltonian matrix were obtained us-
ing tridiagonalization and the “QL” method based on the
decompositionH=QL, whereQ is an orthogonal matrix and
L is a lower triangular matrix[22]. This allowed us to cal-
culate explicitly the operator exps−iHtd. For this and the sub-
sequent numerical plots we used the following parameters:
v1=2, l=0.05, vM =5. Other parameters are indicated in
each figure.

In order to calculate the survival probability analytically,
we start with Eq.(28), to obtain

P1std = zk1ue−iHto
k

uF̃k
+lkF̃k

+uslz2 = Uo
k

e−ivktk1uF̃k
+lkF̃k

+uslU2

=
1

2Uok

e−ivkt
l2Vk

2

uhs
+svkdu2

s1 + coskx21dU2

, s50d

where we used the fact that odd functions ofk vanish under

the summation. For later use we define the amplitude in Eq.
(50) as

Astd ; o
k

e−ivkt
l2Vk

2

uhs
+svkdu2

s1 + coskx21d. s51d

The dominant contribution toP1std will come from the
poles of the Green’s function shown in Fig. 1. The different
pole contributions should add up to give the bounces seen in
Fig. 2. But rather than computing all the pole contributions,
we will follow an easier method in Sec. V.

Here we will focus on the polezs. As mentioned before,
this will give the dominant contribution after some bounces,
since it gives the slowest decay rate. It is this pole contribu-
tion that is extracted in the representation(47). Using this
representation and noting thatkf̃ausl=0, we have

P1std = Uk1ufsle−izstkf̃susl + o
k

k1uFk
+le−ivktkF̃k

+uslU2
.

s52d

The second term contains contributions from poles other
than zs of the Green’s functionfhs

+svdg−1 as well as contri-
butions coming from the branch cut of this function. Ne-
glecting all these contributions we obtain

P1std < P1,zsstd ; uk1ufsle−izstkf̃suslu2. s53d

This is represented by the dashed line in Fig. 2. After a few
bounces the initial stateusl reaches the collective stateufsl.

We turn to the time evolution of the field. Defining the
state

ucsxdl = o
k

1

s2vkLd1/2e−ikxukl, s54d

the intensity of the field in space-time can be written as

FIG. 2. Logarithmic plot of the survival probabilityP1std (solid
line) and complex collective-state componentP1,zsstd (dashed line).
Time t has been scaled to units ofx21=29.025. The crosses indicate
the decay rate 2gs1, gs1=0.0233, betweent=0 and t=1 (see Sec.
V). Parameters arev1=2, l=0.05,vM =5, andL=500.
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Psx,td = zkcsxdue−iHtuslz2. s55d

Again we calculated this using the numerical solution of
Schrödinger’s equation. The intensity of the field is plotted in
Figs. 3–5 for different times. At the beginning, both atoms
emit their fields spontaneously. Each field has an exponen-
tially growing envelope(plus corrections due to the initial
dressing processes[11]), which stops at the light coneux
−xiu= t (Fig. 3).

After each emitted field reaches the neighbor atom, ab-
sorption and reemission occur. The two atoms exchange en-
ergy, and the fieldPsx,td around the atoms starts to approach
the field intensity due to the collective state given by

Pzssx,td = zkcsxdufslexps− izstdkfsuslz2 s56d

(see Fig. 4). The collective state decays exponentially(Fig.
5).

In summary, the atoms emit a field growing exponentially
with the distance from them, within their light cones. After
the field emitted from each atom reaches the other one, the

collective state with complex energyzj emerges.
As we discuss now, the exponential field has a strong

influence onzj. The field amplitude associated with the col-
lective states is given bykkuf jl. This amplitude in turn de-
termineszj through its interaction with the atoms. We have

zj = v1 +
1

Î2Nj
o
k

lVkfeikx1 + s je
ikx2gkkuf jl, s57d

where we used Eqs.(43), (44), and (32), with v=zj. Since
kkuf jl are functions ofzj, this is a self-consistent relation.
From Eqs.(38) and (39) for zj ,0=zj, we get

kkuf jl ~ expsg jx21d. s58d

Due to the exponential nature of this factor, the polezj may
deviate substantially from the one-atom polez1.

In spite of the exponential factor, for increasingx21 Eqs.
(38) and (39) can still have solutions sinceg j decreases at
least as

g j , x21
−1 s59d

for largex21. This decrease ofg j with increasingx21 is seen
in Fig. 6.

V. BOUNCES

In this section we describe the energy bounces between
the atoms, seen in the survival probability ofP1std of atom 1
(since we are assuming the initial state is symmetric, the
survival probability of atom 2 is the same). We discuss how
repeated bounces lead to the appearance of collective states.
We obtain a piecewise expression for the survival probabil-
ity, which gives a connection with the results presented in
Refs.[5,6].

FIG. 3. Field intensityPsx,td for t=0.32x21. Space coordinatex
has been scaled to units ofx21=29.025 andPsx,td is dimensionless.
The atoms are located atx1=0 andx2=1. The parameters are the
same as in Fig. 2.

FIG. 4. Field intensityPsx,td for t=1.12x21 (solid line) and the
complex collective-state componentPzssx,td (dashed line). Space
coordinatex is in units ofx21=29.025 andPsx,td is dimensionless.
Parameters are the same as in Fig. 2.

FIG. 5. Field intensityPsx,td for t=4.02x21 (solid line) and the
complex collective-state componentPzssx,td (dashed line). Space
coordinatex is in units ofx21=29.025 andPsx,td is dimensionless.
The outer smaller peaks ofPsx,td come from the initial one-atom
emission. The inner, larger peaks come from the emission after the
first exchange of energy between the atoms.Psx,td asymptotically
approachesPzssx,td asx approaches the atoms. They coincide in the
region between the atoms(betweenx=0 andx=1). Parameters are
the same as in Fig. 2.
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As shown in Fig. 2, the decay rate ofP1std changes
abruptly at t=x21. For t.x21 the decay rate quickly ap-
proaches the collective decay rategs. The wiggling of the
decay rate shows the absorption and reemission of the fields,
or in other words the energy bounces. For 0, t,x21 the
decay rate should be close to the one-particle decay rate.

To analyze the energy bounces and the decay for
0, t,x21 we first note that

hs
+skd − hs

−skd = 4pil2vk
2s1 + coskx21d. s60d

Hence in Eq.(51) we can write

Astd = 2E
0

`

dke−ivkt
l2vk

2

uhs
+skdu2

s1 + coskx21d

=
1

2pi
E

0

`

dkS 1

hs
−skd

−
1

hs
+skdDe−ikt. s61d

Sincee−ikt vanishes in the lower infinite semicircle of the
complexk plane fort.0, we can take the pole contributions,
extending thek integration from −̀ to ` and closing the
contour with this semicircle. Onlyfhs

+skdg−1 has poles in the
lower half plane. We writehs

+skd as

hs
+skd = k − v1 − 2E

0

`

dk8
l2vk8

2 s1 + cosk8x21d

k − k8 + ie
= hs1

+ skd − Dskd,

s62d

wherehs1
+ skd is defined by

hs1
+ skd = k − v1 − 2E

0

`

dk8
l2vk8

2

k − k8 + ie
S1 +

1

2
e−ik8x21D

−E
0

`

dk8
l2vk8

2 e−ik8x21

k − k8 − ie
s63d

and

Dskd = − 2pil2vk
2eikx21. s64d

The functionfhs1
+ skdg−1 has one pole in the lower half plane

that reduces tov1 whenl→0. Let this pole be

zs1 = ṽs1 − igs1. s65d

This is essentially the pole of the one-atom Green’s function,
modified by the overlap of the atomic clouds at the distance
x21. For x21@v1

−1 we have

zs1 < z1. s66d

We expand 1/hs
+skd as

1

hs
+skd

=
1

hs1
+ skd − Dskd

= o
n=0

`
Dskdn

fhs1
+ skdgn+1 . s67d

The expansion is possible since

hs1
+ skd = k − v1 − 2E

0

`

dk8PSl2vk8
2 s1 + cosk8x21d

k − k8
D

+ 2pl2vk
2 sinkx21 + 2pil2vk

2, s68d

uDskdu = uImfhs1
+ skdgu ø ufhs1

+ skdgu. s69d

Using Eq.(67), Eq. (61) is written as

Astd =
1

2pi
E

0

`

dk
e−ikt

hs
−skd

−
1

2pi
o
n=0

` E
0

`

dk
s− 2pil2vk

2dne−ikst−nx21d

fhs1
+ skdgn+1 . s70d

In Eq. (70), the pole contributions come from 1/fhs1
+ skdgn+1.

For n=0, e−ikt /hs1
+ skd has a simple pole in the lower half

plane atk=zs1. Its effect appears fort.0, when we can close
the integration contour in the lower half plane. Forn=1,
e−ikst−x21d / fhs1

+ skdg2 has a double pole. Its effect appears for
t.x21. In general, for eachx21 time step there appears a new
pole effect which is smaller by orderl2 than the previous
pole effect. In this way we can explain the wiggling decay
rate (Fig. 2).

As we discuss now, this description of the bounces is
connected to emergence of the collective state. Approximat-
ing (for l!1)

hs1
+ skd < k − zs1, s71d

the pole contributions in Eq.(70) are given by

A0std ;
− 1

2pi
E

−`

`

dk
1

k − zs1 − Dskd
e−ikt

=
− 1

2pi
o
n=0

` E
−`

`

dk
Dskdn

sk − zs1dn+1e−ikt. s72d

Taking the residues at the polek=zs1 we obtain an expression
of the piecewise form

FIG. 6. The decay ratesgs s3d andga s+d oscillating as a func-
tion of x21. The solid line is the one-atom decay rateg1=0.0235.gs

vanishes for distances close tos2n−1dp / ṽ1, and ga for distances
close to 2np / ṽ1 with n integer. Forx21=12.7<8p / ṽ1, ga van-
ishes, whilegs takes its maximum value. For largex21 the decay
rates decrease. Bothx21 andgs,a are dimensionless.
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A0std = o
n=0

`

ust − nx21dgnstd, s73d

where

gnstd = − F 1

n!

]n

]knDskdne−iktG
k=zs1

. s74d

We havegn,l2n. Note that the sum stops atn such that
t,nx21. Since for weak coupling the termsgnstd become
smaller asn increases, after a few bounces we have

A0std < Ã0std, s75d

where

Ã0std = o
n=0

`

gnstd. s76d

As shown in Appendix A we have

Ã0std = Nse
−izst s77d

for all t.0, where

Ns =U 1

1 − ]Dskd/]k
U

k=zs

s78d

for weak coupling. Equation(77) shows that the sum of all
bounces gives the contribution from the collective stateufsl
with eigenvaluezs.

Equation(77) is consistent withzs giving the slowest ex-
ponential decay. To see this we use Eq.(62) to write the
equation forzs,n as

hs1
+ szs,nd − Dszs,nd = 0 s79d

or

zs,n < zs1 + Dszs,nd s80d

[for x21@v1
−1 we havezs1<z1 and we recover Eqs.(38) and

(39) for j =s].
The functionk−zs1−Dskd in Eq. (72) has zeros atk=zs,n.

For t→` only the residue at the polek=zs,0=zs remains, and
we get

lim
t→`

Ns
−1eizstA0std = lim

t→`
Ns

−1eizstÃ0std = 1, s81d

which is consistent with Eq.(77).

VI. DECAY RATE AND ENERGY VS DISTANCE

In this section we investigate the behavior of the complex
eigenvalues of the Hamiltonianzj for different values ofx21.

The equationh j
+szd=0 can be solved numerically by itera-

tions of z=z−h j
+szd. The imaginary and real parts ofz thus

obtained are shown in Figs. 6 and 7(we used the same pa-
rameters as in the previous figures). The numerical iteration
was started aroundz=v1 so, with the exception of two iso-
lated points seen in Fig. 6, the solutions obtained are the
collective eigenvaluesz=zj and not the poleszj ,n of the

Green’s function. Gaps in the graphs are points missed by the
numerical solution.

As we see,g j and ṽ j oscillate withx21. The oscillation
period is approximately 2p / ṽ1 where ṽ1 is the one-atom
renormalized frequency(see Appendix B).

Due to the oscillations, the collective decay rate can be-
come smaller or larger than the one-atom decay rate(solid
line in Fig. 6). We have subradiance and superradiance, re-
spectively. In particular, it is noticeable that there are dis-
tances at which the decay ratesg j vanish(see Appendix B).
This means that for these distances there is no outgoing ra-
diation. The outgoing emitted fields of the atoms cancel by
destructive interference and a standing field is trapped be-
tween the two atoms, storing energy. Note that both symmet-
ric and antisymmetric initial conditions can give rise to either
subradiant or superradiant states, since bothgs andga oscil-
late with x21.

The oscillations of the decay rate and the energy shown in
Figs. 6 and 7 are a unique feature of one-dimensional sys-
tems. For two or three dimensions, these quantities can
change significantly only for short distances between atoms
(see Appendix C).

As an example of subradiance and superradiance we show
numerical simulations with the same parameters used in the
previous examples, except we chooseL=250(to have higher
space resolution) and x21=12.7. For this value ofx21, the
decay rate of the antisymmetric state vanishes while the de-
cay rate of the symmetric state is maximum(see Fig. 6). In
Fig. 8 we show the survival probability of atom 1 for anti-
symmetric and symmetric initial conditions, showing the ap-
pearance of stationary subradiant collective state and a su-
perradiant collective state. In Figs. 9 and 10 we show the
corresponding fields.

We turn to the force between the atoms. Here we will give
only a heuristic discussion. A more detailed analysis requires
including the Casimir-Polder or van der Waals forces be-
tween the atoms, as well as the inertia of the atoms, which
we are not considering in this paper.

Since the atoms are unstable, the force between them
should be time dependent[23]. We expect the force to decay
exponentially during the time scales where the collective-
state components dominate. For the dependence onx21 of the
force, the quantity

FIG. 7. The energiesṽs s3d and ṽa s+d as a function ofx21.
They oscillate withx21. The solid line is the one-atom energyṽ1

=1.985. Bothx21 and ṽs,a are dimensionless.
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F j = − dṽ j/dx21 s82d

can give an indication becauseṽ j is the average energy of
the collective state.

As we can see in Fig. 11,Fs oscillates withx21 (Fa has a
similar behavior). Fs.0 corresponds to a repulsive force,
andFs,0 to an attractive force. Attraction is strongest(Fs is
locally a minimum) when the collective decay rate is largest
(−gs is locally a minimum as well). The atoms tend to attract
each other when they emit the field outward and tend to repel
when the field remains trapped between them.

We also see in Fig. 11 that there are pointsx21
0 for which

Fs vanishes. IfdFs/dx21,0 at these points, then any small
displacementDx21 aroundx21

0 creates a force in the opposite
direction. Thus in this casex21

0 are stable points(if
dFs/dx21.0 the points are unstable). The existence of stable

points suggests the possibility of having a one-dimensional
“molecule.” This molecule would have a lifetime of the order
of gs

−1.

VII. TWO-CAVITY WAVEGUIDES

So far, we discussed various properties of collective decay
states for the one-dimensional two-atom model which is ex-
actly solvable. Not only is it theoretically simple, this model
has another practical advantage since some systems can be
mapped into similar form. After the mapping is done, we can
see in different systems the same properties we discussed
before.

One specific example is a two-cavity electron waveguide
(Fig. 12). As shown in Refs.[17,18], the two-cavity wave-
guide Hamiltonian can be mapped into the same form as Eq.
(20), and the same properties we discussed above can be
found. Here we present the main ideas. More details will be
given in a subsequent paper[24].

The waveguide can be constructed by superposing two
closed identical cavities and a lead in two-dimensional space.
When we consider the cavities and the lead separately, this

FIG. 8. Survival probabilityP1std of atom 1 for antisymmetric
initial condition (solid) giving rise to a subradiant stationary collec-
tive state, and symmetric initial condition(dashed) giving rise to a
superradiant collective state. Beforet=x21, P1std has the one-atom
decay rate. Timet has been scaled to units ofx21=12.7.

FIG. 9. Field intensityPsx,td for the atoms in a stationary col-
lective state. Space coordinatex is in units ofx21=12.7 andPsx,td
is dimensionless. The field between the two atoms located atx=0
and x=1 remains trapped. The initial condition isual. Time is t
=7.09x21. The wave packets on each side move outward with the
speed of lightc=1. They were emitted before the atoms formed the
collective state. After that, emission stopped.

FIG. 10. Field intensityPsx,td for initial condition usl at time
t=7.09x21. Space coordinatex is in units ofx21=12.7 andPsx,td is
dimensionless. The collective state has decayed. The smaller peaks
on the far sides are the field emitted individually by each atom
before attaining the collective state. The larger peaks correspond to
the two-atom collective emission(superradiance).

FIG. 11. Graph ofFs=−dṽs/dx21 (black line) and the decay rate
−gs (dotted line). We see that when −gs is a local minimumFs also
has a local minimum value. All variables are dimensionless.
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forms an unperturbed system. The interaction appears as the
cavities and the lead are connected.

In suitable units the horizontal dimension of the cavities is
1, and the vertical dimension isD. The lead has a horizontal
dimensionL→` and a vertical dimensionW. We consider a
nonrelativistic electron, neglecting the spin.

If the electron is placed inside a closed cavity, its wave
functions correspond to discrete cavity modes. The cavity
modes can be labeled asum,nl, wherem,n are positive inte-
gers representing the horizontal and vertical wave numbers.
The corresponding energies are

jm,n = m2 + n2/D2. s83d

An electron placed inside the lead(with no cavities) has
modes that can be labeled asuk, ll wherekL/p is the hori-
zontal wave number andl the vertical wave number. The
energies are

Ek,l = k2/p2 + l2/W2. s84d

As L→`, k becomes a continuous variable. On the other
hand,m, n, and l are always positive integers.

We consider an electron with low energy narrowly cen-
tered around

j0 = jm0,n0. s85d

We assume that

E0,1 , j0 , Ek,l s86d

for l .1 and allk. The electron may propagate through the
first mode of the lead, but not through thel .1 modes.

We also assume that there are no other cavity modes with
energy betweenE0,1 andj0. Under these conditions, the cav-
ity mode j0 behaves essentially like the excited state in the
Friedrichs-Lee model. It will decay with a finite lifetime.
This means that an electron inside the cavity will escape
through the lead.

The following approximate Hamiltonian is obtained[18]:

HWG= j0fu1lk1u + u2lk2ug +E
0

`

dko
l=1

`

Ek,luck,llkck,lu

+ SE
0

`

dko
l=1

`

V1sk,ldu1lkck,lu + V2sk,ldu2lkck,lu + H.c.D .

s87d

Here, H.c. means Hermitian conjugate. The cavities are cen-
tered atx=x1 andx=x2, wherex is the horizontal coordinate.
The statesuil represent the electron inside cavityi =1 or 2,
occupying the modej0. The statesuck,ll are modified lead

modes; they essentially represent the electron inside the part
of the lead that does not overlap with the cavities. The terms
Visk, ld represent the amplitude of a transition of the electron
from this part of the lead to the cavities, or vice versa. Their
detailed expression is given in Refs.[18,24]. Here we note
only that they have the forms

V1sk,ld = Vsk,l,x1,x2deikx1,

V2sk,ld = Vsk,l,x2,x1deikx2. s88d

The HamiltonianHWG has the same form as our two-atom
Friedrichs-Lee model Hamiltonian. As the two cavities are
identical, we have a system analogous to the two identical
atoms. Since there is only one continuous variablek describ-
ing the propagation along the lead, we can think of the wave-
guide system as a one-dimensional system, with internal de-
gree of freedoml (note thatl is discrete).

Similar to the results of Sec. III we obtain the equation for
the complex energy of the collective state

zj
0 = j0 + 2E

0

`

dko
l=1

` uf jsk,ldu2

szj
0 − Ek,ld+s1 + s j coskx21d, s89d

where f jsk, ld is a function ofV1sk, ld and V2sk, ld. We will
show that there is a solution with vanishing decay rate, cor-
responding to a stable collective state. We follow the proce-
dure shown in Appendix B. For a vanishing decay rate we

write zj
0= j̃ j

0− ie, wheree.0 is infinitesimal. This gives the
following condition onx21:

1 + s j cosk0x21 = 0, s90d

wherek0 is a wave vector that satisfies

Ek0,l = j̃ j
0, l = 1. s91d

Through these two equations,x21 for the vanishing decay rate

becomes a function ofj̃ j
0,

x21 = gsj̃ j
0d ;

n

Îj̃ j
0 − E0,1

, s92d

wheren is an odd integer forj =s and an even integer forj

=a. The renormalized energyj̃ j
0 is given by solution of the

integral equation

j̃ j
0 = j0 + 2E

0

`

dko
l=1

`

uf jsk,ldu2P
1

j̃ j
0 − Ek,l

h1 + s j cosfkgsj̃ j
0dgj,

s93d

where P means the principal part. Similar to Eq.(B11), this
equation has a solution if the condition

j0 − E0,1 . 2E
0

`

dko
l=1

`

uf jsk,ldu2P
1

Ek,l − E0,l
s94d

is satisfied. If the interaction between each cavity and the
lead is small, we can replacef jsk, ld by the interaction in a
single-cavity system. Then, Eq.(94) is essentially the condi-
tion that the electron in a single cavity waveguide has

FIG. 12. A two-cavity waveguide.
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enough energyj0 to escape through the lead. This condition
is analogous to Eq.(7).

In summary, by adjusting the distance between the cavi-
ties[so that Eq.(92) is satisfied] we obtain a collective stable
state where the electron remains trapped inside the two cavi-
ties, in either a symmetric or an antisymmetric state. The
electron is trapped even though it would escape if there was
only one cavity.

To obtain this result we neglected the influence of cavity
modes other thanj0. The description of the system improves
as more cavity modes are included[18].

The existence of stable configurations in the waveguide
could be verified by other methods, including numerical
simulations calculating theS matrix, or experiments.

VIII. CONCLUDING REMARKS

We have analyzed a one-dimensional two-atom system
using complex collective eigenstates of the Hamiltonian. We
found that, in contrast to 3D systems, in 1D collective effects
persist for large separations between the atoms. The collec-
tive symmetric and antisymmetric states are not limited to
the near zone and remain appropriate for large separations
(far zone).

The collective effects we described, such as the oscilla-
tions of the collective decay rates, have a physical realization
in mesoscopic analogs of atomic systems, such as electron
waveguides. Models of 1D atoms and waveguides with cavi-
ties are quite similar, as they describe discrete energy levels
coupled to a continuum[18].

Our method is based on an analysis of the complex poles
of the Green’s function. One advantage of this method is that
it directly gives the collective decay rate of the survival
probability, as well as the collective field between the atoms,
which emerges as the atoms exchange real photons.

In the present paper we focused on real photons and ne-
glected virtual processes(such as virtual photon exchange
when both atoms are excited). In the waveguide problem,
virtual processes do not exist. Hence, as long as we focus on
waveguides, we need not include these processes. On the
other hand, for two-atom systems, these processes do exist
and they give a correction to the energy shift and the decay
rate of the excited states. For weak atom-field coupling this
is a small correction, which nevertheless is worthwhile to
consider. This will be done in a subsequent paper.

Emitted photons are described by an exponentially grow-
ing field, truncated at the light cone of the atoms. This field
plays an important role in the two-atom system, giving a
strong influence on the lifetime or average energy of the
collective states. This field is directly related to the exponen-
tial decay of unstable states, which can be regarded as one of
the simplest dissipative phenomena on a microscopic scale.
So, in a sense, the formation of collective states is a micro-
scopic nonequilibrium process, driven by dissipation.
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APPENDIX A: PROOF OF EQ. (77)

We start with the expression[see Eq.(76)]

Ã0std =
1

2pi
o
n=0

` E
C

dk
Dskdn

sk − zs1dn+1e−ikt, sA1d

whereC is a clockwise contour surroundingk=zs1. Taking
the residues at this point we get

Ã0std = o
n=0

`
− 1

n!

]n

]knfDskdne−iktgk=zs1
. sA2d

This is a perturbation expansion aroundzs1, so it will corre-
spond to the contribution from only the polezs and not the
poleszs,n.

We will show that

]

]t
Ã0std = − izsÃ0std. sA3d

Together with Eq.(81) this will prove Eq.(77). Starting with
Eq. (A2) and using

]n

]knAB= o
l=0

n
n!

l!sn − ld! F ]n−l

]kn−l AGF ]l

]kl BG , sA4d

we obtain

]

]t
Ã0std = − izs1Ã0std − iÃ1std, sA5d

where

Ãmstd = o
n=0

`
− 1

n!

]n

]knfDskdn+me−iktgk=zs1
. sA6d

Using Eq.(A4) again we get

Ãmstd = o
l=0

`
1

l!
Ãlstd

]l

]kl fDskdmgk=zs1
. sA7d

With Eq. (80) for zs,0=zs<zs1+Dszsd and the Taylor expan-
sion of Dszsdl aroundzs1 we find that the solution of this
system of equations is

Ãlstd = DszsdlÃ0std, sA8d

which combined with Eq.(A5) proves Eq.(A3).

APPENDIX B: OSCILLATIONS OF gj AND vj WITH x21

In this appendix we will show that the decay ratesg j and
energiesṽ j of the collective statesuf jl oscillate with the
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distancex21 between the atoms. First we will show thatgs
vanishes(comes infinitesimally close to zero) for distances

fx21ggs=0 =
s2n + 1dp

ṽs
o , sB1d

wheren is an integer, and

ṽs
o = fṽsggs=0. sB2d

Similarly we will show that the decay ratega vanishes for

fx21gga=0 =
2np

ṽa
o , sB3d

where

ṽa
o = fṽagga=0. sB4d

We start with the equationhs
+szsd=0 or

zs = v1 + 2E
0

`

dk
l2vk

2

szs − kd+s1 + coskx21d. sB5d

Assumingzs=ṽs
o− ie with infinitesimale we have

ṽs
o = v1 + 2E

0

`

dk
l2vk

2

ṽs
o − k + ie

s1 + coskx21d

= v1 + 2E
0

`

dkl2vk
2FP

1

ṽs
o − k

− pidsṽs
o − kdG

3s1 + coskx21d, sB6d

where we used the relation

1

v + ie
= P

1

v
− pidsvd sB7d

together with Eq.(12). Comparing the left- and right-hand
sides of Eq.(B6) we see that the imaginary part should van-
ish, so we get

1 + cosṽs
ox21 = 0, sB8d

which proves Eq.(B1). In a similar way, starting from the
equation forza,

za = v1 + 2E
0

`

dk
l2vk

2

sza − kd+s1 − coskx21d, sB9d

we get

1 − cosṽa
ox21 = 0, sB10d

which proves Eq.(B3).
The ṽ j

o satisfy the integral equations

ṽs
o = v1 + 2E

0

`

dkl2vk
2P

1

ṽs
o − k

F1 + cos
s2n + 1dpk

ṽs
o G ,

ṽa
o = v1 + 2E

0

`

dkl2vk
2P

1

ṽa
o − k

F1 − cos
2npk

ṽa
o G .

sB11d

Using graphical methods it can be shown the first equation
has a unique solution for each integern, provided that

v1 − 2 lim
ṽs

o→0
E

0

`

dkl2vk
2P

1

k
F1 + cos

s2n + 1dpk

ṽs
o G . 0.

sB12d

In the limit ṽs
o→0 the cosine term gives a vanishing integra-

tion. Thus Eq.(B12) is satisfied if Eq.(7) is satisfied. A
similar argument applies to the second equation in(B11).

Equations(B1) and (B3) explain the oscillatory behavior
of g j seen in Fig. 6.

To explain the oscillations ofṽ j we note that the terms
inside brackets in Eq.(B11) are even ink aroundṽ j

o, regard-
less of n. On the other hand, the principal parts are odd.
Hence the product is odd and the integration aroundṽ j

o van-
ishes. Thus the largest contributions to the integrals come
from the tails of the principal parts. The “1” terms inside the
brackets give a much larger contribution than the “cos”
terms, because the latter oscillate withk. Neglecting the
“cos” terms, we get

ṽs
o < ṽa

o < ṽ1, sB13d

whereṽ1 is the one-atom shifted energy[see Eq.(14)]. This
shows that theṽ j have approximately the same values when
their respectiveg j vanish. From Eq.(B13) we conclude that
the period of the oscillations ofg j and ṽ j is approximately
2p / ṽ1.

Adding Eqs.(B5) and(B9) we see that for weak coupling
the poles of the one- and two-atom Green’s functions obey
the relations

z1 <
za + zs

2
. sB14d

So bothṽ j andg j oscillate around the one-atomṽ1 andg1,
respectively.

Finally, we show that the “force”Fs between the atoms is
a local maximum when the decay rate is zero, as seen in Fig.
11. Whengs=0, we have

dFs
0

dx21
= −

d2ṽs
o

dx21
2 < 2E

0

`

dkl2vk
2P

1

ṽs
o − k

k2 cos
s2n + 1dpk

ṽs
o .

sB15d

As argued above Eq.(B13) the integral of the cosine is
small. Hence we have

dFs
o

dx21
< 0. sB16d

A similar argument may be applied toFa.

G. ORDONEZ AND S. KIM PHYSICAL REVIEW A70, 032702(2004)

032702-12



APPENDIX C: SUBRADIANCE IN d.1 DIMENSIONS

In one dimension, the vanishing of the collective decay
rate occurs for distances given by the conditions

1 + s j cosṽ j
ox21 = 0. sC1d

Assuming the potentialvk is rotationally invariant, ind.1
dimensions, analogous conditions would be

E
0

p

Vsudduf1 + s j cossṽ j
ox21 cosudg = 0, sC2d

whereu is the angle of the wave vectork with respect to the
line joining the two atoms. The functionV is 2 for d=2 and
sinu for d=3.

We see that Eq.(C2) can be satisfied only for the antisym-
metric state with s j =−1 and for short distancesx21
! fṽ j

og−1< ṽ1
−1. This agrees with the results of Stephen[4]

anticipated by Dicke[1].

[1] R. H. Dicke, Phys. Rev.93, 99 (1954).
[2] W. Woger, H. King, R. Glauber, and J. H. Haus, Phys. Rev. A

34, 4859(1986).
[3] C. Compgano, G. M. Palma, R. Passante, and F. Persico, J.

Phys. B 28, 1105(1995).
[4] M. J. Stephen, J. Chem. Phys.50, 669 (1964).
[5] P. W. Milonni and P. L. Knight, Phys. Rev. A10, 1096(1974).
[6] H. T. Dung and K. Ujihara, Phys. Rev. A59, 2524(1999).
[7] E. A. Power and T. Thirunamachandran, Phys. Rev. A51,

3660 (1995); 47, 2539(1993).
[8] H. T. Dung and K. Ujihara, Phys. Rev. Lett.84, 254 (2000).
[9] G. I. Kweon and N. M. Lawandy, Phys. Rev. A47, 4513

(1993); 49, 2205(1994).
[10] Z. Ficek, Phys. Rev. A44, 7759(1991).
[11] T. Petrosky, G. Ordonez, and I. Prigogine, Phys. Rev. A64,

062101(2001).
[12] N. Nakanishi, Prog. Theor. Phys.19, 607 (1958).
[13] E. C. G. Sudarshan, C. B. Chiu, and V. Gorini, Phys. Rev. D

18, 2914(1978).

[14] A. Böhm and M. Gadella,Dirac Kets, Gamow Vectors and
Gelfand Triplets, Lecture Notes on Physics, Vol. 348(Springer,
New York, 1989).

[15] T. Petrosky, I. Prigogine, and S. Tasaki, Physica A173, 175
(1991).

[16] S. Kim and G. Ordonez, e-print physics/0311048.
[17] T. Petrosky and S. Subbiah, Physica E(Amsterdam) 19, 230

(2003).
[18] S. Subbiah, Ph.D. dissertation, The University of Texas at Aus-

tin, 2000.
[19] U. Weiss,Quantum Dissipative Systems(World Scientific, Sin-

gapore, 1993).
[20] P. Facchi and S. Pascazio, Physica A271, 133 (1999).
[21] C. Cohen-Tannouji, J. Dupont-Roc, and G. Grynberg,Atom-

Photon Interactions: Basic Processes and Applications(Wiley,
New York, 1992), p. 248.

[22] http://www.netlib.org/eispack/
[23] R. Passante and F. Persico, e-print quant-ph/0212163.
[24] S. Kim, K. Na, and G. Ordonez(unpublished).

COMPLEX COLLECTIVE STATES IN A ONE-… PHYSICAL REVIEW A 70, 032702(2004)

032702-13


