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Complex collective states in a one-dimensional two-atom system
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We consider a pair of identical two-level atoms interacting with a scalar field in one dimension, separated by
a distancexy;. We obtain collective decaying states, belonging to a complex spectral representation of the
Hamiltonian. The imaginary parts of the eigenvalues give the decay rates, and the real parts give the average
energy of the collective states. In one dimension there is strong interference between the fields emitted by the
atoms, producing cooperative effects even when the atoms are far apart. The decay rates and the energy
oscillate with the distancg,;. Depending orx,4, the decay rates will either decrease, vanish, or increase as
compared with the one-atom decay rate. We have sub- and superradiance at periodic intervals. Our model may
be used to study two-cavity electron waveguides. The vanishing of the collective decay rates then suggests the
possibility of obtaining stable configurations, where an electron is trapped inside the two cavities.

DOI: 10.1103/PhysRevA.70.032702 PACS nuniber32.80—t, 03.65-w, 73.63—b

I. INTRODUCTION the solutions of integral equations for the Green’s function
Systems of interacting atoms form collective states wher@©l€s- They give the decay rates and average energies of the
the atoms behave differently from isolated orjés?]. For ~ COMplex eigenstates. N _
atoms in their ground states the collective effects are rela- Since the Hamiltonian is a Hermitian operator, it can have
tively small. They produce the van der Waals or Casimir-Only complex eigenstates outside the Hilbert space. In one-
Polder forces between atorf8§, associated with the cloud of atom systems the non-Hilbertian nature of these states is
virtual photons surrounding the atoms. manifested in their field intensity, which includes the expo-
When the atoms are in excited states they can exchangdeentially growing factor mentioned above.
real photons originated by spontaneous emission. Depending For the two-atom model we consider here, the exponen-
on the situation, the real photons can give strong collectivéially growing field itself appears in the equations for the
effects, altering the forces between atoms and also their raféreen’s function poles. By solving these equations we obtain
of spontaneous emissidi,4,5. For example, for identical explicit forms of the complex collective states and their de-
atoms in three dimensions separated by small distances, ti¢@y rates.
decay rate will essentially double or vanish, depending on Our main result is that the decay rates of the collective
whether the initial state is symmetric or antisymmetric with states oscillate with the distance between the atoms, even for
respect to exchange of atorf#6]. We have “superradiance” large separations. For distances that are roughly integer mul-
or “subradiance,” respectively. If the atoms are not identicafiples of the atom wavelength, the collective decay rates van-
[7], or if the distance between the atoms is larger than theiish, leading to collective stable states. Our results are verified

characteristic wavelengths, the effects become much small®y numerical simulations. In contrast to Dicke’s stafék
[4]. both symmetric and antisymmetric states of the two atoms

Previous studies on two atongsee, e.g., Refg1-10) can become subradiant and superradiant as the distance be-
have mainly focused on three-dimensio(@D) systems. In  tween the two atoms is varied.
this paper we will study a model of two atoms in one dimen- From a physical point of view, the present study is of
sion. Our motivation is to understand how the field emittedinterest because our model can be mapped to electron
by an excited atorreal photon influences another atom, waveguides consisting of two cavities connected by a lead
using an exactly solvable model. [17,18. As discussed in Sec. VI, our result shows the exis-

In 1D, the effects of real photon exchange are expected ttence of approximate bound states, due to the resonance ex-
be large, as compared with higher-dimensional systems, bé&itation transfer between cavities. These bound states may be
cause interference effects are stronger. In 1D the real photorsed as electron traps.
emitted by a single atom are associated with a field growing The paper is organized as follows. In Sec. Il we briefly
exponentially with the distance from the atom, up to the lightdiscuss the complex spectral representation of the Hamil-
cone[11]. The growth in space is related to the exponentialtonian for a one-atom system. In Sec. lll we introduce our
decay of the atom in time. As we will show, this exponentialtwo-atom model and its complex collective eigenstates. In
field produces significant effects on the collective states that,
in contrast to 3D systems, are not limited to the near zone of {ncjyding the complete set of eigenstates in the complex repre-
the atoms. sentation of the Hamiltonian, the exponential field outside the light

The exponential component of the emitted field can be:one is canceled by renormalized field states. This is consistent with
separated through complex spectral representations of thgwsality[11]. One can introduce complex states that are truncated
Hamiltonian [12-15, including complex eigenvalues and outside the light cone, using distributions dependent on the test
eigenstates. The complex eigenvalues are obtained throudimctions or observables. These are considered in [R6F.
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Secs. IV and V we discuss the emergence of the collective wi?

states and the bouncing of photons between the atoms. In v =v(ay) =m (6)
Sec. VI we consider the decay rate and average energy of the P Om

collective states as a function of the distance between the... _1 The constani-! determines the range of the in-
atoms. We discuss superradiance and subradiance, incmdi?(_graction. We shall assuMme that the interaction is of short
the stable collective states mentioned above. We also give r%nge i é o0 > o

heuristic discussion of the force between the atoms. In Sec. Thé éta'ltd'\i) is ﬁnstable if

VII we discuss the mapping of our model to a two-cavity
electron waveguide, and, within some approximations, show

% 2 2
that this system allows stable collective states. w > f dkﬂ. 7)
—0 Wy
Il. ONE-ATOM SYSTEM
In order to introduce the complex spectral representatiofPtherwise, it is stabl¢21]. Hereafter we will consider the
of the Hamiltonian, we consider first a single two-level atomunstable case. _ _
interacting with a field in one-dimensional space. This is the In the unstable case one can construct renormalized field
Friedrichs-Lee model in one dimension. We briefly revieweigenstates that diagonalize the Hamiltonian as
the main results. More details can be found in R&8§].
For_convenlenc_e h_ereafter we use units wherdi=1. H :2 |¢§>wk<¢§|, (8)
We write the Hamiltonian as k

H' = woH, D where

where wq is a characteristic atomic frequency akdis a

dimensionless Hamiltonian. For this dimensionless Hamil- lim| i) = k), 9
tonian, the dynamical variables time, space, energy, and mo- A0

mentum are dimensionless too.

We have and hereafter we use the summation over field modes in the
sense of Eq(3). The index= refers to either “in” or “out”
H=Ho+ AV = o 1)(1] + > apK)(K| scattering eigenstates.
k The explicit form of the eigenstates is given [b]
+ A2 Vil[k)(1] + [1)(K)). 2
‘ 3= + [|1> +3 “—"'.M, (10
7 (o) | o- o tie

The statdl) represents the bare atom in its excited level with
no field present, while the statk) represents a bare field
mode (“photon”) of momentumk together with the atom in
its ground state.

The energy of the ground state is chosen to be zeyas o 2 5 2
the bare energy of the excited level ang= k| is the photon o MV s N
energy. The coupling constant< 1 is dimensionless. For the 72 =2 = E (Z- o)t Lm0y Zfo dk (z-K')*
field modes we use box normalization. We put the system in K
a “box” of sizeL and use periodic boundary conditions. For (11)
L finite the moment& are discrete. Hereafter we will con-
sider the limitL —ce. In this limit the field modes become is the inverse of the Green’s function. The (or —) super-

wheree is an infinitesimal positive number. The limit—0
is taken after the limit —c. In Eq. (10),

continuous, i.e., script in Eq.(11) indicates analytic continuation from the
upper (or lowen half plane ofz [15]. Using the complex
2_772 R J dk. (3) delta functioné; [12] we can write
L "k
_L\-1
We have(a|b)= 46, (Kroenecker delta In the limit L — o, 1 = 2=k, . tImz>0,
’ (z-K)* |(z-K)tF27mis(k'—2), xlmz<D0.
L
— S — O(k—K'). (4) (12
27 "

The interaction term is obtained through the dipole ap-Vhenz=w is real, we have

proximation as well as the rotating-wave approximation. The

potentialV, is of orderL™Y2. For convenience we write . > Ng,
7(w=0w-w-2| dkK——. (13)
Vi = (2m/L) Y2y, (5) 0 w-k' tie
wherev, is of order 1 in the continuous spectrum lintit With the form factor in Eq(6), the Green'’s function has
—o0. As a specific example we will assume th&,20 one polez; in the lower half plane, i.e.*(z)=0,
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7 =0~ iy, (14)
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atom 2 is in the ground state and no field is present. Con-
versely, the staté?) represents atom 2 in its excited state,

which reduces tas; when A —0. The negative imaginary \yhijle atom 1 is in the ground state and no field is present.

part iy, describes decay far> 02 The real parfw, gives

The statgk) represents a field modewith both atom 1 and

the shifted average energy of the excited state. For the othgfom 2 in their ground states. We denote the location of the

branch we have;‘(z’;):o, with z*1 describing decay far<<0.

atoms 1 and 2 by, andx,, respectively. We will first assume

Note that in the representatioi®) the decay rate and that the two atoms are at fixed positions, so that the distance
shifted energy of the excited state do not appear in the spegetween them

trum. One can incorporate, (or z*l) into the spectrum by

extracting the residue of E@8) at the polew,=2z; (or z*l).
This gives the complex spectral decompositiphg—15

H =)z (¢ + zk: |¢E>wk<7f>il = |?¢‘51>21<¢1| + % |¢E>wk<?¢‘>ﬂ|-
(15

The statd¢,) and its dual'd,| are complex eigenstates kdf
Their explicit forms arg15]

AV,
|¢1>=Ni’2l|1>+2 |k>—k+}, (16)
k

(z1- wy)
~ a2 AV
b0 =[N3] [|1>+§ |k>—(z*l_wk)_},
M= |1+ D0V -0 P an
k
The statel¢;) has the same form as the sté#) with the

replacement

1 O 1 Wy~ 71
7 (w) 7 (0 (0—2)"

(18)

and similarly the statés,) has the same form as the state

|E§;> with the complex conjugate replacement.

The states in Eq(15) form a biorthormal set, with the

relations

(bl =1, (Bl =0,
(Bl o) = S (19)

and their complex conjugate relations.

lll. TWO-ATOM SYSTEM

Xo1= X = Xq] (21)

is fixed. This can happen if the atoms are heavy.
We will consider the case where the two atoms are iden-
tical,

w1 = Wy, (22)
and the potential¥,, andV,, have the forms
Vlk = Vkeikxl, V2k = Vkei ko . (23)

For V, we use the potential in Eq6). We introduce the
symmetric and antisymmetric states

v+ n-[2)
9="g =T (24)

which are degenerate eigenstates of the unperturbed Hamil-
tonianHy=H(A=0), as

Holi) = wjlj), j=sa, (25)

W= Wy = w1, (26)
We will use the notation
)1 forj=s, 27
77 1-1 forj=a,

With this notation we havﬁ>:(|1>+aj|2>)/\5.
As for the one-atom system, we can diagonalize the
Hamiltonian as

H= % P (Fil, (28)

In this section we discuss the complex spectral represen-
tation of a one-dimensional, two-atom system with dimen-where

sionless Hamiltonian

H = wg| 11| + w5 2)(2] + % oK)k + % Na(Va 1K

+ViiclkX(1)) + % No(Vaid2)CK] + V5] k)(2)). (20)

The state|l) represents atom 1 in its excited state, while

There are other poles associated with the potentidlVe will not

extract them in the complex representatiorHofas they give short-

time effects vanishing after a tinte< oy

FE) = |k + BElS) + Bifa) + > BE KD (29
k/

and
1A, .
Bi= =5 (@914 o), (30
V2 75 (@)

1 AV Y L
oo e BE e, 3y
V —Cj=sa

Bk =
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FIG. 1. Contour plot of Ifil/|75(2)|]. The contours concentrate
around the poleg;, of the Green’s function. The uppermost pole is
Z.. The complex frequency is dimensionless. The contours corre-
spond to the values -3.5,-3.0,,3,3.5 of If1/|7i(2)|]. Param-
eters arex;1=29.025,w,=2, A=0.05, wy=5.

A2

Uk!
- k’)i[l +0jcogK %1 ].

nji(z):Z—wl—Zf dk’
0

(32

Following a procedure similar to one found in REE5], one
can show that the new diagonalized staffe® satisfy the

orthogonality and completeness relations

% [FENFE = |12 + [2)(2] + % k) (K], (33)

<'~:E|'~:;/> = <EE||~:L> = Ok -

The Green’s funcuor[m (277! has poles in the lower half
plane, and converselyy; (z] 1 has poles in the upper half
plane. From now on we d|scuss only thebranch with poles
on the lower half plane.

(34)

A new feature with respect to the one-atom system is that

due to the cosine term in E¢32) there are infinitely many

PHYSICAL REVIEW A70, 032702(2004

Zj,n= wyt+ ZJ
0 Zj,n

- 47Ti)\2[vzj T1+ 0y codz xa0)]-

2
N

k!
dk’ m_y [1+0jcodk'%yy)]

(37

Assuming weak coupling and taking only the pole contribu-
tion in thek’ integral we obtain the set of equations

Bjn = 01+ 27\ (@) ) Pory €72 i@ ), (389)

Yin= 2a\v(@) ) [ 1 + 0j€"m"21 cog @) Xo1)].  (39)

Note the factor ex@y; »x»1), which grows exponentially with
the distances,; between the atoms.

In Fig. 1, the pole of %(2)]~* with real part closest to the
unperturbed frequency, is also closest to the real axis. We
call this polezs=z,. Similarly, for[75(2)]"* we denote the
pole closest tav; asz,=z,,. Both these poles are obtained
by a perturbation expansion around0. We have

as\ — 0. (40)

If X541 is Not too largeXy; ~ 711 or smallej, one can show by
substitution into Eqs(38) and (39) that the poles,, are
given by

Zj’nz{

where 6z , is an O(\?) correction. The approximate value
Re(z ,—z) predicted by this equation agrees with Figfdr
j=s) and a similar figure foj=a, which we omit.

We write the poleg; as

Zj,0: Zj — W7

Zj+2n’7T/X21+ 82“-, for a]-n>0,

41
z + (2n+ o)) ¥, + 6z, fOr on <0, 41

The polesz;, having the smallest decay rates will give a
dominant contribution to the time evolution after a few
bounces of the field between the atoms, when the complex
collective states defined in E@3) emerge.

As in the one-atom system we can obtain complex eigen-
states ¢;) of the total Hamiltonian, such that

poles of the Green’s function, as shown in Fig. 1. We label

the poles as
Zj'n:?uj'n—i‘yj'n, (35)
wheren is an intege?.
The polesz; , are solutions of the equation
7} (z) =0. (36)

In the following we discuss this equation and its solutions.
From Egs.(12) and(32) we obtain

Hl¢)) =z ). (43
Their explicit forms are given by
—1/2)\Vk
) =N I+ 2 o e ol |
Wy
(44)
where
)\2V2 -1
[1 K G- wk)+]2 (1+0 coskx21)] . (45

For these states we hajg;) —|j) asA —0.
The dual states satisfyin@j|H=z(¢;| are given by
2—1/2

~ V, . .
(& = Nj”zlal + 3 2 MY o ajék&xkﬂ . (46)

k (Zj —wy)”

3As in the one-atom system there are in addition poles associatefis in the one-atom case, we have the complex spectral rep-

with the potential.

resentation
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H= 2 |z + 2 FowdFl, (47)
]

=sa k \
where |F;) has the same form as the stdg) with the
replacement 01

Py(®)

1 1 (x)k_Zj

. 48
(@) 7w (0=7)" “ 0.01

We have as well the complex conjugate representation, tak- \
ing the complex conjugates of Eqgl7) and (48). \

0.001
IV. EMERGENCE OF THE COMPLEX 0 1 2 3 4 5 6 7

COLLECTIVE STATES t

The time evolution of the two-atom system can be solved FIG. 2. Logarithmic plot of the survival probability,(t) (solid
by using Eq(28) or Eq.(47). As an example we assume the line) and complex collective-state componéht,{t) (dashed ling
atoms are initially in the symmetric staf® and the initial Timet has been scaled to units xf;=29.025. The crosses indicate
field is zero(similar calculations can be done if the initial the decay rate %, 7,=0.0233, between=0 andt=1 (see Sec.
state iga)). We will calculate the survival probability of state V)- Parameters are, =2, A=0.05, wy =5, andL=500.
1),
| the summation. For later use we define the amplitude in Eq.

Pa(t) =|(1/e™™|s)%. (49 (50 as
Before we go into details, we can guess the behavior the 22
system will show. Since the initial state is symmetric, the _ it AV
following discussion also applies with atoms 1 and 2 ex- A = % € |7,;(wk)|2(1+COSkX21)' (53)

changed. Say atom 1 is to the left of atom 2. At the begin-

ning, atom 1 decays and emits a field. Half of this field will  The dominant contribution t®(t) will come from the

be radiated away to the left, while the other half will reachpoles of the Green’s function shown in Fig. 1. The different

and excite atom 2. Atom 2 will then decay and emit its ownpole contributions should add up to give the bounces seen in

field, part of which will be radiated away to the right, the restFig. 2. But rather than computing all the pole contributions,

going to the left, back toward atom 1. Continuing this pro-we will follow an easier method in Sec. V.

cess, we see that energy will bounce back and forth between Here we will focus on the pole;. As mentioned before,

the two atoms. As time passes, this energy will decrease dubis will give the dominant contribution after some bounces,

to the outgoing radiation. Eventually both atoms will decaysince it gives the slowest decay rate. It is this pole contribu-

to the ground state. Noting that the time it takes for the fieldtion that is extracted in the representati@tv). Using this

of one atom to reach the other atomtisx,; (with c=1) we  representation and noting th@ap,|s)=0, we have

conclude that, as it decreases, the survival probability should

oscillate with periodx,;. _ -izgt/ it/ | 2
This behavior is shown in Fig. 2. This was obtained Put) = | {1l doe™*Xdds) + Ek“ (AFge™XFils -

through a numerical solution of Schrodinger’s equation. The

field was discretized into 2501 modes. The eigenvalues and

eigenfunctions of the Hamiltonian matrix were obtained us—_l_h q . buti ¢ | h

ing tridiagonalization and the “QL” method based on the € S€CON term contains contributions from poles other

D . + -1 :
decompositiorH=QL, whereQ is an orthogonal matrix and tha_nzs of the_ Green's function 7;(w)]™ as v_veII as c_:ontn—
L is a lower triangular matrix22]. This allowed us to cal- butions coming from the branch cut of this function. Ne-

culate explicitly the operator expiHt). For this and the sub- 9lecting all these contributions we obtain
sequent numerical plots we used the following parameters:

(52)

=2, \=0.05, wy=5. Other parameters are indicated in Py(t) = Py dt) = [(1]poe ™ (dyls)2. (53
each figure. o o

In order to calculate the survival probability analytically, This is represented by the dashed line in Fig. 2. After a few
we start with Eq(28), to obtain bounces the initial statgs) reaches the collective stafiés).

' o . o 5 We turn to the time evolution of the field. Defining the
P1(D) = [(1e™ X [FRx(Filo)l* = ‘ > e KRR state
k k
2\ /2 2 1 y
— E E e—iwkt)\—vk(l + COSkXZl) , (50) |¢(X)> = 2 (Zw—L)llze Ikx|k>’ (54)
2| % | me(@))? K “

where we used the fact that odd functionskofanish under the intensity of the field in space-time can be written as

032702-5



G. ORDONEZ AND S. KIM PHYSICAL REVIEW A70, 032702(2004

0.006 — T T T T T T T T T 0.006
0.005 1 0.005
0.004 1 0.004
X 0.003 | ] X 0.003 |
0.002 | . 0.002 [
0.001 . 0.001
A E 1 B G o L.
4 3 2 44 0 1 2 3 4 5 -4
X X
FIG. 3. Field intensityP(x,t) for t=0.3%,4,. Space coordinate FIG. 5. Field intensityP(x,t) for t=4.02,, (solid line) and the

has been scaled to unitsxf;=29.025 and?(x,t) is dimensionless. complex collective-state componeR}{x,t) (dashed ling Space
The atoms are located a;=0 andx,=1. The parameters are the coordinatex is in units ofx,;=29.025 andP(x,t) is dimensionless.
same as in Fig. 2. The outer smaller peaks &f(x,t) come from the initial one-atom
emission. The inner, larger peaks come from the emission after the
_ ETNENT first exchange of energy between the atofix,t) asymptotically
Py = |<1,0(x)|e |S>| ) (55 approache®,{x,t) asx approaches the atoms. They coincide in the
Again we calculated this using the numerical solution ofregion between the atontbetweenx=0 andx=1). Parameters are
Schrodinger’s equation. The intensity of the field is plotted inthe same as in Fig. 2.
Figs. 3-5 for different times. At the beginning, both atoms
emit their fields spontaneously. Each field has an exponereollective state with complex energy emerges.
tially growing envelope(plus corrections due to the initial As we discuss now, the exponential field has a strong
dressing processdd1]), which stops at the light conx  influence onz,. The field amplitude associated with the col-
-x| =t (Fig. 3). lective states is given b{k| ;). This amplitude in turn de-
After each emitted field reaches the neighbor atom, abterminesz; through its interaction with the atoms. We have
sorption and reemission occur. The two atoms exchange en- L
ergy, and the fieldP(x,t) around the atoms starts to approach _ 4 ikx ik
the field intensity due to the collective state given by 4= et \Z—NJ% ML+ eIy, (57)

P,d%.t) = [(¢(X)| pexp(~ izst)(pqs)|? (56)  where we used Eqg43), (44), and(32), with w=2;. Since

(see Fig. 4 The collective state decays exponentialjg. <k|¢>j> are functions ofz, this is a self-consistent relation.
5). From Eqgs.(38) and(39) for z ;=z;, we get
. In summary, the atoms emit a fi'eld grpwing exponentially (K ;) o explyXa1) (58)
with the distance from them, within their light cones. After
the field emitted from each atom reaches the other one, theue to the exponential nature of this factor, the pglenay
deviate substantially from the one-atom pale

0.006 ——————————————— In spite of the exponential factor, for increasirg EQs.
‘ / (38) and (39) can still have solutions sincg; decreases at
0.005 least as
-1
0.004 | Y~ X1 (59
2 0003 | for I_argex21. This decrease of; with increasingx,, is seen
o - in Fig. 6.
0.002 |
V. BOUNCES
0.001 |
In this section we describe the energy bounces between
0 ” 3 5 é‘ 3 ‘j( 5 the atoms, seen in the survival probability®f(t) of atom 1

(since we are assuming the initial state is symmetric, the
survival probability of atom 2 is the saméNe discuss how

FIG. 4. Field intensityP(x,t) for t=1.12, (solid line) and the ~ repeated bounces lead to the appearance of collective states.
complex collective-state componeRtyx,t) (dashed ling Space ~We obtain a piecewise expression for the survival probabil-
coordinatex is in units ofx,;=29.025 andP(x,1) is dimensionless. ity, which gives a connection with the results presented in
Parameters are the same as in Fig. 2. Refs.[5,6].
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0.1 x A(K) = - 2min%2ee, (64)

that reduces taw; when\ — 0. Let this pole be

Zg = g~ 1Yg- (65)

Xp1. FOr X1 w,* we have

9~17. (66)
We expand 14:(k) as
FIG. 6. The decay rateg; (X) andy, (+) oscillating as a func-
tion of x,1. The solid line is the one-atom decay ratg=0.0235.7y, 1 1 * A(K)"
vanishes for distances close 2n—1)#/®,, and vy, for distances R = E " 1 (67)
close to w/w, with n integer. Forx,1=12.7=8x/w,, y, van- 75K 7g(K) = AK) o [74(K)]

ishes, whiley, takes its maximum value. For large, the decay

rates decrease. Boky; and y;, are dimensionless. The expansion is possible since

— > N2 (1 + cosk'x,y)
As shown in Fig. 2, the decay rate &,(t) changes ngl(k):k—wl—zf dk'P -
abruptly att=x,,. For t>Xx,; the decay rate quickly ap- 0 k—k

proaches the collective decay rayg The wiggling of the 2.2 i \2.2

decay rate shows the absorption and reemission of the fields, + 2mviesinkogy + 2N v (68)
or in other words the energy bounces. Fo<x,; the .\ .

decay rate should be close to the one-particle decay rate. |AK)] = Im[ 9 (K)]] < [ 72 (K] (69

To analyze the energy bounces and the decay foy, . . .
0=t <y we first note that Using Eq.(67), Eq. (61) is written as

o —ikt
n;(k) = n5(K) = 4 szﬁ(l + coskXyy). (60) A(t) = i dk e_
2mi 0 ns(k)

Hence in Eq(51) we can write

1w (7, (- 2miN2p))nekit-mey
e MR S | e e (70)
At) = 2f dke"“’kt| +(ki)<|2(1 + CoSkXyy) Thn=0Jo [7(K)]
’ * In Eq. (70), the pole contributions come from [iafg, (k) ]™*™.
-1 xdk 1 1 ikt 61) For n=0, ™/ 75,(k) has a simple pole in the lower half
“ 2@ ), 7K 7i(K) ' plane atk=zy. Its effect appears fdr>0, when we can close

the integration contour in the lower half plane. For 1,

The function[ 7, (k)]™* has one pole in the lower half plane

This is essentially the pole of the one-atom Green'’s function,
modified by the overlap of the atomic clouds at the distance

Sincee™ vanishes in the lower infinite semicircle of the e kt-x1/[ ;% (k)]2 has a double pole. Its effect appears for
complexk plane fort>0, we can take the pole contributions, t>x,,. In general, for eack,, time step there appears a new

extending thek integration from <o to « and closing the pole effect which is smaller by ordev? than the previous

contour with this semicircle. Only,;(k)]™ has poles in the pole effect. In this way we can explain the wiggling decay

lower half plane. We writep; (k) as rate (Fig. 2.
) As we discuss now, this description of the bounces is
. o )\ka,(l + CoK'Xyq) . connected to emergence of the collective state. Approximat-
75(K) =k = w; = ZJ aK = 74K —AK), ing (for A\<1)
0 - le
(62 na(K) = k-2zg, (71)
where 7% (k) is defined by the pole contributions in Eq70) are given by
-1(" 1 ‘
oc NZ, 1 Aoty = — J dk——————¢
) =k — . — _° Zaikxpg 0 2mJ)_, k-zg-AK
7q(K) =k—w; Zfo dk k—k’+ie<1+2e ) ! zy —A(k)
T n
% )\Zvi,e—ik’x21 = —12 dk&nﬂ ikt (72)
- f dk ———— (63) 2minzo ) (K= 2Zg)
0 k—k' —ie
Taking the residues at the pdte z;; we obtain an expression
and of the piecewise form
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o 2.06
Ao(t) = 2 8(t = X)) gn(t), (73) 2 04 EEERRERRERT
n=0 i 4 i ! !
where 202 Af \
o 2 ERY ;
19 . J ‘*
gn(t)z_ __nA(k)ne_lkt . (74) 3 1.08}34 33341435
n! gk kez, ’ ‘ a7
1 1 96 §7
We haveg,~\?". Note that the sum stops at such that
t<nxy;. Since for weak coupling the tern,(t) become 1.94 P 1
smaller as increases, after a few bounces we have 0 5 10 15X 20 25 30
21
Ao(t) = Ag(1), (75)

FIG. 7. The energie®s (X) and w, (+) as a function ofx,;.
where They oscillate withx,;. The solid line is the one-atom energy
=1.985. Bothx,; and w5 are dimensionless.

Aglt) = 2 gn(b). (76)  Green’s function. Gaps in the graphs are points missed by the
n=0 numerical solution.
As shown in Appendix A we have As we see,y; and j oscillate withx,;. The oscillation
period is approximately 2/w; where w, is the one-atom
;lo(t) =Nge % (77) renormalized frequencgisee Appendix B
Due to the oscillations, the collective decay rate can be-
for all t>0, where come smaller or larger than the one-atom decay (séd
1 line in Fig. 6. We have subradiance and superradiance, re-
Ng= ——————— (78 spectively. In particular, it is noticeable that there are dis-
1= 9AK)/ 0K | =g tances at which the decay ratgsvanish(see Appendix &

This means that for these distances there is no outgoing ra-
diation. The outgoing emitted fields of the atoms cancel by
destructive interference and a standing field is trapped be-
tween the two atoms, storing energy. Note that both symmet-
ric and antisymmetric initial conditions can give rise to either
subradiant or superradiant states, since bgtand vy, oscil-
late with x54.
Mea(Zsn) = A(zg) =0 (79 The oscillations of the decay rate and the energy shown in
Figs. 6 and 7 are a unique feature of one-dimensional sys-
or tems. For two or three dimensions, these quantities can
- change significantly only for short distances between atoms
Zn =~ Zg + A(Zsp) (80) (see Appendix G
[for x> wIl we havezy = z; and we recover Eq$38) and As an example of subradiance and superradiance we show
(39) for j=5]. numerical simulations with the same parameters used in the
The functionk—zy —A(K) in Eq. (72) has zeros ak=z/,. previous examples, except we choase250(to have higher
Fort—oe only the residue at the pole=z;o=zs remains, and space resolutionand x,;=12.7. For this value ok,;, the
we get decay rate of the antisymmetric state vanishes while the de-
_ - cay rate of the symmetric state is maximysee Fig. 6. In
lim NG e Aqg(t) = imNGe= Ag(t) = 1, (81)  Fig. 8 we show the survival probability of atom 1 for anti-
e o symmetric and symmetric initial conditions, showing the ap-
which is consistent with Eq(77). pearance of stationary subradiant collective state and a su-
perradiant collective state. In Figs. 9 and 10 we show the
VI. DECAY RATE AND ENERGY VS DISTANCE corresponding fields.
We turn to the force between the atoms. Here we will give
In this section we investigate the behavior of the complexonly a heuristic discussion. A more detailed analysis requires
eigenvalues of the Hamiltoniaz for different values ok,;.  including the Casimir-Polder or van der Waals forces be-
The equatiory;(2)=0 can be solved numerically by itera- tween the atoms, as well as the inertia of the atoms, which
tions of z=z- 77]-+(z). The imaginary and real parts afthus  we are not considering in this paper.
obtained are shown in Figs. 6 andwe used the same pa- Since the atoms are unstable, the force between them
rameters as in the previous figuyeShe numerical iteration should be time dependef3]. We expect the force to decay
was started around=w; so, with the exception of two iso- exponentially during the time scales where the collective-
lated points seen in Fig. 6, the solutions obtained are thetate components dominate. For the dependencs,@f the
collective eigenvalueg=z and not the poleg;, of the force, the quantity

for weak coupling. Equatio77) shows that the sum of all
bounces gives the contribution from the collective staig
with eigenvaluez,

Equation(77) is consistent witlgg giving the slowest ex-
ponential decay. To see this we use KE62) to write the
equation forzs,, as
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0.6 . . . . . . . o-—_——
0.5 1 0.008 | ]
0.4 | :
0.006 1
= : o)
- 03 =
0.004 - 1
02t ]
o1 b | 0.002 | 1
0 \ L ey . \ . ! 0 L . . o . L ! L
0 1 2 3 4 5 6 7 9 7 5 3 101 3 5§ 7 9
1 X
FIG. 8. Survival probabilityP,(t) of atom 1 for antisymmetric FIG. 10. Field intensityP(x,t) for initial condition |s) at time

initial condition (solid) giving rise to a subradiant stationary collec- t=7.0%,,. Space coordinate is in units ofx,;=12.7 andP(x,t) is

tive state, and symmetric initial conditiqdashedl giving rise to a  dimensionless. The collective state has decayed. The smaller peaks

superradiant collective state. Befdrex,;, P;(t) has the one-atom on the far sides are the field emitted individually by each atom

decay rate. Timé has been scaled to units xf;=12.7. before attaining the collective state. The larger peaks correspond to
the two-atom collective emissigisuperradiance

]:]' == dZ)j/dXZI (82) . o ) . .

points suggests the possibility of having a one-dimensional

can give an indication becaugg is the average energy of “molecule.” This molecule would have a lifetime of the order

the collective state. of ™.

As we can see in Fig. 117 oscillates withx,, (F, has a
similar behavioy. Fs>0 corresponds to a repulsive force, VII. TWO-CAVITY WAVEGUIDES

and.F,<0 to an attractive force. Attraction is strongést is ) ) . .
locally a minimum) when the collective decay rate is largest  S° far, we discussed various properties of collective decay
(=5 is locally a minimum as wejl The atoms tend to attract states for the one-dimensional two-atom model which is ex-

each other when they emit the field outward and tend to repé’}Ctly solvable. Not' only is it theoret.ically simple, this model
when the field remains trapped between them. has another practical advantage since some systems can be

We also see in Fig. 11 that there are poixﬁ§for which mapped ?nto similar form. After the mapping_is done, we can
F, vanishes. IfdF./dx; <0 at these points, then any small S€€ in different systems the same properties we discussed
displacement\x,; aroundx?; creates a force in the opposite Pefore- . . . .
direction. Thus in this cased, are stable points(if One specific example is a two-cavity electron waveguide

dF./dxy >0 the points are unstableThe existence of stable (Fig- 12. As shown in Refs[17,18, the two-cavity wave-
guide Hamiltonian can be mapped into the same form as Eq.

(20), and the same properties we discussed above can be
found. Here we present the main ideas. More details will be

given in a subsequent papd4].

0.006 | | The waveguide can be constructed by superposing two
closed identical cavities and a lead in two-dimensional space.
When we consider the cavities and the lead separately, this

0.008 — T T T —— T T T T

X 0.004 | ]

(=

JANIANS NN e et e

0.002 | | VRY; v V A

-0.1
©w=-0.2 «
N . W X
9 7 5 -3 101 3 5 7 9 -0.3
X -0.4
FIG. 9. Field intensityP(x,t) for the atoms in a stationary col- -0.5
!ecti.ve stqte. Space coqrdinatés in units ofx,,=12.7 andP(x,t) 5 10 5 >0 25 30
is dimensionless. The field between the two atoms located- at Xo1

and x=1 remains trapped. The initial condition ja). Time is't

=7.0%,;. The wave packets on each side move outward with the FIG. 11. Graph ofFs=—dws/dx, (black ling) and the decay rate
speed of light=1. They were emitted before the atoms formed the—y, (dotted ling. We see that wheny; is a local minimumFg also
collective state. After that, emission stopped. has a local minimum value. All variables are dimensionless.
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modes; they essentially represent the electron inside the part
of the lead that does not overlap with the cavities. The terms
Vi(k,I) represent the amplitude of a transition of the electron
from this part of the lead to the cavities, or vice versa. Their

w
detailed expression is given in Re{d8,24. Here we note

only that they have the forms

— ik
FIG. 12. A two-cavity waveguide. Va(k D) = V(K I,%1, %) €7,

— ikx

forms an unperturbed system. The interaction appears as the Valk ) = Vik Xz, x)) €. (88)
cavities and the lead are connected. The HamiltoniarH,y¢ has the same form as our two-atom

In suitable units the horizontal dimension of the cavities isFriedrichs-Lee model Hamiltonian. As the two cavities are
1, and the vertical dimension 3. The lead has a horizontal identical, we have a system analogous to the two identical
dimensionL — and a vertical dimensioW. We consider a atoms. Since there is only one continuous vari&btescrib-
nonrelativistic electron, neglecting the spin. ing the propagation along the lead, we can think of the wave-

If the electron is placed inside a closed cavity, its waveguide system as a one-dimensional system, with internal de-
functions correspond to discrete cavity modes. The cavityree of freedont (note thatl is discretg.
modes can be labeled fs,n), wherem,n are positive inte- Similar to the results of Sec. Ill we obtain the equation for
gers representing the horizontal and vertical wave numbershe complex energy of the collective state
The corresponding energies are

If;(k,1)|?

&= n? + n?/D2. (83) =8+ 2] dkE
0

o (@ -E)*
An electron placed inside the led@dith no cavitie$ has . .
modes that can be labeled fisl) wherekL/ is the hori- ~ Wherefj(k,1) is a function ofVy(k,1) and V;(k,1). We will

zontal wave number antl the vertical wave number. The Show that there is a solution with vanishing decay rate, cor-
energies are responding to a stable collective state. We follow the proce-

dure shown in Appendix B. For a vanishing decay rate we

5 — (1 +0jcoskx,), (89

— 2] -2 2 ~
By = Ko/ + 1210, 84 \write 2=7-ie, wheree>0 is infinitesimal. This gives the
As L—, k becomes a continuous variable. On the othefollowing condition onxy;:
hand,m, n, andl are always positive integers. 1 + oy coskgXpy = 0 (90)
We consider an electron with low energy narrowly cen- :

tered around wherek, is a wave vector that satisfies

&= ¢gmoro, (85) Ei=&, I=1. (92)
We assume that Through these two equations, for the vanishing decay rate

Eo1< & <E (86)  becomes a function of,

for I>1 and allk. The electron may propagate through the R n

first mode of the lead, but not through the 1 modes. Xo1= g(g?) - /~—
We also assume that there are no other cavity modes with ~Eox

energy betweef, ; and£°. Under these conditions, the cav- wheren is an odd integer foj=s and an even integer fgr

ity mode £° behaves essentially like the excited state in the_ ; The renormalized energgp is given by solution of the
Friedrichs-Lee model. It will decay with a finite lifetime. integral equation

This means that an electron inside the cavity will escape
through the lead. * )
The following approximate Hamiltonian is obtaingt8]: 5}): &+2 , dkgi I (k, D[P

(92)

{1+ 0; cogkg(&)1},

i~ Bkl

Hwe = £ 1)(1] +[2)(2[] + f k> Byl i) (i ©3)
0 = where P means the principal part. Similar to Eg11), this
(Jw o ) equation has a solution if the condition
+ o
* 1
0 E-Ey > 2f dkX [fi(kD[PP——— (94
(87) 0 =1 Exi — Eoy

Here, H.c. means Hermitian conjugate. The cavities are ceris satisfied. If the interaction between each cavity and the
tered atx=x, andx=x,, wherex is the horizontal coordinate. lead is small, we can repladek,|) by the interaction in a
The statedi) represent the electron inside cavityl or 2,  single-cavity system. Then, E(P4) is essentially the condi-
occupying the mode®. The stategi,) are modified lead tion that the electron in a single cavity waveguide has
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enough energy® to escape through the lead. This condition G. Akguc, R. Barbosa, Dr. E. Karpov, Dr. C. B. Li, A. Shaji,
is analogous to EqY7). and M. Snyder for helpful comments and suggestions. We
In summary, by adjusting the distance between the caviacknowledge the International Solvay Institutes for Physics
ties[so that Eq(92) is satisfied we obtain a collective stable and Chemistry, the Engineering Research Program of the Of-
state where the electron remains trapped inside the two caviice of Basic Energy Sciences at the U.S. Department of
ties, in either a symmetric or an antisymmetric state. TheEnergy, Grant No. DE-FG03-94ER14465, the Robert A.
electron is trapped even though it would escape if there wag/elch Foundation, Grant No. F-0365, and the European
only one cavity. Commission, Project No. HPHA-CT-2001-40002, for sup-
To obtain this result we neglected the influence of cavityporting this work.
modes other thag®. The description of the system improves
as more cavity modes are includgB]. APPENDIX A: PROOF OF EQ. (77)
The existence of stable configurations in the waveguide e start with the expressidisee Eq(76)]
could be verified by other methods, including numerical .
) X . . X n
simulations calculating th& matrix, or experiments. Jigft) = iz dk A(k) ikt

— Al
2minsoJc (k_zsl)n+le , (A1)

Vill. CONCLUDING REMARKS whereC is a clockwise contour surroundifg=zy;. Taking

We have analyzed a one-dimensional two-atom systerthe residues at this point we get
using complex collective eigenstates of the Hamiltonian. We * 1
founq that, in contrast to 3D systems, in 1D collective effects A= _I_”[ A(k)ne—lkt]k:ZSl_ (A2)
persist for large separations between the atoms. The collec- n= K

tive symmetric and antisymmetric states are not limited to_ . . . . T
41|s is a perturbation expansion aroung, so it will corre-

the near zone and remain appropriate for large se aratiorT .
(far zong bprop 9 P spond to the contribution from only the patg and not the

The collective effects we described, such as the oscilIapOIE’WSZSv“:II how that
tions of the collective decay rates, have a physical realization € will show tha

in mesoscopic analogs of atomic systems, such as electron 9~ o~

waveguides. Models of 1D atoms and waveguides with cavi- av‘lo(t) == izsAo(1). (A3)
ties are quite similar, as they describe discrete energy levels

coupled to a continuurfiLg]. Together with Eq(81) this will prove Eq.(77). Starting with

Our method is based on an analysis of the complex poleEg. (A2) and using
of the Green’s function. One advantage of this method is that (9” n nl il 4
it dlrec_tl_y gives the collective (_1eca_y rate of the survival Z_AB=> _[ _AH_B] (A4)
probability, as well as the collective field between the atoms, K" =1L ok || oK
which emerges as the atoms exchange real photons. .
In the present paper we focused on real photons and nd‘€ obtain
glected virtual processgsuch as virtual photon exchange J ~ o~ -
when both atoms are excitedn the waveguide problem, EAO(D = —izgAo(t) —iA4(1), (A5)
virtual processes do not exist. Hence, as long as we focus on
waveguides, we need not include these processes. On théere
other hand, for two-atom systems, these processes do exist

and they give a correction to the energy shift and the decay Y - -1 n+m ikt
rate of the excited states. For weak atom-field coupling this An(® g’o n! &k”[A(k) € ]kzzsl' (A6)
is a small correction, which nevertheless is worthwhile to )
consider. This will be done in a subsequent paper. Using Eq.(A4) again we get

Emitted photons are described by an exponentially grow- B . 4
ing field, truncated at the light cone of the atoms. This field A= = A (05 [AK) e, - (A7)
plays an important role in the two-atom system, giving a i=o I! K '

strong influence on the lifetime or average energy of the,, - i
collective states. This field is directly related to the exponenq-/\./Ith Efq‘A((80)| for ZS’Od_ZS ZSl?.AéZSt)haP?hthe Tlai/'lor e>]<cptz:]r'1
tial decay of unstable states, which can be regarded as one P © st) aroundzy we fin at the solution ot this
the simplest dissipative phenomena on a microscopic scal8YStem of equations is
So, in a sense, the formation of collective states is a micro- (4 = 1

- T : A (t) = A(zy) A1), A8
scopic nonequilibrium process, driven by dissipation. (0= Az) AoV (A8)

which combined with Eq(A5) proves Eq(A3).
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distancex,, between the atoms. First we will show thgat o > o 1 2nwk
vanishegcomes infinitesimally close to zeréor distances W= w1+ 2] diknvi P 1-cos =0
0 a
(2n+ 1) B11
(X2 y=0= = (B1) (B11)
s Using graphical methods it can be shown the first equation
wheren is an integer, and has a unique solution for each integerprovided that
w2 =[®g], -0 B2 * 1 2n+ 1)k
ws =[wsl 0 (82 Wy -2 Iimf dk)\zvﬁPE{1+cos%} >0.
Similarly we will show that the decay ratg, vanishes for @070 s
(B12)
_2nm
[Xa1ly=0= o (B3) In the limit @3— O the cosine term gives a vanishing integra-
a tion. Thus Eq.(B12) is satisfied if Eq.(7) is satisfied. A
where similar argument applies to the second equatio(Bihl).
Equations(B1) and (B3) explain the oscillatory behavior
;;,g:[g,a]yazo, (B4)  of vy seen in Fig. 6.
To explain the oscillations odb; we note that the terms
We start with the equation;(z)=0 or inside brackets in EqB11) are even irk aroundwy, regard-
- less of n. On the other hand, the principal parts are odd.
B * Nvy Hence the product is odd and the integration aroTuﬁdan—
Z= oyt Zfo dk(zs_ k)+(1 + coskxgy). (BS)  ishes. Thus the largest contributions to the integrals come
from the tails of the principal parts. The “1” terms inside the
Assumingzs=2-ie with infinitesimal e we have brackets give a much larger contribution than the “cos”
terms, because the latter oscillate with Neglecting the
5 * A2 “cos” terms, we get
wg =“wt+ 2 dkﬁ(l + COSkX21)
0o WsTK¥Ile @~ @~ B, (B13)
” 1 ~ -~ . . .
=gt Zf dk)\2v§|:P~o - i 8(wg — k) wherew, is the one-atom shifted energsee Eq(14)]. This
0 ws—k shows that thé»; have approximately the same values when
X (1 + coskXyy), (B6) their re;pectiveyj vani.sh..From Eq(Bl§) we conclu_de that
the period of the oscillations of; and w; is approximately
where we used the relation 27l w;.
Adding Eqs.(B5) and(B9) we see that for weak coupling
1 1 ) the poles of the one- and two-atom Green’s functions obey
=P— - 7idw) (B7)

w+ie the relations

together with Eq(12). Comparing the left- and right-hand Itz
sides of Eq(B6) we see that the imaginary part should van- a= 2
ish, so we get

(B14)

B So bothw; and y; oscillate around the one-atowy and y;,
1+ COSwiXy1 =0, (B8)  respectively.
_ . ) Finally, we show that the “forceF between the atoms is
which proves Eq(B1). In a similar way, starting from the 5 |5cal maximum when the decay rate is zero, as seen in Fig.

equation forz,, 11. Wheny,=0, we have
S T ~ -
et ZJ dk(z —vllz)Jr(1 - cosky), (B9 d—fg =- dag ~ 2] dkn2iP L k? cos(zn ! 1)7Tk.
0 a dX21 dx%l 0 Z)g - Z)g
we get (B15)
1 - coSwgXp1 =0, (B10)  As argued above EqB13) the integral of the cosine is

. small. Hence we have
which proves Eq(B3).

The Z)f satisfy the integral equations dFe
o 0. (B16)
* 1 2n + 1)k 21
Zu§zw1+2J dk\2viP=5 [1+cos%],
0 ws—k Wg A similar argument may be applied 1B,.
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APPENDIX C: SUBRADIANCE IN d>1 DIMENSIONS ™
f Q(0)dH[1 + oy cos('d)?xﬂ cosd)]=0, (C2)

In one dimension, the vanishing of the collective decay 0

rate occurs for distances given by the conditions whered is the angle of the wave vectarwith respect to the

line joining the two atoms. The functiof is 2 ford=2 and
1+0;COSE%p; = 0. (cy  sindford=3. o _
We see that EqC2) can be satisfied only for the antisym-
metric state with o;=-1 and for short distances;;
Assuming the potential, is rotationally invariant, ind>1 <[z),°]-lzz);1. This agrees with the results of Stephieh

dimensions, analogous conditions would be anticipated by Dickd1].
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