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We have observed and located more than 60 magnetic field-induced Feshbach resonances in ultracold
collisions of ground-state133Cs atoms. Multiple extremely weak Feshbach resonances associated withg-wave
molecular states are detected through variations in the radiative collision cross sections. The Feshbach spec-
troscopy allows us to determine the interactions between ultracold cesium atoms and the molecular energy
structure near the dissociation continuum with unprecedented precision. Our work not only represents a very
successful collaboration of experimental and theoretical efforts, but also provides essential information for
cesium Bose-Einstein condensation, Cs2 molecules, and atomic clock experiments.
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I. INTRODUCTION

The collision properties of an ultracold and dilute atom
gas are strongly influenced by the long-range interactions
between two atoms. When the interaction potential supports
a weakly bound state near the scattering energy, the atomic
collision properties can be resonantly altered, a situation re-
ferred to as a Feshbach resonance[1,2]. In many cold-atom
systems, magnetically tunable Feshbach resonances have
been discovered and have led to ground-breaking observa-
tions including the implosion of a Bose-Einstein condensate
(BEC) [3], the coherent coupling between an atomic BEC
and molecules[4], the creation of bright solitons[5], and
recently the creation of ultracold molecules[6–8] and of a
molecular BEC[9].

The collisional properties of ultracold cesium atoms have
intrigued experimentalists and theorists because of their large
clock shifts[10], enormous collision cross sections[11], and
the extreme difficulty to reach BEC[12]. These anomalies in
the atom-atom scattering can be explained by the coupling of
the scattering continuum to molecular states. While these
states cannot be accessed by conventional spectroscopy[13],
they may be tuned into resonance with the scattering con-
tinuum and induce Feshbach resonances. Detection of mul-
tiple Feshbach resonances, or Feshbach spectroscopy, per-
mits a precise determination of the long-range interaction
parameters, as well as the molecular structure near threshold.
With this information, the cold collision anomalies can be
resolved and the clock shifts[14], collision cross sections

and scattering lengths can be accurately calculated[15].
In this work, we report the observation of more than 60

Feshbach resonances of cesium atoms in 10 different inci-
dent channels. In particular, we employ a radiative detection
scheme to resolve narrow resonances[6,16] whose locations
allow us to significantly improve our determination of Cs
interaction parameters over our previous work[15,17]. With
these parameters, the molecular energy structure near thresh-
old as well ass-wave scattering lengths and collision prop-
erties can be precisely determined.

We organize the paper as follows. First, we outline the
experimental setup and procedures and the general measure-
ment methods in Sec. II. We present and discuss the results
from inelastic Feshbach spectroscopy, elastic Feshbach spec-
troscopy, and radiative spectroscopy in Secs. III–V, respec-
tively. In Sec. VI we discuss the Hamiltonian for two
ground-state cesium atoms and approximate quantum num-
bers for the system. The numerical procedures for calculating
scattering properties and bound-state energies are presented
in Sec. VII. Section VIII analyzes all observed Feshbach
resonances and assigns quantum numbers to each resonance.

II. EXPERIMENT

A. Feshbach spectroscopy

Feshbach resonance in binary atomic collisions is illus-
trated in Fig. 1. Interacting atom pairs in the scattering con-
tinuum, or scattering channel, couple to a discrete bound
state supported by a closed channel with higher internal en-
ergy. This coupling resonantly alters the outgoing scattering
amplitude in the scattering channel(elastic collision reso-
nance) and in the lower-lying open channels(inelastic colli-
sion resonance).

In ultracold-atom experiments, Feshbach resonances can
be observed in elastic and inelastic collision rates[2,18] and
in the molecular population, probed by photoassociation[19]
or photodissociation[6] as shown in Fig. 1.

In most cases the magnetic moments of the molecular
state and the scattering continuum are unequal, such that the
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energy difference between the molecular state and the collid-
ing atom pair can be tuned by means of an external magnetic
field. The molecular bound-state energy structure near the
dissociation threshold is then reflected in the magnetic field
dependence of the atom-atom scattering. A measurement of
the ultracold collision properties as a function of magnetic
field (Feshbach spectrum) in combination with theoretical
modeling thus unveils the underlying molecular spectrum. In
this work, we are able to associate each resonance with its
quantum numbers of both the incoming scattering channel
and the molecular state, where it is noteworthy that thes, p,
d,… partial waves of the incoming channel and of the reso-
nance need not be the same. A collection of Feshbach spectra
for colliding atoms in several different quantum states then
provides the information necessary to accurately determine
the long-range interaction parameters and the molecular en-
ergy structure near the dissociation continuum.

B. Preparation of ultracold high-density samples

In order to measure Feshbach spectra with good signal-to-
noise ratio and high resolution and to simplify the theoretical
analysis, it is favorable to use high-density samples of ultra-
cold atoms confined in a trap that produces negligible tensor
light shifts of the atomic and molecular energy levels[20].
We use a far-detuned, linearly polarized, one-dimensional
(1D) optical lattice trap to confine the atoms, in conjunction
with an optical cooling method that can produce high-density
samples atmK temperatures[21,22].

Figure 2 shows schematically the experimental setup. Ul-
tracold samples of cesium atoms are prepared in the upper
part of a compact ultrahigh-vacuum chamber. A pair of mag-
netic field coils, when operated in the anti-Helmholtz con-
figuration with opposite currents, provides the spherical
quadrupole field for a magneto-optical trap(MOT) and, in
the Helmholtz configuration, produces a homogeneous mag-
netic field up to 25 mT. A linearly polarized, vertically
propagating, retroreflected Nd:YAG laser beam provides the
far-detuned one-dimensional lattice dipole trap at 1064 nm
[21]. The number of trapped atoms is inferred from the fluo-
rescence emitted by the cloud when it is illuminated with
resonant light on theFg=4→Fe=5 hyperfine component of

the D2 line near 852 nm. Cloud temperatures in the vertical
and horizontal directions are determined by releasing the at-
oms and performing time-of-flight imaging 12 cm below
onto a photodiode and a linear charge-coupled-device(CCD)
array, respectively. Trap vibration frequencies are measured
by parametric excitation[23]. The atomic density is derived
from the measured atom number, temperature, and trap vi-
bration frequencies, as detailed in Ref.[17].

The ultracold sample is prepared by first collecting 5
3108 atoms in a vapor-cell MOT in 500 ms. Superimposed
with the MOT is the YAG 1D optical lattice dipole trap that
at a power of 8 W and a beam waist of 260mm provides a
trap depth ofU /h=1.6 MHz and axial and radial vibration
frequencies ofva/2p=50 kHz andvr /2p=80 Hz, respec-
tively. The preparation of the high-density sample in the
YAG dipole trap is accomplished by means of two phases of
Raman-sideband cooling(RSC) with a 3D near-detuned op-
tical lattice[22]. We extinguish the MOT light and apply the
first RSC for 10 ms in a small bias field of 5mT, which
cools the atoms to temperatures below 1mK and predomi-
nantly polarizes them into the lowest-energy magnetic sub-
level u6S1/2,F=3,mF=3l. Here F is the total angular mo-
mentum of cesium atoms in the 6S1/2 ground state andmF is
the angular momentum projection along the magnetic field
direction. When the 3D near-detuned optical lattice is extin-
guished in 1 ms, the release of the atoms into the 1D YAG
lattice trap is adiabatic only in the vertical direction, and we
observe a radial oscillation as the atoms slide down the trap
potential. To remove some of the excess potential energy, we
wait for 4 ms until the atoms have the greatest kinetic energy
and highest density, and perform a second phase of RSC
[24]. Due to the high density near 1012 cm−3, the second
cooling requires a weaker optical pumping intensity and
longer cooling time of 15 ms. After rethermalization for
200 ms in the YAG lattice trap, 13108 atoms are prepared at
a temperature of 3–5mK with a vertical (horizontal) rms

FIG. 1. Illustration of radiative, elastic, and inelastic Feshbach
resonance. The molecular state is supported by the closed channel.

FIG. 2. Apparatus for Feshbach spectroscopy of133Cs.
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radius ofsz=580mm ssx=30 mmd. This means that near the
central region, each site in the 1D YAG lattice trap contains
43104 atoms at a mean density of approximately 1
31013 cm−3. The two phases of RSC also allow us to adjust
almost independently the atomic density and temperature by
changing the detuning of the optical pumping beam during
the first and second RSC phases, respectively.

The preparation of pure samples in desired target states is
crucial for cold collision experiments because different inter-
nal states can have drastically different collision properties.
To improve the atomic polarization over that achieved by the
RSC alone, we apply an additional optical pumping pulse for
3 ms during the release from the second RSC phase. This has
the advantage that atom-atom collisions are still suppressed
due to the 3D confinement in the near-detuned optical lattice,
which prevents radiative collision loss. Using microwave
spectroscopy, we optimize the optical pumping process at a
bias field of 14mT and prepare up to 98% of the atoms in
one of the stretched statesuF ,mF=±Fl and the remaining
atoms in the neighboringuF ,mF=±sF−1dl state, whereF
=3 or 4. Feshbach resonances in four scattering states or
channels can be thus studied:s3,3d+s3,3d, s3,−3d+s3,−3d,
s4,4d+s4,4d, and s4,−4d+s4,−4d, where sF1,mF1d
+sF2,mF2d indicates the collision of one atom in the
uF1,mF1l state with one in theuF2,mF2l state.

We also prepare mixed samples containing atoms in two
different internal states by either detuning the optical pump-
ing beam or by applying an additional microwave pulse to
transfer part of the population. Typically, we prepare 90% of
the population in a stretched stateual and 10% in another
stateubl. After fully characterizing the collision properties of
the sad+sad channel, the mixed collisionssad+sbd can be
monitored by either identifying resonances growing with the
population inubl or by selectively detecting only the popu-
lation in ubl. The large population ratio of the two states
ensures thatsbd+sbd collision processes remain insignificant.
Mixed scattering channels investigated in this work include
s3,3d+s3,2d, s3,3d+s4,4d, s3,3d+s4,3d, s3,3d+s4,2d, s3,
−3d+s3,−2d, ands4,−4d+s4,−3d.

The ability to study all these different scattering channels
is crucial to provide information on the molecular bound
states near thesF1=3d+sF2=3d, sF1=3d+sF2=4d, and sF1

=4d+sF2=4d hyperfine asymptotes. These span roughly
18 GHz in binding energy. As was shown in Ref.[15], the
molecules have different characteristics near the three disso-
ciation limits, which particularly helps determine the
strength of the van der Waals interaction.

After the atoms have thermalized in the dipole trap, a
uniform magnetic field up to 25 mT is applied. In order to
preserve the atomic polarization during the field ramp, we
first increase the field from 14mT to 200mT in 200 ms and
then to an arbitrary field value in another 100 ms. The mag-
netic field experienced by the atoms is calibrated to an accu-
racy of dB,0.1 mT at low field anddB/B,10−4 at high
field from the Zeeman splitting between magnetic sublevels,
as measured with microwave spectroscopy[17]. Slowly
changing stray fields of typically 50mT and remnant fields
from the magnetized vacuum chamber up to 2mT are care-
fully canceled with six independent bias coils in three or-

thogonal directions to an accuracy of 0.1mT for the field and
2 mT/cm for the field gradient. An effective magnetic field
due to residual circular polarization of the YAG trapping
beam [20] is monitored with microwave spectroscopy and
reduced below 0.05mT by linearizing the beam polarization.
To suppress the effects of field inhomogeneity and atomic
density variation between the various YAG 1D lattice sites,
we perform measurements only on the center portion of the
cloud within ±0.4sz, which contains 900 lattice sites with a
mean atomic density variation of,10%.

III. INELASTIC FESHBACH SPECTROSCOPY

Inelastic collisions occur when the initial scattering state
couples to open channels with lower internal energy; see Fig.
1. Due to energy conservation, the internal energy difference
is converted into the relative kinetic energy of the atom pair
and is either on the order of the ground-state hyperfine split-
ting or the Zeeman energy. In both cases, the energy release
is generally much larger than our trap depth and therefore
results in a loss of the colliding atom pair from the trap. Near
a Feshbach resonance, inelastic loss is either enhanced or
suppressed due to constructive or destructive interference be-
tween the off-resonant scattering amplitude with the on-
resonant amplitude. In this work, we observe mostly en-
hanced inelastic collision processes and only one prominent
suppression at 7.66 mT in thes3,3d+s4,2d incident scatter-
ing channel[17].

Experimentally, the inelastic rates are determined by fit-
ting the mean atom densityn̄ to dn̄/dt=−Ln̄−Kn̄2, whereL
is a one-body loss rate andK is the desired collision rate
coefficient. If we assume that the atoms only reside in the
harmonic region of the YAG dipole trap potential and that
the cloud is in thermal equilibrium and at constant tempera-
ture T during the experiment, then the mean atom density is
n̄=Nsmv̄2/4pkBTd3/2 where N is the atom number in one
lattice site,v̄=vz

1/3vr
2/3 is the mean vibration frequency,m is

the cesium atomic mass, andkB is the Boltzmann constant.
The above differential equation can be solved analytically
and directly relates the measured trap loss to the thermally
averaged loss coefficientK. The one-body loss rate is the
same for all measurements. A typical measurement is shown
in Fig. 3 with a holding time up to 5 s.

The loss rates as a function of external magnetic field are
measured by observing the atom loss within a holding time
between 30 and 300 ms, such that the maximum collision
loss is less than 30% and the atomic temperature varies by
less than 10%. Slow variations in the initial atom number are
monitored after every ten measurements and corrected for.
On the other hand, to observe and locate weak resonances,
we allow the atoms to interact for a longer time up to 500 ms
in order to obtain better signal to noise. In this case, we
ignore the temperature evolution and report only the frac-
tional loss of atoms.

Collisions between atom pairs in two different internal
states, such ass3,−3d+s3,−2d, differ from those in the same
state in that both the even and odd partial waves can be
scattered. In thes3,−3d+s3,−2d channel, for instance, we
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observe rich Feshbach spectra containing boths- andp-wave
resonances.

The positions of the inelastic Feshbach resonances are
tabulated in Tables I and II.

A. „4,4…+„4,4… inelastic collisions

The stretchedu4,4l state was considered a promising can-
didate for reaching Bose-Einstein condensation in a magnetic
trap before the cesium collision properties were revealed.
Large inelastic losses that grow as the temperature is reduced
were discovered that prevent the condensation of cesium in
this state[25–27].

We find no resonance structure for a sample polarized in
the u4,4l state at 5mK, but a loss rate coefficient increasing
slowly from 2310−12 cm3 s−1 to 3310−12 cm3 s−1 over the
range of B=0–25 mT. Theabsence of resonances in this
channel is expected since the scattering channels4,4d
+s4,4d has the highest hyperfine and Zeeman energy of all
ground-state hyperfine levels, and consequently Feshbach
resonances cannot occur.

B. „4,−4…+„4,−4… and „4,−4…+„4,−3… inelastic collisions

We observe two narrow inelastic Feshbach resonances for
collisions between twou4,−4l atoms: a weak one at
10.59 mT and a strong one at 20.50 mT. In addition we have
discovered an inelastic resonance in thes4,−4d+s4,−3d
channel at 20.66 mT. The resonance field values have a ratio
of 1:2:2 to within 3%. This ratio is not a coincidence, but a
result of the molecular bound state structure below the con-
tinuum. See Table I. All three resonances are identified as
originating from bound states with identical binding energy
at zero magnetic field.

C. „3,−3…+„3,−3… and „3,−3…+„3,−2… inelastic collisions

The u3,−3l state can be magnetically trapped and several
attempts to reach BEC in this state were thwarted by the
large collision loss[27]. In this work, we observe multiple

inelastic resonances for collisions between two such atoms,
as shown in Fig. 4. One resonance at 2.18 mT is not identi-
fied; see Table II.

In s3,−3d+s3,−2d collisions, multiple s- and p-wave
resonances are found and identified by varying the popula-
tion in the u3,−2l state, shown in Fig. 5. An alternative
method to identify mixed-state resonances is based on de-
tecting the population inu3,−2l by microwave transitions on
samples with 90% of the population inu3,−3l and,10% in
u3,−2l. In this case, we observe an enhanced loss of the
u3,−2l population near inelastic collision resonances in the
s3,−3d+s3,−2d channel and a suppressed loss of the
u3,−2l population near inelastic collision resonances in the
s3,−3d+s3,−3d channel, the latter being due to the reduction
in density ofu3,−3l atoms. This provides a clear distinction
between the two collision processes.

D. „3,3…+„3,3… and „3,3…+„3,2… inelastic collisions

The s3,3d+s3,3d channel is the lowest hyperfine scatter-
ing channel and therefore has no binary exothermic collision
processes. Collisional inelastic loss is then only due to three-
body recombination, a process that falls outside the scope of
this paper. A quantitative study of the recombination loss in
the u3, 3l state is given in Ref.[28]. In collisions between
u3, 3l and u3, 2l atoms we have observed no resonances be-
low B=23.5 mT. Theory predicts weak resonances that are
beyond the sensitivity of our current experiment.

E. „3,3…+„4,2…, „3,3…+„4,3…, and „3,3…+„4,4… inelastic
collisions

Multiple Feshbach resonances due tos3,3d+s4,2d and
s3,3d+s4,3d scattering are observed in samples with 80%
population inu3, 3l and 15% inu4, 3l or u4, 2l. The remaining
atoms are predominantly in theu3, 2l hyperfine state. We
have verified thats3,3d+s3,2d, s4,3d+s3,2d, and s4,2d
+s3,2d processes do not contribute to the loss.

We prepare the sample by first polarizing 95% of the at-
oms in the u3, 3l state atB=14 mT and then applying a
microwave pulse for a few ms, which selectively transfers
approximately 15% of the population intou4, 3l or u4, 2l.
Due to the almost identical energy splitting between the
u3,3l↔ u4,2l andu3,2l↔ u4,3l microwave transitions at low
field, we have a small population ofu4,3l in the experiment
aimed at finding resonances in as3,3d+s4,2d collision. Pol-
lution by u3,3l+ u4,3l resonances occurs, as was previously
reported in Ref.[17].

We also observe a weak pollution bys3,3d+s4,2d reso-
nances in thes3,3d+s4,3d spectrum. This cannot be ex-
plained by microwave transitions, sinceu3,3l↔ u4,3l and
u3,2l↔ u4,2l do not have the same frequency. A possible
process that creates atoms in theu4, 2l state is the inelastic
collision processs3,2d+s4,3d→ s3,3d+s4,2d. At low fields
the hyperfine and Zeeman energy difference between the fi-
nal and initial states isdE=kB0.52mK 3 sB/mTd. For our
atomic temperatures and magnetic fields, this endothermal
spin-changing collision can create atoms in theu4, 2l state.

FIG. 3. Resonant and off-resonant time evolution of the atomic
density. Atoms are prepared inuF=4,mF=−4l at T=5.3 mK and n̄
=2.131012 cm−3 at B=14 mT (solid circles) andB=20.5 mT(open
circles), where a strong Feshbach resonance is located. See also
Table I.
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The four resonances in thes3,3d+s4,2d channel at
6.17 mT, 8.38 mT, 11.0 mT, and 11.2 mT and all four reso-
nances observed in thes3,3d+s4,3d channel at 12.9 mT,
17.3 mT, 22.7 mT, and 23.1 mT are paired with an identical
ratio of the field values 2.07(2). This observation is con-
firmed by the theoretical identification of the paired reso-
nances as being due to molecular states with identical bind-
ing energy at zero magnetic field.

In a separate experiment we have found no inelastic reso-
nances ins3,3d+s4,4d collisions for magnetic field strengths
up to 23.5 mT, in agreement with theory.

IV. ELASTIC FESHBACH SPECTROSCOPY

The resonant change of the scattering amplitude in the
incident channel also results in a modification of the elastic
cross section. We refer to this process as an elastic Feshbach
resonance; see Fig. 1. Beside the direct measurement of the
thermalization rate between the axial and radial motion
[18,29], we have developed a more sensitive measurement
technique for elastic Feshbach resonances: the measurement
of the evaporation rate in a shallow trap[17]. This method
converts the temperature evolution measurement into an

TABLE I. Location and assignment of the observed Feshbach resonances. The first three columns define and give the results of the
experiment, where the first column denotes the initial collision state, the second column indicates elastic(el.) or inelastic(inel.) measure-
ments, and the third column is the experimental resonance locationBexpt. The next four columns describe the quantum labels of the
resonances. These are the partial wave of the initial collision state, the partial wave of the Feshbach state, the molecular spinf, and its
projectionm obtained from multichannelbound-statecalculations. The last column gives the theoretical resonance locationBtheor obtained
from a multichannelscatteringcalculation at a collision energy ofE/kB=5.3 mK. The resonance atBexpt=20.66 mT is extremely narrow and
was not observed in the theoretical scattering calculation but nevertheless could be assigned from bound-state calculations. Several Feshbach
resonances have ambiguous assignments(see text).

Experiment Theory

Assignment

State Method Bexpt (mT) Inc.
Wave

l f mf Btheor (mT)

s3,3d+s3,3d el. 1.706(3)a s s 6 6 1.70(2)

s3,3d+s3,3d el. 4.802(3)a s d 4 4 4.79(2)

s3,3d+s3,2d el. 5.69(2)a s d 4 4 5.70(2)

s4,−4d+s4,−4d inel. 10.590(3) s d 8 −6 10.58(2)

s4,−4d+s4,−4d inel. 20.503(3) s d 8 −7 20.49(2)

s4,−4d+s4,−3d inel. 20.66(1) s d 8 −6

s3,−3d+s3,−3d inel. 3.005(5) s d 6 <−6 2.99(2)

s3,−3d+s3,−3d inel. 3.305(5) s d 6 −4 3.28(2)

s3,−3d+s3,−3d inel. 8.69(2) s d 8 −8 8.80(2)b

s3,−3d+s3,−3d inel. 10.11(2) s d 8 −7 10.15(2)

s3,−3d+s3,−3d inel. 10.88(2) s d 8 −6 10.90(2)

s3,−3d+s3,−3d inel. 11.81(2) s d 8 −5 11.85(2)

s3,−3d+s3,−3d inel. 13.31(2) s d 8 −4 13.35(2)

s3,3d+s4,2d inel. 6.17(2) s d 7 5 6.21(2)

s3,3d+s4,2d inel. 7.66(2)c s s 6 5 7.53(2)

s3,3d+s4,2d inel. 8.05(2) p p 6 5 8.08(2)

s3,3d+s4,2d inel. 8.38(2) s d 7 6 8.43(2)

s3,3d+s4,2d inel. 11.00(3) s d 7 5,7 11.02(2)

s3,3d+s4,2d inel. 11.20(3) s d 7 5,7 11.20(2)

s3,3d+s4,2d inel. 16.22(4) s s 5 5 16.23(2)

s3,3d+s4,2d inel. 18.29(5) p p 5 5 18.45(2)

s3,3d+s4,3d inel. 12.90(3) s d 7 6 12.96(2)

s3,3d+s4,3d inel. 17.30(4) p p 6 6 17.45(2)

s3,3d+s4,3d inel. 22.73(5) s d 7 5,7 22.75(2)

s3,3d+s4,3d inel. 23.05(5) s d 7 5,7 23.13(2)

aMinimum evaporation rate.
bTemperature-dependent resonance occurred at Resad=0.
cMinimum inelastic loss.
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atom number measurement, which provides better sensitivity
and signal-to-noise ratio.

We report elastic collision properties in the pures3,3d
+s3,3d channel and in the mixeds3,3d+s3,2d channel,
where the measurements are not complicated by inelastic
processes. Although the elastic cross section can in principle
be either enhanced or suppressed by the Feshbach resonance,
we observe only dips in the the elastic collision rate atT

=5 mK. This is due to the large background scattering
length, such that, at 5mK, the collision is not in the Wigner
threshold regime[30]. The off-resonant cross section is al-
ready very close to the maximum value or the unitarity limit.
In the s3,3d+s3,3d channel, a vanishing elastic collision

TABLE II. Feshbach resonances, continued. Columns defined as in Table I. One bound state could not be assigned while three resonances
have not been observed experimentally.

Experiment Theory

Assignment

State Method Bexpt (mT) Inc.
Wave

l f mf Btheor (mT)

s3,−3d+s3,−3d inel. 2.18(2) a

s3,−3d+s3,−2d inel. 3.57(2) s d 6 −5 3.55(5)

s3,−3d+s3,−2d inel. 10.50(1) p f 7 −7 10.50(5)

s3,−3d+s3,−2d inel. 11.04(2) p f 7 −7 11.03(5)

s3,−3d+s3,−2d inel. 11.39(2) p f 7 −7 11.35(5)

s3,−3d+s3,−2d inel. 12.01(2) s d 8 −7 12.03(5)

s3,−3d+s3,−2d inel. 13.01(2) s d 8 −6 13.05(5)

s3,−3d+s3,−2d inel. 14.58(2) s d 8 −5 14.65(5)

s3,−3d+s3,−2d inel. 17.02(2) s d 8 −4 17.05(5)

s3,−3d+s3,−2d inel. s d 8 −3 20.88(5)b

s3,−2d+s3,−2d inel. 14.82(2)c s d 8 −7 14.80(5)

s3,−2d+s3,−2d inel. 16.58(2)c s d 8 −6 16.50(5)

s3,−2d+s3,−2d inel. 19.25(2)c s d 8 −5 19.25(5)

s3,−2d+s3,−2d inel. s d 8 −4 23.75(5)b

s3,−3d+s3,−1d inel. 12.92(2) s d 8 −8 12.90(5)

s3,−3d+s3,−1d inel. s d 8 −4 21.15(5)b

aNot predicted by calculation.
bNot observed experimentally.
cHas equal contribution froms3,−3d+s3,−1d collision.

FIG. 4. Binary loss coefficient in a gas ofuF=3,mF=−3l atoms
as a function of external magnetic field. The initial mean atomic
density isn̄=531012 cm−3 at a temperature of,5 mK. Populations
in the uF=3,mF=−3l, uF=3,mF=−2l, and all other states are 95%,
,5%, and,1%, respectively. Magnetic field resolution is 10mT.

FIG. 5. Atom loss as a function of magnetic field for an initial
mean densityn̄=531012 cm−3, temperature of,5 mK, and inter-
action time of 300 ms. Populations in theuF=3,mF=−3l,
uF=3,mF=−2l, and all other states are 95%,,5%, and,1% for
the lower curve, 85%,,10%, and,5% for the middle curve, and
,70%,,20%, and,10% for the upper curve, respectively. Com-
parison between the curves facilitates the identification of the inci-
dent channel responsible for the Feshbach resonances. Magnetic
field resolution is 10mT.
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cross section at 1.71 mT resulting from ans-wave Feshbach
resonance was first observed as a strong reduction in the
cross axis rethermalization rate[18]. One additional narrow
d-wave Feshbach resonance at 4.80 mT is found by monitor-
ing the evaporative loss rate of atoms inu3, 3l state[17]. In
the s3,3d+s3,2d channel, a minimum of the elastic collision
rate at 5.7 mT is observed using the same evaporative loss
method, when we measure the atom number in theu3, 2l
state. The positions of the elastic collision rate minima are
given in Table I.

The elastic collision measurements based on evaporative
loss are limited to resonances whose width in energy is com-
parable to or exceeds the thermal energy of the samplekBT.
For narrow resonances the resonant variation of the elastic
collision rate over a small interval of collision energies does
not lead to observable variations in the evaporation rate. For
the detection of such weak resonances we have to resort to
radiative Feshbach spectroscopy, discussed in the next sec-
tion.

V. RADIATIVE FESHBACH SPECTROSCOPY

Narrow resonances with a linewidth that is small com-
pared to the thermal energykBT do not significantly affect
the sample’s thermalization rate and therefore cannot be
probed by elastic Feshbach spectroscopy. However, it is pos-
sible to directly measure the enhanced(quasi)-bound-state
population on a Feshbach resonance using a far-detuned laser
beam to selectively dissociate the molecules, while leaving
the atoms unperturbed. This technique is called radiative
Feshbach spectroscopy[6,16].

In this work, we apply radiative Feshbach spectroscopy to
probe Feshbach resonances in thes3,3d+s3,3d and s3,3d
+s3,2d scattering channels using a probe beam typically de-
tuned from 20 GHz to 4 THz to the blue of the cesiumD2
transition at 852.3 nm. The probe beam is provided by a
titanium-sapphire laser and uniformly illuminates the atom
sample with a stabilized intensity up to 50 W/cm2. The in-
tensity and detuning of the laser are adjusted such that the
single-atom excitation is sufficiently weak to produce negli-
gible atom loss when the magnetic field is tuned off the
Feshbach resonances, while maximizing the loss on the
Feshbach resonance.

To measure the radiative collision loss, we first prepare
atom samples either fully polarized in theu3, 3l to study
s3,3d+s3,3d collisions or 85% inu3, 3l and 15% inu3, 2l to
studys3,3d+s3,2d collisions. After the preparation and field
ramping, we typically illuminate the atoms with the probe
beam fort=100–300 ms and measure the trap loss. To de-
termine the radiative loss rate as a function of magnetic field,
we perform two consecutive atom number measurements at
every magnetic field value to discriminate nonradiative loss:
N1 is the atom number at without the probe beam, andN2 is
obtained at with the probe beam. The radiative loss rate is
then given byg=s1−N2/N1d / t, where the illumination timet
is chosen to keep the maximum atomic loss below 30%. To
increase the detection sensitivity to weak resonances, we
lengthent to .500 ms and average each data point up to 5
times. A detailed spectrum thus obtained is shown in Fig. 6.

The details of the radiative loss line shape are discussed in
Ref. [16]; atom-molecule dynamics and the sensitivity of the
our radiative Feshbach spectroscopy are studied in Ref.[6].
The positions of the resonances are tabulated in Table III.
Two of the Feshbach resonances observed by radiative
Feshbach spectroscopy was recently used to create ultracold
cesium molecules[6,7].

VI. THEORY

The structure of the Hamiltonian of two interacting2S
ground-state alkali-metal atoms is well known. It contains
the atomic kinetic energy operator, an atomic Hamiltonian
for each atom, two Born-Oppenheimer potentials with sym-
metry 1og

+ and 3ou
+, the nuclear rotation operator

"2lW2/ s2mR2d, and weaker relativistic spin-spin dipole and

second-order spin-orbit interactions. HerelW is the nuclear
mechanical angular momentum andm is the reduced mass of
the molecule.

The atomic Hamiltonian contains a Fermi contact term
and the Zeeman interaction when an external magnetic field
B directed along thez axis is present during the collision.
The eigenstates of theB=0 atomic Hamiltonian are

uFa ,mFal, wherea=1 or 2 for atom 1 or 2,FW a=sWa+ iWa, and

mFa is the projection ofFW a along thez axis. HeresWa and iWa

are the atomic electron and nuclear spins, respectively. For
B.0, states with thesame mFa mix, Fa is no longer a good
quantum number, and the zero-fieldmFa degeneracy is lifted.
For convenience, atomic eigenstates in a magnetic field will
be labeled byuFa ,mFal since for the fields used in this paper
the Zeeman interaction is small compared to the hyperfine
interaction andFa is an approximately good quantum num-
ber. We use hyperfine constants and magnetic moments from
Ref. [31]. The nuclear spin of cesium is 7/2.

The selection rules for the Born-Oppenheimer Hamil-

tonian conservelW and fW=FW 1+FW 2. Consequently, bound states
and scattering amplitudes can be labeled byf l for B=0 and

FIG. 6. A detailed radiative loss spectrum. The probe beam at
wavelengthl=844 nm has an intensity of 50 W/cm2. Here 85%
(15%) of the atoms are in theu3,3l su3,2ld state. The temperature
and mean density of the sample are 3.5mK and 131013 cm−3,
respectively. “S” indicates a shape resonance; the stars indicate Fes-
hbach resonances in thes3,3d+s3,2d channel. Magnetic field reso-
lution near the resonances is 5mT.

PRECISION FESHBACH SPECTROSCOPY OF ULTRACOLD Cs2 PHYSICAL REVIEW A 70, 032701(2004)

032701-7



mfl for B.0. Here,mf =mF1+mF2. The two relativistic inter-
actions weakly mix states with differentl and f. Global sym-
metries ensure that the molecular Hamiltonian, including the
relativistic interactions, conserves parity and total angular

momentumFW = fW+ lW and its projectionM =mf +ml for B=0 or
only M for nonzero fields. Only even or odd partial waves
are coupled. ForB=0 there are at most 72 coupled channels
while for nonzero fields there are infinitely many coupled
channels. In practice the number of channels is restricted by
using knowledge about the relative strengths of the indi-
vidual terms in the Hamiltonian.

The relativistic interactions, even though weak, are cru-
cial in understanding the presence ofd-wave andg-wave
Feshbach resonances in our gas of ultracold Cs atoms. The
temperatureT<5 mK is small compared to the 200mK and
1 mK barrier height of thed and g partial waves, respec-
tively, and only incomings-wave andp-wave collisions con-
tribute to the experimental signal. Coupling from the incom-
ing s-wave tod- andg-wave bound states is induced by the
relativistic interactions and is denoted asd- andg-wave Fes-

hbach resonance. Notice thatg-wave Feshbach resonances
are induced by higher-order spin-orbit interactions and there-
fore have very narrow resonance widths of a few 10−7 T. The
outgoing state is eithers-wave in the scattering channel for
elastic processes or some low partial waves in other channels
for inelastic processes.

VII. NUMERICAL APPROACHES

The scattering properties and bound-state energies of the
ground-state Hamiltonian are obtained with two separate nu-
merical approaches. Scattering wave functions and the scat-
tering matrix at energyE are found using a Gordon propa-
gator [32]. From the scattering matrix elastic and inelastic
rate coefficients can be obtained. The relation between the
scattering matrix and the rate coefficients is given in Ref.
[33]. Feshbach resonances appear as sharp peaks or dips in
the magnetic field dependence of the rate coefficients. For
comparison with the experiments the rate coefficients need to
be thermally averaged.

TABLE III. Feshbach resonances and a single shape resonance observed with radiative spectroscopy. Columns defined as in Table I.
Several Feshbach resonances have ambiguous assignments(see text).

Experiment Theory

Assignment

State Method Bexpt (mT) Inc.
Wave

l f mf Btheor (mT)

s3,3d+s3,3d rad. 1.102(3) s g 4 2 1.12(2)

s3,3d+s3,3d rad. 1.437(3) s g 4 3 1.46(2)

s3,3d+s3,3d rad. 1.506(3) s g 6 5 1.51(2)

s3,3d+s3,3d rad. 1.83(1) s d 1.86(2)a

s3,3d+s3,3d rad. 1.990(3) s g 4 4 2.01(2)

s3,3d+s3,3d rad. 4.797(3) s d 4 4 4.77(2)

s3,3d+s3,3d rad. 5.350(3) s g 2 2 5.43(2)

s3,3d+s3,3d rad. 11.278(3) s d 6 4 11.32(2)

s3,3d+s3,3d rad. 13.106(3) s d 4 4 13.19(2)

s3,3d+s3,2d rad. 0.78(1) s g 6 3 0.83(2)

s3,3d+s3,2d rad. 1.13(1) s g 4 1 1.17(2)

s3,3d+s3,2d rad. 1.47(1) s g 4 2 or 6 4 1.54(2)

s3,3d+s3,2d rad. 1.66(1) p f 3 2 1.64(2)

s3,3d+s3,2d rad. 2.09(1) s g 4 3 2.16(2)

s3,3d+s3,2d rad. 2.21(1) p f 1 1 or 3 3 2.18(2)

s3,3d+s3,2d rad. 2.36(1) p f 1 1 or 3 3 2.33(2)

s3,3d+s3,2d rad. 3.60(1) s g 4 4 3.70(2)

s3,3d+s3,2d rad. 3.81(1) p f 5 1 3.78(2)

s3,3d+s3,2d rad. 4.68(1) p f 5 2 or p 5 4,5 4.70(2)

s3,3d+s3,2d rad. 4.93(1) p f 5 2 or p 5 4,5 4.89(2)

s3,3d+s3,2d rad. 4.99(1) p f 5 2 or p 5 4,5 4.99(2)

s3,3d+s3,2d rad. 5.70(1) s d 4 4 5.70(2)

s3,3d+s3,2d rad. 5.77(1) p p 5 3,4,5 5.78(2)

s3,3d+s3,2d rad. 5.87(1) p p 5 3,4,5 5.86(2)

s3,3d+s3,2d rad. 5.97(1) p p 5 3,4,5 5.98(2)

ad-wave shape resonance.

CHIN et al. PHYSICAL REVIEW A 70, 032701(2004)

032701-8



Obtaining discrete bound states with the Gordon method
is cumbersome since eigenenergies are nota priori known
and multichannel scattering wave functions need to be cal-
culated at a large number of energiesE. Consequently, a
discrete variable representation[34] for the radial kinetic en-
ergy operator is used to find the bound states. In this ap-
proach the eigenvalues of a linear system of size given by the
number of radial collocation points times the number of
coupled channels need to be calculated. This can be done
with standard linear algebra packages. However, resource
limitations tend to restrict the number of coupled channels
that can be conveniently handled. For the heavy cesium
dimer a realistic maximum number of channels lies between
10 and 15, although 20 channels can still be treated. An
interesting alternative for finding bound-state energies,
which does not require the storage of the linear system, can
be based on the multichannel quantum defect theory[35]. It
takes advantage of analytic properties of wave functions as a
function of energyE in order to limit the number of wave
function evaluations.

Bound states are calculated over a range of magnetic field
values. Feshbach resonances occur when a bound state
crosses a collisional threshold. Examples of resonances can
be found in Refs.[36,37]. In the absence of the two relativ-
istic interactions calculations label individual bound states by
mf, l, andM. In addition, the field dependence of a level can
be traced to a bound state at zero field. At zero fieldf labels
the bound states. For the magnetic fields used in our experi-
ment f remains approximately good. Coupling of states with
different mf but the samel is sometimes needed to fully
assign the Feshbach resonances. For this paper bound-state
calculations are used to assign quantum numbers to the reso-
nances.

The Feshbach resonances are experimentally observed in
either elastic cross sections, inelastic rate coefficients, or ra-
diative collision rates. The former two measurements can be
modeled from first-principles scattering calculations of cross
sections and rate coefficients. In principle the rate coeffi-
cients need to be thermally averaged. However, a proper
thermalization was impractical and for a comparison be-
tween theory and experiment only a single collision energy
given by the mean collision energy of a gas at temperatureT
was used. A combination of narrow Feshbach resonances and
the need to study the effect of variations in the shape of the
two Born-Oppenheimer potentials on the resonance locations
would lead to an untenable number of scattering calculations.
A one-standard-deviation uncertainty of 0.02–0.05 mT in
the calculated magnetic field location of the Feshbach reso-
nances observed in elastic or inelastic rates results from the
use of a single collision energy.

The radiative collision data require modeling of the rate
coefficient for the absorptions of a photon by a pair of ultra-
cold Cs atoms[38]. However, we are interested in reproduc-
ing the location of Feshbach resonances, and not in the ab-
solute absorption rates. Consequently, from a theoretical
perspective it is sufficient to locate the resonances in the
elastic cross section in the absence of light. Thel =4
(g-wave) resonances observed by radiative Feshbach spec-
troscopy could not be observed by direct measurement of the
elastic cross section.

The energy widths ofl =4 (g-wave) Feshbach resonances
are significantly smaller than the average collision energy. As
a consequence, the location of the maximum of the photoas-
sociation line shape as a function of magnetic field depends
on the zero-collision-energy resonance field locationB0, the
temperature, and the magnetic momentmres of the embedded
bound state. In practice, however, we located the resonances
from scattering calculations atE/kB=5.3 mK and used the
magnetic moment of theg-wave Feshbach resonance ob-
tained from bound-state calculations to extrapolate to zero
collision energy.

VIII. RESULTS

Tables I–III give the magnetic field locations and assign-
ments of the observed Feshbach resonances. The numbers in
parentheses indicate the one-standard-deviation uncertainty.
The locations of the resonances are obtained from elastic and
inelastic cross-section measurements or radiative spectros-
copy. The theoretical resonance locations are obtained from
coupled-channel scattering calculations at aE/kB=5.3 mK
collision energy and Born-Oppenheimer potentials with dis-
persion coefficientsC6=6890EHa0

6 andC8=954600EHa0
8 and

scattering lengthsaS=280.3a0 andaT=2405a0 [15]. HerekB
is the Boltzmann constant, 1EH=4.35974 aJ is one hartree,
and 1a0=0.0529177 nm is one Bohr radius . HerekB5.3 mK
is the average collision energy for a Cs gas atT=3.5 mK. For
resonances observed in the elastic(inelastic) rates the mini-
mum (maximum) of the line is quoted. The only exception is
the resonance at 7.66 mT, where the position of the mini-
mum inelastic rate is given. For the resonances observed by
radiative spectroscopy the maximum of the loss rate and the
maximum of the theoretical inelastic collision rate in the
absence of laser light are presented.

It should be noted that the magnetic field values for the
spectral features presented here should not be confused with
the location of the molecular Feshbach state introduced in
Fig. 1. Typically, the molecular state can be defined any-
where within the width of the resonance.

The theoretical uncertainties are a consequence of our
limited ability to model the experiments and are obtained by
combining the uncertainties due to the spread in collision
energies of a thermal Cs gas with the magnetic field depen-
dence of the Feshbach resonance. Any discrepancy between
theory and experiment in the tables that lies outside the error
bars indicates deficiencies in the shape of the two Born-
Oppenheimer potentials.

The assignment of the resonances is obtained by combin-
ing information from scattering and bound-state calculations.
The initial collision partners that lead to a resonance are
determined from theoretical scattering calculations and ex-
perimentally by varying the relative population of hyperfine
states in the Cs gas and comparing the relative strength of the
resonances. The incoming partial wave is obtained from scat-
tering calculations. The assignment of quantum numbersl, f,
andmf is made on the basis of bound-state calculations. One
resonance could not be assigned.

Levels with the samel , f ,mf symmetry but differentM
=ml +mf are degenerate except for small splittings from the
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second-order spin-orbit and spin-spin interactions. For even
partial waves this is not an issue as losses from thes-wave
entrance channel at collision energies of the order of a few
microkelvin are much larger than those fromd-wave en-
trance channels and thus only resonances withM equal to the
sum of the magnetic quantum number of the initial hyperfine
states,M =mf1+mf2, are observed. For collisions between at-
oms in unlike hyperfine states contributions fromp-wave
collisions cannot be ignored and nearly degenerate Feshbach
resonances from threeM values appear.

A good example of the complexity for odd-l resonances
can be found between 4.0 mT and 6.0 mT in the radiative
Feshbach spectrum from as3,3d+s3,2d collision. In this re-
gion six nearly degenerate resonances are labeledl = f, f =5,
mf =2, or l =p, f =5. Themf labels of thep-wave resonance
could not be assigned. It turns out that this resonance has a
small magnetic moment and atB<5 mT the differentmf
components are nearly degenerate. Mixing between different
mf components for the sameM due to second-order spin-
orbit and spin-spin interactions leads to shifts that are com-
parable to the spacings due to the Zeeman interaction. The
l = f resonances, which have a larger magnetic moment, ac-
cidentally reside in the same magnetic field region.

We have assigned more than one set of labels to the reso-
nances between 4.0 mT and 6.0 mT, becausemf and to a
lesser degreel and f are not good quantum labels. There are
eight different l =p, f =5 and l = f, f =5, mf =2 resonances
between 4.0 mT and 6.0 mT. Six of these eight resonances
are due to thep-wave symmetry. This can easily be checked
by noting that onlyM =4, 5, and 6 can lead to these odd-l
resonances. Not all eight resonances have been seen, which
might be due to the fact that some are not resolved or unob-
served by radiative spectroscopy. We did not perform quan-
titative bound-statecalculations as too many channels must
be coupled together. The theoretical field locations listed in
the last column of the tables have been obtained from scat-
tering calculations where all states are included at the cost of
losing the ability to assign quantum labels.

Figure 7 shows even-l M =6 bound states below the low-
est molecular hyperfine states3,3d+s3,3d as a function of
magnetic field. Each bound state is labeled withf and l. A
resonance occurs when a bound state crosses zero energy.
The frequency range shown in the figure is sufficient for the
assignment of allB,15 mT s-, d-, and g-wave Feshbach
resonances in the collision betweenu3,3l Cs atoms. The
solid circles mark the observed threshold resonances in a Cs
gas atT=3.5 mK skBT/h<0.1 MHzd. Agreement between
theory and experiment is sufficiently good that assignments
can be made even though discrepancies exist. These discrep-
ancies are caused by the(slightly) incorrect shape of the
Born-Oppenheimer potentials and the approximations in the
bound-state calculations. For fields smaller than 1 mT theory
predicts the existence of additional resonances.

The number of coupled channels forM =6 andl =s, d, and
g is 74. However, as discussed in the previous section, for
nonzero applied magnetic field the coupling between differ-
ent partial waves andmf’s is due to weak second-order spin-
orbit and spin-spin interactions. Consequently, for most reso-
nances in Fig. 7 the assignment is unambiguous using
independent bound-state calculations that only include states

of a givenl andmf. In fact, the curves in the figure have been
obtained in this way. However, it should be realized that the
crossings between bound states shown in the figure are actu-
ally avoided when second-order spin-orbit and spin-spin in-
teractions are included. At zero magnetic field coupling be-
tween channels with different molecular spinf is also small.
The assignment off is obtained by retracing a bound state to
a zero magnetic field and noting thatumfuø f.

A close look at Fig. 7 shows that the lines can roughly be
divided into those that are noticeably curved and those that
appear straight. A good example of curved lines is the two
f l =4d bound states, while the 6d and 4g bound states are
good examples of bound states that have a linear magnetic
field dependence. The curved lines are due to broad avoided
crossings that appear because the samef l-labeled states
readily mix when a magnetic field is applied. Mixing is due
to the interplay of hyperfine, Born-Oppenheimer, and Zee-
man interactions and is significantly larger than in avoided
crossings mediated by second-order spin-orbit and spin-spin
interactions.

The most weakly boundf l =6s state is bound by about
65 MHz at zero magnetic field, rises rapidly until it turns
over near 2 mT, and then continues just below the dissocia-
tion limit. This avoided crossing is also shown in Fig. 8. The
bound state does not run parallel to the dissociation limit. It
becomes a Feshbach resonance nearB=50 mT. The behavior
of this bound state has direct consequences for thes-wave
scattering length of twoufamal= u3,3l atoms. Below 1.7 mT
the scattering length is negative and above this field value it
is positive. This zero of the scattering length has been ob-
served in Ref.[18] and has been used to optimize the Born-
Oppenheimer potentials in Refs.[15,17], as well as in this
paper. It is interesting to realize that, as discussed in Ref.
[15], for B,1.7 mT,d-wave channels affect the elastic scat-

FIG. 7. Total angular momentum projectionM =6, s-, d-, and
g-wave bound state energies as a function of magnetic field. The
zero of energy corresponds to thesF=3,mF=3d+sF=3,mF=3d dis-
sociation limit. Dotted, dashed, and solid lines correspond tol =s, d,
andg states, respectively. Furthermore, each curve is labeled by the
quantum numbersf l—i.e., f l =6s. The molecular spinf is a zero-
field quantum number. For thef l =6d states the magnetic quantum
numbermf is also indicated. The solid circles represent the ob-
served threshold resonances.
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tering and must be included in order to obtain an accurate
scattering length.

Some of theM =6 andl =s, d, andg Feshbach resonances
below B=3 mT could at first not be assigned from calcula-
tions using states with the samel and mf. Resonances of
different lmf symmetry lie in the same magnetic field region.
Figure 8 shows a blowup of the 0–3 mT magnetic field
range. Thef =4, mf =3, andf =6, mf =5 g-wave bound states
cross just below the dissociation limit and weak couplings
might shift the corresponding Feshbach resonances. The in-
set shows the avoided crossing between thesef =4, mf =3,
and f =6, mf =5 g-wave bound state when the weak coupling
between the two bound states is included. From the figure it
is clear that the avoided crossing has little influence on the
location of the Feshbach resonances and anfmf label for
each resonance can still be assigned.

The Born-Oppenheimer potentials that have been used for
the theoretical resonance locations quoted in Tables I–III and
Figs. 7 and 8 are based on the fit in our previous work[15],
where the major uncertainties in the calculation of resonance
positions arise from the poorly constrainedC8 coefficient.
For this paper we have improved the Born-Oppenheimer po-
tentials by optimizing theC8 dispersion coefficient in addi-
tion to the C6 coefficient, the strength of the second-order
spin-orbit interactionSC, and the singlet and triplet scattering
lengths[15]. For a givenC8 the potentials are optimized to fit
the minima in the elastic scattering rate of thes3,3d+s3,3d
scattering at 1.706 mT and 4.802 mT, thef =6 d-wave reso-
nance in s3,−3d+s3,−3d scattering at 3.005 mT, and the
resonance ins4,−4d+s4,−4d scattering at 20.503 mT. Over a
10% range of theC8 coefficient near 900 000EHa0

8 a linear
relationship betweenC6, SC, aS, andaT exists.

An improved cesium-dimer Hamiltonian is created by fit-
ting to selecteds3,3d+s3,3d g-wave resonances. Figure 9
shows theM =6, f =6, mf =5, andf =4, mf =3, g-wave reso-
nance position as a function ofC8 or, equivalently,C6. The
figure shows theoretical zero-collision-energy resonance lo-
cations derived fromE/kB=5.3 mK calculations and the

magnetic moments of the resonances. The peak radiative de-
tection signal as a function of magnetic field is due to colli-
sions at zero energy. The magnetic moment of the resonances
is 170mK/mT for the f =6, mf =5 and 550mK/mT for the
f =4, mf =3 state.

The location of the Feshbach resonance found from a
bound-state calculation, including onlyg-wavemf =3 and 5
channels, and a scattering calculation at zero collision en-
ergy, which includesall s-, d-, and g-wave channels, dis-
agree by about 0.02 mT. This discrepancy is likely due to the
limited number of channels in the bound-state calculations.
The magnetic moments, however, are not expected to be sig-
nificantly modified.

Table IV summarizes our best fit. Based on the collision
parameters, cold collision properties of cesium atoms can be
readily calculated in various scattering channels. In particu-
lar, the s3,3d+s3,3d and s3,−3d+s3,−3d scattering lengths

FIG. 8. Expanded view of theM =6, s-, d-, andg-wave bound
states shown in Fig. 7. An avoided crossing betweeng-wave mf

=3 and 5 bound states occurs aroundB=1.4 mT.
FIG. 9. Position of twoM =6 g-wave resonances as a function

of C8 or equivalentlyC6 for a zero-energy collision of two Cs atoms
in the lowest hyperfine state. TheC6 andC8 are expressed in units
of EHa0

6 andEHa0
8, respectively. The dotted lines correspond to the

peak of the experimental radiative Feshbach spectroscopy signal.

TABLE IV. Properties of the singletX 1Sg
+ and triplet a 3Su

+

Born-Oppenheimer potentials and the second-order spin-orbit inter-
action that give the best fit to all data on collisions between ultra-
cold Cs atoms. TheC6 andC8 are expressed in units ofEHa0

6 and
EHa0

8, respectively. The singlet,aS, and triplet,aT, scattering lengths
are in units ofa0. HereSC is dimensionless. One-standard-deviation
uncertainties are given.

Value Uncertainty(%)

C6 6860 0.36

C8 860 000 8.7

aS 280.37 0.02

aT 2440 1.0

SC 2.6 19
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are −2510a0 at zero magnetic field. In the presence of the
magnetic field, Fig. 10 shows the scattering length of the
s3,3d+s3,3d channel as a function of magnetic field; Fig. 11
shows the collision rate constants in thes3,−3d+s3,−3d
channel at the collision energy ofE=kB 1 nK. All s-, d-, and
g-wave channels are included in the calculation. These two
states are particularly interesting in the experiments of ce-
sium Bose-Einstein condensation[39]. The resonances are
identified and labeled by the quantum numbers of the asso-
ciated molecular states.

IX. CONCLUSION

We have measured.60 magnetic-field-induced Feshbach
resonances in the collision of ultracold ground-state cesium
atoms. Of all the alkali-metal species cesium is shown to
have the richest resonance structure.

The field resonances have been observed in elastic colli-
sion rates, evaporation loss rates, collision relaxation rates,
as well as in radiative collision resonance experiments(ra-
diative Feshbach spectroscopy). The last experiments have
been instrumental in observingl =4 g-wave Feshbach reso-
nances with several 0.1mT resonance width.

Based on the previous work[15], we have improved the
model for Cs-Cs collisions and in addition used multichannel
bound-state calculations to assign each Feshbach resonance
with pertinent quantum numbers. The quantum numbers cor-
relate each resonance to a molecular bound state at zero mag-
netic field. We identify 3s-wave, 6p-wave, 32d-wave,

10 f-wave, and 10g-wave Feshbach resonances and one
shape resonance. One resonance in thes3,−3d+s3,−3d chan-
nel could not be identified and is possibly a three-body col-
lision resonance or a two-body Feshbach resonance with
very high partial-wave number.

The model has been used to calculate the molecular en-
ergy structure below thesF=3d+sF=3d continuum and the
collision properties in thes3,3d+s3,3d and s3,−3d+s3,−3d
scattering channels. These data will provide crucial informa-
tion for experiments on cesium Bose-Einstein condensation
[39] and cesium molecules[7].

In general, this paper presents the results of a successful
collaboration of experimental and theoretical works and re-
solves the collision anomalies of cesium atoms. The excel-
lent agreement on.60 resonances between experiment and
theory with only 5 parameters marks a triumph of the pre-
dictive power of atomic interaction theory. The experimental
determination of the resonance locations is better than the
theoretical estimate. Further improvements would require
more flexibility in the(short-range shape) of the two Born-
Oppenheimer potentials. Moreover, theoretical modeling will
need to use thermally averaged elastic and inelastic rates as
well as an improved model of the radiative line shape.
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FIG. 11. Collision rate constants in thesF=3, mF=−3d+sF
=3, mF=−3d scattering channel atE/kB=1 nK. Inelastic collision
rates(a) and elastic collision rates(b) are calculated with a mag-
netic field grid size of 10mT for off-resonance regions and 1mT
near the resonances. Resonances from theM =−6, s-, d-, and
g-wave bound states are included and assigned with quantum num-
ber sl , f ,mfd, where the notation is the same as in Fig. 10.

FIG. 10. Scattering length in thesF=3, mF=3d+sF=3, mF

=3d scattering channel. Resonances resulting from theM =6, s-, d-,
and g-wave bound states are assigned with quantum number
sl , f ,mfd, where l is the orbital angular momentum,f is the total
internal angular momentum, andmf is the magnetic quantum num-
ber. Calculations are done with a magnetic field grid size of 50mT
for off-resonance regions and 100 nT near the narrow resonances.
The inset shows the resonance structure near 17 G in detail.
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