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The stability and structure of thesmZ+,e−,e−,e+d system is studied as a function of the mass of themZ+

particle and forZ=1, 2, 3, and 10. TheZ=1 system can be regarded as an analog of theAPs system(whereA
is a group I or IB atom of the periodic table) and was found to be stable for all values ofm+. This is supportive
of the idea that all the group I and IB atoms can bind Ps. Thesm2+,e−,e−,e+d system is stable for all
m2+/meø0.68 and evolves into a configuration best described assm2+,Ps−d when m2+/me→0. The
sm3+,e−,e−,e+d system was stable for a mass range given bym3+/meø0.066 32, which suggests that positrons
could form Feshbach resonances in collisions with positive ions which are isolectronic with the group II and
IIB columns of the periodic table. Thesm3+,e−,e−,e+d system has the unusual property that it has a mass range
where it becomes more compact while its binding energy simultaneously decreases. Thesm10+,e−,e−,e+d
system is also stable atm10+/me=0.002 54, which implies stability for all mass ratios less than 0.002 54. In
total, the calculations suggest that thesmZ+,e−,e−,e+d system is stable whenever themZ++Ps− or smZ+,e−d
+Ps breakups represent the lowest energy dissociation channel. As part of the analysis some improved esti-
mates of the properties of the KPs ground state are reported.
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I. INTRODUCTION

The calculation of the structure and stability of Coulom-
bic three-body systems with arbitrary masses is a topic with
a long history[1]. The initial calculation of the helium atom
ionization potential by Hylleraas[2] was important since it
confirmed the correctness of the new wave mechanics. Even
more interesting, the existence of the H− ion, so important in
astrophysics, was predicted by explicit calculation[3,4]. The
stability of the positronium negative ion Ps− was also dem-
onstrated by explicit calculation[5]. (Note that, since sys-
tems containing positrons can decay by electron-positron an-
nihilation, we use the term stability to refer only to the
ability to form bound states that are stable against the various
electronic dissociation channels.) There have been many
other investigations into Coulomb three-body systems
[6–13]. The Coulombic four-body system has also been the
subject of investigation, with Ps2 and HPs attracting some
attention in recent years[14,15].

One area of ongoing research is the study of the stability
of various three- and four-particle systems for constituents
with different masses[1,16,17]. This work is important to the
understanding of the stability conditions since the structures
are known to depend crucially on the mass of the particles.
For example, the structures ofsp,e−,e−d, sp,p,e−d, and
se+,e+,e−d are completely different. Only recently has the
usefulness of these types of calculations in determining the
ability of positrons to bind to atoms and atomic ions been
fully appreciated[18,19]. Many years ago it was shown by
computational investigations that thesp,e−,e+d system is
stable only when the mass ofm+ exceeds 2.20me [20–25].
Those calculations demonstrated conclusively that it was not
possible to bind a positron to atomic hydrogen. While this is

an important result, it cannot be usefully applied to deduce
information about positron binding other atoms in the peri-
odic table. However, another three-body systemsm+,e−,e−d
does yield information about the ability of positrons to bind
to one-electron atoms. This system was found to be stable for
0.697 78øm+/meø1.6343[18]. The mass limits correspond
to stability for energy values of thesm+,e−d subsystem sat-
isfying 0.205 498øEsm+,e−dø0.310 196(energies in har-
tree). These energy limits roughly correspond to the ioniza-
tion potentials of neutral atoms that are known to bind a
positron. Thesm+,e−,e+d system can be regarded as an ana-
log of a typical positronic atom with a single valence elec-
tron, and its structure as a function ofEsm+,e−d was seen to
be reminiscent of the structure of known positronic atoms as
a function of the parent atom ionization potential[18].

Similarly, thesmZ+,2e−,e+d system can be regarded as an
analog of a number of positron-atom(ion) systems(the no-
tation smZ+,2e−,e+d, is used to represent thesmZ+,e−,e−,e+d
complex). For Z=1, thesm+,2e−,e+d system can be regarded
as an analog of theAPs system whereA corresponds to an
alkali-metal or group IB atom. WhenZ=2, one obtains the
sm2+,2e−,e+d system which can be regarded as an analog of
e+A whereA corresponds to a divalent group II or IIB atom
of the periodic table. Finally, thesm3+,2e−,e+d system with
Z=3 is related to thee+A+ system whereA+ is a member of
the group II or IIB isoelectronic series.

In the present work, the stability and structure of the
smZ+,2e−,e+d system is studied using the stochastic varia-
tional method[26–30]. It is seen that thesm+,2e−,e+d system
is stable for all values ofm+, while thesm2+,2e−,e+d system
was already known to be stable for allm2+/meø0.68 [31].
The positively chargedsm3+,2e−,e+d complex also has a re-
gion of stability; this occurs whenm2+/meø0.066 32, and
the system evolves into a configuration best described as
m3++Ps− as m3+/me→0. All equations and results are re-*Electronic address: jxm107@rsphysse.anu.edu.au
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ported in atomic units with the exception of the electron-
positron annihilation rate which is given in SI units.

II. RESULTS OF CALCULATIONS

All calculations reported in this work used the stochastic
variational method(SVM). Since this method and its appli-
cation to positron binding systems have been thoroughly de-
scribed in a series of articles[19,26–30] only the briefest
description is given here. The SVM expands the wave func-
tion in a linear combination of explicitly correlated Gauss-
ians(ECGs). Such basis functions have the property that the
matrix elements of the Hamiltonian are relatively quick and
easy to evaluate. Therefore, the energy of the wave function
can be rapidly optimized by performing a random(stochas-
tic) search over the exponential parameters that define the
basis. The method has been tested on a number of many-
body problems in different areas of physics and it has been
proved to be both accurate and reliable[28,30].

The smZ+,2e−,e+d system has a number of different frag-
mentation modes. The lowest energy dissociation modes as a
function of Xm=mZ+/me (note that the notationXm=mZ+/me
is adopted in this manuscript) are listed in Table I.

A. Z=1

Explicit calculations have shown that a number of atoms
with a single valence electron can bind positronium. The first
example was HPs(with m+→`), which was first shown to
be stable in 1951[32] and was indirectly observed experi-
mentally in 1992[33]). The HPs atom has been exhaustively
studied in recent years[14,15]. The system withm+=me is
the positronium molecule Ps2, which has also been known to
be stable for a long time[34].

It is worth noting that it has been conjectured that the
sM1

+,M2
+,m3

−,m4
−d system is stable provided two of the like

charges have the same mass[35]. The present investigation
on thesm+,2e−,e+d system is testing part of this conjecture.

Ab initio and model potential calculations have shown
that Ps can bind to a number of group I and IB atoms. The
stability of LiPs was rigorously established with anab initio
calculation[36], and the current best estimate of the binding
energy is about 0.0123 hartree[37]. The stability of the
heavier alkali-metal atom compounds, NaPs and KPs have
also been demonstrated with the fixed core variant of the
SVM [26,37,38]. Finally, the configuration interaction
method has demonstrated the stability of CuPs[39]. These
positive results cannot directly be used to determine whether
other alkali atoms can bind Ps. For example,e+Li and e+Na
are known to be stable, but K, Rb, and Cs are not expected to
bind a positron.

For the present set of calculations a basis containing 350
ECGs was used. Table II gives the energies, annihilation
rates, and other expectation values for a variety ofXm values.
The values for calculations withm+=me sPs2d and m+→`
(HPs) are taken from the close to exact calculations of
Usukuraet al. [40]. Table II also gives expectation values for
LiPs, NaPs, KPs, and Ps−.

A basis of dimension 350 can predict the binding energies
of the sm+,2e−,e+d system at an accuracy level of better than
0.1%. For example, the energy of HPs was
−0.789 186 hartree, giving a binding energy of
0.039 186 hartree. This binding energy agrees to within 0.1%
with the much larger(basis dimension 1600) calculation of
Usukura et al. [40], which gave a binding energy of
0.039 197 hartree. The annihilation rate, depending as it does
on short-range electron-positron correlations, is accurate to
only about 1%. A basis with 350 ECGS gives an HPs anni-
hilation rate of 2.4473109 s−1. This is 1% smaller than the

TABLE I. The smZ+,2e−,e+d system dissociation products and energies for different ranges of theXm=mZ+/me mass ratio. The fourth
column gives stability conditions for the given dissociation channel as determined by explicit calculations.

Dissociation
products

Threshold
energy

Xm=mZ+/me

mass limits Stable?

Z=1

sm+,e−d+Ps −Xm/2s1+Xmd −0.25 Xm.0.02460 Stable for allXm

m++Ps− −0.26200507 Xm,0.02460 Stable for allXm

Z=2

sm2+,2e−d+e+ Esm2+,2e−d Xm.0.2907 Stable forXmø0.68

sm2+,e−d+Ps −2Xm/ s1+Xmd −0.25 0.006039,Xm,0.2907 Stable for allXm

m2++Ps− −0.26200507 Xm,0.006039 Stable for allXm

Z=3

sm3+,2e−d+e+ Esm3+,2e−d Xm.0.05966 Stable forXmø0.06632

sm3+,e−d+Ps −9Xm/2s1+Xmd −0.25 0.002675,Xm,0.05966 Stable for allXm

m3++Ps− −0.26200507 Xm,0.002675 Stable for allXm

Z=10

sm10+,2e−de+ Esm10+,2e−d Xm.0.002540 Stable forXmø0.002541

sm10+,e−d+Ps −50Xm/ s1+Xmd −0.25 0.0002402,Xm,0.002540 Stable for allXm

m10++Ps− −0.26200507 Xm,0.0002402 Stable for allXm
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annihilation rate of the largest calculation of Usukuraet al.
[40]. During the course of very many SVM calculations we
have noticed that the annihilation rate tends to asymptote to
its converged value from below. This is probably related to
the incorrect functional form of the ECG basis functions at
the coalescence points. A general assessment would be that
the annihilation rate has a systematic tendency to be about
1% too small, with additional fluctuations of about 1% due to
the stochastic method used to generate the basis at eachXm.
The radial expectation values for the present calculation,
such as the mean electron-mx

+ distance of 2.311a0 or the
mean positron-mx

+ distance of 3.661a0, are quite well con-
verged and agree with the Usukuraet al. calculation to an

accuracy of about ±1 in the fourth significant digit. Another
measure of accuracy is the virial theorem expectation value
kVl / kTl. This is equal to exactly −2 for the exact wave func-
tion. The largest deviation from the exact value for the entire
Xm range was 3.8310−5.

This sm+,2e−,e+d system has two classes of dissociation
thresholds, depending on the mass of them+ particle, which
are listed in Table I. WhenXm,0.024 60 them++Ps− con-
figuration is the lowest energy dissociation threshold and at

FIG. 1. Energy of thesm+,2e−,e+d system as a function of the
Xm mass ratio(solid curve). The energy of thesm+,e−d+Ps disso-
ciation threshold is shown as the dashed line. The points for LiPs,
NaPs, KPs, and CuPs were plotted using an equivalent mass defined
by Eq. (6).

FIG. 2. The binding energy of thesm+,2e−,e+d system as a
function of theXm mass ratio(solid curve). The dashed line gives
the binding energy for thesm+,Ps−d model as defined by Eqs.(2)
and (3). The points for LiPs, NaPs, KPs, and CuPs were plotted
using an equivalent mass defined by Eq.(6). The binding energy for
the Ps− ground state is denoted by the horizontal line on the left
axis.

TABLE II. Properties of the family of systems consisting ofsm+,2e−,e+d and another positive singly charged object. The basis size is
denoted byN. All quantities are given in atomic units with the exception of the annihilation rate which is in units of 109 s−1. The magnitude
of the binding energy against dissociation into the lowest energy fragmentation channel is given byu«u. The effective values ofXm for LiPs,
NaPs, KPs, and CuPs were derived from the neutral atom ionization energies as described in the text. Thed-function expectation value is
given for the sum over all electrons. The properties of Ps− are shown for the sake of comparison. The notationa−b representsa310−b.

Property HPs[40] CuPsa [53] Ps2 [40] LiPs NaPs Xm=0.60 KPs Xm=0.10 Xm=0.02 Ps− [43]

Xm ` 1.314 1.0 0.656 0.607 0.60 0.469 0.10 0.020

N 1600 1600 900 960 350 1080 350 350

kVl / kTl+2 3−7 3.0−10 1.4−5 3.8−5 4.0−6

I 0.50 0.28394 0.250 0.19816 0.18839 0.18750 0.15896 0.045455

E −0.789197 −0.5483 −0.516004 −0.460456 −0.446810 −0.451931 −0.414066 −0.307961 −0.271875 −0.262005

u«u 0.039197 0.01433 0.016004 0.012341 0.008419 0.014431 0.005104 0.012506 0.009870 0.012005

krm+e−l 2.312 4.09 4.487 5.112 5.731 5.522 6.592 17.12 76.15

krm+e+l 3.662 5.52 6.033 6.393 7.287 6.999 8.006 17.64 76.18

kre−e−l 3.575 6.033 6.791 7.691 6.735 8.215 8.324 8.537 8.549

kre+e−l 3.480 4.487 4.825 5.279 4.773 5.514 5.398 5.484 5.490

kdsr e−−r e+dl 0.02446 0.02212 0.02130 0.02081 0.02165 0.02010 0.02075 0.02057 0.02073

G2g
b 2.469c ,2 2.232c 2.156 2.086 2.185 2.029 2.094 2.078 2.093

aAbout 30% of the binding energy for CuPs comes from an extrapolation. The overall uncertainty due to the extrapolation is about ±10%.
bThe annihilation rates for LiPs, NaPs, and KPs contain a contribution from the core.
cThe annihilation rates for HPs and Ps2 calculated from Eq.(5) are slightly different from those reported in[40]. The rate for Ps2 is the rate
per positron.
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the very smallest values ofXm=m+/me, the system evolves
into a m++Ps− configuration. The two fragments must bind
to each other since they are oppositely charged. The condi-
tion m+=0.024 60me was determined by the requirement that
the binding energy of thesm+,e−d subsystem is the same as
the binding energy of the Ps− ion. The dissociation products
are Ps+sm+,e−d whenXm.0.024 60.

The total energy of thesm+,2e−,e+d system is shown as a
function of Xm in Fig. 1 while the binding energy system as
defined by Table I is shown in Fig. 2. It is clear that the
system is bound for all values ofm+. The smallestm+ for
which a calculation was explicitly done wasXm=0.020. This
lies just below the 0.024 60 mass ratio for the transition to
the m++Ps− dissociation threshold and can be used to infer
stability for theXm→0 limit.

At the lower limit for Xm the system is expected to evolve
into an m++Ps− configuration. The interparticle mean dis-
tance of thes0.05me

+,e−d ground state is 73a0. At such dis-
tances, the field of them+ particle should not have a large

influence upon the ability of the electron to bind positronium
or affect the structure of the resulting Ps− cluster.

The binding energy and other expectation values at the
smallest value ofXm considered, 0.020, support this model.
Regarding the Ps− system as a point particle leads to a mean
m+-Ps− distance given by

kRPs−-m+l < 1.5
s3 + Xmd

3Xm
. s1d

The actual distance atXm=0.020 is 76.2a0 while the distance
predicted by Eq.(1) is 75.5a0. Examination of the electron-
electron and electron-positron distanceskre−e−l and kre−e+l
also demonstrates that the two electrons and the positron are
coalescing into Ps− at smallXm. From Table II it is seen that
these expectation values atXm=0.020 are within 0.2% of
those of the Ps− ground state.

An approximate expression for the binding energy against
dissociation for thesPs−,mZ+d configuration is

« <5
3Z2Xm

2s3 + Xmd
, Xm , Xcrit , s2d

3Z2Xm

2s3 + Xmd
+ 0.262 005 07 −

Z2Xm

2s1 + Xmd
− 0.250, Xm . Xcrit , s3d

whereXcrit is determined by the solution of the equation

3Z2Xm

2s3 + Xmd
= 0.012 005 07. s4d

The critical value ofXm is 0.024 60 forZ=1. The justifica-
tion for an expression of this type has been presented previ-
ously [31]. For Xm less than 0.002 460 the binding energy is
estimated to be that of a negatively charged ion of mass 3me

binding them+ particle. ForXm.0.024 60, the internal en-
ergy of Ps− is added to that of thes3me

−,m+d system and then
the energies of the Ps andse−,m+d dissociation fragments are
subtracted to give the binding energy. This model predicts a
binding energy of 0.009 934 hartree atXm=0.020. The actual
energy coming from the explicit calculation was
0.009 870 hartree.

It is useful to estimate the electron-positron pair annihila-
tion rate since this can be used to give insight into the struc-
ture of the system. The spin-averaged 2g annihilation rate is
proportional to the probability of finding an electron and a
positron at the same position in a spin singlet state. If the
different spin states are averaged, the annihilation rate can be
written as

G2g = 2pre
2ckCuo

i

dsr i − r pduCl

= 1.009 393 1011o
i

kdsr i − r pdl s5d

[15,41,42], where the sum is over the electron coordinates
andG2g is given numerically in s−1.

Figure 3 shows the spin-averaged annihilation rate as a
function of Xm. One property of the finite dimension ECG
basis expansions is that there is a tendency for the computed
annihilation rate to slightly underestimate the exact annihila-
tion rate. Also shown in Fig. 3 are accurate estimates of the
annihilation rate for HPs and Ps− as taken from Table II. The
annihilation rate approaches that of Ps− asXm→0. The com-
puted annihilation rate of 2.0783109 s−1 at Xm=0.020 is
slightly smaller than the Ps− lifetime of 2.0933109 s−1 [43];
but the difference between the two rates is smaller than the
uncertainty associated with using a basis of finite dimension.

1. Comparisons with LiPs, NaPs, KPs, and CuPs

The stability of thesm+,2e−,e+d system for all possible
values ofXm has implications for the binding of Ps to the
other alkali-metal and group IB atoms in the periodic table.
First, we make the assumption that thesm+,e−d system with
the same binding energy as a group I or IB atom can be
regarded as an analog of that atom. The equivalent massM+
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for an alkali-metal or group IB atom is defined by the equa-
tion

«A =
M+me

2sM+ + med
, s6d

where the ionization potential of the neutral atomic parent is
denoted by«A. The equivalent masses for Cu, Li, Na, and K
were 1.314me, 0.656me, 0.607me, and 0.469me, respectively.
This suggests that the structures of theAPs complexes should
be more like Ps2 than HPs, and this is supported by the data
in Table II. TheAPs annihilation rate and interparticle expec-
tation values are all closer to those of Ps2 than HPs.

It is apparent from Table II and Figs. 1–3 that the behav-
ior of the APs expectation values as a function of their
equivalent mass is consistent with theXm variation of the
properties of thesm+,2e−,e+d ground state. For example, the
binding energy of theAPs system increases withM+ just as
the sm+,2e−,e+d energy increases withXm. Similarly, the an-
nihilation rate of theAPs system increases withM+ as the
sm+,2e−,e+d rate increases withXm. The expectation values
of the interparticle distances listed in Table II, e.g.,kre−e−l,
for the APs andsm+,2e−,e+d also show similar trends asM+

or Xm increases or decreases.
The analogy between theAPs andsm+,2e−,e+d systems is

not exact; for example, theAPs systems have annihilation
rates that are smaller by about 5%. TheAPs binding energies
shown in Fig. 2 are also smaller than those ofsm+,2e−,e+d; it
is likely that this is due to the increased magnitude of the
repulsive interaction when the positron penetrates the core. It
is also worth noting that the convergence of the binding en-
ergy of KPs could be significantly improved.

The present calculations suggest that one should expect
Feshbach resonances associated with Hs2sd, Lis3sd, and
Nas4sd and excitations in Ps+A scattering systems.(There
have been a number of studies of such resonances in the
Ps+H scattering system[14,44–47].) The dynamics that sup-
ports Ps binding tosm+,e−d irrespective of the parent system
binding energy certainly applies to these excited states. The
weak binding of the electron to the alkali-metal core for ex-
cited states means that the Coulomb field of the core cannot
disrupt the binding of Ps to this electron to form a Ps− clus-
ter.

On the basis of the present data it is possible to assert with
some confidence that the heavier group I and IB atoms Ag
and Au would bind positronium. Silver has almost the same
ionization energy as copper so one would expect that it
would therefore have a similar Ps binding energy. It is worth
noting in passing that the binding energies of positronic cop-
per and positron silvere+Cu ande+Ag are about the same
size [48]. Gold has a larger ionization energy than either
silver or copper, and hence would likely bind Ps more
strongly.

Making a similar prediction about the heavier alkali-metal
atoms Rb and Cs is not quite so clear cut. The stability of
sm+,2e−,e+d for all Xm is certainly supportive of the idea of
Ps binding. However, Fig. 2 shows the energies of NaPs and
KPs lying considerably below the« vs Xm curve. So the issue
needing resolution is whether stronger repulsion of the pos-
itron by the alkali-metal core can prevent Ps binding. While
the absolute proof will come from an explicit calculation, a
very good indication can come from a model calculation
with a more realistic potential. What we have done is use Na
as a model alkali-metal atom[49]. A model Hamiltonian,
with an additional short range potential to adjust the strength
of the interaction between the core and valence electron, was
diagonalized in the 960-term ECG basis used to describe the
NaPs ground state. A model atom with the same ionization
potential as Rb had a Ps binding energy of 0.0045 hartree,
while the Ps binding energy for model Cs was
0.0038 hartree. The ability of the model to make realistic
predictions was checked by doing a model calculation with
the Hamiltonian tuned to the potassium ionization energy. It
gave a Ps binding energy of 0.0050 hartree which agrees
quite well with that of the full KPs calculation.

2. Structure of KPs

As part of the current exercise an improved description of
the KPs ground state was obtained. This entailed the enlarge-
ment of the ECG basis from 980 to 1080 ECG basis func-
tions and some further optimization. In every other respect
the details of the calculation are the same as those reported
earlier, and the reader is referred to an earlier work[38].

The binding energy of the improved KPs wave function
was 0.005 104 hartree. This is about 50% larger than the
previously reported binding energy of 0.003 275 hartree. The
annihilation rate of the positron with the two valence elec-
trons was 2.01733109 s−1 while the core annihilation rate
was 0.01143109 s−1. These annihilation rates are marginally
larger than previously reported values[38].

FIG. 3. The annihilation rate(in units of 109 s−1) of the
sm+,2e−,e+d system as a function ofXm. The annihilation rates for
the Ps− and HPs systems are denoted by the horizontal lines on the
left and right axes, respectively. The points for LiPs, NaPs, and KPs
were plotted using an equivalent mass defined by Eq.(6). The small
fluctuations in the curve occur because the basis for eachXm is
different and was generated using a stochastic search(the annihila-
tion rate for CuPs was not plotted since its uncertainty is quite
large).
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Although it is suspected that the binding energy could
increase by a further 25%, the very tedious nature of the
calculations(many months of CPU time were consumed in
improving the KPs wave function) means that it is desirable
to report the current best estimate now and not try and drive
the KPs energy and annihilation rate closer to convergence.

B. Z=2

The stability of thesm2+,2e−,e+d system has been previ-
ously investigated with the SVM method using basis sets of
dimension 400[31] and it was shown that the system was
stable for allXmø0.68. In this work the dominant influence
of the sm2+,Ps−d configuration at lowXm was first noted. For
example, the binding energies determined from Eq.(3)
agreed with the SVM binding energy to better than 5% ac-
curacy for all Xm,0.020 and to better than 1% for
Xm,0.0060[31]. Further evidence regarding this description
at smallXm is presented here.

First, the kre−e−l and kre−e+l expectation values are also
consistent with thesPs−,m2+d model. AtXm=0.0060, one ob-
tains 8.543a0 and 5.487a0 respectively. These lie within
0.1% of the interparticle expectation values of the Ps−

ground states.
The annihilation rate as a function ofXm is shown in Fig.

4 and at the smallest values ofXm the annihilation appears to
asymptote toward that of Ps−. The annihilation rate is
2.0823109 s−1 at Xm=0.0060, which is also consistent with
the idea that the system evolves into asPs−,m2+d configura-
tion as Xm→0. The annihilation rate decreases monotoni-
cally as Xm decreases. At the largest values ofXm (i.e.,
Xm.0.2907), the system evolves into ansm2+,2e−d configu-
ration. As the e+ becomes more weakly bound to the
sm2+,2e−d system, it drifts further away and the annihilation
rate decreases to zero.

C. Z=3

The sm3+,2e−,e+d system can be regarded as being
equivalent to a positive ion that is a member of the group II

isoelectronic series. As far as we know, no calculations on
this four-body system have been reported. The results re-
ported in this section were obtained for ECG basis sets of
dimension 480 or larger.

The binding energy of this system as a function ofXm is
shown in Fig. 5. The system was found to be stable for all
Xmø0.066 32. This covers a mass range that encompasses
two different dissociation regimes in their entirety and part
of the third dissociation region. That the system is stable for
Xm,0.002 675 means it is stable whenever them3++Ps−

breakup represents the lowest energy dissociation threshold.
Stability for XmP f0.002 675,0.059 65g means it is stable
whenever thesm3+,e−d+Ps breakup is the lowest energy dis-
sociation channel. One interesting feature of Fig. 5 is its
similarity in shape to the equivalent curve for the
sm2+,2e−,e+d system[31]. The maximum binding energy oc-
curs at the boundary between thesm2+,2e−d+e+ and the
sm2+,e−d+Ps dissociation regions. The approximate expres-
sions of Eqs.(2) and(3) give a reliable estimate of the bind-
ing energy forXm,0.050.

The system is also stable for a small part of the energy
range which has thesm3+,2e−d+e+ fragmentation as the low-
est energy dissociation channel. The restricted mass range for
positron binding is not surprising since it is not intuitively
obvious how a positron can bind itself to a positive ion when
the asymptotic boundary condition is broken up into
sm3+,2e−d+e+. The energy of the parent system, i.e.,
Esm3+,2e−d, is equal to −0.552 643 4 hartree at the largest
Xm for binding.

The annihilation rate as a function ofXm is shown in Fig.
6. At the smallestXm, 0.0020, the rate is 2.0773109 s−1.
Once again, this is consistent with the idea that the system
evolves into asPs−,m3+d configuration asXm→0. At Xm

=0.0020, one obtains 8.546a0 and 5.488a0 for the kre−e−l and
kre−e+l expectation values, respectively. These lie within
0.1% of the interparticle expectation values of the Ps−

ground state.

FIG. 4. The annihilation rate(in units of 109 s−1) of the
sm2+,2e−,e+d system as a function ofXm. The annihilation rate for
the Ps− system is denoted by the horizontal line on the left axis.

FIG. 5. The binding energy of thesm3+,2e−,e+d system as a
function of theXm mass ratio(solid curve). The dashed line gives
the binding energy for thesm3+,Ps−d model as defined by Eqs.(2)
and (3). This is practically indistinguishable from the binding en-
ergy of the explicit calculation forXm,0.0040. The discontinuities
in the slope indicate the boundaries between the regions with dif-
ferent dissociation channels. The binding energy for the Ps− ground
state is denoted by the horizontal line on the left axis.
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At the larger values ofXm the annihilation rate behaves in
a manner that might seem unusual. While the annihilation
rate does decrease, the explicit calculations show no sign of
it decreasing to zero. In effect, the annihilation rate is still
quite substantial when the SVM calculations result in the
system becoming unbound.

To shed further light on this behavior, thekrm3+e−l and
krm3+e+l expectation values have been plotted as functions of
Xm in Fig. 7. The distances between the particles decrease
consistently asXm increases. ForXmù0.5966 the lowest en-
ergy threshold is forsm3+,2e−d+e+ breakup and the binding
energy of the positron to thesm3+,2e−d system decreases
steadily asXm increases from 0.059 66. It is somewhat coun-
terintuitive, but the distance between them3+ particle and the
positron decreases while the binding energy decreases. This
result was sufficiently unusual that special attention was paid
to the calculations at the highest values ofXm. The basis
dimension atXm=0.066 30 and 0.066 32 was increased to
580 and the wave function was then subjected to further
optimization. At Xm=0.06630 the binding energy was 8.9
310−5 hartree and thekrm3+e+l expectation was 10.4845a0.
WhenXm was increased to 0.066 32, the binding energy de-

creased by a factor of 3 to 3.1310−5 hartree. However, the
krm3+e+l expectation value actually decreased to 10.4824a0.

The explanation for this behavior lies in an examination
of the nature of the interaction potential between the positron
and thesm3+,2e−d system. The nature of the dominant terms
in the potential can be summarized as

V <5
1

rm3+e+
large distances, s7d

−
ad

2rm3+e+
4 intermediate distances, s8d

3

rm3+e+
short distances, s9d

where ad is the polarizability of thesm3+,2e−d system. At
large distances the dominant interaction is of course the Cou-
lomb repulsion between the positron and thesm3+,2e−d sys-
tem. At small distances the dominant interaction is the Cou-
lomb repulsion between the positron and them3+ particle. At
intermediate distances, the attractive correlation-polarization
potential between the positron and the electrons is largest.
The leading order term of this interaction is the adiabatic
polarization potential withad being the static dipole polariz-
ability of the sm3+,2e−d complex. A schematic diagram
showing the nature of this potential is given in Fig. 8.

The important aspect of this potential is that there is a
Coulomb barrier separating the well that binds the positron
from the asymptotic region. So the positron will be localized
in this well even as the binding energy decreases. The posi-
tron will be able to escape the well only for binding energies
vanishingly close to threshold.

This provides a natural explanation for the curious behav-
ior of krm3+e+l with increasingXm. This expectation decreases
because thesm3+,2e−d system becomes more compact asXm

increases. The positron will start to drift away from the
sm3+,2e−d complex only when the binding energy gets closer
to threshold(i.e., smaller than 3.1310−5 hartree) than was
achieved by the present set of calculations.

FIG. 6. The annihilation rate(in units of 109 s−1) of the
sm3+,2e−,e+d system as a function ofXm. The annihilation rate for
Ps− is denoted by the horizontal line on the left axis.

FIG. 7. Thekrm3+e−l andkrm3+e+l expectation values(units ofa0)
for the sm3+,2e−,e+d system as a function ofXm.

FIG. 8. A schematic diagram showing the qualitative behavior
of the effective interaction potential between thesm3+,2e−d system
and the positron as a function ofrm3+e+.
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The present results are also compatible with the system-
atics of halo states that occur in nuclear systems[50]. Two-
body halo states consist of a nucleon weakly bound to a
residual nucleus. A large percentage(e.g., 50%) of the
nucleon wave function must lie in the classically forbidden
region outside the nuclear potential[50,51]. While a number
of neutron halo states have been identified, it is not possible
to identify a nucleus with an unambiguous proton halo. The
Coulomb barrier does tend to confine a weakly bound proton
to lie inside the nuclear potential well. It has been shown that
three-body halo states involving a proton can be expected to
have finite radial expectation values while the binding energy
goes to zero[50,52].

D. Z=10

The stability of thesm3+,2e−,e+d system for a mass range
encompassing both them3++Ps− and thesm3+,e−d+Ps disso-
ciation thresholds suggested that stability of the
smZ+,2e−,e+d system over an extended mass range may be a
feature of the system general to allZ. Accordingly, the sys-
tem Z=10 was studied.

The m10++Ps− system gives the lowest dissociation
threshold whenever Xm,0.000 240 2. When Xm
P f0.000 240 2,0.002 54g, the lowest energy threshold is that
for breakup intosm10+,e−d+Ps.

An explicit SVM calculation with dimension 100 has
been done forXm=0.002 54, giving a total energy of
−0.388 849 hartree. This corresponds to a binding energy of
0.012 170 hartree. Although the small dimension of the basis
means the binding energy is an underestimate, the good
agreement with Eq.(3), which gives 0.012 219 hartree, indi-
cates that the physical picture justifying this expression is
realistic. The stability atXm=0.002 54 can be used to reason-
ably infer stability for allXm,0.002 54.

III. SUMMARY

The structure of thesmZ+,2e−,e+d system has been inves-
tigated as a function ofZ andXm=mZ+/me. A universal fea-
ture of the system is its ability to form a Ps− cluster at small
Xm, thereby leading to binding whenever themZ+-e− interac-
tion is sufficiently weak. The system is stable for allZù1
when themZ++Ps− fragmentation gives the lowest energy
dissociation threshold. Furthermore, the results of the ex-
plicit calculations forZP f1,10g mean that it is reasonable to
infer stability whenever thesmZ+,e−d+Ps fragmentation is
the lowest energy dissociation that occurs. It seems likely
that thesmZ+,2e−,e+d system is stable for all values ofXm

such that the lowest energy dissociation channel is either the
smZ+,e−d+Ps or themZ++Ps− fragmentation.

While the possibility of positron binding to a positively
charged system is now theoretically conceivable, in practice
there are no divalentns2 singly charged positive ions that
have energetics compatible with thesm3+,2e−,e+d configura-
tions that result in positron binding. However, although a
bound state would be ruled out, it is possible that Feshbach
resonances associated withn* s2 doubly excited states may
exist. In addition, the results attest to the presence of
sA+,Ps−d type configurations in Ps-A collisions [47]. Such
configurations are likely to be most important for target at-
oms with small ionization potentials.

ACKNOWLEDGMENTS

This work was supported by a research grant from the
Australian Research Council. The authors would like to
thank J. C. Nou and C. Hoffmann for system administration
support of our workstations. The authors would like to thank
Dr. Brenton Lewis of the Australian National University for
giving access to his fast workstation.

[1] E. A. G. Armour and W. Byers Brown, Acc. Chem. Res.26,
168 (1993).

[2] E. A. Hylleraas, Z. Phys.54, 347 (1929).
[3] H. Bethe, Z. Phys.57, 815 (1929).
[4] E. A. Hylleraas, Z. Phys.63, 297 (1930).
[5] J. A. Wheeler, Ann. N.Y. Acad. Sci.68, 278 (1946).
[6] C. L. Pekeris, Phys. Rev.112, 1649(1958).
[7] R. D. J. Poshusta, J. Phys. B18, 1887(1985).
[8] A. K. Bhatia and R. J. Drachman, Phys. Rev. A35, 4051

(1987).
[9] A. M. Frolov, J. Phys. B26, 1031(1993).

[10] M. I. Haftel and V. B. Mandelzweig, Phys. Rev. A38, 5995
(1988).

[11] Y. K. Ho, Phys. Rev. A48, 4780(1993).
[12] F. Arias de Saavedra, E. Buendia, F. J. Galvez, and A. Sarsa,

Eur. Phys. J. D2, 181 (1998).
[13] J. Ackermann and J. Shertzer, Phys. Rev. A54, 365 (1996).
[14] Z. C. Yan and Y. K. Ho, Phys. Rev. A59, 2697(1999).
[15] G. G. Ryzhikh and J. Mitroy, J. Phys. B32, 4051(1999).
[16] A. Martin, J. M. Richard, and T. T. Wu, Phys. Rev. A46, 3697

(1992).
[17] J. M. Richard, Phys. Rev. A49, 3573(1994).
[18] J. Mitroy, J. Phys. B33, 5307(2000).
[19] J. Z. Mezei, J. Mitroy, R. G. Lovas, and K. Varga, Phys. Rev.

A 64, 032501(2001).
[20] M. Inokuti, K. Katsuura, and H. Mimura, Prog. Theor. Phys.

23, 146 (1960).
[21] A. A. Frost and M. Inokuti, J. Chem. Phys.41, 482 (1964).
[22] E. A. G. Armour and D. M. Schrader, Can. J. Phys.60, 581

(1982).
[23] M. Rotenberg and J. Stein, Phys. Rev.182, 1 (1969).
[24] I. Aronson, C. J. Kleinman, and L. Spruch, Phys. Rev. A4,

841 (1971).
[25] A. M. Frolov and D. M. Bishop, Phys. Rev. A45, 6236

(1992).
[26] G. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B31, 3965

(1998).
[27] V. I. Kukulin and V. M. Krasnopol’sky, J. Phys. G3, 795

(1977).
[28] K. Varga and Y. Suzuki, Phys. Rev. C52, 2885(1995).

J. MITROY AND S. A. NOVIKOV PHYSICAL REVIEW A 70, 032511(2004)

032511-8



[29] K. Varga and Y. Suzuki, Comput. Phys. Commun.106, 157
(1997).

[30] Y. Suzuki and K. Varga,Approach to Quantum-Mechanical
Few-Body Problems(Springer, New York, 1998), p. 172.

[31] J. Mitroy, Phys. Rev. A66, 010501(2002).
[32] A. Ore, Phys. Rev.83, 665 (1951).
[33] D. M. Schrader, F. M. Jacobsen, N. P. Fransden, and U.

Mikkelsen, Phys. Rev. Lett.69, 57 (1992).
[34] E. A. Hylleraas and A. Ore, Phys. Rev.71, 493 (1947).
[35] K. Varga, S. Fleck, and J. M. Richard, Europhys. Lett.37, 183

(1997).
[36] G. Ryzhikh and J. Mitroy, J. Phys. B31, L103 (1998).
[37] J. Mitroy and G. G. Ryzhikh, J. Phys. B34, 2001(2001).
[38] J. Mitroy and G. G. Ryzhikh, J. Phys. B32, 3839(1999).
[39] M. W. J. Bromley, J. Mitroy, and G. G. Ryzhikh, Nucl. In-

strum. Methods Phys. Res. B171, 47 (2000).
[40] J. Usukura, K. Varga, and Y. Suzuki, Phys. Rev. A58, 1918

(1998).
[41] C. Lee, Zh. Eksp. Teor. Fiz.33, 365 (1957) [Sov. Phys. JETP

6, 281 (1958)].
[42] S. M. Neamtan, G. Darewych, and G. Oczkowski, Phys. Rev.

126, 193 (1962).

[43] R. Krivec, V. B. Mandelzweig, and K. Varga, Phys. Rev. A61,
062503(2000).

[44] J. Di Rienzi and R. J. Drachman, Phys. Rev. A65, 032721
(2002).

[45] J. Di Rienzi and R. J. Drachman, Phys. Rev. A66, 054702
(2002).

[46] J. E. Blackwood, M. T. McAlinden, and H. R. J. Walters, Phys.
Rev. A 65, 032517(2002).

[47] H. R. J. Walters, A. C. H. Yu, S. Sahoo, and S. Gilmore, Nucl.
Instrum. Methods Phys. Res. B221, 149 (2004).

[48] J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B
35, R81 (2002).

[49] J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B
32, 2203(1999).

[50] A. S. Jensen, K. Riisager, D. V. Federov, and E. Garrido, Rev.
Mod. Phys.76, 215 (2004).

[51] K. Riisager, V. Fedorov, and A. S. Jensen, Europhys. Lett.49,
547 (2000).

[52] D. V. Fedorov, A. S. Jensen, and K. Riisager, Phys. Rev. C49,
201 (1994).

[53] M. W. J. Bromley and J. Mitroy, Phys. Rev. A66, 062504
(2002).

STABILITY AND STRUCTURE OF THE… PHYSICAL REVIEW A 70, 032511(2004)

032511-9


