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A density-functional theory is developed for fermions in one dimension, interacting via ad function. Such
systems provide a natural testing ground for questions of principle, as the local-density approximation should
be highly accurate since for this interaction type the exchange contribution to the local-density approximation
is intrinsically self-interaction-free. The exact-exchange contribution to the total energy is a local functional of
the density. A local-density approximation for correlation is obtained using perturbation theory and Bethe
ansatz results for the one-dimensional contact-interacting uniform Fermi gas. The ground-state energies are
calculated for two finite systems, the analogs of helium and of Hooke’s atom. The local-density approximation
is shown to be excellent as expected.
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I. INTRODUCTION

Density-functional theory(DFT) is a rigorous reinterpre-
tation of the quantum many-body problem in which the basic
object uniquely characterizing a system is the densitynsxd
rather than the many-body wave function. This view is par-
ticularly suited to practical calculations, and DFT has been
applied successfully to solids and molecules for quite some
time [1]. Researchers typically focus on Coulomb-interacting
fermions in three dimensions, but the Hohenberg-Kohn theo-
rem[2–5] upon which DFT is based holds for any interaction
and in any spatial dimension. We consider the contact or
d-function interaction between fermions in one spatial di-
mension,

vintsxi − xjd = ldsxi − xjd, s1d

wherexi and xj represent the spatial coordinates of the fer-
mions,dsxd is the Dirac delta function, andl is the interac-
tion strength. The fermions have two spin states, up and
down. Thed-function potential is a one-dimensional analog
to the Coulomb one as it scales in a similar fashion,
vintsaxd=vintsxd /a, and its solutions satisfy the energetically
important particle-particle cusp condition[6,7]. However, it
differs in that it is short ranged. There is no simple equiva-
lence betweenl and e2, the Coulomb-interaction strength,
althoughl can be related to a scattering length[8].

One-dimensional model interactions are important for
several reasons. Perhaps most obviously, they are useful in
mathematical and statistical physics[9–12] to illustrate prob-
lems and concepts from three-dimensional physics that are
sometimes hard to conceptualize due to the number of de-
grees of freedom. However, our primary motivation is to use
this one-dimensional model to understand and improve
density-functional theory. Many of the known formal prop-
erties of the exchange-correlation functional are true in this
case. These properties include behavior under uniform coor-
dinate scaling[13], the virial theorem, and inequalities due to
the variational principle. That properties of the theory still

hold should prove extremely useful in exploring time-
dependent density-functional theory[14,15], where formal
properties are still being investigated. Because the interac-
tion is not the Coulomb one, the unknown exchange-
correlation functional will, of course, differ. The local-
density approximation(LDA ) should be extremely accurate
in this case because exchange is treated exactly for this in-
teraction, and there is no exchange self-interaction error. An-
other reason is that a contact interaction samples only the
on-top value of the exchange-correlation hole, and the local-
density approximation is known to reproduce this value ac-
curately [16]. The self-interaction-corrected LDA is highly
accurate for the ground-state energies of isolated atoms
[17,18]. The difference here is that the self-interaction is
handled exactly within the local-density formalism and no
special corrections are needed. Our LDA could be used to
study the one-dimensional analog of stretched H2 to identify
whether the proper description of dissociation into individual
atoms depends on the long-ranged Coulomb interaction or is
due to symmetry considerations alone. Another interesting
system on which to use one-dimensional DFT is the one-
dimensional solid. Thisd-function interaction has already
been used to study problems in DFT[19,20] but without the
inclusion of any correlation effects, which are known to be
important in one-dimensional systems. An earlier treatment
including correlation effects can be found in Ref.[21]. Using
DFT to study alternate interactions is not new; for example,
Capelle and co-workers have used a similar approach on the
Hubbard model[22,23].

It has been suggested that thed-function model should
give a good representation of the physics of one-dimensional
fermions in certain experimental contexts[24–28]. Since
one-dimensional systems are analytically, or at least compu-
tationally, manageable, the exact results are useful to exam-
ine situations when standard techniques fail. For example,
the one-dimensional analog of helium can be examined in
detail near the critical point of ionization when the nuclear
attraction and interaction repulsion are comparable. This sort
of analysis is demanding for real systems, and finite-size
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scaling and infinite-dimensional approaches are necessary
[29–32]. Carefully understanding how systems ionize and
how electronic structure methods reproduce this critical phe-
nomenon is useful for many chemical problems. We will
examine this limit in detail in future work and present only
the most basic results here.

Throughout, we assume that our one-dimensional fermi-
ons have the same mass as electrons, and we use atomic units
se2="=me=1d so that all energies are in hartrees and all
lengths in Bohr radii.

II. EXACT-EXCHANGE FUNCTIONAL
DENSITY-FUNCTIONAL THEORY

In this section, we see how the contact interaction affects
the total energy to first order inl. First-order interaction
theory is traditionally called the Hartree-Fock approxima-
tion, but here, the first-order interaction energy depends ex-
plicitly on the density so that, for this particular interaction,
the Hartree-Fock approximation is equivalent to exact-
exchange DFT. Consequently, exchange is treated exactly
within the local-density approximation for this interaction.

According to density-functional theory[2–5], the ground-
state total energy is a functional of the particle density and
the local magnetization,

zsxd =
n↑sxd − n↓sxd
n↑sxd + n↓sxd

, s2d

wheren↑ andn↓ are the densities of up and down spins. The
total ground-state energy can be decomposed as follows:

Efn,zg = TSfn,zg + UHfng + EXCfn,zg +E dxvextsxdnsxd

s3d

in a one-dimensional space whereUHfng is the exactly
known Hartree or classical density-density interaction contri-
bution, vextsxd is the given external potential,TSfn,zg is the
exactly known kinetic energy of noninteracting fermions at a
given density, andEXCfn,zg is the unknown exchange-
correlation energy. The density is found by studying the
Kohn-Sham(KS) system, the noninteracting counterpart to
the physical system[33]. The Kohn-Sham equation is

S−
1

2
¹2 + vS,ssfn,zg;xdDfi,ssxd = ei,sfi,ssxd s4d

wherefi,ssxd is the ith KS orbital for spin types, ei,s is the
KS eigenvalue, andvS,ssxd is the KS potential for spin type
s. The Kohn-Sham potential is a functional derivative of the
energy functionals,

vS,ssxd = vextsxd +
dUHfng
dnssxd

+
dEXCfn,zg

dnssxd
, s5d

where nssxd is the s spin density. The spin density is ob-
tained from the occupied orbitals,

nssxd = o
i,occ.

ufi,ssxdu2. s6d

Because of the antisymmetry of the wave function under
particle interchange, fermions with like spins do not experi-
ence the contact interaction. Only opposite spins interact di-
rectly.

The Hartree contribution depends only on the total par-
ticle density and is independent of how up and down fermi-
ons are distributed:

UHfng =
l

2
E dxdx8nsxddsx − x8dnsx8d =

l

2
E dxn2sxd.

s7d

There is overcounting here because like spins do not interact,
and the exchange term must cancel these spurious like-spin
interactions. The exact-exchange term is

EXfn,zg = −
l

2
E dxnsxd2f1 + zsxd2g/2. s8d

Equations(7) and (8) follow immediately after substituting
the d-function interaction into the usual Hartree and Fock
terms. Note that for a one-fermion system we have
EXfn, uzu=1g=−UHfng and contact-interacting exact ex-
change is self-interaction-free.

III. LOCAL-DENSITY CORRELATION FUNCTIONAL
FROM THE ONE-DIMENSIONAL

CONTACT-INTERACTING UNIFORM FERMI
GAS (DELTIUM)

In order to obtain a local-density correlation functional,
we review the one-dimensional unpolarized Fermi gas,
which we call deltium. This Fermi gas plays the role of the
uniform electron gas in Coulomb-interacting DFT. While the
Coulomb-interacting Fermi gas is a Fermi liquid, the one-
dimensionald-function-interacting analog is a Luttinger liq-
uid [34]. The Hamiltonian is

Ĥ = −
1

2o
i

N
d2

dxi
2 + lo

i, j

dsxi − xjd. s9d

The solution must be antisymmetric under particle inter-
change and satisfy periodic boundary conditions on a ring of
circumferenceL. This system has been examined previously
[8,35,36]. Because the wave function is antisymmetric under
particle interchange, the fully polarized gas is not affected by
the interaction. We consider the correlation in detail for only
the fully unpolarized gas. Sincez=0 in the unpolarized case,
we will suppress it except when needed.

The energy per particle of the noninteracting uniform gas
is purely kinetic:

tsnd =
p2

24
n2. s10d

When interactions are present, the total energy per particle is

R. J. MAGYAR AND K. BURKE PHYSICAL REVIEW A 70, 032508(2004)

032508-2



esnd = tsnd + eHsnd + eXsnd + eCsnd, s11d

whereeHsnd=ln/2 is the Hartree energy per particle,eXsnd
=−ln/4 is the exchange energy per particle, andeCsnd is the
correlation energy per particle. It is useful to define the fol-
lowing two terms. Kineticlike means that the energy per par-
ticle is proportional ton2, like the noninteracting kinetic en-
ergy. Hartree-like means that the energy per particle is
proportional ton, like the Hartree energy.

The ground-state energy per particle for deltium, Eq.(9),
can be found via Bethe ansatz methods[37–41], whereby the
uniform unpolarized Fermi gas problem can be recast as a set
of integral equations[42]:

tsyd =
1

2p
+

2

p
E
−`

`

dL
lssLd

l2 + 4sy − Ld2 s12d

and

ssLd =
1

2l
E

−kmax

kmax

dy sechfpsy − Ld/lgtsyd, s13d

where t is the number of occupied states per wave-vector
label y, and s is the number of occupied down-spin states
per a different wave-vector labelL. In the high-density limit,
kmax=pn/2, and in the low-density limit,kmax=pn. Equa-
tions (12) and(13) must be solved self-consistently fort and
s at a chosen value ofkmax to obtain the ground-state energy.
In order to do this, the integrals are transformed to the inter-
val f−1,1g, and integrated using six-point quadrature rules
with 400 mesh points. The density is

n = E
−kmax

kmax

dytsyd, s14d

and the total energy per particle is

e =
1

2n
E

−kmax

kmax

dyy2tsyd. s15d

The correlation energy per particle for a wide range of den-
sities can, in the spirit of three-dimensional DFT, be param-
etrized for practical calculations. We consider both the high-
and low-density limits analytically and numerically. Since
we are concerned with parametrizing the correlation energy,
we subtract out the known kinetic, Hartree, and exchange
contributions.

The low-density limit is the large-l limit. In this limit, the
opposite-spin fermions repel each other so strongly that the
interaction mimics Fermi antisymmetrization. Thus, the in-
teraction energy per particle is kineticlike. This means that
the first term for the correlation energy must cancel the Har-
tree and exchange energies, and the next term in the correla-
tion energy must be kineticlike. The correlation energy per
particle is

eCsnd = −
l

4
n + b1n

2 −
b2

l
n3 + OSn4

l2D s16d

with b1=p2/8 andb2=4.56. The first term in Eq.(16) ex-
actly cancels the Hartree and exchange energies, and the
next, b1, provides the kineticlike contribution to the energy.
We determine the coefficientb2 from numerical analysis of
the Bethe ansatz results atl=1. Specifically, we subtract the
known contributions fromesnd, divide by n3, and plot the
result as a function ofn. The extrapolated intercept atn=0 is
b2.

In the high-density limit, the interaction is perturbation-
like and the correlation energy per particle approaches a con-
stant:

eCsnd = − c1l2 + c2l3/n + OSl4

n2D s17d

with c1=1/24 andc2=0.006 170. The first term,c1, is found
using perturbation theory in the Appendix. We determinec2
from numerical analysis of the Bethe ansatz results by sub-
tracting the known contributions fromesnd, multiplying byn,
plotting the result as a function of 1/n, and extrapolating to
the origin using a fourth-order polynomial. The correlation
energy per particle of the uniform gas approaches a finite
value asn→`, in contrast to jellium, because the contact
interaction is short ranged.

A [2,2] Padé parametrization of the correlation energy per
particle is

eC
unifsnd < San2 + bn+ c

n2 + dn+ e
D s18d

with a=−c1=−1/24, b=−0.004 361 43,c=0, d=0.252 758,
ande=0.017 445 7. Note thatc is zero because the correla-
tion energy per particle vanishes in the low-density limit.
This approximation gives the first and second termsc1 andc2
of the high-density limit correctly. In the low-density limit,
this approximation cancels the Hartree-exchange term and
gives theb1 coefficient. The parametrization ofeC, the cor-
relation energy per particle, has a maximum error of 0.7%
and is highly accurate for the important high-density regions.
As shown in Figs. 1 and 2, the parametrization is almost

FIG. 1. Correlation energy per particle in atomic units for del-
tium, the one-dimensional uniform contact-interactingsl=1d Fermi
gas, in the high-density limit. The solid line is the exact result
calculated from the solutions of the Bethem ansatz integral equa-
tions. The long-dashed line is the simple LDA given by Eq.(20).
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indistinguishable from the exact numerical result. Equation
(18) is valid at l=1 but can be generalized to arbitraryl
according to scaling rules:eC

unif,lsnd=l2eC
unifsn/ld.

For the fully polarized casesuzu=1d, the interaction does
not contribute to the energy and

EC
LDAfn,uzu = 1g = 0. s19d

We can combine these results and construct a local-density
correlation energy functional:

EC
LDAfn,zg =E dxnsxdeC

unif
„nsxd…f„zsxd…

<E dxS ansxd3 + bnsxd2

nsxd2 + dnsxd + e
D f„zsxd…. s20d

A simple suggestion forfszd which gives both polarized
suzu=1d and unpolarizedsz=0d limits exactly is

fszd = 1 −z2, s21d

which is thez dependence ofUH plus EX. We stress that the
local-density correlation-energy functional Eq.(20) is self-
interaction-free for a one-particle system.

IV. THE ONE-DIMENSIONAL CONTACT-INTERACTING
ANALOG OF THE HELIUM ATOM (DIRACIUM)

In order to assess the usefulness of this local approxima-
tion to handle one-dimensional problems, we start with per-
haps the most difficult test case, a completely nonuniform
system, diracium. This is the one-dimensional analog of he-
lium with the traditional Coulomb terms replaced byd func-
tions. The system is described by the Hamiltonian

Ĥ = −
1

2

d2

dx1
2 −

1

2

d2

dx2
2 − Zdsx1d − Zdsx2d + ldsx1 − x2d

s22d

and the eigenvalue equation

ĤCss8sx1,x2d = ECss8sx1,x2d, s23d

wherex1 andx2 are the positions of the fermions,s ands8
are the spinlike labels of the fermions,Z is the magnitude of
the external potential, andC is an antisymmetric Fermi wave
function which vanishes asx→`. The ground state is a spin
singlet sz=0d.

First, we solve the model analytically within the exact-
exchange approximation. Then we introduce our local-
density approximation to the exchange-correlation energy.
Finally, we present the exact energy eigenvalues.

With the exact-exchange functional Eq.(8) and no func-
tional for correlation, the Kohn-Sham single-orbital equation
is

−
1

2

d2

d2x
fsxd − Zdsxdfsxd + lufsxdu2fsxd = eKSfsxd.

s24d

Equation (24) can be solved using elementary techniques.
The resulting eigenvalue is

eKS = −
1

2
SZ −

1

2
lD2

, s25d

and the Kohn-Sham orbital[43] is

fsxd =
1
Îl

SZ −
1

2
lDcschFSZ −

1

2
lDuxu + aG s26d

with

a = arccothS Z

Z − 1
2l
D . s27d

This is unbound atZ,
1
2l. The calculated total energy is not

just the sum of the occupied KS orbital eigenvalues; rather, it
is

Efng = o
occ

eKS + UHfng + EXCfn,zg −E dxvHsfn,zg;xdnsxd

−E dxvXCsfn,zg;xdnsxd, s28d

or explicitly

EEXX = − Z2 +
Zl

2
−

l2

12
. s29d

Next, we solve the KS equation using the local-density
approximation to the correlation. The LDA KS equation is

−
1

2

d2

d2x
fsxd − Zdsxdfsxd + lufsxdu2fsxd

+ vCsfn,z = 0g;xdfsxd = eKSfsxd s30d

with

vCsfn,z = 0g;xd = S1 −
b

b + ansxd
+

2e+ dnsxd
nsxd2 + dnsxd + e

DeCsxd.

s31d

Equation(30) is solved numerically to self-consistency cycle
via the shooting method.

The exact ground-state energies were obtained previously
by Rosenthal[44] by transforming to momentum space and
reducing the problem to the solution of a one-dimensional
integral equation. While this method converges quickly to

FIG. 2. The same as Fig. 1 but for the low-density limit.
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the exact energy eigenvalue, it is not well suited to giving
real space wave functions and densities. Instead, we take the
calculated eigenvalueE as input and reduce the eigenvalue
problem Eq.(22) to a differential equation. The differential
equation can then be converted to an integral equation using
Green’s function techniques:

Csx,yd =
Z

p
E
−`

`

dx8K0sÎ− 2EÎsx − x8d2 + y2dCsx8,0d

+
Z

p
E
−`

`

dx8K0sÎ− 2EÎx2 + sy − x8d2dCsx8,0d

−
l

p
E
−`

`

dx8K0sÎ− 2EÎsx − x8d2 + sy − x8d2dCsx8,x8d,

s32d

whereE is the ground-state energy andK0 is the zeroth-order
modified Bessel function and is the Green’s function for this
particular two-dimensional equation. We have dropped the
spin labels in this case since the exact ground state is a spin
singlet. By settingy equal tox and then 0, we can arrive at a
set of two coupled integral equations which can be solved
self-consistently. Note that, although the Bessel function has

a divergence, the integral is finite. OnceCsx,0d andCsx,xd
are known, we can construct the wave function at any point
in space. If the inputE is exact, then solution of this equation
yields the exact ground-state wave function.

In Table I, we see that the LDA is much more accurate
than the EXX functional. Second-order perturbation theory is
more accurate only forZù7, but that is at a much larger
computational cost since the second-order contribution re-
quires calculation of the entire spectrum of unoccupied or-
bitals. The LDA remains bound and gives a reasonable result
(within a factor of 3) even at the critical potential strength
Zcrit. In Fig. 3, we see that the LDA gives a qualitatively
correct density forZ=1/2 where the EXX result is no longer
even bound.

Figure 4 shows that the LDA gives highly accurate corre-
lation energies for the nonperturbative regime whenZ is
small. In the other extreme, the exact result approaches the
second-order perturbation theory value, and the LDA is over-
correlated, as will be discussed later.

FIG. 3. Comparison of the self-consistent LDA density in
atomic units(dashed line) with the exact(solid line) for l=1 and
Z=0.5. This is an extreme case where the exact exchange no longer
binds.

FIG. 4. Correlation energy in atomic units for diracium, the
one-dimensional analog of heliumsl=1d. The solid line is the exact
result, the short-dashed line is the LDA result, and the long-dashed
line is the second-order perturbation theory result. Note that we
extract the correlation energy approximately by subtracting the self-
consistent exact-exchange total energy from the exact total energy.
The exact-exchange density becomes an unreliable approximation
to the exact density asZ decreases and atZ=1/2 thedensity is even
qualitatively wrong as the self-consistent exact-exchange solution is
no longer bound. Therefore, we terminate the plot atZ=1 where we
expect the self-consistent exact-exchange density to be an accurate
representation of the exact density.

TABLE I. Total ground-state energy for diracium(in hartrees) and errors(in millihartrees) of various
approximations withl=1. The exact results are from a numerical solution of the problem as outlined by Ref.
[44]; the second-order perturbation values are also given in the same reference. The EXX and LDA results
are from a self-consistent calculation using the exact-exchange functional Eq.(8) and the LDA functional Eq.
(20), respectively.Zcrit=0.377 115 is the critical value at which the system ionizes[44].

Z Exact DLDA D EXX D Perturbation theory

Zcrit −0.070276 −45 not bound 46

0.5 −0.129281 −12 not bound 34

1 −0.647225 −3.3 −64 16

2 −3.155390 −1.0 −72 7.4

4 −14.159190 0.7 −76 3.6

8 −60.161010 1.8 −78 1.7

100 −9950.1630 3.2 −80 −0.2
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There exist standard theorems about the decay of the den-
sity away from the attractive nuclear potential in the three-
dimensional Coulomb-interacting case[45]. For example,

nsrd → e−2ar s33d

asr →` wherea=Î2I. This theorem also holds for our one-
dimensional model withr = uxu. There is much interest in
critical values ofZ at which an atom can no longer bind its
outermost electron[29–31]. Understanding this limit yields
information on the existence of negative ions. A most inter-
esting question is this: AsZ→Zcrit and I →0, how does the
density decay? We study this directly in our one-dimensional
example by varyingl and keepingZ fixed at 1. For large
enoughl, the system will ionize. Note thatlcrit=1/Zcrit. Fig-
ure 5 showsd ln n/dx asl→1/Zcrit for Z=1.

The second-order perturbation theory result for diracium
differs from the high-density LDA result. The second-order
perturbation theory result is

EC = s− 3/8 + 2/3p + 1/12dl2 = − 0.0795l2. s34d

The first two terms are the exact contribution to the total
energy to orderl2 [46]. From this, we subtract the final term,
which is the exchange contribution via the self-consistent
density. The high-density LDA correlation result is

EC = − l2/12 = − 0.083 333l2. s35d

The LDA correctly scales to a constant in the high-density
limit in contrast to three-dimensional Coulomb DFT[47]
(see Fig. 3).

Another interesting quantity to consider as the particle-
particle interaction grows stronger is the interaction energy
or the expectation value ofvintsxi −xjd. For smalll, the in-

teraction energy grows in magnitude asl grows, but atl
<0.9, this trend reverses. Forlùlcrit, the system is ionized,
so that the interaction energy is zero. Figure 6 shows that, as
l→lcrit from below, the approach to this discontinuity is
linear. This information is valuable in studying the approach
to ionization, and may also be true for real two-electron ions.

V. d-FUNCTION-INTERACTING HOOKE’S ATOM

Another test of this one-dimensional LDA is the analog to
Hooke’s atom[48],

Ĥ = −
1

2

d2

dx1
2 −

1

2

d2

dx2
2 +

1

2
v2x1

2 +
1

2
v2x2

2 + ldsx1 − x2d,

s36d

wherev determines the strength of the harmonic well poten-
tial. This model has been used to model one-dimensional
quantum dots[24], and its excitations have been studied us-
ing time-dependent DFT[49]. The exact wave function is
given in terms of Whittaker functions and confluent hyper-
geometric functions[24]. The total energy is

E =
1

2
v + « s37d

with e obtained from the solution of[24,49]

2Î2vGS−
e

2v
+

3

4
D/GS−

e

2v
+

2

4
D = − l. s38d

In Table II, we see that the LDA greatly improves over the
exact-exchange formalism for all values ofv.

In the high-density or weak-couplingsl→0d limit, this
system behaves similarly to diracium, described above. The
total energy can be described perturbatively

E = v + lc1v1/2 + l2c2 + ¯ , s39d

where c1=1/Î2p=0.399 and c2=fg+cs0ds 1
2

dg /4p=
−0.110 318 withg being the Euler constant andcs0d the
zeroth-order polygamma function. Thel2 term above is the
high-density limit of the correlation energy plus an exchange
contribution. In DFT, the exchange contribution is the first-

order contribution inl̃ wherel̃ is the coupling constant for a

FIG. 5. The behavior of the density in atomic units for diracium
sZ=1d at various interaction strengthsl. We plot d ln nsxd /dx to
highlight the asymptotic behavior of the density. Forl.lcrit, the
system is ionized.

FIG. 6. The expectation value of the interaction in atomic units
at various interaction strengthsl. Beyondl=lcrits2.6517d, the sys-
tem is ionized and the interaction energy vanishes.

TABLE II. Total ground-state energy for the contact-interacting
Hooke’s atom(in hartrees) and errors(in millihartrees) of various
approximations withl=1. Exact result is from a numerical solution
of Eqs.(37) and(38). EXX is exact exchange. The LDA is accord-
ing to the parametrization Eq.(20).

v Exact D EXX DLDA

0.001 0.001950 −6.1 −0.08

0.01 0.018510 −12.6 −0.7

0.1 0.161410 −48.2 −3.5

1 1.306750 −72.2 −6.3

10 11.157330 −82.9 −6.4

100 103.881057 −86.5 −5.7
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fixed fermion density. Here,l is the interaction strength, and
when it varies so does the ground-state density. This means
that in a self-consistent calculation exchange will contribute
to second order inl to the total energy. We saw this in Eq.
(29) for diracium. The same is true here. As for diracium, the
LDA is very accurate in the high-density limit. In order to
properly compared the LDA correlation energy with the ex-
act one, we need to extract the exact density.

Since Hooke’s atom stays bound for arbitrarily weakv,
we can see how well our LDA describes the low-density
limit. The low-density limit is particularly challenging for
Coulomb-interacting functionals[50] because of the strong
correlation. The LDA and generalized gradient approxima-
tions behave qualitatively correctly but often err by as much
as a factor of 2 for the exchange-correlation energy. For
Hooke’s atom, the exact result for the total energy in the
strong-coupling limit is

E = 2v. s40d

The low-density limit is related to the large-coupling-
constant limit. Asl→`, the lowest-energy solution in the
relative coordinateux1−x2u is simply the first noninteracting
excited state because inserting a node atx1=x2 minimizes the
interaction energy. We find that the LDA is remarkably ac-
curate in this regime, so the errors in Coulomb-interacting
DFT can be ascribed to the long-range interaction.

The energy in this regime becomes kineticlike. The exact-
exchange functional is Hartree-like and will fail to capture
the proper energetics. The LDA, however, cancels the
Hartree-like exchange contributions and is kineticlike. In the
low-density regime the density is close to uniform locally, so
we expect the energy per particle to be similar to that of
low-density deltium. This is in fact the case and is reflected
by the high accuracy of the LDA in the low-density regime.

VI. CONCLUSION

In this paper, we examined a one-dimensional density-
functional theory of contact-in-teracting fermions. We noted
that exact exchange is an explicit density functional and de-
veloped a local-density approximation for correlation. We
applied these functionals successfully to two simple models,
demonstrating the high accuracy of the LDA here. Although
the LDA is highly accurate in these cases, it is not exact. This
result is consistent with the observation in Ref.[51] that the
LDA is not exact in the short-wavelength limit.

This model interaction and LDA can be used to illustrate
and explore problems in DFT. Examples include ground-
state symmetry problems in stretched H2 and the interacting-
fermion one-dimensional solid(a generalized Kronig-Penney
model) as a model band-gap problem. Thisd-function inter-
action has already been used in scattering problems and in
pedagogy, and we hope that our local-density correlation
functional finds fruitful applications in these areas as well.
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APPENDIX

Here, we find the high-density limit of the correlation
energy per particle for deltium using perturbation theory and
the diagrammatic approach in momentum space[52]. The
Fourier transform of the interaction potential is

Vsqd =
l

L
E
−L

L

dxdsxdeiqx =
l

L
sA1d

whereL is the length between the periodic boundaries. As
noted earlier, like-spin fermions will not interact via thed
function; this means that only vertices that connect opposite
spins will enter into the perturbative series. This is a tremen-
dous simplification as many diagrams will cancel. A further
simplification is that the interaction is independent of the
momentum transferq.

To first order, only the Hartree diagram between opposite
spins contributes to the total energy. This is the first diagram
in Fig. 7. Evaluation does not require integration over inter-
nal momentum. The loop integrals have prefactors of
L2/4p2, and integration over the loops results in a factor of
2kF=pn each, wherekF=pn/2 is the Fermi momentum of
noninteracting deltium. The symmetry factor of 1/2 is can-
celed by a sum over the two possible pairs of spin. The final
energy per particle is obtained by dividing byN, the total
particle number. We find

NeHX =
l

L
S L2

4p2Dp2n2 → eHX = l
n

4
. sA2d

To second order, only one more diagram contributes. This
is the two-bubble diagram shown second in Fig. 7. From the
standard rules of perturbation theory,

NeC
s2d = −

l2

L2

L3

8p3E
−`

`

dqE
−kf

kf

dk1E
−kf

kf

dk2
1

qsq + k1 − k2d
sA3d

where uk1+qu.1 and uk2−qu.1, k1 andk2 are particle mo-
menta, andq is the momentum transfer. The limits of inte-
gration and constraint inequalities ensure that particles have
less momentum than the Fermi momentum, and holes have

FIG. 7. First- and second-order contributions to the interaction
energy. Spin labels are omitted but the two loops in each diagram
must have opposite spins.q is the momentum transfer,k1 and k2

label particle momenta, andk1+q andk2−q label hole momenta.

DENSITY-FUNCTIONAL THEORY IN ONE DIMENSION… PHYSICAL REVIEW A 70, 032508(2004)

032508-7



higher momentum than the Fermi momentum. Once again,
the sum over the two possible spin arrangements cancels the
symmetry factor of 1/2. To solve Eq.(A3) exactly, we res-
cale as follows:q=kFx, k1=kFy, and k2=kFz. After some
algebra, we find the correlation energy per particle:

eC
s2d = −

l2

8p3S L

N
DSpn

2
DI = −

l2

24
sA4d

using the quadrature result

I = 2E
2

`

dxE
−1

1

dyE
−1

1

dz
1

xsx + y − zd

+ 2E
0

2

dxE
1−x

1

dy E
−1

−1+x

dz
1

xsx + y − zd
=

2p2

3
. sA5d
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