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Density-functional theory in one dimension for contact-interacting fermions

R. J. Magyar
Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-8019, USA

K. Burke
Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854-8019, USA
(Received 4 February 2004; published 21 September)2004

A density-functional theory is developed for fermions in one dimension, interacting &ituaction. Such
systems provide a natural testing ground for questions of principle, as the local-density approximation should
be highly accurate since for this interaction type the exchange contribution to the local-density approximation
is intrinsically self-interaction-free. The exact-exchange contribution to the total energy is a local functional of
the density. A local-density approximation for correlation is obtained using perturbation theory and Bethe
ansatz results for the one-dimensional contact-interacting uniform Fermi gas. The ground-state energies are
calculated for two finite systems, the analogs of helium and of Hooke’s atom. The local-density approximation
is shown to be excellent as expected.
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[. INTRODUCTION hold should prove extremely useful in exploring time-
dependent density-functional theof$4,15, where formal

_Density-functlonal theoryDFT) is a rigorous reinterpre- roperties are still being investigated. Because the interac-
tation of the quantum many-body problem in which the basiG;,, is not the Coulomb one, the unknown exchange-

object uniquely characterizing a system is the densi®)  correlation functional will, of course, differ. The local-
rather than the many-body wave function. This view is par-gensity approximatiofLDA) should be extremely accurate
ticularly suited to practical calculations, and DFT has beenn this case because exchange is treated exactly for this in-
applied successfully to solids and molecules for quite someeraction, and there is no exchange self-interaction error. An-
time [1]. Researchers typically focus on Coulomb-interactingother reason is that a contact interaction samples only the
fermions in three dimensions, but the Hohenberg-Kohn theoen-top value of the exchange-correlation hole, and the local-
rem[2-5] upon which DFT is based holds for any interaction density approximation is known to reproduce this value ac-
and in any spatial dimension. We consider the contact ocurately [16]. The self-interaction-corrected LDA is highly
S-function interaction between fermions in one spatial di-accurate for the ground-state energies of isolated atoms
mension, [17,18. The difference here is that the self-interaction is
handled exactly within the local-density formalism and no
Vint(X = X)) = N(X; — X)), (1 special corrections are needed. Our LDA could be used to
) ) study the one-dimensional analog of stretcheddHidentify
wherex; andx; represent the spatial coordinates of the fer-ynether the proper description of dissociation into individual
mions, 8(x) is the Dirac delta function, anl is the interac-  atoms depends on the long-ranged Coulomb interaction or is
tion strength. The fermions have two spin states, up andue to symmetry considerations alone. Another interesting
down. Thed-function potential is a one-dimensional analog system on which to use one-dimensional DFT is the one-
to the Coulomb one as it scales in a similar fashiondimensional solid. Thiss-function interaction has already
vin@x) =vin(x)/a, and its solutions satisfy the energetically been used to study problems in DFI9,2Q but without the
important particle-particle cusp conditigf,7]. However, it  inclusion of any correlation effects, which are known to be
differs in that it is short ranged. There is no simple equiva-important in one-dimensional systems. An earlier treatment
lence betweern\ and €, the Coulomb-interaction strength, including correlation effects can be found in RgF1]. Using
although\ can be related to a scattering lengj. DFT to study alternate interactions is not new; for example,
One-dimensional model interactions are important forCapelle and co-workers have used a similar approach on the
several reasons. Perhaps most obviously, they are useful Kubbard mode[22,23.
mathematical and statistical physi®@-12 to illustrate prob- It has been suggested that tdunction model should
lems and concepts from three-dimensional physics that argive a good representation of the physics of one-dimensional
sometimes hard to conceptualize due to the number of ddermions in certain experimental contextg4—2g. Since
grees of freedom. However, our primary motivation is to useone-dimensional systems are analytically, or at least compu-
this one-dimensional model to understand and improveationally, manageable, the exact results are useful to exam-
density-functional theory. Many of the known formal prop- ine situations when standard techniques fail. For example,
erties of the exchange-correlation functional are true in thishe one-dimensional analog of helium can be examined in
case. These properties include behavior under uniform coodetail near the critical point of ionization when the nuclear
dinate scaling13], the virial theorem, and inequalities due to attraction and interaction repulsion are comparable. This sort
the variational principle. That properties of the theory still of analysis is demanding for real systems, and finite-size
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scaling and infinite-dimensional approaches are necessary - , 2
. - N0 = 2 | (2. (6)

[29-33. Carefully understanding how systems ionize and i_oce.
how electronic structure methods reproduce this critical phe-
nomenon is useful for many chemical problems. We willBecause of the antisymmetry of the wave function under
examine this limit in detail in future work and present only particle interchange, fermions with like spins do not experi-
the most basic results here. ence the contact interaction. Only opposite spins interact di-

Throughout, we assume that our one-dimensional fermirectly.
ons have the same mass as electrons, and we use atomic unitsThe Hartree contribution depends only on the total par-
(e?=h=my=1) so that all energies are in hartrees and allticle density and is independent of how up and down fermi-
lengths in Bohr radii. ons are distributed:

A A
Il. EXACT-EXCHANGE FUNCTIONAL Uyln] = > f dxdxX n(x)8(x = x")n(x") = > f dxr?(x).
DENSITY-FUNCTIONAL THEORY

7

In this section, we see how the contact interaction affects "
the total energy to first order in. First-order interaction There is overcounting here because like spins do not interact,
theory is traditionally called the Hartree-Fock approxima-and the exchange term must cancel these spurious like-spin
tion, but here, the first-order interaction energy depends exnteractions. The exact-exchange term is
plicitly on the density so that, for this particular interaction,
the Hartree-Fock approximation is equivalent to exact-
exchange DFT. Consequently, exchange is treated exactly
within the local-density approximation for this interaction.

According to density-functional theofi—5], the ground-  Equations(7) and (8) follow immediately after substituting
state total energy is a functional of the partide density andhe S-function interaction into the usual Hartree and Fock

Ex[n.{]=~ % J dxn(x)L +£(0%)/2. (8)

the local magnetization, terms. Note that for a one-fermion system we have
Ex[Nn,|{[=1]=-Uy[n] and contact-interacting exact ex-
0 n;(x) = n (x) @ change is self-interaction-free.
X) = ,

N (X) +n(x)
I1l. LOCAL-DENSITY CORRELATION FUNCTIONAL

wheren; andn, are the densities of up and down spins. The FROM THE ONE-DIMENSIONAL
total ground-state energy can be decomposed as follows: CONTACT-INTERACTING UNIFORM FERMI
GAS (DELTIUM)
E[n,{1=Tdn,{]+ Uy[n] + Exc[n,{] +f X e (X)N(X) In order to obtain a local-density correlation functional,

we review the one-dimensional unpolarized Fermi gas,
(3 which we call deltium. This Fermi gas plays the role of the
) i i i uniform electron gas in Coulomb-interacting DFT. While the
in a one-dimensional space whet,[n] is the exactly coyjomb-interacting Fermi gas is a Fermi liquid, the one-
known Hartree or classical density-density interaction contrigimensionals-function-interacting analog is a Luttinger lig-
bution, v,(X) is the given external potentialg[n, ] is the  |jig [34]. The Hamiltonian is
exactly known kinetic energy of noninteracting fermions at a
given density, andEyc[n, ] is the unknown exchange- ~ 1N 2
correlation energy. The density is found by studying the H:_EE quZH\E A% = %) 9)
Kohn-Sham(KS) system, the noninteracting counterpart to b i<j

the physical systerfB3]. The Kohn-Sham equation is The solution must be antisymmetric under particle inter-

1 change and satisfy periodic boundary conditions on a ring of
<_ Zy24 USU([n,g];x))(pi’U(x) = € b1 o(X) (4)  circumferencd.. This system has been examined previously

2 [8,35,36. Because the wave function is antisymmetric under
. . . . . particle interchange, the fully polarized gas is not affected by
wherg¢i,(,(x) is theith KS prb|tal for spin ty_per, €0 IS the the interaction. We consider the correlation in detail for only
KS eigenvalue, ands,(x) is the KS potential for spin type e fylly unpolarized gas. Singg=0 in the unpolarized case,
o. The Kohn-Sham potential is a functional derivative of the,yq will suppress it except when needed.

energy functionals, The energy per particle of the noninteracting uniform gas

is purely kinetic:
sUy[n] N OExcln,¢]

, (5 2
MNy(x) MNy(X) _T
t(n) = " (10

USU(X) = VexdX) +

wheren,(x) is the o spin density. The spin density is ob-
tained from the occupied orbitals, When interactions are present, the total energy per particle is
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€(n) =t(n) + () + ex(n) + ec(n), (11) 0.028 P
-0.028 .
where e4(n)=\n/2 is the Hartree energy per particlkg,(n) 003k i
=-A\n/4 is the exchange energy per particle, agth) is the 0032 F i
correlation energy per particle. It is useful to define the fol- 0034 F i
lowing two terms. Kineticlike means that the energy per par- 0.036 | |
ticle is proportional tan?, like the noninteracting kinetic en- ’
ergy. Hartree-like means that the energy per particle is 0088 - i
proportional ton, like the Hartree energy. 004 1 EX&“*;';,’;,EQ —
The ground-state energy per particle for deltium, £y, -0.042 ———————

. 0 05 1 15 2 25 3 35 4
can be found via Bethe ansatz meth@8ig-41, whereby the

uniform unpolarized Fermi gas problem can be recast as a set FIG. 1. Correlation energy per particle in atomic units for del-
of integral equation$42]: tium, the one-dimensional uniform contact-interacting: 1) Fermi

gas, in the high-density limit. The solid line is the exact result
calculated from the solutions of the Bethem ansatz integral equa-

©

1 2 Na(A) . S : )
=—+—| JA—F— 12 tions. The long-dashed line is the simple LDA given by E2{).
=5, f N2+ a(y— A) (12
A b n*
and ec(n):—zn+b1n2—fn3+(’)<§) (16)
fmax with b,;=7%/8 andb,=4.56. The first term in Eq(16) ex-

a(/\):i f dy seclia(y = A)/IN](y), (13)  actly cancels the Hartree and exchange energies, and the
2\ next, b;, provides the kineticlike contribution to the energy.

We determine the coefficiertt, from numerical analysis of

where 7 is the number of occupied states per wave-vectothe Bethe ansatz results)at 1. Specifically, we subtract the

label y, and o is the number of occupied down-spin statesknown contributions frome(n), divide by n®, and plot the

per a different wave-vector labdl. In the high-density limit,  result as a function afi. The extrapolated intercept a0 is

Knmax=7n/2, and in the low-density limitk,,,=7n. Equa- b,.

tions(12) and(13) must be solved self-consistently feiand In the high-density limit, the interaction is perturbation-

o at a chosen value df,,, to obtain the ground-state energy. like and the correlation energy per particle approaches a con-

In order to do this, the integrals are transformed to the interstant:

val [-1,1], and integrated using six-point quadrature rules

~Kmax

4
with 400 mesh points. The density is ec(n) = —c A2+ c0\ 3+ (’)(%) 17)
n
kmax
_ d 14 with ¢;=1/24 andc,=0.006 170. The first terng,, is found
n= yr(y), (14) using perturbation theory in the Appendix. We determipe

~Kmax from numerical analysis of the Bethe ansatz results by sub-
tracting the known contributions froe(n), multiplying byn,

and the total energy per particle is plotting the result as a function of &/ and extrapolating to

Kmax the origin using a fourth-order polynomial. The correlation
1 energy per particle of the uniform gas approaches a finite
€= on dyy*r(y). (15 value asn— oo, in contrast to jellium, because the contact
~Kmax interaction is short ranged.
A [2,2] Padé parametrization of the correlation energy per

The correlation energy per particle for a wide range of den-._ .. .
o . = . : particle is
sities can, in the spirit of three-dimensional DFT, be param-
etrized for practical calculations. We consider both the high- unif ar’+bn+c
and low-density limits analytically and numerically. Since e (n) = idnte
we are concerned with parametrizing the correlation energy,
we subtract out the known kinetic, Hartree, and exchang&ith a=-c,=-1/24,b=-0.004 361 43¢c=0, d=0.252 758,
contributions. ande=0.017 445 7. Note that is zero because the correla-
The low-density limit is the larga-limit. In this limit, the  tion energy per particle vanishes in the low-density limit.
opposite-spin fermions repel each other so strongly that th&his approximation gives the first and second teopnandc,
interaction mimics Fermi antisymmetrization. Thus, the in-of the high-density limit correctly. In the low-density limit,
teraction energy per particle is kineticlike. This means thathis approximation cancels the Hartree-exchange term and
the first term for the correlation energy must cancel the Hargives theb, coefficient. The parametrization ef, the cor-
tree and exchange energies, and the next term in the correleelation energy per particle, has a maximum error of 0.7%
tion energy must be kineticlike. The correlation energy perand is highly accurate for the important high-density regions.
particle is As shown in Figs. 1 and 2, the parametrization is almost

(18)
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0 T T e First, we solve _the _model analytica!ly within the exact-
-0.005 Approx, =s===== | exchange approximation. Then we introduce our local-
0.01 i density approximation to the exchange-correlation energy.
0.015 1 Finally, we present the exact energy eigenvalues.
-0.02 i With the exact-exchange functional E&) and no func-
0025 i tional for correlation, the Kohn-Sham single-orbital equation
-0.03 . ;

is
-0.035 i
-0.04 1d?
.0.045 L ) L L 1 ) ) - E@d’(x) - Z§(X) (f)(X) + )\|¢(X)|2¢(X) = 6KS¢(X) .

0 05 1 15 2 25 3 35 4
(24)

Equation(24) can be solved using elementary techniques.
he resulting eigenvalue is

FIG. 2. The same as Fig. 1 but for the low-density limit.

indistinguishable from the exact numerical result. EquationT

(18) is valid atA=1 but can be generalized to arbitraxy 1 1 \2
according to scaling ruleg™(n) = 2" (n/)). €ks= "~ 5(2_ 5?\) , (25
For the fully polarized cas@{|=1), the interaction does
not contribute to the energy and and the Kohn-Sham orbit@#3] is
Ec? =1]=0. 1 1 1 1
¢ [nfg=11=0 (19) P(x) = ?<Z - —)\>csc?{(z— —)\>|x| + a] (26)
We can combine these results and construct a local-density VA 2 2
correlation energy functional: with
Ec™[n,¢]= f dxn(x) eZ™(n()) F(£(¥)) = arccot?(z Zlk). (27)
T2

3 2
~ f dx(M)f(g(x))_ (20)  This is unbound aZ<%)\. The calculated total energy is not
n(x)*+dn(x) +e just the sum of the occupied KS orbital eigenvalues; rather, it
A simple suggestion forf(¢) which gives both polarized 'S
(/¢[=1) and unpolarizedZ=0) limits exactly is
E[n]= > exs+Unlnl + ExcIn, {1 - f dxv([n, 1 x)N(x)

f()=1- §2, (21) occ
which is the dependence dfly plus Ex. We stress that the _
local-density correlation-energy functional EQO) is self- = | dxoxc([n, Z;xn(x), (28)
interaction-free for a one-particle system.
or explicitly
IV. THE ONE-DIMENSIONAL CONTACT-INTERACTING N 22
ANALOG OF THE HELIUM ATOM (DIRACIUM) Epxx = — 22+ S 1 (29

In order to assess the usefulness of this local approxima-
tion to handle one-dimensional problems, we start with per-
haps the most difficult test case, a completely nonunifornfP

Next, we solve the KS equation using the local-density
proximation to the correlation. The LDA KS equation is

system, diracium. This is the one-dimensional analog of he- 1 2
lium with the traditional Coulomb terms replaced Byunc- - §@¢(X) = Z8(X)(X) + M| p(x)[(x)
tions. The system is described by the Hamiltonian
1R 1 +vc([n,{=0];X) ¢(X) = exsP(X) (30
H=- Ed_le - E;(% = Z8(X1) = Z8(Xp) + NS(Xq = Xo) with
(22 b N 2e+dn(x)

) Ec(X) .
(3

Equation(30) is solved numerically to self-consistency cycle
wherex; andx, are the positions of the fermions,and ¢’ via the shooting method.
are the spinlike labels of the fermiorigjs the magnitude of The exact ground-state energies were obtained previously
the external potential, arl is an antisymmetric Fermi wave by Rosentha[44] by transforming to momentum space and
function which vanishes as— . The ground state is a spin reducing the problem to the solution of a one-dimensional
singlet({=0). integral equation. While this method converges quickly to

ve([n £=01;x) = (1 -
and the eigenvalue equation b+an(x) n(x)*+dn(x) +e

|q‘PU(J"(Xl!XZ) = E\IIO'O" (XI!XZ) ’ (23)
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TABLE |. Total ground-state energy for diraciufim hartree$ and errors(in millihartreeg of various
approximations witth=1. The exact results are from a numerical solution of the problem as outlined by Ref.
[44]; the second-order perturbation values are also given in the same reference. The EXX and LDA results

are from a self-consistent calculation using the exact-exchange function@)Baqd the LDA functional Eq.
(20), respectivelyZ.;=0.377 115 is the critical value at which the system ionize§.

z Exact ALDA A EXX A Perturbation theory
Zerit -0.070276 -45 not bound 46

0.5 -0.129281 -12 not bound 34

1 -0.647225 -3.3 -64 16

2 -3.155390 -1.0 -72 7.4

4 -14.159190 0.7 -76 3.6

8 -60.161010 1.8 -78 1.7

100 -9950.1630 3.2 -80 -0.2

the exact energy eigenvalue, it is not well suited to givinga divergence, the integral is finite. Ond&x,0) andW(x,x)

real space wave functions and densities. Instead, we take tla@e known, we can construct the wave function at any point
calculated eigenvalu& as input and reduce the eigenvalue in space. If the inpuE is exact, then solution of this equation
problem Eq.(22) to a differential equation. The differential yields the exact ground-state wave function.

equation can then be converted to an integral equation using In Table I, we see that the LDA is much more accurate

Green'’s function techniques:

o)

Z [ [
P(x,y) = ;f dx' Ko(v=2EV(x— X')? + yz)\I’(x’,O)

—00

oo

Z |
+ —f dxX' Ko(y= 2EVX? + (y = x')2) ¥ (x’,0)
w

—o0

oo

)\. |
- —f dx' Ko(V=2EV(x = X')?+ (y = X)) W (X' ,X),
w

-0

than the EXX functional. Second-order perturbation theory is
more accurate only foZ=7, but that is at a much larger
computational cost since the second-order contribution re-
quires calculation of the entire spectrum of unoccupied or-
bitals. The LDA remains bound and gives a reasonable result
(within a factor of 3 even at the critical potential strength
Z.i In Fig. 3, we see that the LDA gives a qualitatively
correct density foZz=1/2 where the EXX result is no longer
even bound.

Figure 4 shows that the LDA gives highly accurate corre-
lation energies for the nonperturbative regime whens
small. In the other extreme, the exact result approaches the
second-order perturbation theory value, and the LDA is over-
correlated, as will be discussed later.

(32

whereE is the ground-state energy aKg is the zeroth-order
modified Bessel function and is the Green'’s function for this
particular two-dimensional equation. We have dropped the
spin labels in this case since the exact ground state is a spin
singlet. By setting/ equal tox and then 0, we can arrive at a
set of two coupled integral equations which can be solved
self-consistently. Note that, although the Bessel function has

0.8

LDA i
Exact

-0.05
-0.06

-0.07

-0.08

0.4

0 2 4 6 8

FIG. 3. Comparison of the self-consistent LDA density in
atomic units(dashed ling with the exact(solid line) for A=1 and

10 12 14

FIG. 4. Correlation energy in atomic units for diracium, the
one-dimensional analog of heliugh=1). The solid line is the exact
result, the short-dashed line is the LDA result, and the long-dashed
line is the second-order perturbation theory result. Note that we
extract the correlation energy approximately by subtracting the self-
consistent exact-exchange total energy from the exact total energy.
The exact-exchange density becomes an unreliable approximation
to the exact density addecreases and dt=1/2 thedensity is even
qualitatively wrong as the self-consistent exact-exchange solution is
no longer bound. Therefore, we terminate the plaatl where we

Z=0.5. This is an extreme case where the exact exchange no longexrpect the self-consistent exact-exchange density to be an accurate

binds.

representation of the exact density.
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0 TABLE Il. Total ground-state energy for the contact-interacting

0.4 Hooke’s atom(in hartreeg and errorg(in millihartreeg of various
08 approximations withh=1. Exact result is from a numerical solution
42 of Egs.(37) and(38). EXX is exact exchange. The LDA is accord-
1'6 ing to the parametrization E@20).
2 ® Exact A EXX ALDA
24 1 1 1 1
0o 1 2 3 4 5 0.001 0.001950 -6.1 -0.08
FIG. 5. The behavior of the density in atomic units for diracium 0.01 0.018510 -12.6 -0.7
(Z=1) at various interaction strengths We plotdInn(x)/dx to 0.1 0.161410 -48.2 =35
highlight the asymptotic behavior of the density. Ror A\, the 1 1.306750 -72.2 -6.3
system is ionized. 10 11.157330 -82.9 -6.4
100 103.881057 -86.5 -5.7

There exist standard theorems about the decay of the denr
sity away from the attractive nuclear potential in the three-
dimensional Coulomb-interacting captb]. For example, teraction energy grows in magnitude mrsgrows, but at\
n(r) — 2 (33) ~0.9, this trend reverses. FD? Neritr the_system is ionized,

_ so that the interaction energy is zero. Figure 6 shows that, as
asr — o wherea=+2I. This theorem also holds for our one- A — A from below, the approach to this discontinuity is
dimensional model withr=|x|. There is much interest in linear. This information is valuable in studying the approach
critical values ofZ at which an atom can no longer bind its to ionization, and may also be true for real two-electron ions.
outermost electrof29-31. Understanding this limit yields
information on the existence of negative ions. A most inter- v SFUNCTION-INTERACTING HOOKE'S ATOM
esting question is this: AZ—Z; andl — 0, how does the
density decay? We study this directly in our one-dimensional Another test of this one-dimensional LDA is the analog to
example by varying\ and keepingZ fixed at 1. For large Hooke's atom[48],

enoughh, the system will ionize. Note that,;;=1/Z.;. Fig- R 1 1482 1 1
ure 5 showsd In n/dx as\ — 1/Z for Z=1. H=- S-S+ 202 + Z0XG + No(X, — %),
The second-order perturbation theory result for diracium 2 2d% 2 2

differs from the high-density LDA result. The second-order (36)

perturbation theory result is ) )
wherew determines the strength of the harmonic well poten-

Ec=(-3/8+2/3r+1/12)\*=-0.0795%  (34)  tjal. This model has been used to model one-dimensional
jquantum dotg24], and its excitations have been studied us-
ing time-dependent DFT49]. The exact wave function is
given in terms of Whittaker functions and confluent hyper-
geometric function$24]. The total energy is

The first two terms are the exact contribution to the tota
energy to ordek? [46]. From this, we subtract the final term,
which is the exchange contribution via the self-consisten
density. The high-density LDA correlation result is

— 2 - 2 1
Ec=-29/12=-0.083 333°. (35) E:§w+8 (37)

The LDA correctly scales to a constant in the high-density
limit in contrast to three-dimensional Coulomb DHR#7]  with € obtained from the solution 4,49
(see Fig. 3
Another interesting quantity to consider as the particle- 2\"51“(— £ §)/I‘<— £ 2) _— (38)
particle interaction grows stronger is the interaction energy 20 4

20 4
or the expectation value afiy(xi=x;). For smallx, the in- ) Il, we see that the LDA greatly improves over the

exact-exchange formalism for all values ©f

025 oo In the high-density or weak-coupling.— 0) limit, this
02 1 system behaves similarly to diracium, described above. The
015 F J total energy can be described perturbatively
01 . E=w+ Ao+ N+ -+, (39
0.05 - where ¢;=1/\27=0.399 and c,=[y+y0(})]/4m=
ol vy -0.110 318 withy being the Euler constant ang® the
0 05 1 15 2 25 3 zeroth-order polygamma function. Thé term above is the

FIG. 6. The expectation value of the interaction in atomic unitshigh',den,Sity limit of the correlation energy pIL,JS an eXCh"’.‘”ge
at various interaction strengths Beyond\ =\ (2.6517, the sys- contribution. In DFT, the exchange contribution is the first-

tem is ionized and the interaction energy vanishes. order contribution ir\ whereX is the coupling constant for a
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fixed fermion density. Here is the interaction strength, and der Grant No. CHE-9875091 and the Department of Energy
when it varies so does the ground-state density. This meansider Grant No. DE-FG02-01ER45928.

that in a self-consistent calculation exchange will contribute
to second order in to the total energy. We saw this in Eq.
(29) for diracium. The same is true here. As for diracium, the

LDA is very accurate in the high-density limit. In order to  Here, we find the high-density limit of the correlation

properly compared the LDA correlation energy with the ex-energy per particle for deltium using perturbation theory and

act one, we need to extract the exact density. the diagrammatic approach in momentum spfg®. The
Since Hooke’s atom stays bound for arbitrarily weak  Fourier transform of the interaction potential is

we can see how well our LDA describes the low-density

limit. The low-density limit is particularly challenging for
Coulomb-interacting functionalgb0] because of the strong V(g) = EJ dx8(x)e€% = A (A1)
correlation. The LDA and generalized gradient approxima- L L
tions behave qualitatively correctly but often err by as much
as a factor of 2 for the exchange-correlation energy. FowherelL is the length between the periodic boundaries. As
Hooke’s atom, the exact result for the total energy in thenoted earlier, like-spin fermions will not interact via tiée
strong-coupling limit is function; this means that only vertices that connect opposite
_ spins will enter into the perturbative series. This is a tremen-
E=20. (40) dous simplification as many diagrams will cancel. A further
The low-density limit is related to the large-coupling- simplification is that the interaction is independent of the
constant limit. As\ —, the lowest-energy solution in the momentum transfeq.
relative coordinatéx;—x,| is simply the first noninteracting ~ To first order, only the Hartree diagram between opposite
excited state because inserting a node, atx, minimizes the spins contributes to the total energy. This is the first diagram
interaction energy. We find that the LDA is remarkably ac-in Fig. 7. Evaluation does not require integration over inter-
curate in this regime, so the errors in Coulomb-interactingda@l momentum. The loop integrals have prefactors of
DFT can be ascribed to the long-range interaction. L2/472, and integration over the loops results in a factor of
The energy in this regime becomes kineticlike. The exact2ks=mn each, wherez==n/2 is the Fermi momentum of
exchange functional is Hartree-like and will fail to capture noninteracting deltium. The symmetry factor of 1/2 is can-
the proper energetics. The LDA, however, cancels theeled by a sum over the two possible pairs of spin. The final
Hartree-like exchange contributions and is kineticlike. In theenergy per particle is obtained by dividing by the total
low-density regime the density is close to uniform locally, soparticle number. We find
we expect the energy per particle to be similar to that of NAE n
low-density deltium. This is in fact the case and is reflected Neyy = E<—>7T2n2ﬂ €x = )\‘—1_ (A2)

APPENDIX

L

-L

by the high accuracy of the LDA in the low-density regime. 4
To second order, only one more diagram contributes. This
VI. CONCLUSION is the two-bubble diagram shown second in Fig. 7. From the

. . ) . . standard rules of perturbation theory,
In this paper, we examined a one-dimensional density-

functional theory of contact-in-teracting fermions. We noted ’ 3 =k ki
i o i i : AL 1
that exact exchange is an explicit density functional and de Ne?=—=—_| dg | dk | dk,————— (A3
. . . . €c 203 q 1 2 _ (A3)
veloped a local-density approximation for correlation. We L“ 8 qg(g+k; —ky)
applied these functionals successfully to two simple models, S B

demonstrating the high accuracy of the LDA here. Althoughwhere|k; +q|>1 and|k,—q|>1, k; andk, are particle mo-
the LDA s highly accurate in these cases, it is not exact. Thisnenta, andy is the momentum transfer. The limits of inte-
result is consistent with the observation in R&f1] that the  gration and constraint inequalities ensure that particles have

LDA is not exact in the short-wavelength limit. less momentum than the Fermi momentum, and holes have
This model interaction and LDA can be used to illustrate

and explore problems in DFT. Examples include ground-

q
state symmetry problems in stretched &hd the interacting- o
fermion one-dimensional solié generalized Kronig-Penney Kl +q o
mode) as a model band-gap problem. Tiéigunction inter- T
action has already been used in scattering problems and i + l
pedagogy, and we hope that our local-density correlation
4

functional finds fruitful applications in these areas as well.
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higher momentum than the Fermi momentum. Once again,
the sum over the two possible spin arrangements cancels the

symmetry factor of 1/2. To solve E@A3) exactly, we res-
cale as follows:q=KkgX, ky=kry, and k,=kgz. After some
algebra, we find the correlation energy per particle:

I Ee

using the quadrature result

n

2

e? = (A4)

87\ N
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o0 1 1
1
I—Zfdxfdyfdzx(x+y_z)

2 -1 -1

2 1 —1+x

1 27
2 =— A
* fd{fdyf X(x+y-2 3 (A5)
0 1-x -
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