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Typical circuit implementations of Shor’s algorithm involve controlled rotation gates of magnitudep /22L

whereL is the binary length of the integerN to be factored. Such gates cannot be implemented exactly using
existing fault-tolerant techniques. Approximating a given controlledp /2d rotation gate to withind=Os1/2dd
currently requires both a number of qubits and a number of fault-tolerant gates that grows polynomially with
d. In this paper we show that this additional growth in space and time complexity would severely limit the
applicability of Shor’s algorithm to large integers. Consequently, we study in detail the effect of using only
controlled rotation gates withd less than or equal to somedmax. It is found that integers up to lengthLmax

=Os4dmaxd can be factored without significant performance penalty implying that the cumbersome techniques
of fault-tolerant computation only need to be used to create controlled rotation gates of magnitudep /64 if
integers thousands of bits long are desired factored. Explicit fault-tolerant constructions of such gates are also
discussed.
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Shor’s factoring algorithm[1,2] is arguably the driving
force of much experimental quantum computing research. It
is therefore crucial to investigate whether the algorithm has a
realistic chance of being used to factor commercially inter-
esting integers. This paper focuses on the difficulty of imple-
menting the quantum Fourier transform(QFT), an integral
part of the algorithm. Specifically, the controlledp /2d rota-
tions that comprise the QFT are extremely difficult to imple-
ment using fault-tolerant gates protected by quantum error
correction(QEC).

To factor anL-bit integerN, a 2L-qubit QFT is required
that at first glance involves controlled rotation gates of mag-
nitude p /22L. Prior work on simplifying the QFT so that it
only involves controlled rotation gates of magnitudep /2dmax

has been performed by Coppersmith[3] with the conclusion
that the lengthLmax of the maximum length integer that can
be factored scales asOs2dmaxd and that factoring an integer
thousands of bits long would require the implementation of
controlled rotations as small asp /106. This paper refines this
work with the conclusion thatLmax scales asOs4dmaxd, with
p /64 rotations sufficient to enable the factoring of integers
thousands of bits long.

The paper is organized as follows. In Sec. I Shor’s algo-
rithm is revised with emphasis on extracting useful output
from the quantum period finding(QPF) subroutine. This sub-
routine is described in detail in this section. In Sec. II Cop-
persmith’s approximate quantum Fourier transform(AQFT)
is described, followed by Sec. III which outlines the tech-
niques used to implement the gate set required by the AQFT
using only fault-tolerant gates protected by QEC. In Sec. IV
the relationship between the probability of successs of the
QPF subroutine and the periodr being sought is investigated.
In Sec. V the relationship between the probability of success
s and both the lengthL of the integer being factored and the
minimum angle controlled rotationp /2dmax is studied. This is
then used to relateLmax to dmax. Section VI concludes with
a summary of results.

I. SHOR’S ALGORITHM

Shor’s algorithm factors an integerN=N1N2 by finding
the periodr of a function fskd=mk mod N where 1,m,N
and gcdsm,Nd=1. Providedr is even andfsr /2dÞN−1 the
factors areN1=gcd(fsr /2d+1,N) andN2=gcd(fsr /2d−1,N),
where gcd denotes the greatest common divisor. The prob-
ability of finding a suitabler given a randomly selectedm
such that gcdsm,Nd=1 is greater than 0.75[4]. Thus on av-
erage very few values ofm need to be tested to factorN.

The quantum heart of Shor’s algorithm can be viewed as
a subroutine that generates numbers of the formj .c22L / r.
To distinguish this from the necessary classical pre- and
postprocessing, this subroutine will be referred to as QPF
(quantum period finding). For physical reasons, the probabil-
ity s that QPF will successfully generate useful data may be
quite low with many repetitions required to work out the
period r of a given fskd=mkmod N. Using this terminology,
Shor’s algorithm consists of classical preprocessing, poten-
tially many repetitions of QPF with classical postprocessing,
and possibly a small number of repetitions of this entire
cycle. This cycle is summarized in Fig. 1.

A number of different quantum circuits implementing
QPF have been designed[5–8]. Table I summarizes the num-
ber of qubits required and the depth of each of these circuits.
The depth of a circuit has been defined to be the minimum
number of 2-qubit gates that must be applied sequentially to
complete the circuit. It has been assumed that multiple dis-
joint 2-qubit gates can be implemented in parallel, hence the
total number of 2-qubit gates can be significantly greater
than the depth. For example, the Beauregard circuit has a
2-qubit gate count of 8L4 to leading order inL. Note that in
general the depth of the circuit can be reduced at the cost of
additional qubits.

The underlying algorithm common to each circuit begins
by initializing the quantum computer to a single pure state
u0l2Lu0lL. Note that for clarity the computer state has been
broken into a 2L-qubit k-register and anL-qubit f-register.
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The meaning of this will become clearer below.
Step two is to Hadamard transform each qubit in the

k-register yielding

1

2L o
k=0

22L−1

ukl2Lu0lL. s1d

Step three is to calculate and store the corresponding val-
ues of fskd in the f-register

1

2L o
k=0

22L−1

ukl2LufskdlL. s2d

Note that this step requires additional ancilla qubits. The
exact number depends heavily on the circuit used.

Step four can actually be omitted but it explicitly shows
the origin of the periodr being sought. Measuring the
f-register yields

Îr

2L o
n=0

22L/r−1

uk0 + nrl2LufMlL s3d

wherek0 is the smallest value ofk such thatfskd equals the
measured valuefM.

Step five is to apply the quantum Fourier transform

ukl → 1

2L o
j=0

22L−1

expS2pi

22L jkDu jl s4d

to thek-register resulting in

Îr

22L o
j=0

22L−1

o
p=0

22L/r−1

expS2pi

22L jsk0 + prdDu jl2LufMlL. s5d

The probability of measuring a given value ofj is thus

Prs j ,r,Ld = U Îr

22L o
p=0

22L/r−1

expS2pi

22L jprDU2

. s6d

If r divides 22L Eq. (6) can be evaluated exactly. In this
case the probability of observingj =c22L / r for some integer
0øc, r is 1/r whereas if j Þc22L / r the probability is 0.
This situation is illustrated in Fig. 2(a). However, ifr divides
22L exactly a quantum computer is not needed asr would
then be a power of 2 and easily calculable. Whenr is not a
power of 2 the perfect peaks of Fig. 2(a) become slightly
broader as shown in Fig. 2(b). All one can then say is that
with high probability the valuej measured will satisfyj
.c22L / r for some 0øc, r.

Given a measurementj .c22L / r with cÞ0, classical
postprocessing is required to extract information aboutr. The
process begins with a continued fraction expansion. To illus-
trate, consider factoring 143sL=8d. Suppose we choosem
equal 2 and the outputj of QPF is 31 674. The relationj
.c22L / r becomes 31 674.c65 536/r. The continued frac-
tion expansion ofc/ r is

FIG. 1. The complete Shor’s algorithm including classical pre-
and postprocessing. The first branch is highly likely to fail, resulting
in many repetitions of the quantum heart of the algorithm, whereas
the second branch is highly likely to succeed.

TABLE I. Number of qubits required and circuit depth of dif-
ferent implementations of Shor’s algorithm. Where possible, figures
are accurate to first order inL.

Circuit Qubits Depth

Beauregard[7] ,2L ,32L3

Vedral [5] ,5L ,240L3

Zalka I [8] ,5L ,3000L2

Zalka II [8] ,50L ,219L1.2

Gossett[6] OsL2d OsL log Ld

FIG. 2. Probability of different measurementsj at the end of
quantum period finding with total number of states 22L=256 and(a)
period r =8, (b) period r =10.
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31 674

65 536
=

1

32 768

15 837

=
1

2 +
1094

15 837

=
1

2 +
1

14 +
1

2 +
1

10 + 1/52

.

s7d

The continued fraction expansion of any number between 0
and 1 is completely specified by the list of denominators
which in this case is{2, 14, 2, 10, 52}. The nth convergent
of a continued fraction expansion is the proper fraction
equivalent to the firstn elements of this list. An introductory
exposition and further properties of continued fractions are
described in Ref[4].

h2j =
1

2
,

h2,14j =
14

29
,

h2,14,2j =
29

60
,

h2,14,2,10j =
304

629
,

h2,14,2,10,52j =
15 837

32 768
. s8d

The periodr can be sought by substituting each denominator
into the function fskd=2k mod 143. With high probability
only the largest denominator less than 2L will be of interest.
In this case 260 mod 143=1 and hencer =60.

Two modifications to the above are required. First, ifc
and r have common factors, none of the denominators will
be the period but rather one will be a divisor ofr. After
repeating QPF a number of times, leth jmj denote the set of
measured values. Lethcmn/dmnj denote the set of convergents
associated with each measured valueh jmj. If a paircmn, cm8n8
exists such that gcdscmn,cm8n8d=1 anddmn, dm8n8 are divisors
of r then r =lcmsdmn,dm8n8d, where lcm denotes the least
common multiple. It can be shown that given any two divi-
sorsdmn, dm8n8 with correspondingcmn, cm8n8 the probability
that gcdscmn,cm8n8d=1 is at least 1/4[4]. Thus onlyOs1d
different divisors are required. In practice, it will not be
known which denominators are divisors so every pairdmn,
dm8n8 with gcdscmn,cm8n8d=1 must be tested.

The second modification is simply allowing for the output
j of QPF being useless. Lets denote the probability thatj
= bc22L / r c or dc22L / r e for some 0,c, r where b c, d e denote
rounding down and up, respectively. Such values ofj will be
called useful as the denominators of the associated conver-
gents are guaranteed to include a divisor ofr. The periodr
sought can always be found providedOs1/sd runs of QFT
can be performed.

To summarize, as each new valuejm is measured, the
denominatorsdmn less than 2L of the convergents of the con-
tinued fraction expansion ofjm/22L are substituted intofskd
=mk mod N to determine whether anyfsdmnd=1 which
would imply that r =dmn. If not, every pairdmn, dm8n8 with
associated numeratorscmn, cm8n8 satisfying gcdscmn,cm8n8d
=1 must be tested to see whetherr =lcmsdmn,dm8n8d. Note
that as shown in Fig. 1, ifr is even or mr/2 mod N
= ±1 modN then the entire process needs to be repeated
Os1d times. Thus Shor’s algorithm always succeeds provided
Os1/sd runs of QPF can be performed.

II. APPROXIMATE QUANTUM FOURIER TRANSFORM

A circuit that implements the QFT of Eq.(4) is shown in
Fig. 3(a). Note the use of controlled rotations of magnitude
p /2d. In matrix notation these 2-qubit operations correspond
to

1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eip/2d
2 . s9d

The approximate QFT(AQFT) circuit is very similar with
just the deletion of rotation gates withd greater than some
dmax. For example, Fig. 3(b) shows an AQFT withdmax=1.
Let f jgm denote themth bit of j . The AQFT equivalent to Eq.
(4) is [3]

ukl → 1
Î22L o

j=0

22L−1

u jl expS2pi

22L S̃mnf jgmfkgn2
m+nD , s10d

where S̃mn denotes a sum over allm, n such that 0
øm,n,2L and 2L−dmax+1øm+n,2L. It has been shown
by Coppersmith that the AQFT is a good approximation of
the QFT[3] in the sense that the phase of individual compu-
tational basis states in the output of the AQFT differ in angle
from those in the output of the QFT by at most 2pL2−dmax.
The purpose of this paper is to investigate in detail the effect
of using the AQFT in Shor’s algorithm.

FIG. 3. Circuit for a 4-qubit(a) quantum Fourier transform(b)
approximate quantum Fourier transform withdmax=1.
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III. FAULT-TOLERANT CONSTRUCTION OF SMALL
ANGLE ROTATION GATES

When the 7-qubit Steane code[4,9,10] and its concat-
enated generalizations are used to do computation, only the
limited set of gates controlled-NOT (CNOT), HadamardsHd,
X, Z, S, andS† can be implemented easily, where

S= S1 0

0 i
D . s11d

Complicated circuits of depth,100 and requiring a mini-
mum of 19 qubits are required to implement theT and T†

gates. The exact circuits shall be presented in a separate
work specifically on fault-tolerant constructions

T = S1 0

0 eip/4D . s12d

Note, however, that if it is acceptable to add an additional 12
qubits for everyT andT† gate in a sequence of fault-tolerant
single-qubit gates[see, for example, Eq.(13)], the effective

depth of eachT and T† gate circuit can be reduced to 2.
Together, the setCNOT, H, X, Z, S, S†, T, andT† enables the
implementation of arbitrary 1- and 2-qubit gates via the
Solovay-Kitaev theorem[4,11]. For example, the controlled
p /2d gate can be decomposed into a singleCNOT and three
single-qubit rotations as shown in Fig. 4. Approximating
single-qubitp /2d rotations using the fault-tolerant gate set is
much more difficult. For convenience, such rotations will
henceforth be denoted byR2d. The simplest(least number of
fault-tolerant gates) approximation of theR128 single-qubit
rotation gate that is more accurate than simply the identity
matrix is the 31 gate product

U31 = HTHT†HTHTHTHT†HT†HTHTHT†HT†HTHT†HT†HT†H. s13d

Equation(13) was determined via an exhaustive search mini-
mizing the metric

distsU,Vd =Î2 − utrsU†Vdu
2

. s14d

The rationale of Eq.(14) is that if U andV are similar,U†V
will be close to the identity matrix(possibly up to some
global phase) and the absolute value of the trace will be close
to 2. By subtracting this absolute value from 2 and dividing
by 2 a number between 0 and 1 is obtained. The overall
square root is required to ensure that the triangle inequality

distsU,Wd ø distsU,Vd + distsV,Wd s15d

is satisfied.
The identity matrix is a good approximation ofR128 in the

sense that distsR128,Id=8.7310−3. Equation (13) is only
slightly better with distsR128,U31d=8.1310−3. A 46 gate se-
quence has been found satisfying distsR128,U46d=7.5310−4.
Note that this is still only 10 times better than doing nothing.
Further investigation of the properties of fault-tolerant ap-
proximations of arbitrary single-qubit unitaries will be per-
formed in the near future. For the present discussion it suf-
fices to know that the number of gates grows somewhere
between linearly and quadratically with lns1/dd [4] where
d=distsR,Ud, R is the rotation being approximated, andU is
the approximating product of fault-tolerant gates(the exact
scaling is not known). In particular, this means that approxi-

mating a rotation gateR2d with accuracyd=1/2d requires a
number of gates that grows linearly or quadratically withd.

In addition to the inconveniently large number of fault-
tolerant gatesnd required to achieve a given approximation
d, each individual gate in the approximating sequence must
be implemented with probability of errorp less than
Osd /ndd. Note thatd is not a probability of error but rather a
measure of the distance between the ideal gate and the ap-
proximating product so this relationship is not exact. If the
required probabilityp,d /nd=1/snd2

dd is too small to be
achieved using a single level of QEC, the technique of con-
catenated QEC must be used. Roughly speaking, if a given
gate can be implemented with probability of errorp, adding
an additional level of concatenation[12] leads to an error
rate of cp2 wherec,1/p. If the Steane code is used with
seven qubits for the code and an additional five qubits for
fault-tolerant correction, every additional level of concatena-
tion requires approximately 12 times as many qubits. This
implies that if a gate is to be implemented with accuracy
1/snd2

dd, the number of qubitsq scales asOsdln212d
=Osd3.58d. While this is a polynomial number of qubits, for
even moderate values ofd this leads to thousands of qubits
being used to achieve the required gate accuracy.

Given the complexity of implementingT andT† gates, the
number of fault-tolerant gates required to achieve good ap-
proximations of arbitrary rotation gates and the large number
of qubits required to achieve sufficiently reliable operation, it
is clear that for practical reasons the use ofp /2d rotations
must be restricted to those with very smalld.

FIG. 4. Decomposition of a controlled rotation into single-qubit
gates and aCNOT.
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IV. DEPENDENCE OF OUTPUT RELIABILITY ON THE
PERIOD OF f„k…=mk mod N

Different values ofr [the period offskd=xk mod N] imply
different probabilitiess that the valuej measured at the end
of QPF will be useful(see Fig. 1). In particular, as discussed
in Sec. I if r is a power of 2 the probability of useful output
is much higher(see Fig. 2). This section investigates how
sensitives is to variations inr. Recall Eq.(6) for the prob-
ability of measuring a given value ofj . When the AQFT[Eq.
(10)] is used this becomes

Prs j ,r,L,dmaxd

= U Îr

22L o
p=0

22L/r−1

expS2pi

22L õ mnf jgmfprgn2
m+nDU2

.

s16d

The probabilitys of useful output is thus

ssr,L,dmaxd = o
huseful jj

Prs j ,r,L,dmaxd, s17d

where{useful j} denotes allj = bc22L / r c or dc22L / r e such that
0,c, r. Figure 5 showss for r ranging from 2 to 2L−1 and
for various values ofL anddmax. The decrease ins for small
values ofr is more a result of the definition of{useful j}
than an indication of poor data. Whenr is small there are few
useful values ofj . dc22L / r e, 0,c, r and a large range of
states is likely to be observed around each one resulting su-
perficially in a low probability of useful outputs ass is the
sum of the probabilities of observing only valuesj
= bc22L / r c or dc22L / r e, 0,c, r. However, in practice values
much further fromj .c22L / r can be used to obtain useful
output. For example, ifr =4 andj =16 400 the correct output
value(4) can still be determined from the continued fraction
expansion of 16 400/65 536 which is far from the ideal case
of 16 384/65 536. To simplify subsequent analysis each pair
sL ,dmaxd will from now on be associated withss2L−1

+2,L ,dmaxd which corresponds to the minimum value ofs to
the right of the central peak. The choice of this point as a
meaningful characterization of the entire graph is justified by
the discussion above.

For completeness, Fig. 5(e) shows the case of noisy con-
trolled rotation gates of the form

1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eisp/2d+dd
2 , s18d

whered is a normally distributed random variable of stan-
dard deviations. This has been included to simulate the
effect of using approximate rotation gates built out of a finite
number of fault-tolerant gates. The general form and prob-
ability of successful output can be seen to be similar despite
s=p /32. Thiss corresponds top /2dmax+2. For a controlled
p /64 rotation, single-qubit rotations of anglep /128 are re-
quired, as shown in Fig. 4. Figure 5(e) implies that it is

acceptable for this rotation to be implemented withinp /512,
implying

U = S1 0

0 eisp/128+p/512d D s19d

is an acceptable approximation ofR128. Given that
distsR128,Ud=2.1310−3, the 46 fault-tolerant gate approxi-
mation ofR128 mentioned above is adequate.

V. DEPENDENCE OF OUTPUT RELIABILITY ON
INTEGER LENGTH AND GATE RESTRICTIONS

In order to determine how the probability of useful output
s depends on both the integer lengthL and the minimum
allowed controlled rotationp /2dmax, Eq. (17) was solved

FIG. 5. Probabilitys of obtaining useful output from quantum
period finding as a function of periodr for different integer lengths
L and rotation gate restrictionsp /2dmax. The effect of using inaccu-
rate controlled rotation gatesss=p /32d is shown in(e).
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with r =2L−1+2 as discussed in Sec. IV. Figure 6 contains
semilog plots ofs versusL for different values ofdmax. Note
that Eq.(17) grows exponentially more difficult to solve asL
increases.

For dmax from 0 to 5, the exponential decrease ofs with
increasingL is clear. Asymptotic lines of best fit of the form

s~ 2−L/L0 s20d

have been shown. Note that fordmax.0, the value ofL0
increases by greater than a factor of 4 whendmax increases by

1. This enables one to generalize Eq.(20) to an asymptotic
lower bound valid for alldmax.0

s~ 2−L/4dmax−1
s21d

with the constant of proportionality approximately equal
to 1.

Keeping in mind that the required number of repetitions
of QPF isOs1/sd, one can relateLmax to dmax by introducing

FIG. 6. Dependence of the probability of useful output from the quantum part of Shor’s algorithm on the lengthL of the integer being
factored for different levels of restriction of controlled rotation gates of anglep /2dmax. The parameterL0 characterizes lines of best fit of the
form s~2−L/L0.
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an additional parameterfmax characterizing the acceptable
number of repetitions of QPF,

Lmax. 4dmax−1 log2 fmax. s22d

Available RSA [13] encryption programs such asPGP

typically use integers of lengthL up to 4096. The circuit in
[5] runs in 150L3 steps when an architecture that can interact
arbitrary pairs of qubits in parallel is assumed and fault-
tolerant gates are used(the fault-tolerant Toffoli gate has
smaller depth than the nonfault-tolerant Toffoli gate used in
the construction of Table I. Note that to leading order inL
the number of steps does not increase as additional levels of
QEC are used. Thus,1013 steps are required to perform a
single run of QPF. On an electron spin or charge quantum
computer [14,15] running at 10 GHz this corresponds to
,15min of computing. If we assume,24h of computing is
acceptable thenfmax,102. Substituting these values ofLmax
and fmax into Eq. (22) givesdmax=6 after rounding up. Thus
provided controlledp /64 rotations can be implemented ac-
curately, implying the need to accurately implementp /128
single-qubit rotations, it is conceivable that a quantum com-

puter could one day be used to break a 4096-bit RSA encryp-
tion in a single day.

VI. CONCLUSION

We have demonstrated the scalability of Shor’s algorithm
when a limited set of rotation gates is used. The lengthLmax
of the longest factorable integer can be related to the maxi-
mum acceptable runs of quantum period findingfmax and the
smallest accurately implementable controlled rotation gate
p /2dmax via Lmax,4dmax−1 log2 fmax. Integers thousands of
digits in length can be factored provided controlledp /64
rotations can be implemented with a rotation angle accurate
to p /256. Sufficiently accurate fault-tolerant constructions of
such controlled rotation gates have been described.
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