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Scalability of Shor’s algorithm with a limited set of rotation gates
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Typical circuit implementations of Shor’s algorithm involve controlled rotation gates of magnitig@é
wherelL is the binary length of the integé¥ to be factored. Such gates cannot be implemented exactly using
existing fault-tolerant techniques. Approximating a given controlté@ rotation gate to withins=0(1/2%)
currently requires both a number of qubits and a number of fault-tolerant gates that grows polynomially with
d. In this paper we show that this additional growth in space and time complexity would severely limit the
applicability of Shor’s algorithm to large integers. Consequently, we study in detail the effect of using only
controlled rotation gates witl less than or equal to sontg,,,. It is found that integers up to lengthy, .y
=0(4%m=) can be factored without significant performance penalty implying that the cumbersome techniques
of fault-tolerant computation only need to be used to create controlled rotation gates of magniedé
integers thousands of bits long are desired factored. Explicit fault-tolerant constructions of such gates are also

discussed.
DOI: 10.1103/PhysRevA.70.032329 PACS nuniper03.67.Lx
Shor’s factoring algorithni1,2] is arguably the driving I. SHOR'S ALGORITHM

force of much experimental quantum computing research. It _ . o

is therefore crucial to investigate whether the algorithm has a Shor’s algorithm factors an integé¢=N;N, by finding
realistic chance of being used to factor commercially interthe periodr of a functionf(k)=m" modN where I<m<N
esting integers. This paper focuses on the difficulty of imple-2nd gcdm,N)=1. Providedr is even andf(r/2) # N-1 the
menting the quantum Fourier transfo@FT), an integral  factors areN,=ged(f(r/2)+1,N) andN,=gedf(r/2)-1,N),

part of the algorithm. Specifically, the controlled 2¢ rota- ~ Where gcd denotes the greatest common divisor. The prob-
tions that comprise the QFT are extremely difficult to imple-2Pility of finding a suitabler given a randomly selecteoh

ment using fault-tolerant gates protected by quantum erroptCh that gctn,N)=1 is greater than 0.7B4]. Thus on av-

; erage very few values oh need to be tested to factdt.
correction(QEQ). h h ¢ Shor's aldorith be vi q
To factor anL-bit integerN, a 2-qubit QFT is required be ql:_antl:t:nt eart o ¢ ors abgorlt f”][hca?. € Z'Z(E\/Ne as
that at first glance involves controlled rotation gates of mag%oszi;gﬁ IE?sh ?higefcgrrr? ?P?em;rgceesr;a(r) clzssprc':?l rer-' and
nitude /22, Prior work on simplifying the QFT so that it guis . _hecessary P
. . . d postprocessing, this subroutine will be referred to as QPF
only involves controlled rotation gates of magnituglg2¢max

. . (quantum period finding For physical reasons, the probabil-
has been performed by Coppgrsnﬂﬂj with t-he conclusion ity s that QPF will successfully generate useful data may be
that the length_,,, of the maximum length integer that can

! ) : quite low with many repetitions required to work out the
be factored scales @3(2°m») and that factoring an integer aioqr of a givenf(k)=mkmod N. Using this terminology,

thousands of bits long would require the implementation ofshor's algorithm consists of classical preprocessing, poten-
controlled rotations as small ag 1. This paper refines this tially many repetitions of QPF with classical postprocessing,
work with the conclusion thakt o, Scales a(4%m=9, with  and possibly a small number of repetitions of this entire
/64 rotations sufficient to enable the factoring of integerscycle. This cycle is summarized in Fig. 1.
thousands of bits long. A number of different quantum circuits implementing
The paper is organized as follows. In Sec. | Shor’s algo-QPF have been designgsh-§|. Table | summarizes the num-
rithm is revised with emphasis on extracting useful outputber of qubits required and the depth of each of these circuits.
from the quantum period findin@PP subroutine. This sub- The depth of a circuit has been defined to be the minimum
routine is described in detail in this section. In Sec. Il Cop-number of 2-qubit gates that must be applied sequentially to
persmith’s approximate quantum Fourier transfaqm@FT)  complete the circuit. It has been assumed that multiple dis-
is described, followed by Sec. Il which outlines the tech-joint 2-qubit gates can be implemented in parallel, hence the
nigues used to implement the gate set required by the AQFfotal number of 2-qubit gates can be significantly greater
using only fault-tolerant gates protected by QEC. In Sec. IVthan the depth. For example, the Beauregard circuit has a
the relationship between the probability of success the  2-qubit gate count of I8* to leading order irL.. Note that in
QPF subroutine and the periodeing sought is investigated. general the depth of the circuit can be reduced at the cost of
In Sec. V the relationship between the probability of succesadditional qubits.
s and both the length of the integer being factored and the  The underlying algorithm common to each circuit begins
minimum angle controlled rotation/2%axis studied. Thisis by initializing the quantum computer to a single pure state
then used to relate,, 10 dyae Section VI concludes with  |0), |0),. Note that for clarity the computer state has been
a summary of results. broken into a 2-qubit k-register and ar_-qubit f-register.
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i inn
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i

Success

Test whether r is even and FIG. 2. Probability of different measuremerntsat the end of

P mod N2+l mod N P2 quantum period finding with total number of statés2256 and(@)
(classical) periodr=8, (b) periodr=10.
Success
Y FZZL" -1
Ny = ged(m2-1, \
N; = gzdgzrﬂ.u,% oL ko + o [fu) 3)
(classical) n=0

FIG. 1. The complete Shor’s algorithm including classical pre-Whereko is the smallest value df such thatf(k) equals the
and postprocessing. The first branch is highly likely to fail, resultingMeasured valuéy,. _
in many repetitions of the quantum heart of the algorithm, whereas Step five is to apply the quantum Fourier transform
the second branch is highly likely to succeed.

2 2l .
2
The meaning of this will become clearer below. k) — — E ex 2—ij>|]> (4)
Step two is to Hadamard transform each qubit in the
k-register yielding
N to thek-register resulting in
2 -1

E k)20 - (1) r22L—1 22 r-1 oo
2 > ex ﬁj(k0+pr))|j>2L|fM>L- (5

2L
Step three is to calculate and store the corresponding val- 27 j=0 p=0
ues off(k) in the f-register

The probability of measuring a given value jois thus

22L—1
2 K020 F(K))y ) PRl PN
Prj.r,L) = ZZL S ex ﬁjpr) . ®
p=0

Note that this step requires additional ancilla qubits. The
exact number depends heavily on the circuit used. If r divides 2- Eq. (6) can be evaluated exactly. In this

Step four can actually be omitted but it explicitly shows case the probability of observirjgec2?-/r for some integer
the origin of the periodr being sought. Measuring the O<c<r is 1/r whereas ifj #c2%-/r the probability is O.
f-register yields This situation is illustrated in Fig.(8). However, ifr divides
22" exactly a quantum computer is not neededr agould
TABLE I. Number of qubits required and circuit depth of dif- then be a power of 2 and easily calculable. Whéa not a
ferent implementations of Shor’s algorithm. Where possible, figureoWwer of 2 the perfect peaks of Fig(a? become slightly

are accurate to first order in broader as shown in Fig.(®. All one can then say is that

with high probability the valug measured will satisfyj

Circuit Qubits Depth =c2?4/r for some O<c<r.
Given a measuremeni=c2?-/r with c#0, classical
Beauregard7] ~2L ~323 postprocessing is required to extract information albolihe
Vedral [5] ~5L ~240.3 process begins with a continued fraction expansion. To illus-

Zalka | [8] ~5L ~3000.2 trate, consider factoring 14@ =8). Suppose we choosa

Zalka 11 [8] ~50L ~ol9 1.2 equal 2 and the output of QPF is 31 674. The relatiof
Gossett6] 0(L2) O(L logL) =c2?/r becomes 31 674 c65 536+. The continued frac-

tion expansion ot/r is
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31674 1 1 1 (@) [« —Hl¢ lio
65536 32768 1094 1 ' ko> .’éHE ' liy

2+ 2+ .
15837 15837 1 k> H li>

14+—— o .
24 1 ko li3

10 + 1/52 .
) |k —HH li
@ > —

* liy
The continued fraction expansion of any number between 0 k> iy
and 1 is completely specified by the list of denominators ko> li>
which in this case i§2, 14, 2, 10, 52. The nth convergent b 8
of a continued fraction expansion is the proper fraction g 3 circuit for a 4-qubi(a) quantum Fourier transforrb)
equivalent to the firsh elements of this list. An introductory  4pproximate quantum Fourier transform with,=1.
exposition and further properties of continued fractions are

described in Ref4]. To summarize, as each new valjg is measured, the

1 denominatorsl,,,, less than 2 of the convergents of the con-
{2} = > tinued fraction expansion df,/2%- are substituted intd(k)
=m“modN to determine whether any(d,)=1 which
14 would imply thatr=d,,, If not, every paird,,, d,, With
(2,14 ==—, associated numeratois,,, C,n Satisfying gcéicyn, Crynr)
29 =1 must be tested to see whetherlcm(d,,,, dyy ). Note
that as shown in Fig. 1, iff is even or m’? modN

214 _29 =+1 modN then the entire process needs to be repeated
{2,143 = 60’ O(1) times. Thus Shor’s algorithm always succeeds provided
O(1/s) runs of QPF can be performed.
304
{211472!1@: _1
629 Il. APPROXIMATE QUANTUM FOURIER TRANSFORM
15 837 A circuit that implements the QFT of E@4) is shown in
{2,14,2,10,59= ———. (8)  Fig. @. Note the use of controlled rotations of magnitude
32768 /29, In matrix notation these 2-qubit operations correspond

The periodr can be sought by substituting each denominatof©
into the function f(k)=2% mod 143. With high probability

only the largest denominator less thanwill be of interest. 100 0
In this case ¥ mod 143=1 and henae=60. 010 O
Two modifications to the above are required. Firstc if o001 0 | 9)
andr have common factors, none of the denominators will o
be the period but rather one will be a divisor f After 0 00 ¢

repeating QPF a number of times, {g¢},} denote the set of

measured values. L&t/ dm denote the set of convergents The approximate QFTAQFT) circuit is very similar with
associated with each measured vdliyg. If a paircy,, c,yn  JUSt the deletion of rotation gates withgreater than some
exists such that g€, Coyn/) =1 anddy, dyns are divisors — dmax For example, Fig. @) shows an AQFT withdya=1.
of r then r=lem(dyy, dyy), Where lem denotes the least Let[ilm denote themth bit of j. The AQFT equivalent to Eq.
common multiple. It can be shown that given any two divi- (4 is [3]

sorsdy,, dyy With corresponding,,,, vy the probability

that gcdcyn, Cn) =1 is at least 1/44]. Thus only O(1) 2t-1 -

. " . ) T 1 ) 2~ . N
different divisors are required. In practice, it will not be |k)—>—’,T > i) ex —22L2mr[1]m[k]n2 , (10
known which denominators are divisors so every hif, V27 =0

i With ged(Crn, Crrr) =1 must be tested. ~

The second modification is simply allowing for the output where 3, denotes a sum over aln, n such that O
j of QPF being useless. Latdenote the probability thgt <m,n<2L and 2. -d,,+1<m+n<2L. It has been shown
=|c2?4/r] or [c2?-/r] for some G<c<r where| |, [ ] denote by Coppersmith that the AQFT is a good approximation of
rounding down and up, respectively. Such valuegwill be  the QFT[3] in the sense that the phase of individual compu-
called useful as the denominators of the associated convetational basis states in the output of the AQFT differ in angle
gents are guaranteed to include a divisor oThe periodr from those in the output of the QFT by at mosil2 dmax
sought can always be found provid€d1/s) runs of QFT  The purpose of this paper is to investigate in detail the effect
can be performed. of using the AQFT in Shor’s algorithm.
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Ill. FAULT-TOLERANT CONSTRUCTION OF SMALL

3
ANGLE ROTATION GATES 24
When the 7-qubit Steane codé,9,1Q and its concat- T = w T
enated generalizations are used to do computation, only the ‘4' '4“ |24
limited set of gates controlledoT (CNOT), HadamardH),
X, Z, S, andS' can be implemented easily, where FIG. 4. Decomposition of a controlled rotation into single-qubit
gates and &NOT.
10
S= . (11
0 i depth of eachT and T' gate circuit can be reduced to 2.

Together, the setNOT, H, X, Z, S, S, T, andT' enables the
implementation of arbitrary 1- and 2-qubit gates via the
anplovay-Kitaev theorenid,11]. For example, the controlled
/29 gate can be decomposed into a singkeoT and three
single-qubit rotations as shown in Fig. 4. Approximating
1 0 single-qubitzr/ 29 rotations using the fault-tolerant gate set is
= 0 &) (12) much more difficult. For convenience, such rotations will
henceforth be denoted 4. The simplestleast number of
Note, however, that if it is acceptable to add an additional 1Zault-tolerant gatesapproximation of theR;,g single-qubit
qubits for everyT andT' gate in a sequence of fault-tolerant rotation gate that is more accurate than simply the identity
single-qubit gategsee, for example, Eq13)], the effective  matrix is the 31 gate product

Complicated circuits of depth-100 and requiring a mini-
mum of 19 qubits are required to implement theand T'
gates. The exact circuits shall be presented in a separ
work specifically on fault-tolerant constructions

Ugy = HTHT'HTHTHTHTHTTHTHTHT HTTHTHT HTTHTH. (13)

Equation(13) was determined via an exhaustive search mini-mating a rotation gat&®, with accuracys=1/2 requires a

mizing the metric number of gates that grows linearly or quadratically with
In addition to the inconveniently large number of fault-
) 2 —|tr(uv)| tolerant gatess required to achieve a given approximation
dist(U,V) = S (14) 8, each individual gate in the approximating sequence must

be implemented with probability of errop less than
The rationale of Eq(14) is that if U andV are similar,u™v ~ O(8/n,). Note thatd is not a probability of error but rather a
will be close to the identity matriXpossibly up to some measure of the distance between the ideal gate and the ap-
global phasgand the absolute value of the trace will be closeproximating product so this relationship is not exact. If the
to 2. By subtracting this absolute value from 2 and dividingrequired probabilityp~ 6/ns=1/(ns2% is too small to be
by 2 a number between 0 and 1 is obtained. The overalhchieved using a single level of QEC, the technique of con-
square root is required to ensure that the triangle inequalityeatenated QEC must be used. Roughly speaking, if a given
gate can be implemented with probability of ermradding
dist(U,W) < dist(U,V) + dist(V,W) (15  an additional level of concatenatidi?] leads to an error
rate of cp? wherec<1/p. If the Steane code is used with
is satisfied. seven qubits for the code and an additional five qubits for
The identity matrix is a good approximation Bf,gin the  fault-tolerant correction, every additional level of concatena-
sense that diéR;os1)=8.7x10°% Equation (13) is only  tion requires approximately 12 times as many qubits. This
slightly better with distR;,g,U3)=8.1X 107, A 46 gate se- implies that if a gate is to be implemented with accuracy
quence has been found satisfying (Rsbg, Use) =7.5X 1074 1/(ns2%), the number of qubitsq scales asO(d"2!?)
Note that this is still only 10 times better than doing nothing.=0(d®%8). While this is a polynomial number of qubits, for
Further investigation of the properties of fault-tolerant ap-even moderate values dfthis leads to thousands of qubits
proximations of arbitrary single-qubit unitaries will be per- pbeing used to achieve the required gate accuracy.
formed in the near future. For the present discussion it suf- Given the complexity of implementin§and T gates, the
fices to know that the number of gates grows somewher@umber of fault-tolerant gates required to achieve good ap-
between linearly and quadratically with(liY) [4] where  proximations of arbitrary rotation gates and the large number
6=distR,U), R is the rotation being approximated, adds  of qubits required to achieve sufficiently reliable operation, it
the approximating product of fault-tolerant gaigise exact is clear that for practical reasons the usemd®® rotations
scaling is not knowp In particular, this means that approxi- must be restricted to those with very smell
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IV. DEPENDENCE OF OUTPUT RELIABILITY ON THE
PERIOD OF f(k)=mK mod N

Different values of [the period off (k) =x mod N] imply
different probabilitiess that the valug measured at the end
of QPF will be usefulsee Fig. 1 In particular, as discussed
in Sec. | ifr is a power of 2 the probability of useful output (a)
is much higher(see Fig. 2 This section investigates how
sensitives is to variations inr. Recall Eq.(6) for the prob-
ability of measuring a given value ¢f When the AQFTEQ.
(10)] is used this becomes

Pr(J 1r1L1de1X)
\; 221 2. 2
ﬁ E ex ﬁz mr[j]m[pr]nzmm>
p=0
(16)
The probabilitys of useful output is thus
SILOnad = X PHrL, O, (17)

{useful j}

where {usefulj} denotes alj=[c2%"/r] or [c2?-/r] such that
0<c<r. Figure 5 shows for r ranging from 2 to 2-1 and
for various values of andd,,,,. The decrease iafor small
values ofr is more a result of the definition dfuseful j}
than an indication of poor data. Wheiis small there are few
useful values ofj= c2?-/r], 0<c<r and a large range of
states is likely to be observed around each one resulting su- (d)
perficially in a low probability of useful outpwt ass is the

sum of the probabilities of observing only valugs

=|c2?/r] or [c2?-/r], 0<c<r. However, in practice values

much further fromj=c2?-/r can be used to obtain useful

output. For example, if=4 andj=16 400 the correct output

value(4) can still be determined from the continued fraction 0.6 1=8. dmax=3
expansion of 16 400/65 536 which is far from the ideal case T,
of 16 384/65 536. To simplify subsequent analysis each pair (e) 64 128 192 256

(L,dma Will from now on be associated withs(2-71

+2,L,dna Which corresponds to the minimum valuesao e . ) ; .
. . . . eriod finding as a function of periadfor different integer lengths

the ”ght of the Cemr.al peak. The chplce of th!s .pOI.n.t as 6‘? and rotation gate restrictions/29max The effect of using inaccu-

meaningful characterization of the entire graph is justified byrate controlled rotation gatds=1/32) is shown in(e)

the discussion above. ’

For completeness, Fig(& shows the case of noisy con-

FIG. 5. Probabilitys of obtaining useful output from quantum

trolled rotation gates of the form facceptable for this rotation to be implemented withif612,
implying
100 0 1 0
010 0 18) U= (O ei(w/lzsw/mz)) (19
001 0 '
i(/29+6) is an acceptable approximation oR;,s Given that
000e dist(R;,5,U)=2.1x 1073, the 46 fault-tolerant gate approxi-

where 8 is a normally distributed random variable of stan- mation ofR;,; mentioned above is adequate.

dard deviationo. This has been included to simulate the

effect of using approximate rotation gates built out of a finite V. DEPENDENCE OF OUTPUT RELIABILITY ON

number of fault-tolerant gates. The general for.m.and prop— INTEGER LENGTH AND GATE RESTRICTIONS
ability of successful output can be seen to be similar despite

o=m/32. Thiso corresponds tar/2%ax2, For a controlled In order to determine how the probability of useful output
/64 rotation, single-qubit rotations of angte’ 128 are re- s depends on both the integer lendthand the minimum
quired, as shown in Fig. 4. Figure(é implies that it is allowed controlled rotations/2%ax Eq. (17) was solved
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FIG. 6. Dependence of the probability of useful output from the quantum part of Shor’s algorithm on thellesfgtie integer being
factored for different levels of restriction of controlled rotation gates of amg®'max The parametel, characterizes lines of best fit of the
form sec 2o,

with r=2-"1+2 as discussed in Sec. IV. Figure 6 containsl. This enables one to generalize E20) to an asymptotic
semilog plots ofs versusL for different values ofi,,,. Note  lower bound valid for alld,5>0

that Eq.(17) grows exponentially more difficult to solve &s

increases.

. . —L/ Amax1
For d,,. from O to 5, the exponential decreasesofvith soc 274 (21)
increasingL is clear. Asymptotic lines of best fit of the form
s 27LLo (20) with the constant of proportionality approximately equal
to 1.
have been shown. Note that fdf,,,> 0, the value ofL, Keeping in mind that the required number of repetitions

increases by greater than a factor of 4 whgp, increases by of QPF isO(1/s), one can relate 4 to dyay by introducing
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an additional parametef,,,, characterizing the acceptable puter could one day be used to break a 4096-bit RSA encryp-

number of repetitions of QPF, tion in a single day.
Lmax= 4max 109, fmax: (22)
. . VI. CONCLUSION
Available RSA[13] encryption programs such &GP
typically use integers of length up to 4096. The circuit in We have demonstrated the scalability of Shor’s algorithm

[5] runs in 1502 steps when an architecture that can interacwhen a limited set of rotation gates is used. The lenggl,
arbitrary pairs of qubits in parallel is assumed and fault-of the longest factorable integer can be related to the maxi-
tolerant gates are usethe fault-tolerant Toffoli gate has mum acceptable runs of quantum period findfpg, and the
smaller depth than the nonfault-tolerant Toffoli gate used irsmallest accurately implementable controlled rotation gate
the construction of Table I. Note that to leading orderLin  7/2%ax via L.~ 4%actlog, f.. Integers thousands of
the number of steps does not increase as additional levels dfgits in length can be factored provided controlled64
QEC are used. Thus 102 steps are required to perform a rotations can be implemented with a rotation angle accurate
single run of QPF. On an electron spin or charge quantunto 7r/256. Sufficiently accurate fault-tolerant constructions of
computer[14,19 running at 10 GHz this corresponds to such controlled rotation gates have been described.
~15min of computing. If we assume24h of computing is

acceptat_)le thefiy,~ 1_02. Substituting these v_alues Ofax ACKNOWLEDGMENTS

andf ., into EqQ.(22) givesd,,,,=6 after rounding up. Thus

provided controlledr/64 rotations can be implemented ac- This work was supported by the Australian Research
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