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conditions governing the feasibility of the scheme are derived. The merits of a number of classes of solid are
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I. INTRODUCTION

In the last few years, many exciting effects in nonlinear
optics have been made possible by using electromagnetically
induced transparency(EIT). This allows a near-resonant
probe field to experience extreme nonlinearities, while si-
multaneously using a second coupling field to cancel the
associated absorption[1,2]. Applications include nonlinear
optics at low light levels[3–6], full frequency conversion in
distances so short that phase matching is not relevant[7–9],
and quantum information storage[10,11].

Another effect EIT allows is an extreme reduction of the
group velocity of a light pulse[2,5,12]. This arises from the
very large dispersion experienced by a probe field that is
close to resonance. Slow light has been theoretically ana-
lyzed and experimentally demonstrated in gaseous media
[13], BECs[14], and in solids[15,16]. Group velocities of a
few tens of meters per second have been achieved.

If the coupling field is allowed to become time dependent,
then the possibility of completely stopping and trapping the
probe pulse arises[11,17–20]. To do this one adiabatically
reduces the coupling field to zero while the probe pulse is
within the EIT medium. This results in the transfer of the
probe pulse into a collective spin coherence between the at-
oms in the medium. As adiabatic passage techniques[21] are
used, the collective atomic state storing the excitation is a
“dark state,” and contains no component of an upper level
state which can decay. The lifetime of the dark state is thus
governed by the ground state coherence dephasing rate,
which can be as low as a few tens of hertz. In the quantum
picture these coupled electromagnetic and atomic excitations
are best described as a single dressed-state excitation which
has been termed a dark-state polariton by Fleischhauer and
Lukin [11]. If the coupling field is subsequently adiabatically
increased back to its original value, the spin coherence is
transferred back into the electromagnetic field. The probe
pulse is thus reformed and can propagate further.

As this scheme preserves the quantum state of the pulse, it
allows the possibility of using such a method for quantum-
information storage and processing[11]. In addition, because
the quantum state of the input pulse is mapped onto a many-
atom collective excitation, it does not suffer from fundamen-
tal problems preventing the efficient coupling of a field to a
single atom[22], and the scheme is robust and immune to
many perturbing effects that can affect storage schemes uti-

lizing single atoms in the context of cavity QED[23,24].
Although a growing body of literature is beginning to

consider storing classical light pulses in a solid[15,20], a
theoretical analysis of storing quantum information in a solid
using the dark-state polariton formalism has not been carried
out. Such a scheme would be well worth considering, as
solids have a number of advantages over gases. They are
easy to prepare and store; stored information does not de-
grade due to atomic diffusion and, above all, much higher
densities of interacting atoms can be achieved. For example,
a common class of solids used within a quantum information
context is rare-earth-metal-doped crystals, where the concen-
tration of dopants can easily exceed the density of atoms in a
gas by eight orders of magnitude. Outside this class of ma-
terials, nitrogen-vacancy centers in diamond have also been
considered[25,26]. These have the advantages of a strong
oscillator strength and relatively long spin coherences. It is
also conceivable that one could use doped glasses instead of
crystals, although extreme inhomogeneous broadening must
then be overcome.

The purpose of this paper is to extend the analysis of
Fleischhauer and Lukin by considering the behavior of dark-
state polaritons in a solid, rather than gaseous, medium. We
determine whether quantum information storage is still pos-
sible, given the large inhomogeneous broadening that is
present in solids, derive conditions that must be met for suc-
cessful storage, and finally discuss in which classes of sys-
tems the conditions can be met.

II. BASIC MODEL

We consider a standard three-levelL system, as shown in

Fig. 1. Ê is a weak quantum field, whileV is the Rabi fre-
quency associated with a strong classical coupling field. We
assume that both fields propagate parallel to thez direction,
reducing the system to a one-dimensional(1D) problem.

Using a similar approach to[27], one can show that in the
continuum limit the interaction Hamiltonian for this system
is given by

Ĥint = −
"N

L
E dzfgs21sz,tdÊsz,td + V sz,tds23sz,td + H.c.g ,

s1d

where all quantities are taken to be slowly varying, both in
time and space, i.e. we have transformed to a rotating frame.
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The coupling constant is given byg=d13
Îv /2"«0V, whereV

is the interaction volume andd13 is the electronic dipole
moment between statesu1l and u3l. N is the total number of
dopant atoms in the interaction volume.

Within the slowly varying amplitude and phase approxi-

mation, the equation of motion for the quantum fieldÊ is
given by

S ]

] t
+ c

]

] z
DÊsz,td = igNs13sz,td. s2d

Using variables that are slowly varying in space and time
one finds the atomic equations of motion for a single atom to
be

ṡ11 = − g1s11 + igsÊ†s13 − Ês31d + F1, s3d

ṡ22 = − g2s22 + isVp s23 − V s32d + F2, s4d

ṡ33 = − g3s33 + isgÊs31 − gÊ†s13 + V s32 − Vp s23d + F3,

s5d

ṡ13 = G138 s13 + ifgÊss11 − s33d + V s12g + F13, s6d

ṡ23 = G238 s23 + ifgs21Ê + V ss22 − s33dg + F23, s7d

ṡ12 = G128 s12 + isVps13 − gÊs32d + F12. s8d

The atomic operators are defined bysi j = uilk j u ,gi represents
the population decay from stateuil, and the detunings are
defined by

G138 = − iD13 − g13 = − isD + D v13d − g13, s9d

G238 = − iD23 − g23 = − isD0 + D v23d − g23, s10d

G128 = − iD12 − g12 = − isD− D0 + D v12d − g12. s11d

gi j represents the coherence decay between statesuil and
u jl ; Dvi j is the detuning of the inhomogeneously broadened
line center from an isolated atom line center.D andD0 rep-
resent the detuning of the laser from the inhomogeneous line

center for theu1l− u3l transition and theu2l− u3l transition,
respectively.

The Fij are d-function-correlated Langevin noise opera-
tors, and as such can be neglected in the adiabatic limit. We
intend to remain close to this regime. It can also be noted
that the magnitude of the noise correlations is related to the
atomic decay via the fluctuation-dissipation theorem. As the
essence of the transfer process involves utilizing dark states,
ideally the upper stateu3l is never populated. As there is no
dissipation, correlations involving the noise operators vanish.
Although as one moves away from the purely adiabatic re-
gime an admixture of the bright state with au3l component
becomes excited, this component remains small, as will be
seen in Sec. III B. Consequently we omit the writing of the
noise operators in the analysis that follows.

We solve the atomic equations of motion perturbatively,

using the expansion parameter«=gÊ/ V !1. Further, we as-
sume that initially all the atoms are in stateu1l, so that the
zeroth order solutions for the atomic variables aresi j

0 =1 if
i = j =1, andsi j

0 =0 otherwise.
To first order in« we find

s12 = −
gÊ

V
+

1

V
s]t − G13d

1

V
s]t − G12d

gÊV

V2 + G12G13
,

s12d

s13 =
ig

V
s]t − G12d

ÊV

V2 + G12G13
+

ig

V
s]t − G12d

3FG13

V2 ]t
ÊV

V2 + G12G13
+

G12

V
]t

Ê

V2 + G12G13
G .s13d

These first order solutions are an excellent approximation to
the true solutions, as the ratio between the probe field and the
coupling field is extremely small. This can be seen by noting
that within the context of quantum information storage the
probe pulse will contain only a few photons, while, as we
will see later, the coupling field must generally be of the
order of kW/cm2 in order to overcome the inhomogeneous
broadening.

The analysis above yields the relevant atomic equations of
motion for a single ion with a specific detuning defined by its
position within its host. As we are dealing with a collective
effect, i.e., the incoming probe pulse excites many ions at
different sites simultaneously, we need to average over the
inhomogeneous broadening, accounting for all possible de-
tunings. Making the assumption that the inhomogeneous
broadening is given by a Lorentzian, the averaged atomic
quantities are given by

si j =
W12W13

p2 EE d D v12

sDv12d2 + W12
2

d D v13

sDv13d2 + W13
2 si j ,

s14d

where theDvi j are given by Eqs.(9)–(11), andW12,W13 are
the inhomogeneous widths of theu1l→ u2l and theu1l→ u3l
transitions, respectively.

FIG. 1. Left: three-level scheme.Ê is a weak quantum field
while V is a classical field. Right: detuning scheme for a particular
atom. The wavy line represents the inhomogeneous line center for
the atomic ensemble, thusDvi j represents the detuning between the
upper level of a particular atom and the inhomogeneous line center.
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The integration results in rather involved expressions, and
in order to make the analysis more tractable we make the
following assumptions: Both the probe and coupling fields
are on resonance with an isolated ion(that is, Di j =0), and
gi j !Wij (requiring that the inhomogeneous linewidth is far
wider than the unbroadened linewidth). The first assumption
can easily be met by choice of laser frequency, and the sec-
ond is obviously met since the inhomogeneous linewidth is
composed of many superimposed unbroadened linewidths.
These assumptions result in the averaged atomic expressions

s = −
gÊV

V2 + W12W13
−

1

V2

]

] t

gÊV s− g13V
2 + g12W13

2 d
sV2 + W12W13d2

−
1

V

]

] t

gÊs− g12V
2 + g13W12

2 d
sV2 + W12W13d2 , s15d

s13 =
− igÊs− g12V

2 + g13W12
2 d

sV2 + W12W13d2 −
ig

V3

]

] t

Ê V W12W13

V2 + W12W13

−
ig

V2

]

] t

ÊW12
2

V2 + W12W13
+

ig

V

]

] t

ÊV

V2 + W12W13

+
ig

V

]

] t

1

V

]

] t

Ês− g12V
2 + g13W12

2 d
sV2 + W12W13d2

+
ig

V

]

] t

1

V2

]

] t

Ê V s− g13V
2 + g12W13

2 d
sV2 + W12W13d2 . s16d

III. SOLUTIONS

We closely follow the analysis of Fleischhauer and Lukin
[11]. As a starting point we introduce the two quantum fields

Ĉ andF̂. They are defined to be

Ĉ = scosudÊ − ssin udÎNs12, s17d

F̂ = ssin udÊ + scosudÎNs12, s18d

with the inverse relations

Ê = scosudĈ + ssin udF̂ , s19d

ÎNs12 = − ssin udĈ + scosudF̂ . s20d

The time-dependent mixing angleustd is defined by

tan u =
gÎN

Vstd
. s21d

Both Ĉ and F̂ have bosonic commutation relations in the

limit of few photons and many atoms. The action ofĈ† on
the vacuum creates dark states[11], which contain no com-
ponent of the excited stateu3l, and are therefore unaffected

by spontaneous emission[2]. F̂, on the other hand, creates
states which couple to stateu3l and which are therefore lossy.

ConsequentlyĈ andF̂ are termed dark state and bright state
polaritons, respectively.

It is now clear that provided the system remains purely

described by the excitationĈ, by rotating the mixing angle
from 0 to p /2 (equivalent to taking the control field from
V=` to V=0) one can losslessly transfer the quantum probe
field into an atomic spin coherence, trapping the probe field
in the medium. Ramping the control field back up rotates the
spin coherence back into the probe field which is then re-
leased and able to propagate further.

Utilizing (2) along with Eqs.(15)–(20), one can obtain

f]t + cscos2ud]zgĈ = − u̇ F̂ − cssin udscosud]zF̂

+ gÎNssin udF s− V2g12 + W12
2 g13dÊV

sV2 + W12W13d2

+
W12W13

V2

]

] t

ÊV

V2 + W12W13

+
W12

2

V

]

] t

Ê

V2 + W12W13
G . s22d

We make the assumption thatW12!W13, that is, that the
inhomogeneous width of the ground state is much less than
the width of the upper, excited, state. In solids the upper state
broadening is normally several orders of magnitude larger
than that of the ground state, making this an excellent ap-
proximation. We can thus neglect the the last term in Eq.(22)
relative to the second to last term.

After using Eq.(19) to eliminateÊ and carrying out the
differentiation, Eq.(22) can be written

f]t + cscos2ud]zg Ĉ = − u̇F̂ − cssin udscosud]zF̂+ stan ud

3fscosudĈ + ssin udF̂g

3FV2ssin udsW12
2 g13 − V2g12d

sV2 + W12W13d2

+
u̇

cosu

W12W13sV2 − W12W13d
sV2 + W12W13d2 G

+
ssin2 udW12W13

V2 + W12W13
fĈ˙ + stan udF̂˙

− stan udu̇ Ĉ + u̇ F̂g, s23d

where we have used bothV and u even though they are
related, as this makes the expression more compact. The first
two terms on the right-hand side are identical to those
present in the gaseous medium considered in Ref.[11],
where there is no inhomogeneous broadening and the ground
state coherence lifetimeg12 is taken to be infinitely long. The
remainder of the terms, however, are distinct to the case of a
solid medium.

To obtain the final equation of motion forĈ, we need to

eliminate F̂ from Eq. (23). This can be accomplished by
using Eqs.(15) and (18) to obtain
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F̂ =
gÎN

V
scosudF ÊW12W13

V2 + W12W13

−
1

V

]

] t

Ê V s− g13V
2 + g12W13

2 d
sV2 + W12W13d2

−
]

] t

Ês− g12V
2 + g13W12

2 d
sV2 + W12W13d2 G . s24d

Again making the replacementÊ=cosu Ĉ+sin u F̂ and per-
forming the derivatives one finds the relation

F̂ = FW12W13ssin udscosud
V2 + W12W13

− sa + bdu̇GĈ + bscotudĈ˙

+ FW12W13 sin2u

V2 + W12W13
− au̇stan udGF̂ , s25d

where

a =
g13V

2s3W12W13 − V2d + g12W13
2 s3V2 − W12W13d

sV2 + W12W13d3 ,

b =
sin2 ufsg12 + g13dV2 − g12W13

2 − g13W12
2 g

sV2 + W12W13d2 . s26d

From Eq.(25) it can be shown that to keep from populating

the bright state polariton, that is to ensure thatF̂ is small

relative toĈ, we require that

V2 * 3W12W13. s27d

Thus to keep the bright state from being populated the
strength of the control fieldV must always dominate the
inhomogeneous broadening.

If this criterion is met, we have

F̂ = FW12W13ssin udscosud
V2 + W12W13

− sa + bdu̇GĈ + bscotudĈ˙ ˙

s28d

The dynamics of the dark state polariton divide naturally into
two subcases—one where the control field is altered so
slowly that the evolution of the atomic states exactly follows
the control field, and a second where some element of nona-
diabaticity is considered.

A. Adiabatic case

In totally adiabatic evolution, only the first term of Eq.
(28) is relevant. Thus

F̂ad.lim.=
gÎN V W12W13

sV2 + g2NdsV2 + W12W13d
Ĉ . s29d

Provided one remains in the regime given by Eq.(27) it is

clear thatF̂ can be neglected relative toĈ.
We note that Eq. (29) should contain a Langevin

(vacuum) noise term so that the commutation relations are

met. However, sincekF̂†F̂l! kĈ†Ĉl, the bright state polar-

iton is never appreciably excited. It is thus possible to adia-
batically transfer the electromagnetic probe pulse into an
atomic dark state with no component projected onto the up-
per excited state, therefore avoiding destruction and noise
due to spontaneous emission.

We are now able to derive the equation of motion for the
dark-state polariton in the adiabatic limit by using Eq.(23),
ignoring theF̂ terms, and noting that as we are changing the

control field adiabaticallyu̇=0. This yields

f]t + cscos2ud]zg Ĉ =
W12W13 sin2 u

V2 + W12W13
Ĉ
˙

− ssin2 udGCĈ ,

s30d

with

GC =
V2sV2g12 − W12

2 g13d
sV2 + W12W13d2 . s31d

This result should be compared with that obtained using a
gaseous medium, where no inhomogeneous broadening is
present, and the ground state coherence time is taken to be
infinitely long [11]:

f]t + cscos2 ud]zg Ĉ = 0. s32d

The first term on the right-hand side of Eq.(30) is clearly
a correction to the group velocity of the polariton pulse. Pro-
vided we remain in the regime given by Eq.(27) this results
in a velocity correction factor close to unity.

It is equally clear thatGC.0 and so denotes a loss term.
Furthermore, within the regime(27), GC is bounded byg12,
the dephasing rate of the ground-state coherence. This is
logical, and indicates that the maximum storage time is lim-
ited by the lifetime of the ground-state coherence.

One difficulty remains: because the power of the control
field must dominate the inhomogeneous broadening, we can-
not reduce it to zero in order to achieve a zero group velocity
and stop the probe pulse. The minimum velocity occurs
whenV2<W12W13 and is given by

vg = cscos2 umind =
cW12W13

W12W13 + g2N
. s33d

Thus, in order to achieve a near-zero group velocity, one
requiresg2N@W12W13.

In general, the solids of interest consist of rare-earth-ion-
doped crystals[15]. Consequently,W12 is of the order of tens
of kilohertz, andW13 is of the order of gigahertz.g2N, on the
other hand, tends to be within a few orders of magnitude of
,1021Hz2. (These assumptions, along with solids other than
rare-earth ions doped into crystal hosts, will be considered in
greater detail in Sec. IV.) The minimum polariton velocity is
thus perhaps few tens of meters per second, although this is
highly dependent on the medium chosen. Similarly, at the
minimum control field strength sinu<1−W12W13/g2N, in-
dicating that practically all of the probe field has been trans-
ferred and stored.

This conclusion reproduces the gaseous medium result: a
few-photon input pulse can have its quantum state stored as
a spin coherence, provided the control field changes suffi-
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ciently slowly, and with a storage time bounded by the decay
time of the ground-state coherence. The group velocity of the
polariton is cscos2 ud, and approahces zero as the control
field is reduced, ensuring that the pulse is slow enough to be
considered stored.

To achieve this, we required two additional conditions
that are a consequence of working in a solid,

g2N @ W12W13, s34d

V2 * 3W12W13. s35d

To what extent these conditions can be met in current mate-
rials will be considered in Sec. IV.

B. Nonadiabatic corrections

Although in principle one can modify the control field as
slowly as one desires, and thus ensure that one remains in the
adiabatic regime, this is not realistic for practical quantum
information storage. As the storage time is bounded by the
ground-state coherence lifetime, one must at a minimum be
able to complete a storage and retrieval operation within this
period. This puts a lower bound on how slowly the control
field can be turned off and on. Consequently one must deter-
mine the maximum speed at which the control field can be
reduced to zero without nonadiabatic effects destroying the
storage process. It is known that these nonadiabatic losses
can be made neglible in a gaseous medium; we now consider
whether the same can be made to hold in a solid medium.

As we wish to include first order nonadiabatic corrections,
we cannot ignore all time derivatives as we did in the pre-
ceding section. Making use of Eqs.(28) and (23) we obtain
the following equation of motion for the dark-state polariton:

f]t + cscos2 ud]zg C = − Astd C + Bstdc
]

] z
C

+ Cstdc2 ]2

] z2 C , s36d

where

Astd = s1 + gdssin2 udGC + u̇fgscotud + gstan ud− sa + bd

3stan udssin2 udGC − s1 + gddstan ud− 2g2scotud

+ g2stan ud − 2g2Ng2scotudscsc2 udg− u̇2sa + bds1 − g

− d tan2 ud, s37d

Bstd = − 2gscos2 ud − bGCssin2 udscos2 ud

+ u̇ssin udscosudfa + bs1 + cot2 u − d − g cot2 udg ,

s38d

Cstd = b cos4 u, s39d

and where

g =
ssin2 udW12W13

V2 + W12W13
, s40d

d =
W12W13sV2 − W12W13d

sV2 + W12W13d2 . s41d

Astd andCstd represent losses, andBstd represents a modifi-
cation of the group velocity of the polariton.

To determine whether the transfer of the probe pulse into
a trapped dark state can occur within an interval significantly

shorter than the storage time, we must calculate how largeu̇
can be without incurring significant nonadiabatic losses. We
will follow the analysis of Ref.[11].

Equation(36) can be solved by making the Fourier trans-

form Csz,td=edkC̃sk,tde−ikz. This gives

C̃sk,td = C̃sk,0d expFikE
0

t

dt8fvgrst8d − cBst8dgG
3 expFE

0

t

dt8fAst8d − k2c2Cst8dgG , s42d

where the first term is a group velocity correction and the last
term contains the nonadiabatic losses and pulse-spreading
effects we are interested in. To avoid losses, the integral in
the exponent must be small relative to one. This results in the
two conditions

E
0

`

dt8Ast8d ! 1, s43d

k2c2E
0

`

dt8Cst8d ! 1. s44d

Since V2.3W12W13 we can construct an upper bound for
Cstd which gives

k2c2g13E
0

`

dt8
sin4 u cos2u

g2N
! 1. s45d

This is identical to the condition derived for a gaseous me-
dium, and can be shown to be equivalent to the condition
that [11]

z!
g2N

g13Lp
2 , s46d

whereLp is the length of the probe pulse in the medium(i.e.,
after compression due to EIT effects) and z is the distance
the pulse travels in the medium before being completely
stored, and can be seen as a lower bound on the medium
length required. This condition in turn is equivalent to requir-
ing only that the initial spectral width of the pulse before
beginning deceleration fits within the initial EIT transpar-
ency window.

We turn now to the condition given by Eq.(43). Looking
at Eq. (37) the first term merely states that the polariton
cannot be stored longer than the lifetime of the ground state
coherence 1/g12.

Next we consider the term proportional to . We take the
initial control field strength to beV0 and parametrize the
final control field strengthVstd as k= V std /ÎW12W13. As-
suming a linear decrease inV over the timet, then integra-
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tion of the term proportional tou̇2 with respect to time yields
the condition

t @
g13V0

k7sW12W13d3/2 s47d

for 1,k&10. This puts an upper bound on the speed at
which one can reduce the control field.

Finally we consider the term in(43) proportional tou̇. As
the integral is taken with respect to time, the presence of the

u̇ term ensures that there is no time dependence in the result.
Thus effectively the integral is carried out with respect tou,
and results in an overall loss factor. This loss factor is rela-
tively insensitive to the precise values of all the parameters
excepting the final control field strengthVstd. Again if k
= V std /ÎW12W13 then the loss factor is approximately

h = expF 3 + 2k2

s1 + k2d2 + 2 ln
k2

1 + k2G . s48d

Equations(46), (47), and(48) are the conditions that must
be met if we are to stop and store a probe pulse within a
solid. Whether they can be met is strongly dependent on the
solid that is used, and it is to this that we now turn.

IV. PRACTICAL CONSIDERATIONS AND EXAMPLES

The solids most often considered within the context of
coherent optical behavior are rare-earth-doped crystals. In
general, the rare-earth-dopant ions are characterized by low
inhomogeneous broadening of their lower state hyperfine
transitions and well-characterized energy levels.

In addition, they are attractive for quantum information
storage due to their high ratio of optical-transition inhomo-
geneous broadening to spin-transition inhomogeneous broad-
ening, which allows the writing of many discrete channels
via spectral hole burning[29] and pulse compression by pho-
ton echo effects[30].

In these materials the transitions of interest are usuallyf
− f or f −d. The f − f transitions are characterized by having a
low inhomogeneous linewidth for the optical transitions, and
have relatively low oscillator strengths.f −d transitions, on
the other hand, have larger optical inhomogeous broadening,
and also have relatively large oscillator strengths. An addi-
tional advantage of thef −d transitions is that many of them
coincide with the existence of a zero-phonon line at low
temperatures[15].

Due to these properties, our focus will be on materials
with suitable f −d transitions. A wide class of rare-earth-
doped crystals satisfying these criteria can be found in[15].

As has been made clear from the foregoing analysis, there
are two primary quantities that govern the ability to transfer
the quantum information from the probe pulse into a spin
coherence. They areW12W13, the product of the inhomoge-
neous widths of the optical and spin transitions, andg2N, the
collective coupling strength of the medium.

The single-atom coupling is given byg=d13
Îv /2"«0V.

The dipole moments forf −d transitions in rare-earths gen-
erally lie in the range 10−29−10−31 C m. We choose

10−30 C m as a representative value in the following. As an
order-of-magnitude estimate we assume a wavelength of
1000 nm, and find the convenient relation that

g2NsHz2d ,
N

V
sm−3d, s49d

that is, the collective coupling strength is simply given by the
density of the dopant atoms in the medium. The density of
rare-earth dopant ions in crystals can easily be as high as
1017−1019 cm−3, depending on the dopant and matrix mate-
rial. Thus g2N,1023−1025 Hz2, many orders of magnitude
higher than what is possible in gases.

The magnitude of the optical and spin inhomogeneous
broadening is strongly dependent on the rare earth and on the
electronic transition chosen. A typical range of values for
W13 for f −d transitions is 40-300 GHz[15], while W12
ranges from 100 Hz – 10 Mhz[28,32]. Consequently, as a
representative value one could expectW12W13,1015 Hz2,
and it is therefore clear that the conditiong2N@W12W13 is
very easily met in these materials.

We now consider the power requirements of the coupling
laser. If we wish to let the probe pulse enter the medium at
speedc, and then reduce the coupling field strength to its
minimum value, effectively stopping the pulse, it is neces-
sary to rotate the mixing angleu from 0 to p /2. A value of
u=0 corresponds to a coupling field of infinite intensity, or
more realistically, V2@g2N. Optimistically assuming
W12W13=1015 Hz2 and g2N=1017 Hz2, we might require
V2s0d=1019 Hz2. Using

I =
V2"2c«0

2d13
2 s50d

and assuming a dipole moment ofd13=10−30 C m we see that
this corresponds to a coupling laser intensity of 10 kW/cm2.
These numbers are only indicative, and it is possible to re-
duce the power requirements by choosing systems with
smaller inhomogeneous broadening and reducing the dopant
concentration.

One must also take into consideration the length of me-
dium required to stop the pulse. Naively, if the coupling laser
intensity is reduced fromVs0d@gÎN to its minimum value
Vstd,ÎW12W13 in time t, the distance the pulse travels is

z=E
0

t

c cos2 ustddt < ct. s51d

Thus, bearing in mind the adiabaticity requirements, ift
,10−6 s, the stopping distance is 300 m. This may just be
feasible for a experiment with a doped fiber, but certainly not
for a crystal.

The correct approach, which obviates this difficulty as
well as reducing the pump power required, is to ensure the
coupling field has a strength such that the probe pulse is in
the slow group velocity regime as soon as it enters the me-
dium, namelyW12W13! V s0d2!g2N. In this case
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z=
Vs0d2

3g2N
ct. s52d

As it is possible to makeg2N extremely large in a solid, there
is no difficulty in stopping the probe pulse within a few
centimeters. The initial coupling laser Rabi frequency can
now be orders of magnitude lower, provided it still domi-
nates the inhomogeneous broadening, resulting in an initial
coupling laser intensity of,100W/cm2.

The final conditions that must be met are the adiabaticity
criteria, namely Eqs.(46), (47), and (48), which exist only
when one moves away from the adiabatic limit.

The first condition is that probe pulse bandwidth after
entry to the medium must be within the EIT transparency
window before the coupling laser intensity is reduced. In the
case of a strong coupling field in a solid, the EIT window is
given by GEIT=V2/W13 [15], corresponding to a bandwidth
of ,106−108 Hz, depending on the intial coupling field
strength. If a broader bandwidth is required, one merely
needs to increase the coupling field strength.

Equation(47) is a fairly weak condition. Using the num-
bers W12W13,1015 Hz2, V s0d2,1017 Hz2, and g13

,107 Hz, one obtainst@10−7 s, which is certainly still or-
ders of magnitude shorter than the limit of the storage time
which is governed by 1/g12.

The final condition(48) is highly dependent as to what
extent the final control field strength dominates the inhomo-
geneous broadening. TakingVstd=3ÎW12W13 gives a damp-
ing factor ofh<exps−0.0007d, which is negligible.

Thus, in general, it appears that quantum information stor-
age using this technique is feasible in rare-earth-doped crys-
tals. It is not clear, however, whether there is one type of
material that possesses all the properties which would make
it an ideal candidate. The oscillator strength of the rare earth
itself is not too important, as it can generally be compensated
for by altering the dopant density. The crucial quantities are
the inhomogeneous broadening widthsW12 andW13, the col-
lective couplingg2N, and the dephasing rateg12. The ideal
material would have a lowW12W13, a highg2N, and a very
low g12.

Some measures can be taken to reduceW13. For example,
Ham et al. introduce a repump laser to prevent spectral hole
burning by the coupling and probe lasers, and consequently
limit the optical inhomogeneous broadening to the repump
laser jitter s,1 MHzd [31]. In the scheme described in this
paper, we have assumed very weak probe fields for quantum
information purposes, and so only a tiny fraction of the at-
oms make the transition to stateu2, rendering such a repump
laser unnecessary. Similar spectral hole-burning techniques,
however, could be used prior to applying the probe pulse,
selecting a subset of the ions within a particular spectral
range[28] and thus drastically reducingW13. The drawback
is a reduction in the interacting ion density, but asg2N
,1023 Hz2 is attainable, reducing the density by a factor of
1000 is certainly acceptable for a similar 1000-fold reduction
in the inhomogenous broadening.

The storage time, which is the time one may wait before
the quantum field is released by the turning on of the strong
pump field, is limited both by the homogeneous widthg12

and the inhomogeneous widthW12 of the lower hyperfine
transition in the ions.g12 serves as an absolute lower limit as
discussed in the previous section.W12 is a limit due to the
fact that the phases of different ions evolve at different
speeds due to inhomogeneity, meaning that after a time
1/W12 the stored information will no longer be coherent. In
principle this can be overcome. Spin echo techniques have
been exploited to compensate inhomogenous frequency
shifts and to observe features limited only by the homoge-
neous lower state width in ion-doped crystals[30]. In our
case, however, it is not plausible that one can precisely invert
the populations to a level of precision matching the almost
insignificant number of photons stored in the medium. Thus
in practice one is limited by the storage time 1/W12 rather
than the longer storage time 1/g12. It has been shown, how-
ever, that strong magnetic bias fields can reduce the inhomo-
geneous broadening significantly, and this suggests that stor-
age times of the order of 100 ms or more may be achievable
[32].

For integration with current telecommunication technolo-
gies, it is natural to speculate about the possibilities of slow-
ing and storing light in doped optical fibers and waveguides
rather than crystals. In fibers and waveguides, where the ions
are doped into a glass host, the inhomogeneous widths of
both the optical and the hyperfine transitions are much larger
than in crystals[33–35]. Persistent hole burning has been
demonstrated in glass fibers[36], and a natural strategy thus
seems to be a preparation of the system by pumping all ions
in a broad frequency range to passive spectator levels, leav-
ing only ions which have their 1-3 and 1-2 transitions in
desirable frequency windows in the middle of this range in
their stateu1l. Considerable improvement of the hole burning
must be achieved and further understanding of the homoge-
neous width of the transitions is clearly needed before seri-
ous attempts along this line can be carried out.

As commented upon above, hole burning leads to a sig-
nificant reduction of the number of ions available for the
light storage. There are, however, a number of techniques
that could be employed to compensate for this. For example,
a crystal fiber may be doped only in the central rod which
forms the central waveguide in the fiber[37]. The light is
thus confined to a cross section about the size of the(reso-
nant) absorption cross section of a single ion which, together
with the achievable lengths of these fibers, may compensate
for the low concentration, and make slowing and storage of
light possible. Another possibility is to set up an optical cav-
ity by writing a Bragg grating in the fiber[38] (or by coating
the faces of a crystal if a fiber is not used) and in this way
enhance the interaction of the field with the atomic system,
as it has been proposed for free atoms and for ions[39].

A detailed analysis of light slowing and stopping in fibers
as opposed to crystals is beyond the scope of this paper.
However, we would like to note that significant nonlinear
dynamics, for example supercontinuum generation, has been
observed in fibers at very high light intensities as a conse-
quence of the nonlinear susceptibility of the glass host[40].
If our rare earth-doped crystal analysis is to be directly ap-
plicable to fibers, these intensities should be avoided. On the
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other hand, it is quite possible that in the high-intensity re-
gime the nonlinear susceptibility coupled with the EIT dy-
namics could lead to new and interesting effects.
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