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Unitary operations are the building blocks of quantum programs. Our task is to design efficient or optimal

implementations of these unitary operations by employing the intrinsic physical resources of a-gjubit

system. The most common versions of this task are known as Hamiltonian simulation and gate simulation,
where Hamiltonian simulation can be seen as an infinitesimal version of the general task of gate simulation. We
present a Lie-theoretic approach to Hamiltonian simulation and gate simulation. From this, we derive lower
bounds on the time complexity in thequbit case, generalizing known results to both even androdib

achieve this we develop a generalization of the so-called magic basis for two-qubits. As a corollary, we note a
connection to entanglement measures of concurrence-type.
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I. INTRODUCTION First, we show that understanding simple cases in detail

helps to generalize them to higher-dimensional systems. Sec-
ond, we obtain generally applicableie-theoretig methods

hat provide tools in the analysis of higher-dimensional sys-

As a starting point for the emerging field of quantum
computation(for a review see, e.g., Refil,2]) Feynman3]
established in 1982 a connection between simulation o,
quantum systems by computers on the one hand and compu-

. . h her hand. Si hi Beyond this, the two-qubit case is interesting in its own.
tation using quantum systems on the other hand. Since t (e can characterize the minimal time for Hamiltonian simu-

time many different models for computation using quantuMyzion girectly using arguments from Lie theory. With the

systems have been proposed. . . help of this characterization we explain and reprove a ma-
. In all these _models the common target is to ConSt.ruc.t'V?bjorizationlike condition[4] for the minimal simulation time.
implement unitary operations by employing the intrinsic By employing the Weyl group of the corresponding Lie al-
physical resources. Forming the counterpart of operations o ebra, we are able to simplify and clarify the known ap-
a classical computer, these unitary pperations build the con‘groach of Ref[4], especially with respect to Ref]. In the
ponents of quantum programs. Whlchev&_rasonabhasys_- case of two-qubit systems we consider gate simulation as
tem is provided to us by an experimentalist, we exploit thg e \ve present a refined analysis of the majorizationlike

resources immanent to the system. . condition of Refs[6,7], which will be built explicitly on the
In this paper we confine ourselves tequbit systems rgsults of Ref[5].

where the resources are given by local unitary operations an The second major topic deals with the case of general

by the natural time evolution specified by the Hamilton op-, o it systems. We first discuss a generalization of the so-

erator. This_allows us to imp_Iement a given gnitary ope_rationca"ed magic basif8,9] to higher-dimensional systems. With
by interrupting the natural time evolution with local unitary this information on the structure of unitary operations we

operations. Referring to such implementations as program?ﬂfevelop lower bounds on the minimal time for gate simula-

OUL.ObjeC:.Ve s tollstudy fofifcient or optimal fprfc:_gramst;lTo tions. Our method applies to alkqubit systems and gener-
achieve this, usually two different versions of this problemyi;eq o result of Reff10] for evenn. We also discuss the

ar% ((:jonsut:iered. H";‘_m.l'“’_”'af; _S|m|ulat|or1 'f thefone_t VErSIONsed techniques in connection to entanglement measures, in
and denotes an infinitesimal implementation of unitary op-p- iclar. the concurrend®,11].

erations, i.e., the unitary operation is in a neighborhood o The whole text is written in a Lie-theoretic flavor. For

ﬂjrther reference, the Lie-theoretic concepts needed in the

) . . ) . Ctext will be introduced briefly in Sec. Ill. Using this theory
stricted to a neighborhood of the identity. We give an exacl, 1 ys in the position to formulate strong arguments in a
definition of both versions in Sec. Il. coherent language

In this paper we address two major topics. First we con- |, 'sac || we introduce our model and in Sec. Ill we state

Eider tV]\,IO'QUbit s;gstems. Combining thle manifold rzsu'ltsthe Lie-theoretic concepts needed in the main body of the
nown for two-qubit systems, we can close gaps and siMg.. The Hamiltonian simulation for two-qubits will be dis-

plify the line of reasoning. In addition, by using Lie-theoretic ¢ \qq0q in Sec. v, followed by the analysis of gate simulation
methods_ we derive a unified .approach to thg m?thOdc’log)ﬁor two-qubits in Sec. V. The generalization of the magic
The motivation for this extensive reconsideration is twofold: - <ic oy two-qubits is considered together with lower

bounds on the time complexity for generafjubit systems in
Sec. VI. In Sec. VIl we give a brief outline to related work,

describes an implementation of unitary operations not r

*Electronic address: zeier@ira.uka.de in Sec. VIII we continue with a discussion of connections of
"Electronic address: grass|@ira.uka.de our approach to concurrence-type entanglement measures,
*Electronic address: EISSffice@ira.uka.de and in Sec. IX we close with the conclusion. In the appendix
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we recall a spectral approach to infinitesimal Hamiltonianunitary operatordJ, and U; as well as timed¢;=0 with t

simulation. =3t jeN, 1sj<m, andme NU{0,=}, so that
m
Il. THE MODEL U= H U]- exp(- th]_) u
We consider a system af qubits, wheren e N is finite. =1
This system can be modeled within affold tensor product Remark Due to the noncommutativity of the unitary

(?®---® (2 of n 2D complex vector space¥, i.e., atensor group we restrict the symbdl for elementsV; from the
product of single qubits. The time evolution of the system isunitary group to the following meaning:
governed by the Schrédinger equation for the time-evolution
operator(see, e.g.[12], p. 72,
( IT V)Ve for f = e,

j=e+1
id for f < e,

E —(—i HV-:
dtU(t)—( iH)U(t), L1Vj

wheret denotes the timelJ(t) the time evolution operator,

andH the Hamilton operator, which is supposed to be time-wheree, f € 7, and the identity element of the unitary group
independent7=1). Because of the irrelevance of a global js denoted by id. In the case df infinite, the symbolll
phase in quantum mechanics, we restrict ourselves to evolyepresents an element from the closure of convergent se-
tion operators from the special unitary group (89. quences.

In addition to the possibility to let the system evolve ac-  Second, we introduce a particular concept of infinitesimal
cording to the evolution operatdd(t)=exp(—iHt), in our  simulation of a unitary gate. A given unitary gdies treated
model we allow the application of local unitary operators. Aas a point of a one-parameter group @pl’t’). The infini-
unitary operator is considered as local when it does not intesimal simulation of the Hamilton operatdr’ denotes that
duce any interaction between different qubits, i.e., when ithe system simulates the corresponding one-parameter group
has the form of am-fold tensor productJ;®---®U, of  for infinitesimal timest’, i.e., the derivatives of the one-
unitary operator$); e SU(2) with i e {1, ... n}. The time for  parameter group and of the simulation coincide for infinitesi-
the application of local unitary operations is negligible andmal times. We emphasize that in Definition 2 the notion of
assumed to be zero. Thereby we have specified the availabiefinitesimal Hamiltonian simulation is defined indepen-
resources that constitute the possibilities to control the sysdently of the unitary gaté.
tem. Definition 2 (infinitesimal Hamiltonian simulation)An

We emphasize that, for mathematical reasons, we restri¢t-qubit system with Hamilton operatd# and local unitary
our model to consider only systems for which the systenmoperators available simulates an Hamilton opergitoinfini-
Hamilton operators can be represented without use of locaksimally in timet if there exists local unitary operatoks,
terms. As a consequence, in the case of infinitesimal Hamiland U; as well as timeg;=0 wheret= E“llt jelN, 1<]j
tonian simulation we can simulate Hamilton operators ex=<m, andme NU{0,} so thathOU is equal to the iden-
actly only if the Hamilton operator can be represented with+ity of the unitary group and the foIIowmg equation holds:
out use of local terms. To remove the local terms of a system
Hamilton operator, one usually employs some approxima- d
tions(see, e.g.}4], p. 3 or[13], p. 288. But we refrain from  |im {—, exp(— it’H’)}
considering such approximations. In addition, avoiding locak’'—o
terms in Hamilton operators seems to release us from some. g
problems with infinite programs, i.e., an infinite number m
= of steps(see below. In Ref.[14] it is analyzed under j ey
which conditions we need infinite programs for time optimal <d Ll:[l U exp(— it Htj)} Uo ) 1)
control in the more general setting, which includes local
terms in the system Hamilton operator. Nevertheless, we
consider for technical reasons all types of programs, even Remark The conditionHJ-’ZOUj:id ensures that our pro-
infinite ones. The available resources will be utilized belowgram specified byJ,, theU;s, and the;s operates nearby the
in three ways. identity fort’ — 0.

First, we consider the simulation of a unitary gate, i.e., a We note that in Refs[15-1§ the notion of infinitesimal
unitary operator. This notion of simulation means that theHamiltonian simulation was extended by the so-called first-
system is able to implement a given unitary gate by interorder approximation to unitary operators. Similar ideas were
rupting the natural time evolution with local unitary opera- used in Ref[4] where it was proposed to follow the evolu-
tions. Definition 1 states this in a more formal way. The termtion of the system exactly by the Hamiltonian simulation.
“gate simulation” was introduced in Rg#] on p. 3. Concurrently, it was remarked in Rg#] that to follow the

Definition 1 (gate simulation)An n-qubit system with  evolution of the system exactly is only possible infinitesi-
Hamilton operatorH and local unitary operators available mally, as the control is not continuous. In this text we do not
simulates a unitary gate) in time t if there exists local consider such approximations.

t'>0
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Though Definition 2 presents the essential meaning of in- lll. LIE-THEORETIC PREPARATIONS
finitesimal Hamiltonian simulation, it appears to be very un-

practical. Thus we present an equivalent condition, which is In this sectlon we recall Lie-theoretic notions and meth-
usually formulated as definitiofi5-19. ods that will be employed throughout the paper. This reflects

Lemma 1 An n-qubit system with Hamilton operatdd the intimate connection of the considered problems to Lie

and local unitary operators available simulates the Hamiltorg:)en(igi/he%n?:o'rt cgqnatlliaensie:::i :ﬁ:;t srg(?[irce)n Z:eaidglt')s Ig bgr}g :?éfé d
operatoH’ infinitesimally in timet if and only if there exists : ' g

local unitary operatorsv; as well as timest;=0 with t asisas;ii?czﬁnvszssegz?ni'n\s/v?régrgargg[]gatzguzr 4presentat|on n
=30, je N, 1sj<m, andme NU{0,=} so that the fol- partly Insp y neme

lowing equation holds:

" A. Basic concepts

H’ :Etl‘(Vj—lHVj). 2) For our purposes we can consider Lie groups as Iipear
i= matrix groups, i.e., as closed subgroups of the general linear
group. The tangent space to the Lie group G at the identity is
isomorphic to the Lie algebrg corresponding to G. A Lie
algebra, which is in particular a vector space, comes with a
)] bilinear and skew-symmetric multiplication operation called
)

Proof. The “only-if” case: The left-hand side of Egl)
equals #H' and the right-hand side of E¢l) equals

d m
lim [E( 11 exd - it’(V\/jHV\ql)tj] Wy the Lie brackef , ]. The Lie algebra is closed under the Lie

t'—0 =1 bracket and the Jacobi identity
t'>0
A [[91,92],93] + (93,911,921 + [[92.95],.911 = 0
where
. holds for all elements);,9,,9; € g. We emphasize that we
W = Un for j=m, use only real or complex Lie algebras that are finite dimen-
- W, U; forO<j<m. sional. For general reference on Lie groups and Lie algebras,
. ) o lease consult Ref$25-35. In the following let G denote a
We differentiate, compute the limit, and equate the result OEie group andg its associated Lie algebra.
; HEN H 1 . . . .
Eq. (3) with —iH’. After this we useVj:=W;" and W, The map aglg) from the Lie algebra to itself is defined
=Hj=on“=. 'd to Ot"ta'n Ea(2). _ by h—[g,h], whereh,g e g. With this notation, the adjoint
The “if case. After insertion of Eq(2) in Eq. (1) We  rgpresentation of the Lie algebrg in itself is given by
obtain the “if’ case. u g—ad,(g). Let ad,(h) denote the sefad,(h)|h e h} for some

Third, we introduce in Definition 3 the notion of infini- subspace) of the Lie algebrag. Now, we can introduce a
tesimal gate simulation, which depends explicitly on thegymmetric bilinear form on the Lie algebg the Killing
given unitary gateJ. form By(g,h):=Tr[ad,(g)°ad,(h)]. If the Killing form is

[t)efinitif[)rr]1|_|3 (iq{initesimaltd%atedslimullatiqrtmn n-qul:;it nondegenerate it can be thought as an inner product on the
system with Hamifton operatét and local unitary operators - ;q algebra, although it does in general not fulfill the axiom
available simulates a unitary gdtkinfinitesimally in timet of positivity

if there exists an Hamilton operatét’ and local unitary Definition 4 (ortho C
: o gonal symmetric Lie algebra) (see
gatesU,; and U, such tha‘F the equa‘uoU:Ul_exp(—lH U, [25], p. 213 and [30], pp. 225-226 and 246) pair (g, 6) is
ho]d_s apd the. system simulates the Hamilton operaior an orthogonal symmetric Lie algebra(if) g is a real Lie
mﬂgteam;ﬂytm Hmet. d i Definition 3 later in th algebra,(ii) 6 is an involutive automorphism af, and (iii)
emark Actually, we do not use Uetinition s 1ater in the o -onpected Lie group of linear transformationgyajen-

text. But we state this definition to highlight that Definition 2 : - : :
g . . t t, wh th t of f t
is independent of some unitary operatbrand does not in- i;aaeig Ey 3lt) is compact, wheré is the set of fixed points

corporate different decompositions dfwhich could lead to R : .
) i ] . ) emark An automorphism of a Lie algebgarespects the
different Hamilton operator$i’. The existence of different Lie bracket, i.e., for allg and h in g we have 6(g,h])

Hamilton operator&d’ will be employed in Sec. V. _ . ; . o o
Before we proceed, we discuss our model. Entanglemen_t[a(g)’a(h)]' An involutive automorphism is in addition

describes important nonlocal properties of states and gategt_alf-mverse. Let andp be the eigenspaces 6fin g for the

Because entanglement is invariant under local unitary operatl and —1_t_eigeg\ﬁlue,ées;()jetptivel_y. C?néidft_er_tt_he c4an_onical
tions [2], it seems reasonable to neglect the time needed tgecpmlpo?tmng— 30p. ngg'gg (If) of Definition IS
implement local unitary gates for the implementation of gen_equwa ent tosee[30], pp. -22§

eral' unitary gates. This is suppprtgq by the fact t_hr?lt two- [e.6]Ce[e,p] Cp,[p,p] CE. (4)
qubit gates are considered as significantly more difficult to ) N

implement than one-qubit gatg20]. Additionally, in nuclear I R_gf. [5] this decomposition was qalled the Cartan decom-
magnetic resonanc®MR) the application of local unitary Position. If Eq.(4) holds we can defing by

operations in zero time is expressed by the notion of the “fast K =k for all k d = —p for all 5
control limit,” which is conventionally considered as a good (k) orallk < p andé(p) pforallpep. (5)
approximation. This is reasonable because local and nonlocéi addition, whenry is the Lie algebra of a compact group G

gates operate on different time scalé21,23. then Condition(iii ) of Definition 4 is always true.
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For further reference, we assume thais semisimple,
i.e., that the Killing form ofg is nondegenerate, and that

(g,0) is an orthogonal symmetric Lie algebra. As an ex-

ample, the Lie algebrsu(2"), which corresponds to the Lie

group SUY2"), is semisimple. We fix a canonical decomposi-

tion g=t+p satisfying Eq(4) and a maximal Abelian subal-
gebraa contained inp. Let K=expt) andA=exp(a) denote
the subgroups of G generated banda, respectively. After

this preparation we obtain a decomposition G=K A K of the

Lie group G.

Fact 1 (K A K decomposition of the Lie gro@ ([25],
Chap. V, Theorem 6.7yVith the notation as given above, the
Lie group G corresponding tg can be decomposed as

G=KAK.

Similar to the adjoint representationgaaf a Lie algebray
in itself, we can define the adjoint representation, A a
Lie group G in its Lie algebra. For an elemenG e G we
introduce ¢g(G) as the magH+— G™*HG with the signature
G—G. The map Ad(G) has the signaturg— g and is de-
fined as the differential of(G). For matrix representations
we can write A¢(G) as the mapg—G'gG. We use the
shortcut AQ(K) := Uk . cAdy(K) and get the relation between
the subspace and its Abelian subalgebra

Fact 2 ([25] Chap. V, Lemma 6.3 (iii))The following
equation holds:

p =[Ady(K)](a).

B. The Weyl group and infinitesimal convexity

We use the notation
Ck(a) == {K e K|[[Ad,(K)](a) =a for all a € a}
and
Nk (a) := {K e K|[Ady(K)](a) C a},

respectively, for the centralize€«(a) and the normalizer
Nk (a) of a in K.

Definition 5 (Weyl group) (see [25], p. 284 or [27], p.
381). The Weyl group corresponding tois the factor group
Nk (a)/Ck(a). We denote this group byV(G,A), where A
=expa).

The Weyl groupV(G, A) is finite (see Fact 3 below In

order to compute the Weyl group, we introduce the concept

of restricted roots.
Definition 6 (restricted root) (cf. [27], p. 370)Let \ be a
linear function ona. The linear subspacg' is given by

g*={g e g/[a,g] =\(a)g for all a € a}.

The linear function\ is called a restricted root of with
respect tau if g* # {0} andX is not identically zero on. Let
A, denote the set of restricted roots gfvith respect toua.

Remark In Ref. [27] on p. 370, the restricted roots are
defined with respect ton. But the concept of restricted roots
can also be defined with respectdo

Due to the fact thap is semisimple, we deduce that the
Killing form B, restricted toa X a is nondegenerate. With

PHYSICAL REVIEW A70, 032319(2004

this in mind, a restricted rooh is equal to the map
a—By(ay,a), wherea, € a is uniquely determined. We ex-
tend the Killing form to restricted roots byBj(\,u)
:=By(ay,a,). For every\ € A, the reflections,(u) of a re-
stricted root we A, with respect to the hyperplanga
e a|\(a)=0} is given by

BE(M:)\))\.

S\(w) =pu— ZBQO\J\)

Following Ref.[25] on p. 286, the reflectios, can be ex-
tended to elements af. For ae a the reflections,(a) of a
€ a in the hyperplanda € a|\(a)=0} is given by

_ ., Byaa)
5@ =am 2 A

(6)

With this preparation we get a possibility to compute the
Weyl group corresponding te.

Fact 3 ([27], p. 383) The Weyl group corresponding to
is finite and is generated by the reflecticyswhere\ € A,.

Recall thatV(G, A) is a subset of K and operates oty
Ad,(K), whereK € K.

Definition 7 (Weyl orbit) (see, e.g., [36], p. 422Jhe
Weyl orbit W(a) of an elementa e a is defined as the set
{[Ad,(W](a)[We W(G,A)}. By appealing to Fact 2 the
Weyl orbit W(p), for pep, is defined asW(p):=WW(a),
wherea e [Ad,(K)](p) Na.

To understand that the definition ol/(p) for pep is
independent o& and thus well defined, we now characterize
the Weyl orbits in more detail.

Fact 4 ([27], Lemma 7.38)Let[Ad,(K)](a)=a’, wherea,

a’ e a andK € K. Then there exists an elemekt e Nk (a)
such thafAd,(K’)](a)=a’.

By Fact 4 two elements anda’ from the Weyl orbit
W(p) of pep are conjugated by an element of the Weyl
group, which proves that the definitigef. 7) of W(p) is
independent o&. This shows in addition that the Weyl orbit
WI(p) is equal toa N[Ad,(K)](p). Let us denote the convex
hull of the Weyl orbitW(p) by ¢(p). We state now the infini-
tesimal version of Kostant's convexity theorem.

Fact 5 (Kostant's convexity theorem, infinitesimal version)
(see [36], Theorem 8.2 or [37], Theorem.Det I' be the
orthogonal projection op on a with respect to the Killing
form. For everyp € p one obtains

F([Ady(K)1(p) = ¢(p).

Remark The essential meaning of the infinitesimal ver-
sion of Kostant’'s convexity theoreffract 3 is that the pro-
jection of[Ad,(K)](p) to a with respect to the Killing form is
a convex set and its extreme points are given by the Weyl
orbit W(p).

In order to characterize the Weyl orbits in more detail we
introduce additional concepts. The subspacan be divided
into connected components called Weyl chambers.

Definition 8 (Weyl chamber) ([25], p. 287)et A be any
restricted root ofg with respect toa. The hyperplanega
€ a|\(a)=0} divide a into finitely many connected compo-
nents excluding their boundary hyperplanes. Such a con-
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nected component is called Weyl chamber. The closure of a g:=su(4) = span{Xy, ... Xio},
Weyl chamber including their boundary hyperplanes is called
closed Weyl chamber. where spap denotes the real span. Let

Fact 6 ([25], Theorem 2.12, Chap. VIIYhe Weyl group
permutes the Weyl chambers.
We choose some arbitrary, but fixed, order on the re-

E::Spar}‘{xl, ,Xe},

stricted roots ofy with respect tar. Therefore, the restricted pi=span{X, ... Xig},
roots can be divided into positive and negativestricted
roots, where positive and negative is defined regarding to the and a:=spamniXz, ... Xo}.

chosen order. A restricted root is called fundamental if it is\yith this notation one can easily check ttiandp fulfill the
positive and not a sum of two positiveestricted roots  commutator relations in Eq4). Since the group SW4) is
([26], p. 59. Let {a} CA, be the set of fundamentéte-  compact, the paig, ) defines an orthogonal symmetric Lie
StriCte() roots. Since the K|”|ng fOI’m restricted toXa iS a|gebra' Wher@ is given by Eq(5) The Subspace forms a
nondegenerate we can define as before for erestricted  maximal Abelian subalgebra in The set of restricted roots
root A the elementa, € a so thatBy(a,,a)=\(a) for all a  jth respect toa can be computed as the eigenvalues of
ea. The Set{a S U.| Bg(aak,a) >0 for all ak} isa Weyl cham- adg(C1X7+ C2X8+C3X9)1 Whereci e R:
ber and it is called the fundamental Weyl chamfe6] p. ) ) ) )
61). [£i(c;—cCy), £i(Ca+Cy), xi(Cy —C3), 2i(Cy +Cy),

Fact 7 (adapted from [26], Proposition |, Sec. 2.11Lgt A +i(cy+Cy), xi(Ci—Cy)]. 7
and u be restricted roots corresponding to elemextsand . )
a, of the closed fundamental Weyl chamber, respectivelyVe use Eq(6) to obtain a generating set for the Weyl group
The elementa, lies in the convex hull of the Weyl orbit (corresponding ta) as a set of matrices
WI(a,) of a, if and only if A(a) = u(a) for all elementsa of (/1 0 0 1 0 0 00 1
the fundamental Weyl chamber. The conditioi@) = u(a) is 0 1 0 0 -1 010

1 00

equivalent toB (a,,a) =B,(a,,a). 0
(\0 1.0 0 -1 0
C. The two-qubit case 0 0 -1 0 -1 0 010
We now treat the case G=%4). To be more concrete we 0 1 0, (-1 0 of,|{1 00|, (8
introduce a matrix representation for the real semisimple Lie -10 0 0o 0 1 00 1
algebrasu(4), which corresponds to G. Let
] which operate on the vectors
(o 1) (o —|) d (1 o)
= , =\ . , an =
%=1 0/ ¥ \i o 77=\o -1 ! 0 0
_ _ 0]&£Xs, |1|£Xg and| 0 | £ X,. (9
be the the Pauli matrices and set
0 0 1
0'0:=<1 0) With the notation of Eq(9) the Killing form restricted to
01 aXa is given by
to be the identity matrix. We identifyr,=0oy, oy=0,, and -8 0 O

o,=03 and use the following definitions: B.(ab),.=al 0 -8 0 |b
g\ aXa'™ .
i i i -
Xl:ZEO'O ® 01, XZ::EO'O ® 0o, X31:EO'O ® 03, O 0 8
Now we give the elements, € a corresponding to the re-
stricted roots\ in Eg. (7), i.e., elements, € a such that

[ i i - .
X4==§o'1 ® oo, X5:=502® 0o, Xs==503® o, B,(ay,a)=\(a) for all ae a:

[0 {0 1
ti +i +i
i i i = a1 5l O )
— —— —— -8 -8 -8
X7'—20'1®0'1, X8~—20'2®0'2, Xg~—20'3®0'3, _1 1 _1
1 1 1
i i i +i *i *i
Xigp=Z0o ®O’2, X11:=_0'1®0'3, X123=_0'2®(Tl, —| 0 v o 1 S -1
1075501 2 2 -8 -8 -8
1 0 0
i i i We have used the basis of E®) to represent the elements
X13==§Uz ® o3, X14==503 ® o1, X15==503 ® 3. a,. In order to present our results in the context of R4f,
we choose an order on theestricted roots such that the
The standardor defining representation ou(4) is roots of Eq.(7), which have a plus sign, constitute the posi-
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tive ones. With this convention for an elemedtd;X; m
+d,Xg+d3Xq of the fundamental Weyl chamber we get the » agl'{[Ad,(K)](@}=a’, (12
following set of equationgd; € R): i=1
{dy-ds>0, dy+ds>0, d;—d3>0, dy+d3>0, where K; are some Ipcal unitary opgratorqi =0, and '
31 gi=1. The last equivalence follows in the backward di-
d;+d,>0, dy—dy> 0}, (10) rection by employing Fact 5 to rewrite the projectibras a

where we have identifiedR, >) with (iR, >) by defining COnvex combination and in the forward direction by the fact
iry>ir, < r;>r, for all ry, r, € R. that the terrnZ{L‘ZlqiT’{[A_dg(Ki’)](a)} has to be zero. _
By the remark following Fact 5 we know that the projec-

IV. INFINITESIMAL HAMILTONIAN SIMULATION tion of [Ad,(K)](p) to a with respect to the Killing form is a
FOR TWO QUBITS convex set. Thus, we can write Ed.2) as
A. Lie-theoretic explanation F{[Adg(K')](a)} =(@Mn)

Following Definition 2 we consider now infinitesimal for some local unitary operatdt’. With Fact 5 we get that
Hamiltonian simulation for two qubits. We emphasize that i”(a’/t) lies in the convex closure (')f the Wey! orbit(a) of a
the two-qubit case local unitary operations correspond to eI'Sincea:[Ad (L)](H), we can replaca by H in the preced-

g 1

e_mltlan:ﬁ ?c ':; EXCTI)I- gVeS_use the nottgtlct)n of Slec. ItH’ :iSpE?I' ing sentence. This proves the theorem except for the inde-
cially that of Sec. . Since we restrict ourselves to am"pendence of the choice af .

ton operators without local termsee Sec. )| we have for Assume that we replace’ by a’ca, where &’
all nonlocal Hamilton operatorsl and H' that iH e p and =[Ad,(L")](H") for some local unitary operayltdr”. Due to

iH" e p, wherep is the subvector space of the Lie algelgra Fact 4, there exist an elemeM/c W(G,A) so thata"

introduced in Sec. Ill. Thus, we can use Fact 2 to write every_ D1y my . : !
nonlocal Hamilton operatoH’ as H’=[Adg((L’)‘1)](a’), =[Ady(W™)](@"). Since operating with an element of the

wherea’ is an element oft andL’ is a local unitary operator. Weyl group leaves the Weyl Orbw(H.) unchanged, the
Theorem 1Assume thaH andH’ are nonlocal Hamilton Wey! orbit is equal tgAdy (W) JIW(H)]. !t Is obvious that the
operators acting on a two-qubit system. &be an element convex closure of the Weyl orbity(H) is left unchanged as
of a, wherea’ =[Ad_(L")](H’) for some local unitary opera- well. Hence, the elemerd’ is in the convex closure of the
L g . . . "o
tor L’. A two-qubit system with Hamilton operatdd and ~ Wey! orbitW(H) if and only if &" is. u

local unitary operators available is able to simulate the FOra’ ea it was also proven in Ref4] that the set of
Hamilton operatoH’ in time t if and only if the Hamilton Hamilton operatorga’/t), which can be simulated in time

operator(a’/t) lies in the convex closure of the Weyl orbit ON€, is convex. We emphasize that the extreme points of this

WI(H) of H. The condition is independent of the choiceatf ~ S€t are given by the Weyl orbit(H), which can be com-
Remark Actually, Theorem 1 is the infinitesimal version Putéd by means of Eq8). In Ref. [4] the extreme points

of Fact 8(see below and Ref5]). In order to clarify the Were given .and their extremality was proven by another

connection of Theorem 2 to the work of Ré8], we give method. As in Ref[4], we state now a version of Theorem 1

here a proof of this infinitesimal version using arguments ofthat gives a condition for infinitesimal Hamiltonian simula-
Refs.[4.5]. tion in the two-qubit case that is easier to check.

Proof Assume that Theorgm 2 ([4], p. 11)As_sume thatH andl—!’ are nonlo-
cal Hamilton operators acting on a two-qubit system. aet
s , , anda’ be elements of the closed fundamental Weyl chamber,
t_z 0 [Ady(K{) 1(H) (1D where a=a;X;+aXg+azXo=[Ad,(L)](H) and a’=a)X,
=1 +ayXg+agXe=[Ady(L")](H") for some local unitary opera-
is a simulation ofH’ in time t, whereK;’ are local unitary torsL andL’ (a;,a € R). A two-qubit system with Hamilton
operatorsH, H' e p, ¢'=0, and=3q'=1. operatorH and local unitary operators available is able to
Due to Fact 2 there exista and a’ in a, wherea  simulate the Hamilton operatét’ in timet iff the following
=[Ad,(L)](H) anda’=[Ad,(L")](H") for some local unitary equations hold:
operatord. andL’. We remark that local unitary operations

cost no time. Thus, the existence of the simulation in Eq. a = aylt, (133
(11) is equivalent to the existence of a simulation
=% q/[Ad,(K/)](a) of a’ by ain time t, whereK| are some a+ay+azg=(a;+a;+ayi, (13b)
local unitary operatorsg =0, and=%q/=1. LetI" andI"
denote the orthogonal projectiofith respect to the Killing a+a,-ag=(a)] +a,—aylt. (130
form) of p ona anda*, respectively. We can write the simu- _
lation as Remark We forcea anda’ to be(almosj unique elements
o of a by choosing them to be elements of the closed funda-
S, , , , , mental Weyl chamber. I& or @' lies on the boundary of the
t; a (M[Adg(K)](@)} + T'{[Adg(K)J(@)}) = 2. fundamental Weyl chamber, they are elements of the closed
= fundamental Weyl chamber, but not elements of the funda-
This is equivalent to mental Weyl chamber. Only in this case there remains a
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nonuniqueness, and the considered element can possibly benditions for Hamiltonian simulation in E¢L3) are equiva-
chosen to lie on different boundary hyperplanes of the closetént to the definition oks-majorization.

fundamental Weyl chamber.

Corollary 1 ([4], p. 11). Assume thaH andH’ are non-

Proof. As the Weyl group permutes the Weyl chamberslocal Hamilton operators acting on a two-qubit system.d. et

(see Fact Bwe can choosa anda’ to be elements of the
closed fundamental Weyl chamber. We recall from Ed)
that an elementi=d;X;+d,Xg+d3Xg lies in the fundamental
Weyl chamber iff d,—d;>0, d,+d;>0, d;—d;>0, d;
+ds;>0, d;+d,>0, andd; —d,>0 holds. Applying Theorem
1 and Fact 7 we get that,d;+a,d,+azd;=(a;d;+asd,
+a;ds)/t holds for all elementsi=d;X;+d,Xg+d3Xg of the

fundamental Weyl chamber. Eliminating the quantifiers in
the previous condition, e.g., using the computer algebra sys-
tem QEPCAD[38,39, we obtain the conditions of Eq.

(13. |

B. Majorization

and a’ be elements ofa, where a=a;X;+a,Xg+azXq
=[Ad,(L)](H) anda’ =a;X;+ayXg+azXe=[Ad,(L")](H") for
some local unitary operatotsandL’. We use the notation
a=(a;,a,,a5)" € R® and d'=(a;,a,,a3)" € R% A two-qubit
system with Hamilton operatdt and local unitary operators
available is able to simulate the Hamilton operakbr in
timet if and only if the following equation holds:

a’<da.

There is a similar condition on infinitesimal Hamiltonian
simulation that is given in terms of a majorization condition
on the spectra of the considered Hamilton operators. This
result(see the Appendix and Re#6], pp. 9-10 should be
compared to tha-majorization condition in Corollary 1.

In this section we introduce some concepts from the

theory of majorization that will be employed later. Our pre-

sentation is succinct and we refer to R¢#)—45 for a more
detailed treatment of this topic.

For an element=(xy,...,x)" of RX we denote byx'
=(xq,... )" a permutation ofx so thatx;=x{ if i<j,
where 1=<i, j<k.

Definition 9 (majorization) ([45], p. 28)A vectorx e R¥
is majorized by a vectoy e R¥ if

[ [
dxi=Dy foralll<l<k

i=1 i=1

and
k k
2 x =2y
i=1 i=1

The notationx<y means thak is majorized byy.

We recall the notion of-majorization introduced in Ref.
[4]. For an elemenk=(x;,X,,%3)" of R® we introduce the
vector X=(|x4],|%|,[X3)T, and we define the-ordered ver-
sion x's of x by setting xis:=%j, x;:=%, and xi
= sgr(x1x2x3)§<§. The signum of x;X,x3 is denoted by
SGMX;XX3).

Definition 10 ([4], p. 11) The vectorx e R® is s-majorized
byyeR?if

X:lLS = ylS,
XiS+ X5+ XbS < Y+ Y+ Y,

X%-S + X%S —_ X%S = y%-s + y%s _ y%s

The notationx<gy means thak is s-majorized byy.

V. GATE SIMULATION FOR TWO QUBITS

As in Definition 1 we consider now gate simulation,
which is a global version of infinitesimal Hamiltonian simu-
lation. We recall a theorem of Khaneg al. [5].

Fact 8 ([5], Theorem 1Q)Assume thaHd is a nonlocal
Hamilton operator acting on a two-qubit system. A two-qubit
system with Hamilton operatdt and local unitary operators
available is able to simulate the unitary gatein time t if
and only if the unitary gaté& can be decomposed as

U =L, expltW)L,, (14

whereL; and L, are local unitary operators and/ is an
element that lies in the convex hull of the Weyl orbit(H)
of H.

Remark An equivalent version of Eq14) is

L7 IUL! = exp(tw). (15)

This means that) can be simulated in timeif and only if
there exists a unitary gaté’, which is locally equivalent to
U and can be expressed d$=exptW). But there exists a
restriction on the elements; andL,. As exdtW) is an ele-
ment of A=expa), we have that ;*UL* has to be an ele-
ment of A, too. There exists different unitary operatidi's
that satisfy this restriction. The appearance of different uni-
tary operationgJ’ is a consequence of the nonuniqueness of
the KAK decomposition of Fact 1, which will be analyzed in
detail below. We emphasize that it may be impossible to
expresdJ asU=exptW) with the samedor shortey timet as
in Eq. (15).

We present now the results on gate simulation in similar
fashion as done in Sec. IV B for Hamiltonian simulation.
Due to the remark following Fact 8, a local unitary operation

We emphasize that a vector representing an element frotd can be simulated in time if and only if a local unitary

the Lie subalgebra is s-ordered if and only if it lies in the
closed fundamental Weyl chamber, as given in @), ex-

operationU’, which is locally equivalent tdJ can be ex-
pressed at)’ =exptW), whereW denotes an element of the

cept that for the closure the relatien has to be replaced by Weyl orbit of the system Hamiltonian. In the sequel, Kgt
the relation<. This gives a geometric motivation for the for i e{1,...,8, be suitable elements from the set of local
s-ordered vectors. In addition, the necessary and sufficieninitary gates K=ex#). In addition we denote by and A’
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some appropriate elements of A=éup In view of Fact 1
we can decompose the unitary gateand locally equivalent
gatesU’ as U=K;AK, and U'=K;A’'K,, respectively. To
characterize all unitary gatdd’, which are locally equiva-
lent to U, it is necessary and sufficient to characterizefall
satisfyingKsA’Kg=A. Thus we have to identify al\’, which

can be written asA’:(K;lAK7)K8. This is done in the fol-
lowing lemma.

Lemma 2 For a fixedA € A and an arbitrary element of
the formA’ =(KTAK)K’ € A with K, K’ € K, we can choose
K from the Weyl group an&K’ from the set KN A.

Related tod from the definition(Definition 4) of an or-
thogonal symmetric Lie algebr@, 6), there exists a global
version® operating on the Lie group Gee, e.g., Ref32],
Theorem 2.3 of Chap. IV or Ref27], Theorem 6.3L We
define ® by O(K")=K” for K" e K and ®(P)=P"* for P
e P=exfp). We employ the mapping)*:G— G given by
G—G*:=0(G™1). We use here the symbo)* in order to
avoid confusion with the symbdl)*, which denotes com-
plex conjugation. We have th&6,G,)*=G;G] for G;,G,
e G,P*=Pfor Pe P, and(K")*=(K")"1 for K" e K (see Ref.
[34], p. 8D). We introduce the map):G/K— P, which is
defined asGK— ¢(GK):=(GK)(GK)*=GG*. This map ¢
was studied in Ref.34] on pp. 81-82 and in Ref27] in the
Proof of Theorem 6.31. Referenf#4] proves thatp induces
an isomorphism of G/K onto P.

Proof of Lemma 2We employ the mag) and obtain the
equationsé[ (K TAK)K']=K™1A%K and ¢(A’)=(A")%. Since
A’'=(K'AK)K’ is given in the condition of Lemma 2, we
obtain K™2A%2K =(A’)2. And due to Fact 4, we can chooke
as an element of the Weyl group. Thu§,*AK € A which
proves thak’ e KNA. |

We still need to characterize the elements gf K. This
will be done now.

Lemma 3 The elements of set KA are given by
exp(zymXs+2,mXg+23mXg), Wherez e 7 for j € {1,2,3 and
X7, Xg, Xg as defined on p. 12.

Proof. First, we show that the elements ézprX;
+2,mXg+23mXg) constitute a subset of KA. As
exp(zymX;+2,mXg+23mXg) for z; e Z are by definition ele-
ments of A and A is an Abelian group, we obtain that

eXF(ZjﬂTX7 + 22’7TX8 + Z3’7TX9)

= exp(zy mX7)exp(z,mXg)exp(zzmXg)

= (|0'1 ® (Tl)zl(ia'z &® 02)22(i0'3 ® 0'3)23.
This proves that the elements constitute a subset @fAK
Second, we show that RA is a subset of the set given by
the elements eXg, mX;+z,mXg+2z37mXg). We make the an-
satz  expa;X;+agXg+agXy) =expa; X +a,X,+agXs+aX,
+asXs+agXg), wherea € R, X; were given on p. 12, and

ie{1,...,9. By direct computations one gets fay, ag, and
ag the conditions

(a7 —ag-ag)/me 7,

(a7 +ag-ag)/m e 7,

PHYSICAL REVIEW A70, 032319(2004)
(aytagtag)/m e,

(ag—ag+ag)/m e 7.

This impliesa,/ 7€ 7 for i€{7,8,9. [ |
Now, we state the majorizationlike equivalent of Fact 8.
Corollary 2 (see Ref. [6], Lemma or Ref. [7], Result 1)

Assume thaH is a nonlocal Hamilton operator acting on a

two-qubit system and that we intend to simulate the unitary

operationU. Let a anda’ be elements ofi, wherea=a; X,

+a,Xg+asXe=[Ad,(Kp)](H), a'=ajX;+aXg+azXe, and U

=K,exp(@')K; for some local wunitary operations

Ki,K,,K3EK. We use the notatiod=(a;,a,,a3)" € R® and

a'=(aj,ay,a,)" e R3. A two-qubit system with Hamilton op-

eratorH and local unitary operators available is able to simu-
late the unitary operatiob) in time t if and only if the fol-
lowing equation holds for at least one choice af
=(21,2,,25) " €72

a' + mz<da.

Proof. By Fact 2 and Fact 1 we can chooaeand a’,
respectively, as given. Applying the remark following Fact 8
it is necessary and sufficient to consider some unitary gates
U’, which are locally equivalent to. By use of Fact 1 these
locally equivalent gatesU’ can be represented ag’
=K;A’K}, whereA’ is an element of A and;,K; are local
unitary gates. The different possibilities forA’
in this decomposition are given by Lemma 2 as
A’ =exp[Ad,(K)](@")}K’, whereK is an element of the Weyl
group, K’ €KNA, andK’=expk’). With the characteriza-
tion of KNA from Lemma 3 we deduce that KA is left
invariant by operations of the Weyl group. Since A is Abelian
and KN A is left invariant by operations of the Weyl group,
we can write A’ as A’=expg[Ad,K)]@)+k'}
=expl[Ady(K)](@' +k")}, where K"=expKk") for some ele-
ment K"€KNA. By Fact 8 we obtain thatA’
=expl[Ad (K)](@' +k")}=exptW), where W lies in the
convex hull of the Weyl orbit W@ of a
When we consider the equation épdd,(K)](@'+k")}
=exptW) in a basis where bothAd,(K)](a’'+k”) and tW
are diagonal, then we obtain by the periodicity of the
exponential function thatAd,(K)]J(a’+k")+M=tW, where
M =d|aq27T|7\1,27T|)\2,2’7T|)\3,2’7T|)\4) and )\1,)\2,)\3,)\462.
As[Ad,(K)](@'+k") andtW are elements of, it follows that
MEa. We can writeM as M =27z X;+2mZ,Xg+27Z3Xq
=2k; where zi=(\{+Ny)EZ, Z,=(N1*tN3) EZ, zz=(A\,
+N3) €Z, Ki=expk;), and K;€KNA. Thus, we obtain
[Ad,(K)](@' +K") + 2k =[Ad(K)](@' +K'+ 2k;) =[Ad,(K)](@
+kg) =tW, where K;=expk;), KiKEKNA, andie{1,2,3.
Corollary 1 completes the proof. |

Searching for a refinement of Corollary 2, we state
bounds on the coefficients @f;, a,, anda; of an element
aX;+a,Xg+agXg of a. It follows from Lemma 2 and
Lemma 3 that the coefficients;, i€{1,2,3, are periodic
with period 7. (Concerning this periodicity, we refer also to
Appendix B of Ref.[47] and p. 7 of Ref[24].) Bearing the
mr-periodicity in mind, we can restrict the coefficierdgsto
the interval[—#/2,#/2]. This choice is compatible with our
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conventions in Sec. Il C. To reduce the symmetry inducedary operations. Although K is, in general, not equal to the

by the Weyl group, we restrict ourselves to elements of theset of local unitary operations, we can generalize the ap-

closed fundamental Weyl chamber. From E#0) or from  proach from the two-qubit case in order to prove lower

the s-order of Sec. IV B, we get that;=0, a,=0, a;=a,, bounds on the time complexity for gate simulation. Lower

anda,=a3. These considerations lead to the following cor-bounds were considered in R¢L0], and we refine and gen-

ollary. eralize the approach of RfL0] in this section. In doing so,
Corollary 3 (see Ref. [6], Theorem 1 or Ref. [7], Result we put this approach in a broader context.

2). Assume thaH is a nonlocal Hamilton operator acting on _ _ )

a two-qubit system and that we intend to simulate the unitary A. Magic basis (for two qubits)

gate U. Let a and @’ be elements ofa, where a=a;X; We begin by recalling the Bell basis and the magic basis.

+a,Xg+aXe=[Ad (K1) (H), a'=a;X;+aXg+azXe, and U The Bell basigsee Refs[48,49) is a vector space basis for

=K, exp@’)K; for some local unitary operations two-qubit pure states:

K1, K,,KzEK. In addition, we force, a,, as, a5, a,, andag 1

to be elements from the intervitm/2,7w/2]. We use the |d*y = —=(|00) + |11)),

notation d=(a;,a,,a3)" € R® and &' =(aj,a},a3)" e R3. A V2

two-qubit system with Hamilton operatorH and

local unitary operators available is able to simulate _ 1

the unitary gateU in time t if and only if the following |®7) == T§(|OO>_|11>)’

equation holds for at least one choice B¥(z;,2,,2)" !

€{(0,0,07,(-1,0,0™:

1
+ = —
a + mi<da. [P \’,E(|01> +]10)),

Remark In the proof we follow Refs[6,7].
Proof. Due to Corollary 2, it is sufficient to prove that for W) = i_(|01> - [10)
everyz€ 72 one of the following conditions holds: 2 '

a +m(0,0,0'<@’ + w7, We employ the ket-vector notation, see, e.g., R2f. If we
include some relative phases in the Bell basis we get the
a +m(-1,0,0"<@’ + mZ. magic basis which was introduced in RE8] and coined by

. ) ) Hill and Wootters[9]:
We first consider the case thaf > 1, for somei €{1,2,3.

Because < /2, the maximal componeité’ +72)1s of the ley) = [®7),
s-ordered version ofi’ +7Z is greater than or equal tom2
—7/2=3x/2. We check the conditions of Definition 10 and &) = i[®7),
obtain thatd’ +7(0,0,07<a’ + 7Z.

Second, we consider the case thaf<1 for all leg) = i|T*),
i€{1,2,3. By easy, but tedious, computations one can
check thatd’ +7(0,0,0 "<&’ + wZ for leg) = [ ).

ze{(-1,-1,0", (-1,0,-2", (0,-1,-2T, The magic basis is connected to the entanglement of forma-

tion (see Ref.[8] and related work in Refg50,51). We

_ T T _ T
0.-1.2% (0,0.0°, (-1,0,2% neglect here this connection, but refer to Sec. VIII.

and thatd’ +m(-1,0,0"<@’ +«Z for The magic basis has two important properties. First, the
local unitary operations on two qubits are real and orthogo-

ze{-1,-1,-9", (-1,-1,2", (-1,0,07, (0,-1,0", nal in the magic basiésee Ref[9], p. 5023 and Theorem 1

(0,0,- 17, (0,0,7}. of Ref. [52]). Second, the elements of the A=¢up (for

notations see, e.g., Sec. ll) @re diagonal in the magic ba-
For all other Z€{-1,0,1® we have that bothd sjs, as remarked in Ref47] on p. 3 and Ref[7] on p. 2. The
+(0,0,0"<@' +7Zandd’ +m(-1,0,0"<a'+xZ hold M  basis change from the standard bd§),(01),|10),|11)} to
the magic basis is given b1, where

VI. LOWER BOUNDS FOR n-QUBIT SYSTEMS 10 O i

In the two-qubit case we used a particular decomposition 0= 1]10i 1 0
g=t+p of the Lie algebra that leads to a decomposition G “2loi -1 00
=KAK of the Lie group where K=ex(t) is the set of local 10 0 -i

unitary operations. By this approach, e.g., the optimal simu-

lation result of Fact 8 can be obtained. In the more generaFor elementd) € SU(4) the mapU— Q*UQ (see Ref[52))
n-qubit case we can use decompositigrrst+p of the cor-  reflects the isomorphism between @U® SU(2) and SQ4)
responding Lie group where K=eip contains all local uni- (see, e.g., Ref35], p. 52.
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B. Representation theory Fact 11 (see Ref. [53], Prop. 4.8.7 and Ref. [54], Prop.
6.8 of Chap. Il) Let 7 be an irreducible complex representa-

_It/is not obvious how the magic basis generalizes 104, of the compact Lie group G in Vwith charactery..
higher number of qubits and which properties remain. Moti-rhen we have

vated by the properties of the magic basis for two qubits, we
seek for 'basis changes of thellocal _unitary operations 1 - 7is of real type,
[SU(2)]®" into the orthogonal groufif possible. To analyze
this we need some representation theory. _ o
Definition 11 (Lie group representation) (see, e.g., Ref. -1 < ris of quaternionic type.
[53], p. 210) A complex representation of the Lie group Gin - pepresentations can be identified with subgroups of
the f|n|te—d|men3|onal and complex vector spageid/a con- GL(V,), so we can extend Definition 12 to subgroups of
tinuous homomorphismr:G—GL(V) from the group G ) (v ). we denote the general linear group on a complex
mto the _group GKV ) of invertible and linear transforma- vector space of dimensidaby GL(k, (). Next we character-
tions which operate on v o _ ize the subgroups of Gk,C) that are conjugated to sub-
A representationr in a f|n|te—Q|m(a_nS|onaI arjd complex groups of the orthogonal groymotivated by Sec. VI Aor
vector space Y is called irreducible if there exists no sub- the symplectic group
space Y oth(_ar tha}n U=0or U=V, such that the subspace Fact 12 (adapted from Ref. [26], Theorem H of Chap. 3)
is 7(G)-invariant, i.e., the equatlor(.G)UCC Ug holds(see, compact subgroup of the general linear group(iGL) is
e.g., Ref.[53_], p. 21_0. We state an _|mportant fact on tensor conjugated in GIk,C) to a subgroup of the orthogonal
products of irreducible representations. . . group QKk) if and only if it is of real type. Accordingly, a
ibl Fact 9 (|[54]’ Prop. 4.14 of Cpaé)' “%If 1S aln ireduc- subgroup of GI2k, () is conjugated in G(2k,() to a sub-
ible complex representation of ;Gn the complex vector NN : o o
space V. and 7, is an irreducible complex representation of %r%'}'%SLEZi?Qr':iirgsgmplecnc group S{i) if and only if it

G, in the complex vector space Wthen;® 7, is an irre- . :
ducible complex representation of, &G, in the complex Remark Actually, Ref. [26] gives an algorithm to com-
pute the basis change from the bilinear form mentioned in

vector space Y® W, . Furthermore, any irreducible repre- - :
sentation of GX G, is a tensor product of this form. Definition 12. For the notation $k) see Sec. VI D and Ref.

Below we use bilinear form®:V.xXV—C, which are [55]. ) . _ )
C-linear in both arguments, to characterize irreducible com- After this preparation we consider the case of local uni-
plex representations. Let, and v, be some arbitrary ele- tary operationgSU(2)]*". We employ the standard represen-

ments of .. A bilinear form is called symmetric if tation of SU2):

x(G)dG={ 0 < ris of complex type,

B(vq,v9)=B(vs,v4) and skew symmetric ifB(vq,v5)= +ib rid
-B(v,,v1). A bilinear form is «(G)-invariant if B(vy,vs) G:( a '_ ¢ ' )
=B(7H(G)vy, (G)v,) for all GEG. -c+id a-ib

Definition 12 (cf., Refs. [53,54])Consider an irreducible
complex representationof G in V.. The representationis
said to be of real type if ¥ admits a bilinear form that is
nonzero, nondegenerateyG)-invariant, and symmetric;
complex type if \: admits no bilinear form that is nonzero, a= cod ¢)sin(¢y)sin(ih,),
nondegenerate, andG)-invariant; and quaternionic type if
V. admits a bilinear form that is nonzero, nondegenerate,

wherea,b,c,de R and a®+b?+c?+d?=1. To compute the
integral of Fact 11, we introduce the real parameters 0
< ¢$p<2m, 0=y <, and O< < 7 as follows:

7(G)-invariant, and skew symmetric. b= sin(#)sin(¢s)sin(i),
We introduce the map,:G— C,G—Tr[ #(G)], which is
the charactey, of the representation \We use the character c=cogy)sin(i),

to characterize the typgeal, complex, or quaternioni®of

irreducible complex representations. d=cos )
Fact 10 (Ref. [53], Theorem 4.8.1)et 7 denote an irre- - 2

ducible complex representation of G in.VThe charactef,  \we obtain

is real valued if and only if there exists 4G)-invariant,

nonzero, complex bilinear forn8 on V. that is automati- n

cally nondegenerate and uniquely determined, up to a non-f xAGHd[SU(2)]*" = (f XT(Gz)dSU(2)>

zero scalar factor. This bilinear forihiis either symmetric or

skew symmetric. ™
By means of Fact 10 we can decide if the type of a rep- - J f

0 0

N

s

E (b, 1, ) didifydp

resentation is complex. To complete the classification of the

type (real, complex, or quaternioniof irreducible complex

representations, we state another fact that allows us to deter- =(-1)",
mine the type of a representation by computing an normal-

ized integral over the compact Lie group G. where

O\,:l
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E(, ¢, 1) = {4 cod )71 - cogypy)? - cog )
+ cogy1)? cog ¢,)°] - 2}sin(h)sin(y)?.
This proves the following theorem.

Theorem 3The local unitary operations on an even num-
ber of qubits are conjugated to a subgroup of an orthogonal

PHYSICAL REVIEW A 70, 032319(2004)

Definition 13 (see, e.g., Ref. [55], Prop. 1 on p. ZPhe
subgroup of the unitary group(2k) of degree R composed
of the matricedM which leave the bilinear form in Eq16)
invariant, i.e., which satisfy the condition

MTIM =], (17)

group. The local unitary operations on an odd number ofs called the(unitary) symplectic group and is denoted by

qubits are conjugated to a subgroup @liaitary) symplectic
group.

Remark.Similar results are obtained in R¢b6] using a
different approach.

C. Thompson’s theorem and majorization

Spk).

The group Sfk) can be considered as operating on a
k-dimensional module over the quaternidti$eaving a sym-
plectic (scalay product invariantRef. [55], pp. 16—24. All
elements of Sfk) have determinant on@ee, e.g., Ref55],

p. 203. When we regard Sg) as a manifold its real dimen-

Following Ref.[10], we present in this subsection a theo- Sion is Z*+k (Ref. [55], p. 23.

rem due to Thompsofb7] and a majorization condition for

We recall from Theorem 3 that the local unitary opera-

the spectra of the sum of two Hermitian matrices. Both retions on an odd number of qubits are conjugated to a

sults will be employed below.

Fact 13 (Ref. [57]) Let A andB be Hermitian matrices.

Then there exist unitary matricés; andU, such that

expliA)exp(iB) = exp(iU7*AU; +iU5'BU,).

subgroup of a(unitary) symplectic group. Using that
(J)™t=-J,, the condition in Eq(17) can be proved to be
equivalent to

M 1=3MT(JY~L. (18

This result of Thompson relies partly on a conjecture ofWe know that the local unitary operations on an odd number

Horn [58]. This conjecture was recently provgso—64. By
induction, we get Corollary 4.

of qubits meet the condition in E¢18) in some appropriate
chosen basis. But we can state the condition also in the stan-

Corollary 4.Let A; denote Hermitian matrices. Then there dard representation dfSU(2)]*" with n odd. We use the

exist unitary matrices); such that

m
i> Uj‘lAiu,-).
=1

m

IT expiA) =ex

=1

identification X=2". Let J, denote the matrix

O 1 ®n )
= (—1 o) =iy

We state now a result which gives us bounds for the th@nd recall the standard representation o{3U

spectra of the sum of two Hermitian matrices. Refergddg

attributes this result to Ky Faf65]. We denote the vector of

eigenvalues of the&kXx k-dimensional matrixA, including
multiplicities, by spetA)=[specA),, ...,spetA),]". In ad-
dition, we assume that sp@9; =specA); if i<j (1=i,]j
<k).

Fact 14 (Ref. [41], Theorem 9.G.1)et A andB denote
Hermitian matrices. Then the following equation holds:

sped¢A + B) < spec¢A) + spe¢B).

D. Lower bounds

G_(a+ib c+id>
“\-c+id a-ib/’

wherea,b,c,d e R. We use the notation
G:(aj'i'lb] CJ+|d]>
) _Cj+idj aJ_lb] '

wherea;,bj,c;,d; € R. It can be checked that

0 1 0 1\1?
T — -1
A R I

In this section we derive lower bounds on the minimaland we obtain that

time to simulate unitary operationsee Definition 1 We
begin by discussing theinitary) symplectic group. Follow-
ing Ref.[55] on p. 22, we introduce the bilinear form

k

BsdX¥) = 2 06Yiek = i),

j=1
wherex=(Xy, ... X») " € CZ* and y=(yy, ...
Jy denote the matrix

0 |
5
=l O

where is thd, is thek X k-dimensional identity matrix and,0
the k X k-dimensional zero matrix.

(16)

,yzk)T e O, Let

n T n -1
J;,(_®G,-> (J;)‘lz(@_blG,) , (19

j=1 j

which holds obviously for odd and even. From now aris
no longer restricted to be odd. We emphasize )
=(J))"=(=1)"J;. It follows that

n T n
j=1 j=1

Let H denote the 2dimensional complex vector space on
which the group S(2") operates. We introduce the bilinear
form B,,(x,y)=x"J/y on the Hilbert spacé{. We have that

(20)
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BilyX) =y Iix= (- DIy = (= 1B (x,Y), - { W, forj=m,
V

i+1W; sj<m.
which proves thati3;/(x,y) is symmetric forn even and W for0<j<m

skew-symmetric forn odd. From Eg.(20) we get that and Hj:VjHV-‘l(lsjsm). Thus, the simulation otJ can

B,(x,y) is left invariant by{ SU(2)]®". Hence, we have iden- written asU:[Hj”llexp(—ithj)]Vo where spe;)=spe¢H)

tified By(x,y) as the bilinear form of Definition 12 operating for all 1<j<m.

on Vq=H. We use Corollary 4 to find some suitable Hermitian op-
This motivates the following definition of the tilde map- eratorsH; and H with spe¢H,)=spe¢H})=spe¢H) and

ping, which operates on the local unitary operations as th¢ {1, ... m} such that

inverse operation. ! m

=1 =1

Definition 14.We introduce the tilde mapping
{ SU2") — SUR")

m
U U= W(U) = U0 ™ =exp| [ -it;(H] +H]')]- (21)
It is apparent from[J/UT(I) ™[I/ UT(J) "=l and =

def(J;)*U"J}]=de(V) that the tilde mapping preserves the  When we combiné/,=V;* with Eq. (21) we obtain that
group Su2".

m
Remark.The tilde mapping is a generalization of the map ~ : P
U (ay)“"UT(0y)®" for evenn from Ref.[10] on p. 5. It can spe¢UU) = spe eXp['jl:[ltJ(HJ * Hi)]
be easily checked that the two maps coincide in the case of
evenn. See also the discussion in Sec. VIII. We employ Fact 14 to complete the proof:
We state now an important lemma characterizing the tilde m
mapping. . ardspe¢UU)] + 27Z= spe<(2 t(H + H]f’)) < 2t spe¢H).
Lemma 4 Let V andW denote some local unitary opera- j=1

tions and letU denote some arbitrary unitary operation. The

following three equations hold: =

- ) E. Involutive automorphisms
V=V, We end this section by highlighting connections between
the tilde mapping of Def. 14 and involutive automorphisms
W=Ww?t of the Lie algebrau(2").
' The tilde mapping is similar to thé)*-map used in the
_ proof of Lemma 2 in Sec. V. Far odd, K must be equivalent
VUWY(VUW) = VUUV ™2, to Sp2"™Y) and, respectively, fon even, K must be equiva-

Proof. The first and second claim follows from Eq.9). We lentto S@2"). In both cases, the map— UU plays a simi-

; P _ Y lar r6le as the map in Sec. V.
the third claim:VUWWY(VUW)=VUWWJV N .
prove now i e _C am vuw Following Ref.[25] on pp. 451-452, we state all Rie-
=VUWWUV-i=vuuv |

' ) . mannian symmetric spaces &J)/K induced by involutive
This proves that local unitary operations preserve theautomorphisms of the Lie algebra(2"). We have to con-
spectrum ofUU. We now state the theorem that gives ussjder three cases that correspond to the types Al, All, and
lower bounds for the minimal time to simulate a Unitary gateA||| of involutive automorphismsl In the case of type Al, we
We use the notation arg where pegplim)]=m and have to treat the Lie algebgg=su(k) and the involutive au-
ard (xq, ... x)"]=(ardx], ..., argx])". tomorphism 6,,(g)=g*. The involutive automorphisnyy
Theorem 4Assume thaH is a nonlocal Hamilton opera- gives rise to the Riemannian symmetric spacék3ISOk).
tor acting on am-qubit system and that we intend to simu-  The Lie algebrag=su(2k) and the involutive automor-
late the unitary gatéJ. An n-qubit system with Hamilton phism 6, (g) =Jg* (J)~* belong to type All. We obtain the
operatorH and local unitary operators available is able 10 Riamannian symmetric space H)/Sp(k).

simulgte the unitary gat¥l in time tpnlﬁy if 2trt1e following For completeness we mention the type Alll even though
equation holds for at least one choicezet 2 we do not use the corresponding Riemannian symmetric
space in this paper. The Lie algebragissu(p+q) and the

argspe¢UU)] + 277 < 2t specH). corresponding involutive automorphism is given 8y (g)
Remark This theorem generalizes the work in Theorem 5=!p,qdlpq- We have used the notation
and Corollary 7 of Ref[10]. In the proof we use ideas from -1. 0
Ref. [10]. Ipq:<0 p Ip,q),

Proof. Assume that)=[I1;2,W,exp(-it;H)]W, is a simu- ap 'a
lation of U, whereW, denotes some local unitary operations, wherel, denotes thep X p-dimensional identity matrix and
=0, andEj“lltj:t. Let 0,4 denotes the X g-dimensional zero matrix. This gives us
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the Riemannian symmetric space @¥q)/S(U(p) X U(d)).  tilde mapping by its operation on pure stafes:= ()
The group $U(p) X U(q)) can be represented by the matri- 5nq jts operation on density matricgs= 9p9~1=9pd. In

ces addition he generalizes the concept of concurrence to more
0 than two qubits for pure states
( O1 p,q)
Oap 2 Coll1) = [yl

whereg; €U(p), g€ U(q), and detg,) det(gp)=1. and for mixed states

VII. RELATED WORK Cy(p) = min 2 [(¢y[ )],
]

To recognize the considerable amount of related work we o ) -
give a short outline of the connections to our work. VariousWhere the minimum is taken over all decompositions
aspects ofinfinitesima) Hamiltonian simulation as consid- =2jl#){¢;| of p into nonnormalized pure stat¢g;). Uhl-
ered in Sec. IV were studied in Refg},13-19,46,66-75 Mann[82] proved that in strong analogy to E@2) the
Some references consider models where—in contrast to o@eneralized concurrence is given by
model—additional resources were used: prior entanglement
[73], additional classical communicati¢A6], measurements Cyolp) = ma><{0,)\1 - E )\j}’
[4], or ancillas[4,48]. =1
_ Fortwo qubits, gate simulatigisee Sec. Ywas analyzed  yhere then;s are the square roots of the eigenvalues of the
in Refs.[5-7,14,24,76 In Ref. [23] Lie group decomposi-  marix pp and\; =\, for i <j.
tions were used to obtain a theoryretjubit gate simulation. Reference$88,91,94 consider the map on density matri-
In general these decompositions do not lead to optimal simuges given by
lations. In the case of three qubits some progress on the time

optimality problem for gate simglation was reported in Ref. p=p= (o) p* (ay)°". (23
[77], see also Ref(78]. Concerning lower bounds, we have N
generalizedsee Sec. Viithe approach of Ref10]. In addition, the map

iH = iH = (—i0) *"(H)*[(-igy) " (24)
VIII. DISCUSSION
is introduced in Ref[56] for elementsH of the Lie algebra

In this section we address a peculiar similarity betweery, (on) The map in Eq(24) can be applied to a Hamilton
our approach to lower bounds on the time complexity foroperatorH:

gate simulation and the concurren®11,79,80, as well as
some of its generalizatior}56,81-94. The concurrenc€ of D1 = (i VN[ (— iy V@M1 — @Nn(1L\% @n
a pure two-qubit statgy) € C* was defined in Ref{11] as H = (=ioy) ") L= Ty 7T = (o) HH)" (o)
~ This shows that both Eq23) and (24) are induced by the
Cly) = Kl conjugationd; given by

where|) = (ay® oy)(|))*. Let Ay, Ny, A3, and, denote the 9yl = o2
(positive) square roots of the eigenvalues of the mafi ! Y '
where p:=(0,®ay)p* (0y® 0). We assume thal; =X,  In this case we get the concurrenCg, . The corresponding
=\3=\,. Reference$9,11] show that the concurrendg of

a two-qubit density matriy is given by tilde mapping is given by its action on pure states

=%|y) and its action on density matriceég= ﬂlpﬁl'l
C(p) =max0,\; — Ny — A3 — A} (22) =9%1p%4. Proposition 8 of Ref[95] (for related remarks see
) o Ref.[85]) states that the conjugatiah, is the(up to a phase
Uhlmann[82] considered generalizations of the concur-ypique “antilinear operator acting on the complex vector
rence. Following this approach we introduce some notationsypace((2)®" which is invariant under basis changes by local
Let us call a mapd that operates on a complex Vector nitary operationdJ except for an factor equal to de.
space V. antilinear if the equation d(byy)+bal¢2)  Fyrther on, Ref[95] states that such an antilinear mapping
=(by)* 9(|yp) +(by)* 9(|¢h)) holds for allby, be Cand all  gxists only forn-qubit systems and not for generaiqudit
1), |h2) € V(.. For an antilinear operatod the (Hermitian)  systems.
adjoint 9" is defined by the condition thaty;|9'y,) After this short excursion into entanglement measures of
=(tpo| O4py) holds for all|¢1),|¢) € V. If an antilinear op-  concurrence-type, we can state a connection between this
eratord satisfies the conditiod’= 9" we call this operator type of entanglement measures and lower bounds on the time
antiunitary. When the mag} is antiunitary andy™*= holds, = complexity for gate simulation. The tilde mapping of Def.
then we have thaf? equals the identity map and we define 14, which was used in the main body of the text, can be
¥ to be a conjugation. A skew conjugation is an antiunitaryinterpreted in the context of concurrence-type entanglement
operatord fulfilling 9 1=-9. Assume in the following that measures. Sincel’=H* holds for all Hermitian operators
¥ is a conjugation. Now, Uhlmann defined a generalizedwve obtain
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W(U) = J/[expiH)](3) L= exdid[H* (3))71, Fact 15 (Uhlmann) (see, e.g., [97], Satz 3 or [42], Theo-
rem 2-2). For Hermitian matricesA and B the condition
whereid/H* (J})~! is up to a minus sign equal to the rhs of spec¢A) < specB) is equivalent to
Eq.(24). This highlights that if we consider the lower bounds o
introduced in Sec. VI we are essential in setting of R&2] A= E qU; "BU;,
with 9=19;. :
In both constructions, for the lower bounds on the timewhereU; are unitary matricesy;=0, and=;q;=1.

complexity to simulate unitary operators and for the compu- We need another theorem connecting the notion of major-
tation of the concurrence, the essential point is that the spe¢zation with the convex hull of all permuted versions of a
trum of both UU and pp is invariant under local unitary Vector.
operations. This highlights that there is a connection between Fact 16 (Rado) (see, e.g., Ref. [98] or [41], Prop. 4.C.1).
entanglement measures and lower bounds on the time conmthe vectorx is majorized by the vectoy if and only if x lies
plexity for gate simulation. We are looking forward to gen- in the convex hull of all permutations gf

eralizing some of these ideas. The spectral version of Theorem 2 reads as follows:
Theorem 5 ([46], pp. 9—-10)Assume thatH andH’ are
IX. CONCLUSION nonlocal Hamilton operators acting on a two-qubit system.

. . . . . ... . letaanda’ be elements ofi, wherea=a;X;+a,Xg+asXq
Starting with an extensive reconsideration of |nf|n|teS|maI:[Ad (L)](H) anda’ =a/X,+a,Xg+aiXe=[Ad,(L")](H") for
Hamiltonian simulation and gate simulation in the two-qubit _~ & ~~ nitar 1r7t 'é 8nd ﬁ,g( S R). A tw

case, we streamlined the different approaches by using Ljg20Mme local unitary operatois a a3 eh). o

theoretic methods. As the success of this approach suggesfPit system with Hamilton operatdd and local unitary

this seems to be the appropriate level of description for Sucﬁ',e.ratprs available is able to simulate the Hamilton operator
a theory. in time t if and only if

Going beyond two-qubits, we derived lower bounds on specda’) < t speca).
the time complexity for gate simulation. For this aim, we
developed an analog of the magic basis for general multipar-
tite qubit systems. This gives us a first idea of the structure oBef' [:@f' In the proof, ;ve follow Rhef[46]. dar .
unitary operations with respect to the set of local unitary_ "'00f. Due to Fact 2 we can chooseanda’ as given.

operations. In addition, we related our approach to entanglel '€ “only-if” case follows by Fact 15. We consider now the

ment measures of concurrence-type. “if” case. By invoking Fact 16, we get that
Note added in proofRecently we realized that Theorem 3 speca’/t) = >, q.P, speca),

can be derived from Theorem 5 of R¢96]. In the proof of K

that theorem, a basis change similar to our basis change in

Remark.The necessity of this condition was proven in

Sec. VI D for oddn is given. wherePy is a permutationg,= 0, and=,g,=1. Sincea and
a’ are elements ofi, they commute. It follows that there
ACKNOWLEDGMENTS exists a basis wher@anda’ are simultaneously diagonal. In

_ o _ that basis the permutatioi correspond to permutations of
We are especially grateful to Dominik Janzing for many e diagonal elements @ For that reason we have that
valuable discussions and comments. In addition, we thank

Steffen Glaser and Thomas Schulte-Herbriiggen for enlight- @it =2, qkuglauk
ening discussions. The authors acknowledge the support of k

the Deutsche Eorsc?ungsgememschSﬁ’P “‘Quanteninfor- ¢4 some unitary operators,, which permute the spectrum
mationsverarbeitung’under Grant No. Be 887/13. of a. We emphasize that tHé, are not necessarily local. But
we prove now that we can find local unitary operators imple-
menting any permutation of the spectrumafConjugation

by the local wunitary operators [(op—ioq)/\2]

In this appendix we prove a similar version of Theorem 2.@[(0’0—i0'1)/\5], [(o’o+i0'3)/\5]®[(0'0+i0'3)/x5], and
Relying on Sec. IV B, we use arguments from the theory of (o +ioy)/\2]® [(op=ioy) /2] permutes the
majorization applied to the spectrum of Hamilton operatorseigenvalues as respectively follow4:,2,3,4~(2,1,3,4,

We denote the vector of eigenvalues of Kwek-dimensional  (1,2,3,4~(1,3,2,4, and(1,2,3,4~(1,2,4,3. As all
matrix A, including  multiplicities, by spe@)  permutations on four-vectors are generated by this permuta-
=(spec¢A);, ...,specA)y)". In addition, we assume that tions, the “if’ case follows. [ |
specA);=specA); if i<j (1<i,j<k). The majorization of We note that the local unitary operators that permute the
the spectra of two matrices is, by a theorem of Uhlmanrspectrum of elements af are given in Ref[46], but there
[97], related to the convex combination of unitary orbits.  the second local unitary operator is misprinted.

APPENDIX: SPECTRAL THEORY FOR INFINITESIMAL
HAMILTONIAN SIMULATION
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