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Unitary operations are the building blocks of quantum programs. Our task is to design efficient or optimal
implementations of these unitary operations by employing the intrinsic physical resources of a givenn-qubit
system. The most common versions of this task are known as Hamiltonian simulation and gate simulation,
where Hamiltonian simulation can be seen as an infinitesimal version of the general task of gate simulation. We
present a Lie-theoretic approach to Hamiltonian simulation and gate simulation. From this, we derive lower
bounds on the time complexity in then-qubit case, generalizing known results to both even and oddn. To
achieve this we develop a generalization of the so-called magic basis for two-qubits. As a corollary, we note a
connection to entanglement measures of concurrence-type.
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I. INTRODUCTION

As a starting point for the emerging field of quantum
computation(for a review see, e.g., Refs.[1,2]) Feynman[3]
established in 1982 a connection between simulation of
quantum systems by computers on the one hand and compu-
tation using quantum systems on the other hand. Since this
time many different models for computation using quantum
systems have been proposed.

In all these models the common target is to constructively
implement unitary operations by employing the intrinsic
physical resources. Forming the counterpart of operations on
a classical computer, these unitary operations build the com-
ponents of quantum programs. Whichever(reasonable) sys-
tem is provided to us by an experimentalist, we exploit the
resources immanent to the system.

In this paper we confine ourselves ton-qubit systems
where the resources are given by local unitary operations and
by the natural time evolution specified by the Hamilton op-
erator. This allows us to implement a given unitary operation
by interrupting the natural time evolution with local unitary
operations. Referring to such implementations as programs,
our objective is to study efficient or optimal programs. To
achieve this, usually two different versions of this problem
are considered. Hamiltonian simulation is the one version
and denotes an infinitesimal implementation of unitary op-
erations, i.e., the unitary operation is in a neighborhood of
the identity. The second version is called gate simulation and
describes an implementation of unitary operations not re-
stricted to a neighborhood of the identity. We give an exact
definition of both versions in Sec. II.

In this paper we address two major topics. First we con-
sider two-qubit systems. Combining the manifold results
known for two-qubit systems, we can close gaps and sim-
plify the line of reasoning. In addition, by using Lie-theoretic
methods we derive a unified approach to the methodology.
The motivation for this extensive reconsideration is twofold:

First, we show that understanding simple cases in detail
helps to generalize them to higher-dimensional systems. Sec-
ond, we obtain generally applicable(Lie-theoretic) methods
that provide tools in the analysis of higher-dimensional sys-
tems.

Beyond this, the two-qubit case is interesting in its own.
We can characterize the minimal time for Hamiltonian simu-
lation directly using arguments from Lie theory. With the
help of this characterization we explain and reprove a ma-
jorizationlike condition[4] for the minimal simulation time.
By employing the Weyl group of the corresponding Lie al-
gebra, we are able to simplify and clarify the known ap-
proach of Ref.[4], especially with respect to Ref.[5]. In the
case of two-qubit systems we consider gate simulation as
well. We present a refined analysis of the majorizationlike
condition of Refs.[6,7], which will be built explicitly on the
results of Ref.[5].

The second major topic deals with the case of general
n-qubit systems. We first discuss a generalization of the so-
called magic basis[8,9] to higher-dimensional systems. With
this information on the structure of unitary operations we
develop lower bounds on the minimal time for gate simula-
tions. Our method applies to alln-qubit systems and gener-
alizes a result of Ref.[10] for evenn. We also discuss the
used techniques in connection to entanglement measures, in
particular, the concurrence[9,11].

The whole text is written in a Lie-theoretic flavor. For
further reference, the Lie-theoretic concepts needed in the
text will be introduced briefly in Sec. III. Using this theory
puts us in the position to formulate strong arguments in a
coherent language.

In Sec. II we introduce our model and in Sec. III we state
the Lie-theoretic concepts needed in the main body of the
text. The Hamiltonian simulation for two-qubits will be dis-
cussed in Sec. IV, followed by the analysis of gate simulation
for two-qubits in Sec. V. The generalization of the magic
basis for two-qubits is considered together with lower
bounds on the time complexity for generaln-qubit systems in
Sec. VI. In Sec. VII we give a brief outline to related work,
in Sec. VIII we continue with a discussion of connections of
our approach to concurrence-type entanglement measures,
and in Sec. IX we close with the conclusion. In the appendix
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we recall a spectral approach to infinitesimal Hamiltonian
simulation.

II. THE MODEL

We consider a system ofn qubits, wherenPN is finite.
This system can be modeled within ann-fold tensor product
C2 ^ ¯ ^ C2 of n 2D complex vector spacesC2, i.e., a tensor
product of single qubits. The time evolution of the system is
governed by the Schrödinger equation for the time-evolution
operator(see, e.g.,[12], p. 72),

d

dt
Ustd = s− iHdUstd,

where t denotes the time,Ustd the time evolution operator,
andH the Hamilton operator, which is supposed to be time-
independents"=1d. Because of the irrelevance of a global
phase in quantum mechanics, we restrict ourselves to evolu-
tion operators from the special unitary group SUs2nd.

In addition to the possibility to let the system evolve ac-
cording to the evolution operatorUstd=exps−iHtd, in our
model we allow the application of local unitary operators. A
unitary operator is considered as local when it does not in-
duce any interaction between different qubits, i.e., when it
has the form of ann-fold tensor productU1 ^ ¯ ^ Un of
unitary operatorsUi PSUs2d with i P h1, . . . ,nj. The time for
the application of local unitary operations is negligible and
assumed to be zero. Thereby we have specified the available
resources that constitute the possibilities to control the sys-
tem.

We emphasize that, for mathematical reasons, we restrict
our model to consider only systems for which the system
Hamilton operators can be represented without use of local
terms. As a consequence, in the case of infinitesimal Hamil-
tonian simulation we can simulate Hamilton operators ex-
actly only if the Hamilton operator can be represented with-
out use of local terms. To remove the local terms of a system
Hamilton operator, one usually employs some approxima-
tions (see, e.g.,[4], p. 3 or[13], p. 288). But we refrain from
considering such approximations. In addition, avoiding local
terms in Hamilton operators seems to release us from some
problems with infinite programs, i.e., an infinite numberm
=` of steps(see below). In Ref. [14] it is analyzed under
which conditions we need infinite programs for time optimal
control in the more general setting, which includes local
terms in the system Hamilton operator. Nevertheless, we
consider for technical reasons all types of programs, even
infinite ones. The available resources will be utilized below
in three ways.

First, we consider the simulation of a unitary gate, i.e., a
unitary operator. This notion of simulation means that the
system is able to implement a given unitary gate by inter-
rupting the natural time evolution with local unitary opera-
tions. Definition 1 states this in a more formal way. The term
“gate simulation” was introduced in Ref.[4] on p. 3.

Definition 1 (gate simulation). An n-qubit system with
Hamilton operatorH and local unitary operators available
simulates a unitary gateU in time t if there exists local

unitary operatorsU0 and Uj as well as timestj ù0 with t
=o j=1

m tj, j PN, 1ø j øm, andmPNø h0,`j, so that

U = Fp
j=1

m

Uj exps− iHt jdGU0.

Remark. Due to the noncommutativity of the unitary
group we restrict the symbolp for elementsVj from the
unitary group to the following meaning:

p
j=e

f

Vj ª 5S p
j=e+1

f

VjDVe for f ù e,

id for f , e,
6

wheree, f PZ, and the identity element of the unitary group
is denoted by id. In the case off infinite, the symbolp
represents an element from the closure of convergent se-
quences.

Second, we introduce a particular concept of infinitesimal
simulation of a unitary gate. A given unitary gateU is treated
as a point of a one-parameter group exps−iH8t8d. The infini-
tesimal simulation of the Hamilton operatorH8 denotes that
the system simulates the corresponding one-parameter group
for infinitesimal timest8, i.e., the derivatives of the one-
parameter group and of the simulation coincide for infinitesi-
mal times. We emphasize that in Definition 2 the notion of
infinitesimal Hamiltonian simulation is defined indepen-
dently of the unitary gateU.

Definition 2 (infinitesimal Hamiltonian simulation). An
n-qubit system with Hamilton operatorH and local unitary
operators available simulates an Hamilton operatorH8 infini-
tesimally in timet if there exists local unitary operatorsU0
and Uj as well as timestj ù0 wheret=o j=1

m tj, j PN, 1ø j
øm, andmPNø h0,`j so thatp j=0

m Uj is equal to the iden-
tity of the unitary group and the following equation holds:

lim
t8→0

t8.0

F d

dt8
exps− it8H8dG

= lim
t8→0

t8.0

S d

dt8
HFp

j=1

m

Uj exps− it8HtjdGU0JD . s1d

Remark. The conditionp j=0
m Uj =id ensures that our pro-

gram specified byU0, theUjs, and thetjs operates nearby the
identity for t8→0.

We note that in Refs.[15–18] the notion of infinitesimal
Hamiltonian simulation was extended by the so-called first-
order approximation to unitary operators. Similar ideas were
used in Ref.[4] where it was proposed to follow the evolu-
tion of the system exactly by the Hamiltonian simulation.
Concurrently, it was remarked in Ref.[4] that to follow the
evolution of the system exactly is only possible infinitesi-
mally, as the control is not continuous. In this text we do not
consider such approximations.
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Though Definition 2 presents the essential meaning of in-
finitesimal Hamiltonian simulation, it appears to be very un-
practical. Thus we present an equivalent condition, which is
usually formulated as definition[15–19].

Lemma 1. An n-qubit system with Hamilton operatorH
and local unitary operators available simulates the Hamilton
operatorH8 infinitesimally in timet if and only if there exists
local unitary operatorsVj as well as timestj ù0 with t
=o j=1

m tj, j PN, 1ø j øm, andmPNø h0,`j so that the fol-
lowing equation holds:

H8 = o
j=1

m

tjsVj
−1HVjd. s2d

Proof. The “only-if” case: The left-hand side of Eq.(1)
equals −iH8 and the right-hand side of Eq.(1) equals

lim
t8→0

t8.0

F d

dt8
SHp

j=1

m

expf− it8sWjHWj
−1dtjgJW0DG , s3d

where

Wj = H Um for j = m,

Wj+1Uj for 0 ø j , m.
#x007D;

We differentiate, compute the limit, and equate the result of
Eq. (3) with −iH8. After this we useVjªWj

−1 and W0
=p j=0

m Uj =id to obtain Eq.(2).
The “if” case: After insertion of Eq.(2) in Eq. (1) we

obtain the “if” case. j
Third, we introduce in Definition 3 the notion of infini-

tesimal gate simulation, which depends explicitly on the
given unitary gateU.

Definition 3 (infinitesimal gate simulation). An n-qubit
system with Hamilton operatorH and local unitary operators
available simulates a unitary gateU infinitesimally in timet
if there exists an Hamilton operatorH8 and local unitary
gatesU1 andU2 such that the equationU=U1 exps−iH8dU2

holds and the system simulates the Hamilton operatorH8
infinitesimally in timet.

Remark. Actually, we do not use Definition 3 later in the
text. But we state this definition to highlight that Definition 2
is independent of some unitary operatorU and does not in-
corporate different decompositions ofU which could lead to
different Hamilton operatorsH8. The existence of different
Hamilton operatorsH8 will be employed in Sec. V.

Before we proceed, we discuss our model. Entanglement
describes important nonlocal properties of states and gates.
Because entanglement is invariant under local unitary opera-
tions [2], it seems reasonable to neglect the time needed to
implement local unitary gates for the implementation of gen-
eral unitary gates. This is supported by the fact that two-
qubit gates are considered as significantly more difficult to
implement than one-qubit gates[20]. Additionally, in nuclear
magnetic resonance(NMR) the application of local unitary
operations in zero time is expressed by the notion of the “fast
control limit,” which is conventionally considered as a good
approximation. This is reasonable because local and nonlocal
gates operate on different time scales[5,21,22].

III. LIE-THEORETIC PREPARATIONS

In this section we recall Lie-theoretic notions and meth-
ods that will be employed throughout the paper. This reflects
the intimate connection of the considered problems to Lie
theory, and it makes the text more readable and self-
contained. For convenience, this section can also be regarded
as a reference section. We remark that our presentation in
this section was partly inspired by Refs.[5,23,24].

A. Basic concepts

For our purposes we can consider Lie groups as linear
matrix groups, i.e., as closed subgroups of the general linear
group. The tangent space to the Lie group G at the identity is
isomorphic to the Lie algebrag corresponding to G. A Lie
algebra, which is in particular a vector space, comes with a
bilinear and skew-symmetric multiplication operation called
the Lie bracket[ , ]. The Lie algebrag is closed under the Lie
bracket and the Jacobi identity

ffg1,g2g,g3g + ffg3,g1g,g2g + ffg2,g3g,g1g = 0

holds for all elementsg1,g2,g3Pg. We emphasize that we
use only real or complex Lie algebras that are finite dimen-
sional. For general reference on Lie groups and Lie algebras,
please consult Refs.[25–35]. In the following let G denote a
Lie group andg its associated Lie algebra.

The map adgsgd from the Lie algebrag to itself is defined
by h° fg,hg, whereh,gPg. With this notation, the adjoint
representation of the Lie algebrag in itself is given by
g°adgsgd. Let adgshd denote the sethadgshd uhPhj for some
subspaceh of the Lie algebrag. Now, we can introduce a
symmetric bilinear form on the Lie algebrag: the Killing
form Bgsg,hdªTrgfadgsgd +adgshdg. If the Killing form is
nondegenerate it can be thought as an inner product on the
Lie algebra, although it does in general not fulfill the axiom
of positivity.

Definition 4 (orthogonal symmetric Lie algebra) (see
[25], p. 213 and [30], pp. 225–226 and 246). A pair sg ,ud is
an orthogonal symmetric Lie algebra if(i) g is a real Lie
algebra,(ii ) u is an involutive automorphism ofg, and (iii )
the connected Lie group of linear transformations ofg gen-
erated by adgskd is compact, wherek is the set of fixed points
of u in g.

Remark. An automorphism of a Lie algebrag respects the
Lie bracket, i.e., for allg and h in g we haveusfg,hgd
=fusgd ,ushdg. An involutive automorphism is in addition
self-inverse. Letk andp be the eigenspaces ofu in g for the
+1 and −1 eigenvalue, respectively. Consider the canonical
decompositiong=k+p. Condition (ii ) of Definition 4 is
equivalent to(see[30], pp. 226-227)

fk,kg , k,fk,pg , p,fp,pg , k. s4d

In Ref. [5] this decomposition was called the Cartan decom-
position. If Eq.(4) holds we can defineu by

uskd = k for all k P p anduspd = − p for all p P p. s5d

In addition, wheng is the Lie algebra of a compact group G
then Condition(iii ) of Definition 4 is always true.
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For further reference, we assume thatg is semisimple,
i.e., that the Killing form ofg is nondegenerate, and that
sg ,ud is an orthogonal symmetric Lie algebra. As an ex-
ample, the Lie algebrasus2nd, which corresponds to the Lie
group SUs2nd, is semisimple. We fix a canonical decomposi-
tion g=k+p satisfying Eq.(4) and a maximal Abelian subal-
gebraa contained inp. Let K=expskd andA=expsad denote
the subgroups of G generated byk anda, respectively. After
this preparation we obtain a decomposition G=K A K of the
Lie group G.

Fact 1 (K A K decomposition of the Lie groupG) ([25],
Chap. V, Theorem 6.7). With the notation as given above, the
Lie group G corresponding tog can be decomposed as

G = K A K.

Similar to the adjoint representation adg of a Lie algebrag
in itself, we can define the adjoint representation Adg of a
Lie group G in its Lie algebrag. For an elementGPG we
introducefGsGd as the mapH°G−1HG with the signature
G→G. The map AdgsGd has the signatureg→g and is de-
fined as the differential offGsGd. For matrix representations
we can write AdgsGd as the mapg°G−1gG. We use the
shortcut AdgsKdªøKPKAdgsKd and get the relation between
the subspacep and its Abelian subalgebraa:

Fact 2 ([25] Chap. V, Lemma 6.3 (iii)). The following
equation holds:

p = fAdgsKdgsad.

B. The Weyl group and infinitesimal convexity

We use the notation

CKsad ª hK P K ufAdgsKdgsad = a for all a P aj

and

NKsad ª hK P K ufAdgsKdgsad , aj,

respectively, for the centralizerCKsad and the normalizer
NKsad of a in K.

Definition 5 (Weyl group) (see [25], p. 284 or [27], p.
381). The Weyl group corresponding toa is the factor group
NKsad /CKsad. We denote this group byWsG,Ad, where A
=expsad.

The Weyl groupWsG,Ad is finite (see Fact 3 below). In
order to compute the Weyl group, we introduce the concept
of restricted roots.

Definition 6 (restricted root) (cf. [27], p. 370). Let l be a
linear function ona. The linear subspacegl is given by

gl = hg P gufa,gg = lsadg for all a P aj.

The linear functionl is called a restricted root ofg with
respect toa if glÞ h0j andl is not identically zero ona. Let
Da denote the set of restricted roots ofg with respect toa.

Remark. In Ref. [27] on p. 370, the restricted roots are
defined with respect toia. But the concept of restricted roots
can also be defined with respect toa.

Due to the fact thatg is semisimple, we deduce that the
Killing form Bg restricted toa3a is nondegenerate. With

this in mind, a restricted rootl is equal to the map
a°Bgsal ,ad, wherealPa is uniquely determined. We ex-
tend the Killing form to restricted roots byBgsl ,md
ªBgsal ,amd. For everylPDa the reflectionslsmd of a re-
stricted root mPDa with respect to the hyperplaneha
Pa ulsad=0j is given by

slsmd ª m − 2
Bgsm,ld
Bgsl,ld

l.

Following Ref. [25] on p. 286, the reflectionsl can be ex-
tended to elements ofa. For aPa the reflectionslsad of a
Pa in the hyperplanehaPa ulsad=0j is given by

slsad = a − 2
Bgsa,ald
Bgsal,ald

al. s6d

With this preparation we get a possibility to compute the
Weyl group corresponding toa.

Fact 3 ([27], p. 383). The Weyl group corresponding toa
is finite and is generated by the reflectionssl, wherelPDa.

Recall thatWsG,Ad is a subset of K and operates ona by
AdgsKd, whereKPK.

Definition 7 (Weyl orbit) (see, e.g., [36], p. 422). The
Weyl orbit Wsad of an elementaPa is defined as the set
hfAdgsWdgsad uWPWsG,Adj. By appealing to Fact 2 the
Weyl orbit Wspd, for pPp, is defined asWspdªWsad,
whereaP fAdgsKdgspdùa.

To understand that the definition ofWspd for pPp is
independent ofa and thus well defined, we now characterize
the Weyl orbits in more detail.

Fact 4 ([27], Lemma 7.38). Let fAdgsKdgsad=a8, wherea,
a8Pa and KPK. Then there exists an elementK8PNKsad
such thatfAdgsK8dgsad=a8.

By Fact 4 two elementsa and a8 from the Weyl orbit
Wspd of pPp are conjugated by an element of the Weyl
group, which proves that the definition(Def. 7) of Wspd is
independent ofa. This shows in addition that the Weyl orbit
Wspd is equal toaù fAdgsKdgspd. Let us denote the convex
hull of the Weyl orbitWspd by cspd. We state now the infini-
tesimal version of Kostant’s convexity theorem.

Fact 5 (Kostant’s convexity theorem, infinitesimal version)
(see [36], Theorem 8.2 or [37], Theorem 1). Let G be the
orthogonal projection ofp on a with respect to the Killing
form. For everypPp one obtains

G„fAdgsKdgspd… = cspd.

Remark. The essential meaning of the infinitesimal ver-
sion of Kostant’s convexity theorem(Fact 5) is that the pro-
jection offAdgsKdgspd to a with respect to the Killing form is
a convex set and its extreme points are given by the Weyl
orbit Wspd.

In order to characterize the Weyl orbits in more detail we
introduce additional concepts. The subspacea can be divided
into connected components called Weyl chambers.

Definition 8 (Weyl chamber) ([25], p. 287). Let l be any
restricted root ofg with respect toa. The hyperplanesha
Pa ulsad=0j divide a into finitely many connected compo-
nents excluding their boundary hyperplanes. Such a con-
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nected component is called Weyl chamber. The closure of a
Weyl chamber including their boundary hyperplanes is called
closed Weyl chamber.

Fact 6 ([25], Theorem 2.12, Chap. VII). The Weyl group
permutes the Weyl chambers.

We choose some arbitrary, but fixed, order on the re-
stricted roots ofg with respect toa. Therefore, the restricted
roots can be divided into positive and negative(restricted)
roots, where positive and negative is defined regarding to the
chosen order. A restricted root is called fundamental if it is
positive and not a sum of two positive(restricted) roots
([26], p. 59). Let hakj,Da be the set of fundamental(re-
stricted) roots. Since the Killing form restricted toa3a is
nondegenerate we can define as before for every(restricted)
root l the elementalPa so thatBgsal ,ad=lsad for all a
Pa. The set{aPa uBgsaak

,ad.0 for all ak} is a Weyl cham-
ber and it is called the fundamental Weyl chamber([26] p.
61).

Fact 7 (adapted from [26], Proposition I, Sec. 2.11). Let l
and m be restricted roots corresponding to elementsal and
am of the closed fundamental Weyl chamber, respectively.
The elementam lies in the convex hull of the Weyl orbit
Wsald of al if and only if lsadùmsad for all elementsa of
the fundamental Weyl chamber. The conditionlsadùmsad is
equivalent toBgsal ,adùBgsam ,ad.

C. The two-qubit case

We now treat the case G=SUs4d. To be more concrete we
introduce a matrix representation for the real semisimple Lie
algebrasus4d, which corresponds to G. Let

sxªS0 1

1 0
D, syªS0 − i

i 0
D, and szªS1 0

0 − 1
D

be the the Pauli matrices and set

s0ªS1 0

0 1
D

to be the identity matrix. We identifysx=s1, sy=s2, and
sz=s3 and use the following definitions:

X1ª
i

2
s0 ^ s1, X2ª

i

2
s0 ^ s2, X3ª

i

2
s0 ^ s3,

X4ª
i

2
s1 ^ s0, X5ª

i

2
s2 ^ s0, X6ª

i

2
s3 ^ s0,

X7ª
i

2
s1 ^ s1, X8ª

i

2
s2 ^ s2, X9ª

i

2
s3 ^ s3,

X10ª
i

2
s1 ^ s2, X11ª

i

2
s1 ^ s3, X12ª

i

2
s2 ^ s1,

X13ª
i

2
s2 ^ s3, X14ª

i

2
s3 ^ s1, X15ª

i

2
s3 ^ s2.

The standard(or defining) representation ofsus4d is

gªsus4d = spanRhX1, . . . ,X15j,

where spanR denotes the real span. Let

kªspanRhX1, . . . ,X6j,

pªspanRhX7, . . . ,X15j,

and aªspanRhX7, . . . ,X9j.

With this notation one can easily check thatk andp fulfill the
commutator relations in Eq.(4). Since the group SU(4) is
compact, the pairsg ,ud defines an orthogonal symmetric Lie
algebra, whereu is given by Eq.(5). The subspacea forms a
maximal Abelian subalgebra inp. The set of restricted roots
with respect toa can be computed as the eigenvalues of
adgsc1X7+c2X8+c3X9d, whereci PR:

†± isc2 − c3d, ± isc2 + c3d, ± isc1 − c3d, ± isc1 + c3d,

± isc1 + c2d, ± isc1 − c2d‡. s7d

We use Eq.(6) to obtain a generating set for the Weyl group
(corresponding toa) as a set of matrices

511 0 0

0 0 1

0 1 0
2, 11 0 0

0 0 − 1

0 − 1 0
2, 10 0 1

0 1 0

1 0 0
2,

1 0 0 − 1

0 1 0

− 1 0 0
2, 1 0 − 1 0

− 1 0 0

0 0 1
2, 10 1 0

1 0 0

0 0 1
26 , s8d

which operate on the vectors

11

0

0
2 , X7, 10

1

0
2 , X8, and 10

0

1
2 , X9. s9d

With the notation of Eq.(9) the Killing form restricted to
a3a is given by

uBgsa,bdua3aªaT1− 8 0 0

0 − 8 0

0 0 − 8
2b.

Now we give the elementsalPa corresponding to the re-
stricted rootsl in Eq. (7), i.e., elementsalPa such that
Bgsal ,ad=lsad for all aPa:

5 ± i

− 81 0

1

− 1
2,

± i

− 810

1

1
2,

± i

− 81 1

0

− 1
2,

± i

− 811

0

1
2,

± i

− 811

1

0
2,

± i

− 81 1

− 1

0
26 .

We have used the basis of Eq.(9) to represent the elements
al. In order to present our results in the context of Ref.[4],
we choose an order on the(restricted) roots such that the
roots of Eq.(7), which have a plus sign, constitute the posi-
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tive ones. With this convention for an elementd=d1X7
+d2X8+d3X9 of the fundamental Weyl chamber we get the
following set of equationssdi PRd:

hd2 − d3 . 0, d2 + d3 . 0, d1 − d3 . 0, d1 + d3 . 0,

d1 + d2 . 0, d1 − d2 . 0j, s10d

where we have identifiedsR , . d with siR , . d by defining
ir 1. ir 2⇔ r1. r2 for all r1, r2PR.

IV. INFINITESIMAL HAMILTONIAN SIMULATION
FOR TWO QUBITS

A. Lie-theoretic explanation

Following Definition 2 we consider now infinitesimal
Hamiltonian simulation for two qubits. We emphasize that in
the two-qubit case local unitary operations correspond to el-
ements of K=expskd. We use the notation of Sec. III, espe-
cially that of Sec. III C. Since we restrict ourselves to Hamil-
ton operators without local terms(see Sec. II), we have for
all nonlocal Hamilton operatorsH and H8 that iH Pp and
iH8Pp, wherep is the subvector space of the Lie algebrag
introduced in Sec. III. Thus, we can use Fact 2 to write every
nonlocal Hamilton operatorH8 as H8=fAdg(sL8d−1)gsa8d,
wherea8 is an element ofa andL8 is a local unitary operator.

Theorem 1. Assume thatH andH8 are nonlocal Hamilton
operators acting on a two-qubit system. Leta8 be an element
of a, wherea8=fAdgsL8dgsH8d for some local unitary opera-
tor L8. A two-qubit system with Hamilton operatorH and
local unitary operators available is able to simulate the
Hamilton operatorH8 in time t if and only if the Hamilton
operatorsa8 / td lies in the convex closure of the Weyl orbit
WsHd of H. The condition is independent of the choice ofa8.

Remark. Actually, Theorem 1 is the infinitesimal version
of Fact 8 (see below and Ref.[5]). In order to clarify the
connection of Theorem 2 to the work of Ref.[5], we give
here a proof of this infinitesimal version using arguments of
Refs.[4,5].

Proof. Assume that

to
i=1

m3

qi9fAdgsKi9dgsHd s11d

is a simulation ofH8 in time t, whereKi9 are local unitary
operators,H, H8Pp, qi9ù0, andoi=1

m3 qi9=1.
Due to Fact 2 there existsa and a8 in a, where a

=fAdgsLdgsHd anda8=fAdgsL8dgsH8d for some local unitary
operatorsL andL8. We remark that local unitary operations
cost no time. Thus, the existence of the simulation in Eq.
(11) is equivalent to the existence of a simulation
toi=1

m2 qi8fAdgsKi8dgsad of a8 by a in time t, whereKi8 are some
local unitary operators,qi8ù0, andoi=1

m2 qi8=1. Let G andG8
denote the orthogonal projections(with respect to the Killing
form) of p on a anda', respectively. We can write the simu-
lation as

to
i=1

m2

qi8„GhfAdgsKi8dgsadj + G8hfAdgsKi8dgsadj… = a8.

This is equivalent to

to
i=1

m

qiGhfAdgsKidgsadj = a8, s12d

where Ki are some local unitary operators,qi ù0, and
oi=1

m qi =1. The last equivalence follows in the backward di-
rection by employing Fact 5 to rewrite the projectionG as a
convex combination and in the forward direction by the fact
that the termoi=1

m2 qi8G8hfAdgsKi8dgsadj has to be zero.
By the remark following Fact 5 we know that the projec-

tion of fAdgsKdgspd to a with respect to the Killing form is a
convex set. Thus, we can write Eq.(12) as

GhfAdgsK8dgsadj = sa8/td

for some local unitary operatorK8. With Fact 5 we get that
sa8 / td lies in the convex closure of the Weyl orbitWsad of a.
Sincea=fAdgsLdgsHd, we can replacea by H in the preced-
ing sentence. This proves the theorem except for the inde-
pendence of the choice ofa8.

Assume that we replacea8 by a9Pa, where a9
=fAdgsL9dgsH8d for some local unitary operatorL9. Due to
Fact 4, there exist an elementWPWsG,Ad so that a9
=fAdgsW−1dgsa8d. Since operating with an element of the
Weyl group leaves the Weyl orbitWsHd unchanged, the
Weyl orbit is equal tofAdgsWdgfWsHdg. It is obvious that the
convex closure of the Weyl orbitWsHd is left unchanged as
well. Hence, the elementa8 is in the convex closure of the
Weyl orbit WsHd if and only if a9 is. j

For a8Pa it was also proven in Ref.[4] that the set of
Hamilton operatorssa8 / td, which can be simulated in time
one, is convex. We emphasize that the extreme points of this
set are given by the Weyl orbitWsHd, which can be com-
puted by means of Eq.(8). In Ref. [4] the extreme points
were given and their extremality was proven by another
method. As in Ref.[4], we state now a version of Theorem 1
that gives a condition for infinitesimal Hamiltonian simula-
tion in the two-qubit case that is easier to check.

Theorem 2 ([4], p. 11). Assume thatH andH8 are nonlo-
cal Hamilton operators acting on a two-qubit system. Leta
anda8 be elements of the closed fundamental Weyl chamber,
where a=a1X7+a2X8+a3X9=fAdgsLdgsHd and a8=a18X7

+a28X8+a38X9=fAdgsL8dgsH8d for some local unitary opera-
torsL andL8 sai ,ai8PRd. A two-qubit system with Hamilton
operatorH and local unitary operators available is able to
simulate the Hamilton operatorH8 in time t iff the following
equations hold:

a1 ù a18/t, s13ad

a1 + a2 + a3 ù sa18 + a28 + a38d/t, s13bd

a1 + a2 − a3 ù sa18 + a28 − a38d/t. s13cd

Remark. We forcea anda8 to be(almost) unique elements
of a by choosing them to be elements of the closed funda-
mental Weyl chamber. Ifa or a8 lies on the boundary of the
fundamental Weyl chamber, they are elements of the closed
fundamental Weyl chamber, but not elements of the funda-
mental Weyl chamber. Only in this case there remains a

ZEIER, GRASSL, AND BETH PHYSICAL REVIEW A70, 032319(2004)

032319-6



nonuniqueness, and the considered element can possibly be
chosen to lie on different boundary hyperplanes of the closed
fundamental Weyl chamber.

Proof. As the Weyl group permutes the Weyl chambers
(see Fact 6) we can choosea and a8 to be elements of the
closed fundamental Weyl chamber. We recall from Eq.(10)
that an elementd=d1X7+d2X8+d3X9 lies in the fundamental
Weyl chamber iff d2−d3.0, d2+d3.0, d1−d3.0, d1
+d3.0, d1+d2.0, andd1−d2.0 holds. Applying Theorem
1 and Fact 7 we get thata1d1+a2d2+a3d3ù sa18d1+a28d2

+a38d3d / t holds for all elementsd=d1X7+d2X8+d3X9 of the
fundamental Weyl chamber. Eliminating the quantifiers in
the previous condition, e.g., using the computer algebra sys-
tem QEPCAD [38,39], we obtain the conditions of Eq.
(13). j

B. Majorization

In this section we introduce some concepts from the
theory of majorization that will be employed later. Our pre-
sentation is succinct and we refer to Refs.[40–45] for a more
detailed treatment of this topic.

For an elementx=sx1, . . . ,xkdT of Rk we denote byx↓

=sx1
↓ , . . . ,xk

↓dT a permutation ofx so that xi
↓ùxj

↓ if i , j ,
where 1ø i, j øk.

Definition 9 (majorization) ([45], p. 28). A vector xPRk

is majorized by a vectoryPRk if

o
i=1

l

xi
↓ ø o

i=1

l

yi
↓ for all 1 ø l ø k

and

o
i=1

k

xi
↓ = o

i=1

k

yi
↓.

The notationxay means thatx is majorized byy.
We recall the notion ofs-majorization introduced in Ref.

[4]. For an elementx=sx1,x2,x3dT of R3 we introduce the
vector x̂=sux1u , ux2u , ux3udT, and we define thes-ordered ver-
sion x↓s of x by setting x1

↓s
ª x̂1

↓, x2
↓s
ª x̂2

↓, and x3
↓s

ªsgnsx1x2x3dx̂3
↓. The signum of x1x2x3 is denoted by

sgnsx1x2x3d.
Definition 10 ([4], p. 11).The vectorxPR3 is s-majorized

by yPR3 if

x1
↓s ø y1

↓s,

x1
↓s + x2

↓s + x3
↓s ø y1

↓s + y2
↓s + y3

↓s,

x1
↓s + x2

↓s − x3
↓s ø y1

↓s + y2
↓s − y3

↓s.

The notationxasy means thatx is s-majorized byy.
We emphasize that a vector representing an element from

the Lie subalgebraa is s-ordered if and only if it lies in the
closed fundamental Weyl chamber, as given in Eq.(10), ex-
cept that for the closure the relation, has to be replaced by
the relationø. This gives a geometric motivation for the
s-ordered vectors. In addition, the necessary and sufficient

conditions for Hamiltonian simulation in Eq.(13) are equiva-
lent to the definition ofs-majorization.

Corollary 1 ([4], p. 11). Assume thatH andH8 are non-
local Hamilton operators acting on a two-qubit system. Leta
and a8 be elements ofa, where a=a1X7+a2X8+a3X9
=fAdgsLdgsHd anda8=a18X7+a28X8+a38X9=fAdgsL8dgsH8d for
some local unitary operatorsL and L8. We use the notation
aW =sa1,a2,a3dTPR3 and aW8=sa18 ,a28 ,a38d

TPR3. A two-qubit
system with Hamilton operatorH and local unitary operators
available is able to simulate the Hamilton operatorH8 in
time t if and only if the following equation holds:

aW8astaW .

There is a similar condition on infinitesimal Hamiltonian
simulation that is given in terms of a majorization condition
on the spectra of the considered Hamilton operators. This
result (see the Appendix and Ref.[46], pp. 9–10) should be
compared to thes-majorization condition in Corollary 1.

V. GATE SIMULATION FOR TWO QUBITS

As in Definition 1 we consider now gate simulation,
which is a global version of infinitesimal Hamiltonian simu-
lation. We recall a theorem of Khanejaet al. [5].

Fact 8 ([5], Theorem 10). Assume thatH is a nonlocal
Hamilton operator acting on a two-qubit system. A two-qubit
system with Hamilton operatorH and local unitary operators
available is able to simulate the unitary gateU in time t if
and only if the unitary gateU can be decomposed as

U = L1 expstWdL2, s14d

where L1 and L2 are local unitary operators andW is an
element that lies in the convex hull of the Weyl orbitWsHd
of H.

Remark. An equivalent version of Eq.(14) is

L1
−1UL2

−1 = expstWd. s15d

This means thatU can be simulated in timet if and only if
there exists a unitary gateU8, which is locally equivalent to
U and can be expressed asU8=expstWd. But there exists a
restriction on the elementsL1 andL2. As expstWd is an ele-
ment of A=expsad, we have thatL1

−1UL2
−1 has to be an ele-

ment of A, too. There exists different unitary operationsU8
that satisfy this restriction. The appearance of different uni-
tary operationsU8 is a consequence of the nonuniqueness of
the KAK decomposition of Fact 1, which will be analyzed in
detail below. We emphasize that it may be impossible to
expressU asU=expstWd with the same(or shorter) time t as
in Eq. (15).

We present now the results on gate simulation in similar
fashion as done in Sec. IV B for Hamiltonian simulation.
Due to the remark following Fact 8, a local unitary operation
U can be simulated in timet if and only if a local unitary
operationU8, which is locally equivalent toU can be ex-
pressed asU8=expstWd, whereW denotes an element of the
Weyl orbit of the system Hamiltonian. In the sequel, letKi,
for i P h1, . . . ,8j, be suitable elements from the set of local
unitary gates K=expskd. In addition we denote byA andA8
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some appropriate elements of A=expsad. In view of Fact 1
we can decompose the unitary gateU and locally equivalent
gatesU8 as U=K1AK2 and U8=K3A8K4, respectively. To
characterize all unitary gatesU8, which are locally equiva-
lent to U, it is necessary and sufficient to characterize allA8
satisfyingK5A8K6=A. Thus we have to identify allA8, which
can be written asA8=sK7

−1AK7dK8. This is done in the fol-
lowing lemma.

Lemma 2. For a fixedAPA and an arbitrary element of
the formA8=sK−1AKdK8PA with K, K8PK, we can choose
K from the Weyl group andK8 from the set KùA.

Related tou from the definition(Definition 4) of an or-
thogonal symmetric Lie algebrasg ,ud, there exists a global
versionQ operating on the Lie group G(see, e.g., Ref.[32],
Theorem 2.3 of Chap. IV or Ref.[27], Theorem 6.31). We
define Q by QsK9d=K9 for K9PK and QsPd=P−1 for P
PP=expspd. We employ the mappings d! :G→G given by
G°G!

ªQsG−1d. We use here the symbols d! in order to
avoid confusion with the symbols d*, which denotes com-
plex conjugation. We have thatsG1G2d!=G2

!G1
! for G1,G2

PG, P!=P for PPP, andsK9d!=sK9d−1 for K9PK (see Ref.
[34], p. 81). We introduce the mapf :G/K→P, which is
defined asGK°fsGKdª sGKdsGKd!=GG!. This map f
was studied in Ref.[34] on pp. 81–82 and in Ref.[27] in the
Proof of Theorem 6.31. Reference[34] proves thatf induces
an isomorphism of G/K onto P.

Proof of Lemma 2. We employ the mapf and obtain the
equationsffsK−1AKdK8g=K−1A2K and fsA8d=sA8d2. Since
A8=sK−1AKdK8 is given in the condition of Lemma 2, we
obtainK−1A2K=sA8d2. And due to Fact 4, we can chooseK
as an element of the Weyl group. Thus,K−1AKPA which
proves thatK8PK ùA. j

We still need to characterize the elements of KùA. This
will be done now.

Lemma 3. The elements of set KùA are given by
expsz1pX7+z2pX8+z3pX9d, wherezj PZ for j P h1,2,3j and
X7, X8, X9 as defined on p. 12.

Proof. First, we show that the elements expsz1pX7

+z2pX8+z3pX9d constitute a subset of KùA. As
expsz1pX7+z2pX8+z3pX9d for zj PZ are by definition ele-
ments of A and A is an Abelian group, we obtain that

expsz1pX7 + z2pX8 + z3pX9d

= expsz1pX7dexpsz2pX8dexpsz3pX9d

= sis1 ^ s1dz1sis2 ^ s2dz2sis3 ^ s3dz3.

This proves that the elements constitute a subset of KùA.
Second, we show that KùA is a subset of the set given by
the elements expsz1pX7+z2pX8+z3pX9d. We make the an-
satz expsa7X7+a8X8+a9X9d=expsa1X1+a2X2+a3X3+a4X4

+a5X5+a6X6d, where ai PR, Xi were given on p. 12, and
i [ h1, . . . ,9j. By direct computations one gets fora7, a8, and
a9 the conditions

sa7 − a8 − a9d/p [ Z,

sa7 + a8 − a9d/p [ Z,

sa7 + a8 + a9d/p [ Z,

sa7 − a8 + a9d/p [ Z.

This impliesai /p[Z for i [ h7,8,9j. j

Now, we state the majorizationlike equivalent of Fact 8.
Corollary 2 (see Ref. [6], Lemma or Ref. [7], Result 1).

Assume thatH is a nonlocal Hamilton operator acting on a
two-qubit system and that we intend to simulate the unitary
operationU. Let a anda8 be elements ofa, wherea=a1X7
+a2X8+a3X9=fAdgsK1dgsHd, a8=a18X7+a28X8+a38X9, and U
=K2 expsa8dK3 for some local unitary operations
K1,K2,K3[K. We use the notationaW =sa1,a2,a3dTPR3 and
aW8=sa18 ,a28 ,a38d

TPR3. A two-qubit system with Hamilton op-
eratorH and local unitary operators available is able to simu-
late the unitary operationU in time t if and only if the fol-
lowing equation holds for at least one choice ofzW
=sz1,z2,z3dT[Z3:

aW8 + pzWastaW .

Proof. By Fact 2 and Fact 1 we can choosea and a8,
respectively, as given. Applying the remark following Fact 8
it is necessary and sufficient to consider some unitary gates
U8, which are locally equivalent toU. By use of Fact 1 these
locally equivalent gatesU8 can be represented asU8
=K18A8K28, whereA8 is an element of A andK18 ,K28 are local
unitary gates. The different possibilities forA8
in this decomposition are given by Lemma 2 as
A8=exphfAdgsKdgsa8djK8, whereK is an element of the Weyl
group,K8[K ùA, and K8=expsk8d. With the characteriza-
tion of KùA from Lemma 3 we deduce that KùA is left
invariant by operations of the Weyl group. Since A is Abelian
and KùA is left invariant by operations of the Weyl group,
we can write A8 as A8=exphfAdgsKdgsa8d+k8j
=exphfAdgsKdgsa8+k9dj, where K9=expsk9d for some ele-
ment K9[K ùA. By Fact 8 we obtain that A8
=exphfAdgsKdgsa8+k9dj=expstWd, where W lies in the
convex hull of the Weyl orbit Wsad of a.
When we consider the equation exphfAdgsKdgsa8+k9dj
=expstWd in a basis where bothfAdgsKdgsa8+k9d and tW
are diagonal, then we obtain by the periodicity of the
exponential function thatfAdgsKdgsa8+k9d+M = tW, where
M =diags2pil1,2pil2,2pil3,2pil4d and l1,l2,l3,l4[Z.
As fAdgsKdgsa8+k9d andtW are elements ofa, it follows that
M [a. We can write M as M =2pz1X7+2pz2X8+2pz3X9
=2k1 where z1=sl1+l2d[Z, z2=sl1+l3d[Z, z3=sl2

+l3d[Z, K1=expsk1d, and K1[K ùA. Thus, we obtain
fAdgsKdgsa8+k9d+2k1=fAdgsKdgsa8+k9+2k2d=fAdgsKdgsa8
+k3d= tW, where Ki =expskid, Ki [K ùA, and i [ h1,2,3j.
Corollary 1 completes the proof. j

Searching for a refinement of Corollary 2, we state
bounds on the coefficients ofa1, a2, and a3 of an element
a1X7+a2X8+a3X9 of a. It follows from Lemma 2 and
Lemma 3 that the coefficientsai, i [ h1,2,3j, are periodic
with periodp. (Concerning this periodicity, we refer also to
Appendix B of Ref.[47] and p. 7 of Ref.[24].) Bearing the
p-periodicity in mind, we can restrict the coefficientsai to
the intervalf−p /2 ,p /2g. This choice is compatible with our
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conventions in Sec. III C. To reduce the symmetry induced
by the Weyl group, we restrict ourselves to elements of the
closed fundamental Weyl chamber. From Eq.(10) or from
the s-order of Sec. IV B, we get thata1ù0, a2ù0, a1ùa2,
anda2ùa3. These considerations lead to the following cor-
ollary.

Corollary 3 (see Ref. [6], Theorem 1 or Ref. [7], Result
2). Assume thatH is a nonlocal Hamilton operator acting on
a two-qubit system and that we intend to simulate the unitary
gate U. Let a and a8 be elements ofa, where a=a1X7
+a2X8+a3X9=fAdgsK1dgsHd, a8=a18X7+a28X8+a38X9, and U
=K2 expsa8dK3 for some local unitary operations
K1,K2,K3[K. In addition, we forcea1, a2, a3, a18, a28, anda38
to be elements from the intervalf−p /2 ,p /2g. We use the
notation aW =sa1,a2,a3dTPR3 and aW8=sa18 ,a28 ,a38d

TPR3. A
two-qubit system with Hamilton operatorH and
local unitary operators available is able to simulate
the unitary gateU in time t if and only if the following
equation holds for at least one choice ofzW=sz1,z2,z3dT

[ hs0,0,0dT,s−1,0,0dTj:

aW8 + pzWastaW .

Remark. In the proof we follow Refs.[6,7].
Proof. Due to Corollary 2, it is sufficient to prove that for

everyzW[Z3 one of the following conditions holds:

aW8 + ps0,0,0dTasaW8 + pzW,

aW8 + ps− 1,0,0dTasaW8 + pzW.

We first consider the case thatuziu.1, for somei [ h1,2,3j.
Becauseai8øp /2, the maximal componentsaW8+pzWd1

↓s of the
s-ordered version ofaW8+pzW is greater than or equal to 2p
−p /2=3p /2. We check the conditions of Definition 10 and
obtain thataW8+ps0,0,0dTasaW8+pzW.

Second, we consider the case thatuziuø1 for all
i [ h1,2,3j. By easy, but tedious, computations one can
check thataW8+ps0,0,0dTasaW8+pzW for

zW [ hs− 1,− 1,0dT, s− 1,0,− 1dT, s0,− 1,− 1dT,

s0,− 1,1dT, s0,0,0dT, s− 1,0,1dTj

and thataW8+ps−1,0,0dTasaW8+pzW for

zW [ hs− 1,− 1,− 1dT, s− 1,− 1,1dT, s− 1,0,0dT, s0,− 1,0dT,

s0,0,− 1dT, s0,0,1dTj.

For all other zW[ h−1,0,1j3 we have that both aW8
+ps0,0,0dTasaW8+pzW andaW8+ps−1,0,0dTasaW8+pzW hold.j

VI. LOWER BOUNDS FOR n-QUBIT SYSTEMS

In the two-qubit case we used a particular decomposition
g=k+p of the Lie algebra that leads to a decomposition G
=KAK of the Lie group where K=expskd is the set of local
unitary operations. By this approach, e.g., the optimal simu-
lation result of Fact 8 can be obtained. In the more general
n-qubit case we can use decompositionsg=k+p of the cor-
responding Lie group where K=expskd contains all local uni-

tary operations. Although K is, in general, not equal to the
set of local unitary operations, we can generalize the ap-
proach from the two-qubit case in order to prove lower
bounds on the time complexity for gate simulation. Lower
bounds were considered in Ref.[10], and we refine and gen-
eralize the approach of Ref.[10] in this section. In doing so,
we put this approach in a broader context.

A. Magic basis (for two qubits)

We begin by recalling the Bell basis and the magic basis.
The Bell basis(see Refs.[48,49]) is a vector space basis for
two-qubit pure states:

uF+l ª
1
Î2

su00l + u11ld,

uF−l ª
1
Î2

su00l − u11ld,

uC+l ª
1
Î2

su01l + u10ld,

uC−l ª
1
Î2

su01l − u10ld.

We employ the ket-vector notation, see, e.g., Ref.[2]. If we
include some relative phases in the Bell basis we get the
magic basis which was introduced in Ref.[8] and coined by
Hill and Wootters[9]:

ue1l ª uF+l,

ue2l ª i uF−l,

ue3l ª i uC+l,

ue4l ª uC−l.

The magic basis is connected to the entanglement of forma-
tion (see Ref.[8] and related work in Refs.[50,51]). We
neglect here this connection, but refer to Sec. VIII.

The magic basis has two important properties. First, the
local unitary operations on two qubits are real and orthogo-
nal in the magic basis(see Ref.[9], p. 5023 and Theorem 1
of Ref. [52]). Second, the elements of the A=expsad (for
notations see, e.g., Sec. III C) are diagonal in the magic ba-
sis, as remarked in Ref.[47] on p. 3 and Ref.[7] on p. 2. The
basis change from the standard basishu00l , u01l , u10l , u11lj to
the magic basis is given byQ−1, where

Q =
1
Î21

1 0 0 i

0 i 1 0

0 i − 1 0

1 0 0 − i
2 .

For elementsU[SUs4d the mapU°Q−1UQ (see Ref.[52])
reflects the isomorphism between SUs2d ^ SUs2d and SOs4d
(see, e.g., Ref.[35], p. 52).
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B. Representation theory

It is not obvious how the magic basis generalizes to
higher number of qubits and which properties remain. Moti-
vated by the properties of the magic basis for two qubits, we
seek for basis changes of the local unitary operations
fSUs2dg^n into the orthogonal group(if possible). To analyze
this we need some representation theory.

Definition 11 (Lie group representation) (see, e.g., Ref.
[53], p. 210). A complex representation of the Lie group G in
the finite-dimensional and complex vector space VC is a con-
tinuous homomorphismt :G→GLsVCd from the group G
into the group GLsVCd of invertible and linear transforma-
tions which operate on VC.

A representationt in a finite-dimensional and complex
vector space VC is called irreducible if there exists no sub-
space UC other than UC=0 or UC=VC such that the subspace
is tsGd-invariant, i.e., the equationtsGdUC,UC holds (see,
e.g., Ref.[53], p. 210). We state an important fact on tensor
products of irreducible representations.

Fact 9 ([54], Prop. 4.14 of Chap. II). If t1 is an irreduc-
ible complex representation of G1 in the complex vector
space VC andt2 is an irreducible complex representation of
G2 in the complex vector space WC, thent1 ^ t2 is an irre-
ducible complex representation of G13G2 in the complex
vector space VC ^ WC. Furthermore, any irreducible repre-
sentation of G13G2 is a tensor product of this form.

Below we use bilinear formsB :VC3VC→C, which are
C-linear in both arguments, to characterize irreducible com-
plex representations. Letv1 and v2 be some arbitrary ele-
ments of VC. A bilinear form is called symmetric if
Bsv1,v2d=Bsv2,v1d and skew symmetric ifBsv1,v2d=
−Bsv2,v1d. A bilinear form is tsGd-invariant if Bsv1,v2d
=BstsGdv1,tsGdv2d for all G[G.

Definition 12 (cf., Refs. [53,54]). Consider an irreducible
complex representationt of G in VC. The representationt is
said to be of real type if VC admits a bilinear form that is
nonzero, nondegenerate,tsGd-invariant, and symmetric;
complex type if VC admits no bilinear form that is nonzero,
nondegenerate, andtsGd-invariant; and quaternionic type if
VC admits a bilinear form that is nonzero, nondegenerate,
tsGd-invariant, and skew symmetric.

We introduce the mapxt :G→C ,G°TrftsGdg, which is
the characterxt of the representationt. We use the character
to characterize the type(real, complex, or quaternionic) of
irreducible complex representations.

Fact 10 (Ref. [53], Theorem 4.8.1). Let t denote an irre-
ducible complex representation of G in VC. The characterxt

is real valued if and only if there exists atsGd-invariant,
nonzero, complex bilinear formB on VC that is automati-
cally nondegenerate and uniquely determined, up to a non-
zero scalar factor. This bilinear formB is either symmetric or
skew symmetric.

By means of Fact 10 we can decide if the type of a rep-
resentation is complex. To complete the classification of the
type (real, complex, or quaternionic) of irreducible complex
representations, we state another fact that allows us to deter-
mine the type of a representation by computing an normal-
ized integral over the compact Lie group G.

Fact 11 (see Ref. [53], Prop. 4.8.7 and Ref. [54], Prop.
6.8 of Chap. II). Let t be an irreducible complex representa-
tion of the compact Lie group G in VC with characterxt.
Then we have

E xtsG2ddG= 5 1 ⇔t is of real type,

0 ⇔t is of complex type,

− 1 ⇔t is of quaternionic type.
6

Representations can be identified with subgroups of
GLsVCd, so we can extend Definition 12 to subgroups of
GLsVCd. We denote the general linear group on a complex
vector space of dimensionk by GLsk,Cd. Next we character-
ize the subgroups of GLsk,Cd that are conjugated to sub-
groups of the orthogonal group(motivated by Sec. VI A) or
the symplectic group.

Fact 12 (adapted from Ref. [26], Theorem H of Chap. 3).
A compact subgroup of the general linear group GLsk,Cd is
conjugated in GLsk,Cd to a subgroup of the orthogonal
group Oskd if and only if it is of real type. Accordingly, a
subgroup of GLs2k,Cd is conjugated in GLs2k,Cd to a sub-
group of the(unitary) symplectic group Spskd if and only if it
is of quaternionic type.

Remark. Actually, Ref. [26] gives an algorithm to com-
pute the basis change from the bilinear form mentioned in
Definition 12. For the notation Spskd see Sec. VI D and Ref.
[55].

After this preparation we consider the case of local uni-
tary operationsfSUs2dg^n. We employ the standard represen-
tation of SU(2):

G = S a + ib c + id

− c + id a − ib
D ,

where a,b,c,dPR and a2+b2+c2+d2=1. To compute the
integral of Fact 11, we introduce the real parameters 0
øf,2p, 0øc1øp, and 0øc2øp as follows:

a = cossfdsinsc1dsinsc2d,

b = sinsfdsinsc1dsinsc2d,

c = cossc1dsinsc2d,

d = cossc2d.

We obtain

E xtsG2ddfSUs2dg^n = SE xtsG2ddSUs2dDn

= 1E
0

2p

E
0

p

E
0

p

Jsf,c1,c2ddc2dc1df2
n

= s− 1dn,

where
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Jsf,c1,c2d = h4 cossfd2f1 − cossc1d2 − cossc2d2

+ cossc1d2 cossc2d2g − 2jsinsc1dsinsc2d2.

This proves the following theorem.
Theorem 3. The local unitary operations on an even num-

ber of qubits are conjugated to a subgroup of an orthogonal
group. The local unitary operations on an odd number of
qubits are conjugated to a subgroup of a(unitary) symplectic
group.

Remark.Similar results are obtained in Ref.[56] using a
different approach.

C. Thompson’s theorem and majorization

Following Ref.[10], we present in this subsection a theo-
rem due to Thompson[57] and a majorization condition for
the spectra of the sum of two Hermitian matrices. Both re-
sults will be employed below.

Fact 13 (Ref. [57]). Let A andB be Hermitian matrices.
Then there exist unitary matricesU1 andU2 such that

expsiAdexpsiBd = expsiU1
−1AU1 + iU2

−1BU2d.

This result of Thompson relies partly on a conjecture of
Horn [58]. This conjecture was recently proven[59–64]. By
induction, we get Corollary 4.

Corollary 4.Let Aj denote Hermitian matrices. Then there
exist unitary matricesUj such that

p
j=1

m

expsiAjd = expSio
j=1

m

Uj
−1AjUjD .

We state now a result which gives us bounds for the the
spectra of the sum of two Hermitian matrices. Reference[41]
attributes this result to Ky Fan[65]. We denote the vector of
eigenvalues of thek3k-dimensional matrixA, including
multiplicities, by specsAd=fspecsAd1, . . . ,specsAdkgT. In ad-
dition, we assume that specsAdi ùspecsAd j if i , j s1ø i , j
økd.

Fact 14 (Ref. [41], Theorem 9.G.1).Let A andB denote
Hermitian matrices. Then the following equation holds:

specsA + Bd a specsAd + specsBd.

D. Lower bounds

In this section we derive lower bounds on the minimal
time to simulate unitary operations(see Definition 1). We
begin by discussing the(unitary) symplectic group. Follow-
ing Ref. [55] on p. 22, we introduce the bilinear form

BSpsxW,yWdªo
j=1

k

sxiyi+k − xi+kyid, s16d

wherexW =sx1, . . . ,x2kdTPC2k and yW =sy1, . . . ,y2kdTPC2k. Let
Jk denote the matrix

Jk = S 0k Ik

− Ik 0k
D ,

where is theIk is thek3k-dimensional identity matrix and 0k
the k3k-dimensional zero matrix.

Definition 13 (see, e.g., Ref. [55], Prop. 1 on p. 22).The
subgroup of the unitary group Us2kd of degree 2k composed
of the matricesM which leave the bilinear form in Eq.(16)
invariant, i.e., which satisfy the condition

MTJkM = Jk, s17d

is called the(unitary) symplectic group and is denoted by
Spskd.

The group Spskd can be considered as operating on a
k-dimensional module over the quaternionsH leaving a sym-
plectic (scalar) product invariant(Ref. [55], pp. 16–24). All
elements of Spskd have determinant one(see, e.g., Ref.[55],
p. 203). When we regard Spskd as a manifold its real dimen-
sion is 2k2+k (Ref. [55], p. 23).

We recall from Theorem 3 that the local unitary opera-
tions on an odd number of qubits are conjugated to a
subgroup of a (unitary) symplectic group. Using that
sJkd−1=−Jk, the condition in Eq.(17) can be proved to be
equivalent to

M−1 = JkM
TsJkd−1. s18d

We know that the local unitary operations on an odd number
of qubits meet the condition in Eq.(18) in some appropriate
chosen basis. But we can state the condition also in the stan-
dard representation offSUs2dg^n with n odd. We use the
identification 2k=2n. Let Jn8 denote the matrix

Jn8 ª S 0 1

− 1 0
D^n

= sisyd^n

and recall the standard representation of SU(2):

G = S a + ib c + id

− c + id a − ib
D ,

wherea,b,c,dPR. We use the notation

Gj = S aj + ibj cj + idj

− cj + idj aj − ibj
D ,

whereaj ,bj ,cj ,dj PR. It can be checked that

S 0 1

− 1 0
DGTS 0 1

− 1 0
D−1

= G−1

and we obtain that

Jn8S^
j=1

n

GjDT

sJn8d
−1 = S ^

j=1

n

GjD−1

, s19d

which holds obviously for odd and even. From now on,n is
no longer restricted to be odd. We emphasize thatsJn8d

−1

=sJn8d
T=s−1dnJn8. It follows that

S^
j=1

n

GjDT

Jn8S^
j=1

n

GjD = Jn8. s20d

Let H denote the 2n-dimensional complex vector space on
which the group SUs2nd operates. We introduce the bilinear
form BHsx,ydªxTJn8y on the Hilbert spaceH. We have that
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BHsy,xd = yTJn8x = s− 1dnxTJn8y = s− 1dnBHsx,yd,

which proves thatBHsx,yd is symmetric forn even and
skew-symmetric forn odd. From Eq. (20) we get that
BHsx,yd is left invariant byfSUs2dg^n. Hence, we have iden-
tified BHsx,yd as the bilinear form of Definition 12 operating
on VC=H.

This motivates the following definition of the tilde map-
ping, which operates on the local unitary operations as the
inverse operation.

Definition 14.We introduce the tilde mapping

C:H SUs2nd → SUs2nd

U ° Ũ ª CsUd = Jn8U
TsJn8d

−1.
J

It is apparent fromfJn8U
TsJn8d

−1gfJn8U
TsJn8d

−1g†= I2n and
detfsJn8d

−1UTJn8g=detsUd that the tilde mapping preserves the
group SUs2nd.

Remark.The tilde mapping is a generalization of the map
U° ssyd^nUTssyd^n for evenn from Ref.[10] on p. 5. It can
be easily checked that the two maps coincide in the case of
evenn. See also the discussion in Sec. VIII.

We state now an important lemma characterizing the tilde
mapping.

Lemma 4. Let V andW denote some local unitary opera-
tions and letU denote some arbitrary unitary operation. The
following three equations hold:

Ṽ = V−1,

W̃= W−1,

VUWCsVUWd = VUŨV−1.

Proof. The first and second claim follows from Eq.(19). We

prove now the third claim:VUWCsVUWd=VUWW̃ŨṼ

=VUWW−1ŨV−1=VUŨV−1. j
This proves that local unitary operations preserve the

spectrum ofUŨ. We now state the theorem that gives us
lower bounds for the minimal time to simulate a unitary gate.
We use the notation arg where argfexpsimdg=m and
argfsx1, . . . ,xldTg=sargfx1g , . . . ,argfxlgdT.

Theorem 4. Assume thatH is a nonlocal Hamilton opera-
tor acting on ann-qubit system and that we intend to simu-
late the unitary gateU. An n-qubit system with Hamilton
operatorH and local unitary operators available is able to
simulate the unitary gateU in time t only if the following
equation holds for at least one choice ofzW[Z2n:

argfspecsUŨdg + 2pzW a 2t specsHd.

Remark. This theorem generalizes the work in Theorem 5
and Corollary 7 of Ref.[10]. In the proof we use ideas from
Ref. [10].

Proof. Assume thatU=fp j=1
m Wjexps−it jHdgW0 is a simu-

lation of U, whereWj denotes some local unitary operations,
tj ù0, ando j=1

m tj = t. Let

Vj = H Wm for j = m,

Vj+1Wj for 0 ø j , m.
J

and Hj =VjHVj
−1s1ø j ømd. Thus, the simulation ofU can

written asU=fp j=1
m exps−it jHjdgV0 where specsHjd=specsHd

for all 1ø j øm.
We use Corollary 4 to find some suitable Hermitian op-

eratorsHj8 and Hj9 with specsHj8d=specsHj9d=specsHd and
j [ h1, . . . ,mj such that

Fp
j=1

m

exps− it jHjdGCFp
j=1

m

exps− it jHjdG
= expFp

j=1

m

− it jsHj8 + Hj9dG . s21d

When we combineṼ0=V0
−1 with Eq. (21) we obtain that

specsUŨd = specHexpFip
j=1

m

tjsHj8 + Hj9dGJ .

We employ Fact 14 to complete the proof:

argfspecsUŨdg + 2pzW = specSo
j=1

m

tjsHj8 + Hj9dD a 2t specsHd.

j

E. Involutive automorphisms

We end this section by highlighting connections between
the tilde mapping of Def. 14 and involutive automorphisms
of the Lie algebrasus2nd.

The tilde mapping is similar to thes d!-map used in the
proof of Lemma 2 in Sec. V. Forn odd, K must be equivalent
to Sps2n−1d and, respectively, forn even, K must be equiva-

lent to SOs2nd. In both cases, the mapU→UŨ plays a simi-
lar rôle as the mapf in Sec. V.

Following Ref. [25] on pp. 451–452, we state all Rie-
mannian symmetric spaces SUs2nd /K induced by involutive
automorphisms of the Lie algebrasus2nd. We have to con-
sider three cases that correspond to the types AI, AII, and
AIII of involutive automorphisms. In the case of type AI, we
have to treat the Lie algebrag=suskd and the involutive au-
tomorphismuAIsgd=g*. The involutive automorphismuAI

gives rise to the Riemannian symmetric space SUskd /SOskd.
The Lie algebrag=sus2kd and the involutive automor-

phismuAII sgd=Jkg* sJkd−1 belong to type AII. We obtain the
Riemannian symmetric space SUs2kd /Spskd.

For completeness we mention the type AIII even though
we do not use the corresponding Riemannian symmetric
space in this paper. The Lie algebra isg=susp+qd and the
corresponding involutive automorphism is given byuAII sgd
= Ip,qgIp,q. We have used the notation

Ip,q = S− Ip 0p,q

0q,p Iq
D ,

where Ip denotes thep3p-dimensional identity matrix and
0p,q denotes thep3q-dimensional zero matrix. This gives us
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the Riemannian symmetric space SUsp+qd /S(Uspd3Usqd).
The group S(Uspd3Usqd) can be represented by the matri-
ces

S g1 0p,q

0q,p g2
D ,

whereg1[Uspd, g2[Usqd, and detsg1d detsg2d=1.

VII. RELATED WORK

To recognize the considerable amount of related work we
give a short outline of the connections to our work. Various
aspects of(infinitesimal) Hamiltonian simulation as consid-
ered in Sec. IV were studied in Refs.[4,13–19,46,66–75].
Some references consider models where—in contrast to our
model—additional resources were used: prior entanglement
[73], additional classical communication[46], measurements
[4], or ancillas[4,46].

For two qubits, gate simulation(see Sec. V) was analyzed
in Refs. [5–7,14,24,76]. In Ref. [23] Lie group decomposi-
tions were used to obtain a theory ofn-qubit gate simulation.
In general these decompositions do not lead to optimal simu-
lations. In the case of three qubits some progress on the time
optimality problem for gate simulation was reported in Ref.
[77], see also Ref.[78]. Concerning lower bounds, we have
generalized(see Sec. VI) the approach of Ref.[10].

VIII. DISCUSSION

In this section we address a peculiar similarity between
our approach to lower bounds on the time complexity for
gate simulation and the concurrence[9,11,79,80], as well as
some of its generalizations[56,81–94]. The concurrenceC of
a pure two-qubit stateucl[C4 was defined in Ref.[11] as

Csucld = ukcuc̃lu,

whereuclª ssy ^ sydsucld*. Let l1, l2, l3, andl4 denote the
(positive) square roots of the eigenvalues of the matrixrr̃,
where r̃ª ssy ^ sydr* ssy ^ syd. We assume thatl1ùl2

ùl3ùl4. References[9,11] show that the concurrenceC of
a two-qubit density matrixr is given by

Csrd = maxh0,l1 − l2 − l3 − l4j. s22d

Uhlmann [82] considered generalizations of the concur-
rence. Following this approach we introduce some notations.
Let us call a mapq that operates on a complex vector
space VC antilinear if the equationqsb1uc1l+b2uc2ld
=sb1d* qsuc1ld+sb2d* qsuc2ld holds for allb1, b2PC and all
uc1l , uc2lPVC. For an antilinear operatorq the (Hermitian)
adjoint q† is defined by the condition thatkc1uq†c2l
=kc2uqc1l holds for all uc1l , uc2lPVC. If an antilinear op-
eratorq satisfies the conditionq†=q−1 we call this operator
antiunitary. When the mapq is antiunitary andq−1=q holds,
then we have thatq2 equals the identity map and we define
q to be a conjugation. A skew conjugation is an antiunitary
operatorq fulfilling q−1=−q. Assume in the following that
q is a conjugation. Now, Uhlmann defined a generalized

tilde mapping by its operation on pure statesuc̃lªqsucld
and its operation on density matricesr̃ªqrq−1=qrq. In
addition he generalizes the concept of concurrence to more
than two qubits for pure states

Cqsucld ª ukcuc̃lu

and for mixed states

Cqsrd ª min o
j

ukf juf̃ jlu,

where the minimum is taken over all decompositionsr
=o juf jlkf ju of r into nonnormalized pure statesuf jl. Uhl-
mann [82] proved that in strong analogy to Eq.(22) the
generalized concurrence is given by

Cqsrd = maxH0,l1 − o
j.1

l jJ ,

where thelis are the square roots of the eigenvalues of the
matrix rr̃ andli ùl j for i , j .

References[88,91,94] consider the map on density matri-
ces given by

r ° r̃ ª ssyd^nr * ssyd^n. s23d

In addition, the map

iH ° iH̃ ª s− isyd^nsiHd* fs− isyd^ng−1 s24d

is introduced in Ref.[56] for elementsiH of the Lie algebra
sus2nd. The map in Eq.(24) can be applied to a Hamilton
operatorH:

H̃ = s− isyd^nsHd* fs− isyd^ng−1 = ssyd^nsHd* ssyd^n.

This shows that both Eq.(23) and (24) are induced by the
conjugationq1 given by

q1sucld = sy
^nsucld*.

In this case we get the concurrenceCq1
. The corresponding

tilde mapping is given by its action on pure statesuc̃l
=q1ucl and its action on density matricesr̃=q1rq1

−1

=q1rq1. Proposition 8 of Ref.[95] (for related remarks see
Ref. [85]) states that the conjugationq1 is the(up to a phase)
unique antilinear operator acting on the complex vector
spacesC2d^n which is invariant under basis changes by local
unitary operationsU except for an factor equal to detsUd.
Further on, Ref.[95] states that such an antilinear mapping
exists only forn-qubit systems and not for generaln-qudit
systems.

After this short excursion into entanglement measures of
concurrence-type, we can state a connection between this
type of entanglement measures and lower bounds on the time
complexity for gate simulation. The tilde mapping of Def.
14, which was used in the main body of the text, can be
interpreted in the context of concurrence-type entanglement
measures. SinceHT=H* holds for all Hermitian operators
we obtain
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CsUd = Jn8fexpsiHdgTsJn8d
−1 = expfiJn8H* sJn8d

−1g,

whereiJn8H* sJn8d
−1 is up to a minus sign equal to the rhs of

Eq. (24). This highlights that if we consider the lower bounds
introduced in Sec. VI we are essential in setting of Ref.[82]
with q=q1.

In both constructions, for the lower bounds on the time
complexity to simulate unitary operators and for the compu-
tation of the concurrence, the essential point is that the spec-

trum of both UŨ and rr̃ is invariant under local unitary
operations. This highlights that there is a connection between
entanglement measures and lower bounds on the time com-
plexity for gate simulation. We are looking forward to gen-
eralizing some of these ideas.

IX. CONCLUSION

Starting with an extensive reconsideration of infinitesimal
Hamiltonian simulation and gate simulation in the two-qubit
case, we streamlined the different approaches by using Lie-
theoretic methods. As the success of this approach suggests,
this seems to be the appropriate level of description for such
a theory.

Going beyond two-qubits, we derived lower bounds on
the time complexity for gate simulation. For this aim, we
developed an analog of the magic basis for general multipar-
tite qubit systems. This gives us a first idea of the structure of
unitary operations with respect to the set of local unitary
operations. In addition, we related our approach to entangle-
ment measures of concurrence-type.

Note added in proof.Recently we realized that Theorem 3
can be derived from Theorem 5 of Ref.[96]. In the proof of
that theorem, a basis change similar to our basis change in
Sec. VI D for oddn is given.
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APPENDIX: SPECTRAL THEORY FOR INFINITESIMAL
HAMILTONIAN SIMULATION

In this appendix we prove a similar version of Theorem 2.
Relying on Sec. IV B, we use arguments from the theory of
majorization applied to the spectrum of Hamilton operators.
We denote the vector of eigenvalues of thek3k-dimensional
matrix A, including multiplicities, by specsAd
=(specsAd1, . . . ,specsAdk)

T. In addition, we assume that
specsAdi ùspecsAd j if i , j s1ø i , j økd. The majorization of
the spectra of two matrices is, by a theorem of Uhlmann
[97], related to the convex combination of unitary orbits.

Fact 15 (Uhlmann) (see, e.g., [97], Satz 3 or [42], Theo-
rem 2-2). For Hermitian matricesA and B the condition
specsAdaspecsBd is equivalent to

A = o
i

qiUi
−1BUi ,

whereUi are unitary matrices,qi ù0, andoiqi =1.
We need another theorem connecting the notion of major-

ization with the convex hull of all permuted versions of a
vector.

Fact 16 (Rado) (see, e.g., Ref. [98] or [41], Prop. 4.C.1).
The vectorx is majorized by the vectory if and only if x lies
in the convex hull of all permutations ofy.

The spectral version of Theorem 2 reads as follows:
Theorem 5 ([46], pp. 9–10).Assume thatH and H8 are

nonlocal Hamilton operators acting on a two-qubit system.
Let a and a8 be elements ofa, wherea=a1X7+a2X8+a3X9
=fAdgsLdgsHd anda8=a18X7+a28X8+a38X9=fAdgsL8dgsH8d for
some local unitary operatorsL and L8 sai ,ai8PRd. A two-
qubit system with Hamilton operatorH and local unitary
operators available is able to simulate the Hamilton operator
H8 in time t if and only if

specsa8d a t specsad.

Remark.The necessity of this condition was proven in
Ref. [15]. In the proof, we follow Ref.[46].

Proof. Due to Fact 2 we can choosea and a8 as given.
The “only-if” case follows by Fact 15. We consider now the
“if” case. By invoking Fact 16, we get that

specsa8/td = o
k

qkPk specsad,

wherePk is a permutation,qkù0, andokqk=1. Sincea and
a8 are elements ofa, they commute. It follows that there
exists a basis wherea anda8 are simultaneously diagonal. In
that basis the permutationsPk correspond to permutations of
the diagonal elements ofa. For that reason we have that

sa8/td = o
k

qkUk
−1aUk

for some unitary operatorsUk, which permute the spectrum
of a. We emphasize that theUk are not necessarily local. But
we prove now that we can find local unitary operators imple-
menting any permutation of the spectrum ofa. Conjugation
by the local unitary operators fss0− is1d /Î2g
^ fss0− is1d /Î2g, fss0+ is3d /Î2g ^ fss0+ is3d /Î2g, and
fss0+ is1d /Î2g ^ fss0− is1d /Î2g permutes the
eigenvalues as respectively follows:s1,2,3,4d° s2,1,3,4d,
s1,2,3,4d° s1,3,2,4d, and s1,2,3,4d° s1,2,4,3d. As all
permutations on four-vectors are generated by this permuta-
tions, the “if” case follows. j

We note that the local unitary operators that permute the
spectrum of elements ofa are given in Ref.[46], but there
the second local unitary operator is misprinted.
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